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Abstract

Deep-learning-based approaches to depth estimation are rapidly advancing, offering better performance over traditional
computer vision approaches across many domains. However, for many critical applications, cutting-edge deep-learning
based approaches require too much computational overhead to be operationally feasible. This is especially true for depth-
estimation methods that leverage adversarial learning, such as Generative Adversarial Networks (GANSs). In this paper, we
propose a computationally efficient GAN for unsupervised monocular depth estimation using factorized convolutions and
an attention mechanism. Specifically, we leverage the Extremely Efficient Spatial Pyramid of Depth-wise Dilated Separable
Convolutions (EESP) module of ESPNetv2 inside the network, leading to a total reduction of 22.8%, 35.37%, and 31.5% in
the number of model parameters, FLOPs, and inference time respectively, as compared to the previous unsupervised GAN
approach. Finally, we propose a context-aware attention architecture to generate detail-oriented depth images. We demonstrate
superior performance of our proposed model on two benchmark datasets KITTI and Cityscapes. We have also provided more
qualitative examples (Fig. 8) at the end of this paper.

Keywords Attention - Efficient GAN - Unsupervised depth estimation - Convolution factorization

1 Introduction

Image-based depth estimation is a key problem in computer
vision, with a wide range of applications from robotic navi-
gation to virtual reality. Early applications of deep learn-
ing to depth estimation used to rely on supervised learn-
ing, directly regressing a depth estimate of each pixel, and
training models using ground-truth depth maps. Eigen et al.
[1] has demonstrated good performance using a multi-scale
Convolutional Neural Network (CNN) to predict depth from
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single images. In order to learn the pixel-wise transforma-
tion, supervised approaches require ground truth depth data
for training. However, obtaining the ground truth depth data
is non-trivial, and model performance may be limited by the
amount of quality ground truth data that can be collected.
Probabilistic graphical models such as Conditional Random
Field [2] have increased the performance when they are used
in neural networks for optimization.

Unsupervised approaches estimate disparity maps from
two different image views (rectified left and right images)
of the calibrated stereo camera, making ground truth depth
data not required for training. This makes the unsupervised
approaches more robust in practice. Godard et al. [3] pro-
posed a left-right cycle consistency loss as a constraint on
this unsupervised approach. Pilzer et al. [4] apply the left-
right consistency in an adversarial learning approach in
order to improve the generated images. Although adversar-
ial learning-based unsupervised methods achieve excellent
performance in depth estimation, these methods rely on the
complex generative adversarial network (GAN) architecture
which is generally computationally heavy. As a result, they
are not able to run in real-time on resource-constrained edge
devices for practical applications, e.g. autonomous driving.
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To address this challenge, we propose a computationally
efficient architecture for depth estimation given stereo image
pairs, based on the unsupervised GAN architecture [4]. A
context-aware attention mechanism is also introduced to
improve depth estimation, yielding more accurate overall
depth prediction. In summary, the main contributions of this
paper are:

1. We adopt the EESP module [5] inside a GAN archi-
tecture to significantly improve the computational effi-
ciency, while concurrently reducing RMSE by 7% com-
pared to the baseline model [4].

2. We introduce a context aware attention layer in the gen-
erator to get accurate depth images. To our knowledge,
our work is the first to explore the attention mechanism
in the unsupervised depth estimation approach.

3. We conduct extensive experiments on the publicly avail-
able datasets KITTT and CityScapes. The results reveal
the effectiveness of the proposed method. A detailed
ablation study is also carried out to identify the relative
contributions of the individual components.

2 Related work

Image-based depth estimation techniques estimate the 3D
structure of a scene from a 2D image. In traditional com-
puter vision, depth estimation algorithms rely on point cor-
respondences between stereo image pairs [6, 7] and triangu-
lation. Saxena et al. [8] show that depth can be learned from
handcrafted features using monocular cues of a single 2D
image. These approaches have evolved over time [8—11], and
are in many cases today being displaced by deep learning
based approaches, which no longer require the handcrafted
features, but instead estimate depth directly from raw pixel
values. Here we focus on models that take in a single input
image and predict the depth of the image.

