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Abstract
Deep-learning-based approaches to depth estimation are rapidly advancing, offering better performance over traditional 
computer vision approaches across many domains. However, for many critical applications, cutting-edge deep-learning 
based approaches require too much computational overhead to be operationally feasible. This is especially true for depth-
estimation methods that leverage adversarial learning, such as Generative Adversarial Networks (GANs). In this paper, we 
propose a computationally efficient GAN for unsupervised monocular depth estimation using factorized convolutions and 
an attention mechanism. Specifically, we leverage the Extremely Efficient Spatial Pyramid of Depth-wise Dilated Separable 
Convolutions (EESP) module of ESPNetv2 inside the network, leading to a total reduction of 22.8% , 35.37% , and 31.5% in 
the number of model parameters, FLOPs, and inference time respectively, as compared to the previous unsupervised GAN 
approach. Finally, we propose a context-aware attention architecture to generate detail-oriented depth images. We demonstrate 
superior performance of our proposed model on two benchmark datasets KITTI and Cityscapes. We have also provided more 
qualitative examples (Fig. 8) at the end of this paper.
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1  Introduction

Image-based depth estimation is a key problem in computer 
vision, with a wide range of applications from robotic navi-
gation to virtual reality. Early applications of deep learn-
ing to depth estimation used to rely on supervised learn-
ing, directly regressing a depth estimate of each pixel, and 
training models using ground-truth depth maps. Eigen et al. 
[1] has demonstrated good performance using a multi-scale 
Convolutional Neural Network (CNN) to predict depth from 

single images. In order to learn the pixel-wise transforma-
tion, supervised approaches require ground truth depth data 
for training. However, obtaining the ground truth depth data 
is non-trivial, and model performance may be limited by the 
amount of quality ground truth data that can be collected. 
Probabilistic graphical models such as Conditional Random 
Field [2] have increased the performance when they are used 
in neural networks for optimization.

Unsupervised approaches estimate disparity maps from 
two different image views (rectified left and right images) 
of the calibrated stereo camera, making ground truth depth 
data not required for training. This makes the unsupervised 
approaches more robust in practice. Godard et al. [3] pro-
posed a left-right cycle consistency loss as a constraint on 
this unsupervised approach. Pilzer et al. [4] apply the left-
right consistency in an adversarial learning approach in 
order to improve the generated images. Although adversar-
ial learning-based unsupervised methods achieve excellent 
performance in depth estimation, these methods rely on the 
complex generative adversarial network (GAN) architecture 
which is generally computationally heavy. As a result, they 
are not able to run in real-time on resource-constrained edge 
devices for practical applications, e.g. autonomous driving.
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To address this challenge, we propose a computationally 
efficient architecture for depth estimation given stereo image 
pairs, based on the unsupervised GAN architecture [4]. A 
context-aware attention mechanism is also introduced to 
improve depth estimation, yielding more accurate overall 
depth prediction. In summary, the main contributions of this 
paper are: 

1.	 We adopt the EESP module [5] inside a GAN archi-
tecture to significantly improve the computational effi-
ciency, while concurrently reducing RMSE by 7% com-
pared to the baseline model [4].

2.	 We introduce a context aware attention layer in the gen-
erator to get accurate depth images. To our knowledge, 
our work is the first to explore the attention mechanism 
in the unsupervised depth estimation approach.

3.	 We conduct extensive experiments on the publicly avail-
able datasets KITTI and CityScapes. The results reveal 
the effectiveness of the proposed method. A detailed 
ablation study is also carried out to identify the relative 
contributions of the individual components.

2 � Related work

Image-based depth estimation techniques estimate the 3D 
structure of a scene from a 2D image. In traditional com-
puter vision, depth estimation algorithms rely on point cor-
respondences between stereo image pairs [6, 7] and triangu-
lation. Saxena et al. [8] show that depth can be learned from 
handcrafted features using monocular cues of a single 2D 
image. These approaches have evolved over time [8–11], and 
are in many cases today being displaced by deep learning 
based approaches, which no longer require the handcrafted 
features, but instead estimate depth directly from raw pixel 
values. Here we focus on models that take in a single input 
image and predict the depth of the image.

