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UNIQUENESS FOR A SYSTEM OF MONGE-AMPERE EQUATIONS*

NAM Q. LEf

Dedicated to Professor John Urbas on the occasion of his 60th birthday

Abstract. In this note, we prove a uniqueness result, up to a positive multiplicative constant,
for nontrivial convex solutions to a system of Monge-Ampere equations

det D%u = ~|v|? in Q,
det D2y = u|u|"2/p in Q,
u=v=0 on 02

on bounded, smooth and uniformly convex domains 2 C R™ provided that p is close to n > 2. When
p = n, we show that the uniqueness holds for general bounded convex domains 2 C R™.
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1. Introduction and statement of the main results. In this note, we are
interested in uniqueness issues for the following system of Monge-Ampere equations
on a bounded open convex domain  C R™ (n > 2) with positive constants p,~, u
and convex functions u and v:

det D*u =~v[P  in Q,
det D*v = plu|™/? in Q, (1.1)
u=v=0 on 0f.

When (2 is a bounded, smooth and uniformly convex domain, Zhang-Qi [11, Theorem
1.5] show that (1.1) has nontrivial convex solutions u and v if and only if v and p
satisfy

WP!™ = C(n,p,9Q) (1.2)

for some positive constant C(n, p, Q). Throughout, by solutions of the Monge-Ampére
equations, we always mean their convex solutions in the sense of Aleksandrov; see [1, 2]
for more details.

One can view (1.2) as a sort of uniqueness result for the constants v and p. A
particular corollary of this analysis (see [11, Corollary 1.6]) when p = n is that the
system of Monge-Ampeére equations

det D*u = pfv|™ in Q,
det D*v = plul™ in Q, (1.3)
u=v=10 on Jf)
with ¢ > 0 has nontrivial convex solutions u and v on a bounded, smooth and

uniformly convex domain 2 if and only if x4 is the Monge-Ampere eigenvalue of the
domain Q.
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One crucial point in Zhang-Qi’s proof of their Theorem 1.5 in [11] is the global
Lipschitz regularity for solutions to the Monge-Ampere equations on smooth and
uniformly convex domains with globally continuous right hand side and zero boundary
data. With this global regularity, Zhang and Qi were able to apply the boundary
Hopf lemma in their fixed point argument using decoupling technique to verify the
conditions of a generalized Krein-Rutman theorem developed in Jacobsen [4], thereby
obtaining the existence of solutions to (1.1).

An interesting question that was left open in the analysis of [11] is the uniqueness
of nontrivial convex solutions u and v to (1.1) when v and p satisfy (1.2). Here,
uniqueness should be interpreted as up to a positive multiplicative constant, for if u
and v solve (1.1) then 72/™yu and 7v also solve (1.1) for any positive constant 7 > 0.
This question is motivated by the following uniqueness results for Monge-Ampere
equations:

(1) The single equation analogue of (1.3), that is the Monge-Ampeére eigenvalue
problem, has uniqueness of solutions. This was shown by Lions [8] for smooth
and uniformly convex domains and by the author [6] for general bounded convex
domains.

(2) The single equation analogue of (1.1), that is the degenerate Monge-Ampere
equation for 0 < p #mn

det D*u = |ul? in Q,
u=0 on 0f,
also has uniqueness of nontrivial solutions when p < n + e(n) for some small
g(n) > 0. For 0 < p < n, the uniqueness was obtained by Tso [10] while for
n < p < n+ e(n), the uniqueness was obtained recently by Huang [3].

In [6], the author proved the existence, uniqueness and variational character-
ization of the Monge-Ampere eigenvalue, and uniqueness of convex Monge-Ampere
eigenfunctions on general bounded convex domains 2 C R™. These results are the sin-
gular counterpart of those obtained by Lions [8] and Tso [10] in the smooth, uniformly
convex setting. For convenience, we recall part of [6, Theorem 1.1] here.