Supervised depth estimation Supervised learning relies on
ground truth depth data to achieve promising performance
for image depth estimation. Indoor datasets like NYU [12]
and outdoor datasets like KITTI [13] and Cityscapes [14]
contribute to the evolution of supervised monocular depth
estimation approaches. Eigen et al. [1] propose a two-scale
network to generate a dense depth map trained on ground
truth values. Probabilistic graphical models (i.e. MRF and
CRF) have also been combined with deep networks to boost
accuracy [15]. Xu et al. [2] offered structured attention
mechanism using CRF to combine multi-scale informa-
tion obtained from the CNN layers. Although supervised
depth estimation has traditionally been formulated as a
regression problem, Cao et al. [16] show that there may be
advantages to formulate the task as a pixel-wise classifica-
tion problem. Recent architectures have shown promising
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developments for multi-task learning strategies [17, 18] that
include depth estimation. Chen et al. [19] utilize two differ-
ent depth estimation methods (coarse-level depth estimation
and saliency-aware depth enhancement) in order to get better
saliency detection. This saliency-aware depth enhancement
generates different depth values for salient and non-salient
objects. These approaches are often quite complex and rely
on ground truth depth for training. In contrast, our approach
does not require ground truth depth value while training.

Unsupervised depth estimation Recent unsupervised
depth estimation algorithms [20, 21] have gained popular-
ity in the research community. Garg et al. [22] introduce an
unsupervised approach using stereo image pairs. However,
the method is limited by a loss function that is not fully
differentiable. Albeit a linearization of the loss function
via Taylor approximation is developed which is still chal-
lenging to optimize. Zhou et al. [23] solve this problem by
using bilinear warping. In a recent work, Godard et al. [3]
propose a new left right cycle consistency loss along with
the image reconstruction loss for a higher quality depth esti-
mation. This new training loss for depth estimation has also
been used in Cycle-GAN architecture by Pilzer et al. [4]
for unsupervised depth estimation based on stereo dispar-
ity estimation. Although these approaches have achieved
impressive results in unsupervised manner, it is difficult for
GAN [24] architectures to achieve real-time throughput on
resource constrained embedded devices due to their high
complexity. Our work attempts to alleviate this problem by
introducing an efficient GAN framework for unsupervised
depth estimation.

Adversarial learning Adversarial learning has been
proven to be efficient in the image generation task. A line
of research has explored various GAN architectures [24] for
dense depth map generation. For example, Kundu et al. [25]
leverage the domain adaptation strategy for depth estimation
in an adversarial learning framework. Various GAN archi-
tectures such as Conditional GAN [26], CycleGAN [27]
are utilized for depth estimation task [11]. Joint learning
strategy [28, 29] has also been investigated through GAN's
for high quality depth estimation. In this paper, we focus on
building cost effective GAN architecture, which is signifi-
cantly different than the previous works.

Attention Attention models are very useful in computer
vision for improving the performance in pixel-level predic-
tion tasks as well as in the context of monocular depth pre-
diction. Depth maps need to be accurate and detail oriented,
so preserving details through attention layers may prove
helpful in 3D reconstruction. There are several applications
of attention layers to supervised depth estimation. Hao et al.
[30] demonstrate how attention mechanism can focus on the
most informative part of the input image based on the con-
text. Chen et al. [11] also use attention as aggregation of
image and pixel level information. The approach we present
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in this paper is different from the prior works in the follow-
ing two aspects. First, ours is the first work to explore the
attention mechanism in the unsupervised depth estimation
problem. Second, we leverage the advantage of multi-scale
feature fusion (local and global) to obtain attention aware
features, leading to enhanced depth estimation.

3 Method

In this section we first describe the baseline architecture
along with our proposed method and then explain each com-
ponent of this proposed architecture. In the later sections, we
demonstrate its efficiency in image generation.