Supervised depth estimation Supervised learning relies on 
ground truth depth data to achieve promising performance 
for image depth estimation. Indoor datasets like NYU [12] 
and outdoor datasets like KITTI [13] and Cityscapes [14] 
contribute to the evolution of supervised monocular depth 
estimation approaches. Eigen et al. [1] propose a two-scale 
network to generate a dense depth map trained on ground 
truth values. Probabilistic graphical models (i.e. MRF and 
CRF) have also been combined with deep networks to boost 
accuracy [15]. Xu et al. [2] offered structured attention 
mechanism using CRF to combine multi-scale informa-
tion obtained from the CNN layers. Although supervised 
depth estimation has traditionally been formulated as a 
regression problem, Cao et al. [16] show that there may be 
advantages to formulate the task as a pixel-wise classifica-
tion problem. Recent architectures have shown promising 

developments for multi-task learning strategies [17, 18] that 
include depth estimation. Chen et al. [19] utilize two differ-
ent depth estimation methods (coarse-level depth estimation 
and saliency-aware depth enhancement) in order to get better 
saliency detection. This saliency-aware depth enhancement 
generates different depth values for salient and non-salient 
objects. These approaches are often quite complex and rely 
on ground truth depth for training. In contrast, our approach 
does not require ground truth depth value while training.

Unsupervised depth estimation Recent unsupervised 
depth estimation algorithms [20, 21] have gained popular-
ity in the research community. Garg et al. [22] introduce an 
unsupervised approach using stereo image pairs. However, 
the method is limited by a loss function that is not fully 
differentiable. Albeit a linearization of the loss function 
via Taylor approximation is developed which is still chal-
lenging to optimize. Zhou et al. [23] solve this problem by 
using bilinear warping. In a recent work, Godard et al. [3] 
propose a new left right cycle consistency loss along with 
the image reconstruction loss for a higher quality depth esti-
mation. This new training loss for depth estimation has also 
been used in Cycle-GAN architecture by Pilzer et al. [4] 
for unsupervised depth estimation based on stereo dispar-
ity estimation. Although these approaches have achieved 
impressive results in unsupervised manner, it is difficult for 
GAN [24] architectures to achieve real-time throughput on 
resource constrained embedded devices due to their high 
complexity. Our work attempts to alleviate this problem by 
introducing an efficient GAN framework for unsupervised 
depth estimation.

Adversarial learning Adversarial learning has been 
proven to be efficient in the image generation task. A line 
of research has explored various GAN architectures [24] for 
dense depth map generation. For example, Kundu et al. [25] 
leverage the domain adaptation strategy for depth estimation 
in an adversarial learning framework. Various GAN archi-
tectures such as Conditional GAN [26], CycleGAN [27] 
are utilized for depth estimation task [11]. Joint learning 
strategy [28, 29] has also been investigated through GANs 
for high quality depth estimation. In this paper, we focus on 
building cost effective GAN architecture, which is signifi-
cantly different than the previous works.

Attention Attention models are very useful in computer 
vision for improving the performance in pixel-level predic-
tion tasks as well as in the context of monocular depth pre-
diction. Depth maps need to be accurate and detail oriented, 
so preserving details through attention layers may prove 
helpful in 3D reconstruction. There are several applications 
of attention layers to supervised depth estimation. Hao et al. 
[30] demonstrate how attention mechanism can focus on the 
most informative part of the input image based on the con-
text. Chen et al. [11] also use attention as aggregation of 
image and pixel level information. The approach we present 
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in this paper is different from the prior works in the follow-
ing two aspects. First, ours is the first work to explore the 
attention mechanism in the unsupervised depth estimation 
problem. Second, we leverage the advantage of multi-scale 
feature fusion (local and global) to obtain attention aware 
features, leading to enhanced depth estimation.