3.1 Network architecture

We follow Pilzer et al.’s [4] work on Cycle-GAN architec-
ture for depth estimation as the baseline of our approach. As
shown in Fig. 1, this architecture uses calibrated stereo cam-
era images (pairwise) as input to estimate disparity map (d,,)
through image synthesis. The generator network consists of
two sub-networks. The upper sub-network generates a right
disparity map (R,) with the input /, and synthesizes a right
image view (I’) through the warping operation (change pix-
els locations to create a new image) w, I; =w(R,,I)). Simi-
larly, the lower sub-network generates a left image view,
Il’ = w(L,,1,). The reconstruction loss (L,) is implemented

between the synthesized and input images in order to opti-
mize the generator networks:

L, = |1, = WRy, | + ||, = WLy, I (1)

The discriminator, D1, D2, is used to discriminate if the
synthesized image, IZ’ , 1!, is fake or not, thus the adversarial
loss can be formulated as
Loan =B pg,[log D1(7,)]

+ Ejopyyllog(l — DI(W(Ry, 1))))]
+ Eywpyyllog D2(1)] 2)
+E; _pg,llog(1 — D2W(R,, L)

Each half generates disparities of different views, R, L;. To
enforce a view constraint, a consistency loss is formulated,

L, = ||L; = w(Ly Ry|- 3)

We consider structural similarity loss (L;,,) along with the
adversarial loss for better full-cycle optimization.

CXpXp,+C)X2Xo,,+C)
3+ u}+ C o} + 07 +Cy)

ssim ’ (4)
where p, and pu, denote local sample means of x and y
respectively. o, and 6, denote local sample standard devia-
tions of x and y respectively. 6, denotes local sample cor-
relation coefficient between x and y. C, and C, are constants
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Fig. 1 Unsupervised monocular depth estimation framework using Cycle-GAN
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for stabilization if denominator is too small. The total loss
for the full cycle optimization is:

Loss = aL, + fLgaN + YL, + 0L, (5)

a, f,y and 6 are the corresponding weights for different
losses. The output disparity map is obtained by

D = (L, +W(LsR))/2. ©)

As shown in Fig. 2, the generator and discriminator parts in
the original architecture have been modified by replacing the
standard convolutions with EESP convolution factorization
and implemented the proposed context aware attention layer
in the decoder part of generator network. As proposed by
Zhang et al. [31], attention mechanism works best on mid-
dle to high level feature maps as it receives more evidence
to choose the conditions. Attention layer has been applied
to the first two layers of decoder since they contain the high
level feature maps of the generated image. In order to stabi-
lize learning, spectral normalization [32] in the discrimina-
tor network has been used, as it is critical for the generator
to learn the multi-modal structure of the target distribution
by controlling the performance of a discriminator. Spectral
normalization puts constrains on the Lipschitz constant of
the discriminator network without any extra hyper-parameter
tuning [32] to improve GAN training stability.

3.2 Explanation of different convolution methods

As mentioned in Table 1, we compare with different type of
convolutions in order to demonstrate the efficiency of EESP
module along with the original motivation of selecting spe-
cific type of convolution methods.

A standard convolution is the element-wise multiplica-
tion and addition. Dilated convolution uses dilation rate. It
defines a spacing between the values in a kernel (i.e. 3 x 3
kernel with a dilation rate of 2 will have the same receptive
field size as a 5 X 5 kernel, while preserving the same num-
ber of parameters). Depthwise convolution applies a single
convolutional filter for each input channel and uses point-
wise convolution to create a linear combination of the output
of the depthwise convolution. Depthwise Dilated Separa-
ble Convolution includes both depthwise separability and
dilated convolution. Grouped convolution applies a group
of convolutions. It uses multiple kernels per layer which
results in multiple channel outputs per layer. This leads to
good learning of low-level and high-level features. AlexNet
[33] applied Grouped convolution for model distribution
over multiple GPUs (Fig. 4).