3 � Method

In this section we first describe the baseline architecture 
along with our proposed method and then explain each com-
ponent of this proposed architecture. In the later sections, we 
demonstrate its efficiency in image generation.

3.1 � Network architecture

We follow Pilzer et al.’s [4] work on Cycle-GAN architec-
ture for depth estimation as the baseline of our approach. As 
shown in Fig. 1, this architecture uses calibrated stereo cam-
era images (pairwise) as input to estimate disparity map ( dm ) 
through image synthesis. The generator network consists of 
two sub-networks. The upper sub-network generates a right 
disparity map ( Rd ) with the input Il and synthesizes a right 
image view ( I′

r
 ) through the warping operation (change pix-

els locations to create a new image) � , I′
r
 = �(Rd, Il) . Simi-

larly, the lower sub-network generates a left image view, 
I�
l
= �(Ld, Ir) . The reconstruction loss ( Lr ) is implemented 

between the synthesized and input images in order to opti-
mize the generator networks:

The discriminator, D1, D2, is used to discriminate if the 
synthesized image, I′

l
 , I′

r
 , is fake or not, thus the adversarial 

loss can be formulated as

Each half generates disparities of different views, Rd , Ld . To 
enforce a view constraint, a consistency loss is formulated,

We consider structural similarity loss ( Lssim ) along with the 
adversarial loss for better full-cycle optimization.

where �x and �y denote local sample means of x and y 
respectively. �x and �y denote local sample standard devia-
tions of x and y respectively. �xy denotes local sample cor-
relation coefficient between x and y. C1 and C2 are constants 

(1)Lr =
‖‖Ir − �(Rd, Il)

‖‖ + ‖‖Il − �(Ld, I
�
r
)‖‖.

(2)

LGAN = �Ir∼P(Ir)
[logD1(Ir)]

+ �Il∼P(Il)
[log(1 − D1(�(Rd, Il)))]

+ �Il∼P(Il)
[logD2(Il)]

+ �Ir∼P(Ir)
[log(1 − D2(�(Rd, Ld)))].

(3)Lc =
‖‖Ld − �(Ld,Rd)

‖‖.

(4)Lssim =
(2 × �x × �y + C1) × (2 × �xy + C2)

(�2
x
+ �2

y
+ C1)(�

2
x
+ �2

y
+ C2)

,

Fig. 1   Unsupervised monocular depth estimation framework using Cycle-GAN
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for stabilization if denominator is too small. The total loss 
for the full cycle optimization is:

� , � , � and � are the corresponding weights for different 
losses. The output disparity map is obtained by

As shown in Fig. 2, the generator and discriminator parts in 
the original architecture have been modified by replacing the 
standard convolutions with EESP convolution factorization 
and implemented the proposed context aware attention layer 
in the decoder part of generator network. As proposed by 
Zhang et al. [31], attention mechanism works best on mid-
dle to high level feature maps as it receives more evidence 
to choose the conditions. Attention layer has been applied 
to the first two layers of decoder since they contain the high 
level feature maps of the generated image. In order to stabi-
lize learning, spectral normalization [32] in the discrimina-
tor network has been used, as it is critical for the generator 
to learn the multi-modal structure of the target distribution 
by controlling the performance of a discriminator. Spectral 
normalization puts constrains on the Lipschitz constant of 
the discriminator network without any extra hyper-parameter 
tuning [32] to improve GAN training stability.

(5)���� = �Lr + �LGAN + �Lc + �Lssim.

(6)� = (Ld + �(Ld,Rd))∕2.

3.2 � Explanation of different convolution methods

As mentioned in Table 1, we compare with different type of 
convolutions in order to demonstrate the efficiency of EESP 
module along with the original motivation of selecting spe-
cific type of convolution methods.

A standard convolution is the element-wise multiplica-
tion and addition. Dilated convolution uses dilation rate. It 
defines a spacing between the values in a kernel ( i.e. 3 × 3 
kernel with a dilation rate of 2 will have the same receptive 
field size as a 5 × 5 kernel, while preserving the same num-
ber of parameters). Depthwise convolution applies a single 
convolutional filter for each input channel and uses point-
wise convolution to create a linear combination of the output 
of the depthwise convolution. Depthwise Dilated Separa-
ble Convolution includes both depthwise separability and 
dilated convolution. Grouped convolution applies a group 
of convolutions. It uses multiple kernels per layer which 
results in multiple channel outputs per layer. This leads to 
good learning of low-level and high-level features. AlexNet 
[33] applied Grouped convolution for model distribution 
over multiple GPUs (Fig. 4).

3.3 � EESP module

The EESP module is empowered by group convolution and 
parallel branches of depth-wise dilated separable convolu-
tion. As shown in Fig. 5a, this technique reduces the high 
dimensional input features into a low dimensional space 
using group convolution. Then it learns the low dimensional 
feature representation in parallel branches using depth-wise 

Fig. 2   Decomposition of the generator part in Fig.  1. Our method 
implements context-aware attention block in the decoder part of gen-
erator along with EESP unit for efficiency and accuracy. We apply 
the attention mechanism in the early stages of the decoder to bet-

ter extract medium to high level features. The attention mechanism 
described by grey blocks in this figure has been explained in detail in 
Fig. 3
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dilated separable convolution with different dilation rates 
(larger dilation rate corresponds to larger size of receptive 
field) followed by hierarchical addition in order to remove 
the gridding artifacts. As proposed by Mehta et al. [5] depth-
wise dilated separable convolutions and group convolutions 
are more efficient.

3.4 � Attention layer

Convolution layers process images in a local neighborhood 
of the image. Convolution layers alone do not capture long 
range dependencies. These long range dependencies are 
useful in generative networks like GAN to enhance the syn-
thesized images. In this section, we will discuss about our 
context aware lightweight attention mechanism, as shown in 

Fig. 3   The context-aware attention architecture. Increasing recep-
tive field of kernels [(with dilation rate (d) = 3 and group (g) = 2] 
and their corresponding global feature context helps to obtain con-
text aware attention features. The dilation rate and group number are 

fixed in the architecture for the factorized convolution. Intermedi-
ate decoded feature map is the input to the architecture as shown in 
Fig. 2. In our case, hierarchical fusion of different layer features pro-
vides the best result

Fig. 4   Convolution factorization block. a Schematic diagram of a single EESP unit. b A bottleneck building block [34] using EESP ( N = output 
dimension)
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Fig. 3. This attention module is able to capture the detailed 
context information to enhance the estimated depth image.

Our attention mechanism exploits multi-scale features 
fusion [35] for each layer with increasing receptive field of 
kernels. We also use factorized convolution (EESP mod-
ule) for feature extraction. These features are concatenated 
with their corresponding global context features. Specifi-
cally, the global context features are obtained through 
global average pooling (channel wise attention) across the 
whole feature map for each layer. Finally, the multi-scale 
outputs are hierarchically fused to generate the final output 
feature map.

Global average pooling outputs a 1D context vector 
which is replicated to the same size of the feature maps to 
merge. Merging two features for each scale is not efficient 
enough to produce a good result because (1) different 
scales of the two feature maps and (2) the unpooled global 
feature vector is not as dominant as large multi-scale fea-
ture maps, so plain concatenation may be futile. Although 
during training the weight might get adjusted, it requires 
heavy parameter tuning. So we apply per-pixel L2 normali-
zation to both features to be merged along with a learnable 
scale parameter for each channel. For an n-dimensional 
input X after L2 normalization we obtain X1 = � ∗

X

‖�‖2
 , 

where ‖�‖2 is 
�∑d

n=1
�Xn�2 and � is a scaling parameter.