3.3 EESP module

The EESP module is empowered by group convolution and
parallel branches of depth-wise dilated separable convolu-
tion. As shown in Fig. 5a, this technique reduces the high
dimensional input features into a low dimensional space
using group convolution. Then it learns the low dimensional
feature representation in parallel branches using depth-wise

“-»
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128x256x32

t 256x512x16

32x64x256‘

t 32x64x128

16x32x512
- Encoded block ‘

- Decoded block

8x16x1024 ‘
|:| Attention feature maps

4x8x2048

Fig.2 Decomposition of the generator part in Fig. 1. Our method
implements context-aware attention block in the decoder part of gen-
erator along with EESP unit for efficiency and accuracy. We apply
the attention mechanism in the early stages of the decoder to bet-

@ Springer

=)
| o
=

t 16x32x256

16x32x256

Upsample

pool, ReLu
Attention

8x16x512

ﬁ 8x16x512

I =) o e

4x8x512 Concatenation

ter extract medium to high level features. The attention mechanism
described by grey blocks in this figure has been explained in detail in
Fig. 3



Journal of Real-Time Image Processing (2021) 18:1357-1368

1361

dilated separable convolution with different dilation rates
(larger dilation rate corresponds to larger size of receptive
field) followed by hierarchical addition in order to remove
the gridding artifacts. As proposed by Mehta et al. [5] depth-
wise dilated separable convolutions and group convolutions
are more efficient.

| Decoded feature map |

3.4 Attention layer

Convolution layers process images in a local neighborhood
of the image. Convolution layers alone do not capture long
range dependencies. These long range dependencies are
useful in generative networks like GAN to enhance the syn-
thesized images. In this section, we will discuss about our
context aware lightweight attention mechanism, as shown in

1x1 convolution+ RelLu

5x5 EESP . -
(d=3, g=2) W
A 4
C
A r'y
5= SEESP L2 normalization R =f\
(d=3, g=2) - Unpooling \;/
: 1
Global average pooling L2 normalization
7 %7 EESP L2 normalization - AV/-
(d=3, g=2) " T Unpooling \“/
+
Global average pooling e L2 normalization
9% 9 L2 normalization
(d=3, > un -
pooling - X
i + concatenation
Global average pooling

Fig.3 The context-aware attention architecture. Increasing recep-
tive field of kernels [(with dilation rate (d) = 3 and group (g) = 2]
and their corresponding global feature context helps to obtain con-
text aware attention features. The dilation rate and group number are

-EEEE | \2 normalization

@ Summation

fixed in the architecture for the factorized convolution. Intermedi-
ate decoded feature map is the input to the architecture as shown in
Fig. 2. In our case, hierarchical fusion of different layer features pro-
vides the best result
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Fig.4 Convolution factorization block. a Schematic diagram of a single EESP unit. b A bottleneck building block [34] using EESP (N = output

dimension)
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Table 1 Comparison of different convolution operations with a 3 X 3
kernel, M input channels, and N output channels

Table 3 Total inference time using a single NVIDIA-GTX 1080Ti
GPU on the KITTI dataset

Convolution type Parameter # Receptive
field size
Standard convolution 3X3XMXN 3x3
Group convolution 3X3XMXN 3x3
groups
Dilated convolution 3X3XMXN dy X d;,
Depth-wise dilated separable 32 x M + M X N d, X d,

convolution

For dilated convolution, 3 X 3 kernel is used with a dilation rate d.
The receptive field size is computed as d;, = (3 —1) xd + 1)

Fig. 3. This attention module is able to capture the detailed
context information to enhance the estimated depth image.

Our attention mechanism exploits multi-scale features
fusion [35] for each layer with increasing receptive field of
kernels. We also use factorized convolution (EESP mod-
ule) for feature extraction. These features are concatenated
with their corresponding global context features. Specifi-
cally, the global context features are obtained through
global average pooling (channel wise attention) across the
whole feature map for each layer. Finally, the multi-scale
outputs are hierarchically fused to generate the final output
feature map.