4 � Experiments

In this section, we evaluated our proposed method exten-
sively using KITTI [13] and Cityscapes [14] datasets. We 
present quantitative and qualitative results to demonstrate 
the effectiveness of the proposed model (Tables 2 and 3).

4.1 � Dataset

KITTI dataset [13] contains several outdoor scenes from 
LIDAR sensor and car-mounted cameras while driving. We 
use the data split as suggested by Eigen et al. [1] for both 
training and testing. It contains 22600 training image pairs 
and 697 test image pairs. The input images have been down 
sampled to 512 × 256 resolution image with respect to origi-
nal resolution of 1224 × 368 . Random data augmentation has 
been done by flipping of images during training. Cityscapes 
dataset [14] consists of 22,973 stereo image pairs for train-
ing captured across various German cities. It gives higher 
resolution image quality and variety compared to KITTI. 
Both of these datasets are highly recognized for various 
computer vision tasks, segmentation, classification, depth 
prediction etc.

4.2 � Implementation details

In our experiments, we set the dilation rate d in EESP mod-
ule proportional to the number of branches in the EESP 
(for our experiments, we used 5 parallel branches, dilation 
rates from 20 to 24 , with number of groups 2). The effective 
receptive field of the EESP unit grows with the number of 
branches, as shown in Fig. 4a. As shown in Fig. 2, the gen-
erator networks use Resnet-50 network for the encoder and 
the decoder contains five deconvolutional layers with ReLu 
activation function. For the first two layers in the decoder, 
we integrate the attention layer in order to process the large 
feature maps for context information. Skip connections are 
used to pass information from encoder to decoder in order 
to aggregate efficient feature representation. All the convo-
lution operations in the generator part are replaced by the 

Table 1   Comparison of different convolution operations with a 3 × 3 
kernel, M input channels, and N output channels

For dilated convolution, 3 × 3 kernel is used with a dilation rate d. 
The receptive field size is computed as d

k
= ((3 − 1) × d + 1)

Convolution type Parameter # Receptive 
field size

Standard convolution 3 × 3 ×M × N 3 × 3

Group convolution 3×3×M×N

groups
3 × 3

Dilated convolution 3 × 3 ×M × N dk × dk

Depth-wise dilated separable 
convolution

32 ×M +M × N dk × dk

Table 2   Efficiency comparison between two architectures

The best scores are marked in bold
Our approach achieves a significant reduction of computational com-
plexity as compared to the original GAN approach [4]

Network Arch. FLOPs (bil.) Param (mil.)

Original GAN [4] GAN 8993 125
Original GAN+EESP [4] GAN 8343 91.2
Original GAN+attention [4] GAN 9213 129.5
Ours GAN 5833 96.5

Table 3   Total inference time using a single NVIDIA-GTX 1080Ti 
GPU on the KITTI dataset

The best scores are marked in bold
It shows our approach outperforms the baseline model [4]

Network Architecture Inf. time (s)

Original GAN [4] GAN 0.190
Original GAN+EESP [4] GAN 0.115
Original GAN+attention [4] GAN 0.228
Ours GAN 0.130
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factorized EESP module. D1 and D2 each has five consecu-
tive EESP operations. We use bilinear sampler for the warp-
ing operation.

4.3 � Experimental setup

The proposed method is implemented using TensorFlow 
[36] and takes 21 hours to train using a single NVIDIA-GTX 
1080Ti GPU. The batch size is set to 8. The initial learning 
rate is 10−6 and is reduced by half at [40k, 70k] steps. We use 
ADAM [37] optimizer with �1 = 0.5 , �2 = 0.9 and weight 
decay = 0.006 to train the model with 100 epochs.

4.4 � Evaluation

We evaluate our depth estimation using the following evalu-
ation metrics. Considering di and dgi are the estimated depth 
and ground truth depth value for pixel i. T is the total number 
of valid pixels in the test set.

(7)Abs. Rel =
1

T

∑

i

di − dgi

dgi

(8)Sq. Rel =
1

T

∑

i

|di − dgi|2

dgi

The accuracy with threshold t so that � = max(
dgi

di
,
di

dgi
) < t, 

where t=1.25, 1.252 , 1.253.
We compare our proposed model with the state of the 

art supervised and unsupervised depth estimation methods 
for both datasets. Tables 4 and 5 and Figs. 5 and 6 are the 
respective quantitative and qualitative analysis of our method 
and other approaches on KITTI and Cityscapes. In compari-
son with the supervised approaches, we have achieved very 
similar results to the best performing method i.e. Xu et al. 
[39]. In case of unsupervised approaches, our approach sig-
nificantly outperforms Godard et al. [3], which represents 
the state of the art among unsupervised approaches to this 
task. Finally, we also compare with Pilzer et al.’s [4] full-
cycle+D training and ours yield better results.

4.5 � Ablation study

To validate the contribution of our context aware attention 
strategy and the convolution factorization to overall perfor-
mance, we present an ablation study on KITTI dataset, i.e. 

(9)log RMSE =

√
1

T

∑

i

‖‖‖(log (di) − log (dgi))
‖‖‖
2

(10)RMSE =

�
1

T

�

i

‖(di − dgi)��2

Fig. 5   Qualitative measurements on KITTI dataset [13]. Due to the 
attention layer, our approach generates the subtle structural details 
of the image compared to the other state of the art unsupervised 

methods. The ground truth depth maps are interpolated from sparse 
LIDAR points for visualization purpose only
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Table 4   Quantitative Comparison with the state of the art methods trained and tested on KITTI dataset. Supervised and unsupervised methods 
are labelled as ”Y” and ”N”

Results are obtained on Eigen split dataset. We train the Pilzer et al. [4] method using the Full-Cycle+D method. Bold indicates the best result 
and italics is the second best. Our approach outperforms the state of the art on 5 out of 7 evaluation metrics

Method Sup Abs.Rel ↓ Sq.Rel ↓ RMSE ↓ RMSE(log) ↓ 𝛿 < 1.25 ↑ 𝛿 < 1.252 ↑ � < 1.253 ↑

Eigen et al. [1] Y 0.190 1.515 7.156 0.270 0.692 0.899 0.967
Liu et al. [38] Y 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Xu et al. [39] Y 0.132 0.911 – �.1620.804 �.9450981
Zhou et al. [40] N 0.208 1.768 6.856 0.283 0.678 0.885 0.957
AdaDepth et al. [25] N 0.203 1.734 6.251 0.284 0.687 0.899 0.958
Garg et al. [22] N 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard et al. [3] N 0.148 1.344 5.927 0.247 0803 0.922 0.964
Pilzer et al. [4] N 0.198 1.990 6.655 0.292 0.721 0.884 0.949
Wang et al. [21] N 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Ours (EESP+attention) N �.1196 �.889 �.329 0.192 �.865 0.943 �.989

Table 5   Quantitative Comparison on Cityscapes dataset. Supervised and unsupervised methods are labeled as ”Y” and ”N”

We train Pilzer et al. [4]’s network using the Full-Cycle+D method. Bold indicates the best result and italics is the second best. Our approach 
outperforms existing state of the art approaches on 4 out of 7 evaluation metrics. Note that we directly apply our model trained on KITTI dataset 
without any specific tuning

Method Sup Abs.Rel ↓ Sq.Rel ↓ RMSE ↓ RMSE(log) ↓ � < 1.25 ↑ � < 1.252 ↑ � < 1.253 ↑

Pilzer et al. [4] N 0.440 6.036 5.443 0.398 0.730 0.887 0.944
Wang et al. [21] N 0.148 1.187 5.496 0.226 0.812 0.938 0.975
Godard et al. [3] N 0.097 0.896 5.093 �.176 �.879 0962 �.986

Zhou et al. [40] N 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Ours (EESP+attention) N �.090 �.813 �.633 0.193 0.832 �.974 0.978

Fig. 6   Qualitative comparison on the Cityscapes dataset. Our model is trained on KITTI dataset and evaluated on Cityscapes without any spe-
cific tuning
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(1) replacing convolution operations with EESP (2) imple-
mentation of attention mechanism to the baseline with stand-
ard convolution operations. Table 6 shows the breakdown 
of various components involved in each experiment. This 
highlights the impact of each component (i.e. EESP, atten-
tion layer) on the baseline model.