Global average pooling outputs a 1D context vector
which is replicated to the same size of the feature maps to
merge. Merging two features for each scale is not efficient
enough to produce a good result because (1) different
scales of the two feature maps and (2) the unpooled global
feature vector is not as dominant as large multi-scale fea-
ture maps, so plain concatenation may be futile. Although
during training the weight might get adjusted, it requires
heavy parameter tuning. So we apply per-pixel L, normali-
zation to both features to be merged along with a learnable
scale parameter for each channel. For an n-dimensional

input X after L, normalization we obtain X; = { * ﬁ
2

where || X]|, is VZZ=1 |Xn|2 and ¢ is a scaling parameter.

Table 2 Efficiency comparison between two architectures

Network Arch. FLOPs (bil.) Param (mil.)
Original GAN [4] GAN 8993 125
Original GAN+EESP [4] GAN 8343 91.2
Original GAN+attention [4] GAN 9213 129.5

Ours GAN 5833 96.5

The best scores are marked in bold

Our approach achieves a significant reduction of computational com-
plexity as compared to the original GAN approach [4]

@ Springer

Network Architecture Inf. time (s)
Original GAN [4] GAN 0.190
Original GAN+EESP [4] GAN 0.115
Original GAN+attention [4] GAN 0.228
Ours GAN 0.130

The best scores are marked in bold

It shows our approach outperforms the baseline model [4]

4 Experiments

In this section, we evaluated our proposed method exten-
sively using KITTI [13] and Cityscapes [14] datasets. We
present quantitative and qualitative results to demonstrate
the effectiveness of the proposed model (Tables 2 and 3).

4.1 Dataset

KITTI dataset [13] contains several outdoor scenes from
LIDAR sensor and car-mounted cameras while driving. We
use the data split as suggested by Eigen et al. [1] for both
training and testing. It contains 22600 training image pairs
and 697 test image pairs. The input images have been down
sampled to 512 X 256 resolution image with respect to origi-
nal resolution of 1224 x 368. Random data augmentation has
been done by flipping of images during training. Cityscapes
dataset [14] consists of 22,973 stereo image pairs for train-
ing captured across various German cities. It gives higher
resolution image quality and variety compared to KITTI.
Both of these datasets are highly recognized for various
computer vision tasks, segmentation, classification, depth
prediction efc.

4.2 Implementation details

In our experiments, we set the dilation rate d in EESP mod-
ule proportional to the number of branches in the EESP
(for our experiments, we used 5 parallel branches, dilation
rates from 2° to 2, with number of groups 2). The effective
receptive field of the EESP unit grows with the number of
branches, as shown in Fig. 4a. As shown in Fig. 2, the gen-
erator networks use Resnet-50 network for the encoder and
the decoder contains five deconvolutional layers with ReLu
activation function. For the first two layers in the decoder,
we integrate the attention layer in order to process the large
feature maps for context information. Skip connections are
used to pass information from encoder to decoder in order
to aggregate efficient feature representation. All the convo-
lution operations in the generator part are replaced by the
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Fig.5 Qualitative measurements on KITTI dataset [13]. Due to the
attention layer, our approach generates the subtle structural details
of the image compared to the other state of the art unsupervised

factorized EESP module. D1 and D2 each has five consecu-
tive EESP operations. We use bilinear sampler for the warp-
ing operation.

4.3 Experimental setup

The proposed method is implemented using TensorFlow
[36] and takes 21 hours to train using a single NVIDIA-GTX
1080Ti GPU. The batch size is set to 8. The initial learning
rate is 1070 and is reduced by half at [40k, 70k] steps. We use
ADAM [37] optimizer with f; = 0.5, p, = 0.9 and weight
decay = 0.006 to train the model with 100 epochs.

4.4 Evaluation

We evaluate our depth estimation using the following evalu-
ation metrics. Considering d; and d,; are the estimated depth
and ground truth depth value for pixel i. T is the total number
of valid pixels in the test set.

1 d; _dgi
Abs. Rel ZTZ;‘ 7 @)
1 |dl - dgi|2
Sq. Rel =— y ——*—
- TZ dgi ®

methods. The ground truth depth maps are interpolated from sparse
LIDAR points for visualization purpose only

log RMSE =\/ 23 |aoe @) - og @, || ©

1
RMSE =\/7 Z I(d; = d,I? (10)

. d; d
The accuracy with threshold ¢ so that 6 =max(f, ;—’) <t,
i gi

where 1=1.25,1.25%,1.253,

We compare our proposed model with the state of the
art supervised and unsupervised depth estimation methods
for both datasets. Tables 4 and 5 and Figs. 5 and 6 are the
respective quantitative and qualitative analysis of our method
and other approaches on KITTI and Cityscapes. In compari-
son with the supervised approaches, we have achieved very
similar results to the best performing method i.e. Xu et al.
[39]. In case of unsupervised approaches, our approach sig-
nificantly outperforms Godard et al. [3], which represents
the state of the art among unsupervised approaches to this
task. Finally, we also compare with Pilzer et al.’s [4] full-
cycle+D training and ours yield better results.

4.5 Ablation study
To validate the contribution of our context aware attention

strategy and the convolution factorization to overall perfor-
mance, we present an ablation study on KITTI dataset, i.e.
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Table 4 Quantitative Comparison with the state of the art methods trained and tested on KITTI dataset. Supervised and unsupervised methods

are labelled as Y™ and ”"N”

Method Sup Abs.Rel | Sq.Rel | RMSE | RMSE(log) | 6<1257 5<1.25%1 §< 1251
Eigen et al. [1] Y 0.190 1.515 7.156 0.2700.692 0.8990.967
Liu et al. [38] Y 0.202 1.614 6.523 0.2750.678 0.8950.965
Xu et al. [39] Y 0.132 0911 - 0.1620.804 0.9450981
Zhou et al. [40] N 0.208 1.768 6.856 0.2830.678 0.8850.957
AdaDepth et al. [25] N 0.203 1.734 6.251 0.2840.687 0.8990.958
Garg et al. [22] N 0.169 1.080 5.104 0.2730.740 0.904 0.962
Godard et al. [3] N 0.148 1.344 5.927 0.247 0803 0.922 0.964
Pilzer et al. [4] N 0.198 1.990 6.655 0.2920.721 0.8840.949
Wang et al. [21] N 0.151 1.257 5.583 0.2280.810 0.9360.974
Ours (EESP+attention) N 0.1196 0.889 4.329 0.1920.865 0.9430.989

Results are obtained on Eigen split dataset. We train the Pilzer et al. [4] method using the Full-Cycle4+D method. Bold indicates the best result
and italics is the second best. Our approach outperforms the state of the art on 5 out of 7 evaluation metrics

Table 5 Quantitative Comparison on Cityscapes dataset. Supervised and unsupervised methods are labeled as ”Y” and ”"N”

Method Sup Abs.Rel | Sq.Rel } RMSE | RMSE(log) | 6< 1257 5<1.25%1 6<1.25%¢
Pilzer et al. [4] N 0.440 6.036 5.443 0.398 0.730 0.887 0.944
Wang et al. [21] N 0.148 1.187 5.496 0.226 0.812 0.938 0.975
Godard et al. [3] N 0.097 0.896 5.093 0.176 0.879 0962 0.986
Zhou et al. [40] N 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Ours (EESP+attention) N 0.090 0.813 4.633 0.193 0.832 0.974 0.978

We train Pilzer et al. [4]’s network using the Full-Cycle+D method. Bold indicates the best result and italics is the second best. Our approach
outperforms existing state of the art approaches on 4 out of 7 evaluation metrics. Note that we directly apply our model trained on KITTI dataset

without any specific tuning

Input

Ours

Godard et al. Pilzer et al.