As can be seen from Table 7, the model with only EESP 
operation performs a little better than the baseline model. 
However, the factorization operation leads to significant ease 
of computation. Then, we implement our attention mecha-
nism with baseline which clearly generates an enhanced 
depth map. This verifies our intuition of integrating attention 
with EESP operation to improve the generated depth image.

As illustrated in Fig. 7, we qualitatively demonstrate the 
impact of context-aware attention model along with the 
impact of EESP operation alone by presenting the predicted 
depth maps from initial training epochs. The evolution of 
these predicted depth maps reveal that our context aware 
attention architecture is able to focus on the salient objects 
in the image and captures the depth information at the early 
stage (e.g. the first epoch) of training compared to both the 
baseline architecture and EESP+baseline architecture. It 
shows that attention mechanism improves the architecture’s 
ability to learn finer image details.

Table 6   The components in our proposed model for ablation study

Methods Convolution 
operation

EESP 
opera-
tion

Context aware 
attention mecha-
nism

Baseline [4] ✓ × ×

Ours (EESP) × ✓ ×

Ours (attention) ✓ × ✓

Ours (EESP+attention) × ✓ ✓

Table 7   Quantitative evaluation of different modifications of the network on KITTI dataset as ablation study

It is evident that the attention mechanism is able to improve the performance as compared to using EESP module alone. Bold indicates the best 
result and italics is the second best

Method Sup Abs.Rel ↓ Sq.Rel ↓ RMSE ↓ RMSE(log) ↓ � < 1.25 ↑ � < 1.252 ↑ � < 1.253 ↑

Baseline [4] N 0.198 1.990 6.655 0.292 0.721 0.884 0.949
Ours (EESP) N 0.195 1.76 6.09 0.292 0.758 0.905 0.958
Ours (attention) N 0.138 0.915 4.571 0.247 0.831 0.919 0.964
Ours (EESP+attention) N �.���� �.��� �.��� �.��� �.865 �.��� �.���

Fig. 7   Qualitative comparison of the ablation study. Our proposed 
context-aware attention mechanism provides effective learning and 
captures refined image details in the early stage of learning. For 

example, it learns the structure of the far-away car in epoch 1 for both 
images while other two networks failed to do that
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5 � Limitation

The limitation of our approach is mainly two-fold: 

1.	 The major limitation of GAN implementation is prob-
ably the fact that it is notorious to train. Several empiri-
cal tricks have been implemented in various literatures 
to make it work efficiently ( i.e. in this proposed method, 
spectral normalization has been used in order to retain 
the multi-modality).

2.	 The proposed method is not precise enough while esti-
mating depth from noisy images.

6 � Conclusion

We have presented an efficient approach to build a GAN archi-
tecture for unsupervised depth estimation. It takes advantage 
of the convolution factorization for learning richer image 
representation along with more efficient computation. The 
proposed attention mechanism guides the learning of the gen-
erator’s feature representations to a structured scene output. It 
shows significant reduction of computation is possible for deep 
networks without performance drop. Experiments on publicly 
available datasets demonstrate the efficiency of our approach 
and competitive performance compared to the state of the art 
approaches.

As a part of future work, it will be interesting to see how we 
can use the structured prediction based graphical models on 

Fig. 8   This visualization contains input image (1st row), our result (2nd row), Pilzer et al. [4] approach (3rd row), and ground truth depth maps 
(4th row). The ground truth depth maps are interpolated from sparse LIDAR points for visualization purpose only
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the disparity map to obtain better scene structures along with 
application of this depth information to AR and 3D vision 
fields.
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