Fig. 6 Qualitative comparison on the Cityscapes dataset. Our model is trained on KITTI dataset and evaluated on Cityscapes without any spe-

cific tuning
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Table 6 The components in our proposed model for ablation study

Methods Convolution EESP Context aware

operation opera- attention mecha-
tion nism
Baseline [4] v X X
Ours (EESP) X v X
Ours (attention) v X v
Ours (EESP+attention) X v v

(1) replacing convolution operations with EESP (2) imple-
mentation of attention mechanism to the baseline with stand-
ard convolution operations. Table 6 shows the breakdown
of various components involved in each experiment. This
highlights the impact of each component (i.e. EESP, atten-
tion layer) on the baseline model.

As can be seen from Table 7, the model with only EESP
operation performs a little better than the baseline model.
However, the factorization operation leads to significant ease
of computation. Then, we implement our attention mecha-
nism with baseline which clearly generates an enhanced
depth map. This verifies our intuition of integrating attention
with EESP operation to improve the generated depth image.

As illustrated in Fig. 7, we qualitatively demonstrate the
impact of context-aware attention model along with the
impact of EESP operation alone by presenting the predicted
depth maps from initial training epochs. The evolution of
these predicted depth maps reveal that our context aware
attention architecture is able to focus on the salient objects
in the image and captures the depth information at the early
stage (e.g. the first epoch) of training compared to both the
baseline architecture and EESP+baseline architecture. It
shows that attention mechanism improves the architecture’s
ability to learn finer image details.

Table 7 Quantitative evaluation of different modifications of the network on KITTI dataset as ablation study

Method Sup Abs.Rel | Sq.Rel } RMSE | RMSE(log) | 6< 1257 5< 1.25%1 6<1.25%¢
Baseline [4] N 0.198 1.990 6.655 0.292 0.721 0.884 0.949
Ours (EESP) N 0.195 1.76 6.09 0.292 0.758 0.905 0.958
Ours (attention) N 0.138 0.915 4.571 0.247 0.831 0.919 0.964
Ours (EESP+attention) N 0.1196 0.889 4.329 0.192 0.865 0.943 0.989

It is evident that the attention mechanism is able to improve the performance as compared to using EESP module alone. Bold indicates the best

result and italics is the second best

Pilzer et al.

Input image

Epoch 5 Epoch3 Epoch 1

Epoch 1

Ground truth depth Image

Epoch 5 Epoch 3

Fig.7 Qualitative comparison of the ablation study. Our proposed
context-aware attention mechanism provides effective learning and
captures refined image details in the early stage of learning. For

Ours (attention) Ours (EESP)

example, it learns the structure of the far-away car in epoch 1 for both
images while other two networks failed to do that
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Fig. 8 This visualization contains input image (1st row), our result (2nd row), Pilzer et al. [4] approach (3rd row), and ground truth depth maps
(4th row). The ground truth depth maps are interpolated from sparse LIDAR points for visualization purpose only

5 Limitation
The limitation of our approach is mainly two-fold:

1. The major limitation of GAN implementation is prob-
ably the fact that it is notorious to train. Several empiri-
cal tricks have been implemented in various literatures
to make it work efficiently (i.e. in this proposed method,
spectral normalization has been used in order to retain
the multi-modality).

2. The proposed method is not precise enough while esti-
mating depth from noisy images.

@ Springer

6 Conclusion

We have presented an efficient approach to build a GAN archi-
tecture for unsupervised depth estimation. It takes advantage
of the convolution factorization for learning richer image
representation along with more efficient computation. The
proposed attention mechanism guides the learning of the gen-
erator’s feature representations to a structured scene output. It
shows significant reduction of computation is possible for deep
networks without performance drop. Experiments on publicly
available datasets demonstrate the efficiency of our approach
and competitive performance compared to the state of the art
approaches.

As a part of future work, it will be interesting to see how we
can use the structured prediction based graphical models on
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the disparity map to obtain better scene structures along with
application of this depth information to AR and 3D vision
fields.
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