THEOREM 1.1. Let Q be a bounded open convex domain in R™. Define A = A[Q]
by
Jo lw| det D?w da

Jo T da tw € C(Q), w is convex, nonzero in Q, w =0 on BQ} . (1.4)

A = inf {
Then, -
(i) There exists a nonzero conver solution w € C%#(Q) N C>(Q) for all B €

(0,1) to the Monge-Ampére eigenvalue problem

1.5
w=20 on 0N. (1.5)

{detDzw = ANwl®  inQ,
Thus the infimum in (1.4) is achieved. The constant \[Q] is called the Monge-
Ampére eigenvalue of Q and w is called a Monge-Ampére eigenfunction of ).
(ii) The eigenvalue-eigenfunction pair (\,w) to (1.5) is unique in the following
sense: If the pair (A, W) satisfies det D*w = A|w|™ in Q where A > 0 is a
positive constant and w € C(Q) is convex, nonzero with w = 0 on 0S), then
A =X and @ = mw for some positive constant m.
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Our main results regarding the uniqueness of solutions to (1.1) are the following.

THEOREM 1.2. Let Q) be a bounded, open, smooth and uniformly convexr domain
in R™. Then, provided |p — n| is small, nontrivial convex solutions w and v to (1.1)
are unique in the following sense: if 4 and v are other nontrivial convex solutions to
(1.1) then there is a positive constant T > 0 such that & = 7°/™u and © = Tv.

When p = n, we show that the uniqueness holds for general bounded convex
domains 2 C R™.

THEOREM 1.3. Let Q be a bounded open convexr domain in R™. Assume that
w > 0 and nontrivial conver functions u and v satisfy (1.8). Then p must be the
Monge-Ampére eigenvalue of the domain Q, u = v and u must be a Monge-Ampére
eigenfunction of 2.

REMARK 1.4. From Proposition 2.2, we obtain the existence of nontrivial convex
solutions to (1.1) with a suitable constants v > 0 and p > 0 when the domain §) is only
assumed to be bounded and convex. It would be interesting to prove the uniqueness of
solutions to (1.1) in this nonsmooth setting when p # n.

REMARK 1.5. By considering

= *ncnﬂ”UH—P/" o= ||v|7

L°°(Q ”LOlO(Q)v’ 0= C%ﬂi (nap7 Q)a

if mecessary, we can assume in the system (1.1) that

y=p=0 and ||[v]| Loy = 1.

We will use this remark throughout this note. Moreover, we will also use the fact
that nontrivial convex solutions to (1.1) or to (1.3) are strictly convex and C°°(§2) on
any bounded convex domain ; see, for example [6, Proposition 2.8] for a proof.

We now indicate some ingredients in the proofs of our main results. For Theorem
1.3, we will use the variational characterization of the Monge-Ampere eigenvalue in
Theorem 1.1 together with a nonlinear integration by parts in [6] which we will recall
in Proposition 3.1. We will prove Theorem 1.2 by using a contradiction argument
and the uniqueness result for the limiting case of p = n in Theorem 1.3. A critical
ingredient in this argument will be the global C%# regularity for solutions to (1.1).
We will establish this result in Theorem 2.3.

The rest of the note is organized as follows. In Section 2, we will establish uniform
estimates and global C*“ regularity for solutions to (1.1). In Section 3, we will prove
Theorem 1.3. The proof of Theorem 1.2 will be given in Section 4.

2. Uniform estimates and global C%“ regularity. In this section, we estab-
lish uniform estimates and global C*% regularity for solutions to (1.1). For conve-
nience, by using Remark 1.5, we can assume that

y=p=o0>0.

We start with the following uniform estimates.
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LEMMA 2.1. Let Q be a bounded open convex domain in R™ (n > 2). Let p > 0.
Assume that o > 0 and nontrivial convex functions u and v solve the following system
of Monge-Ampére equations:

det D*u = ov|P  inQ,
det D*v = U|u|"2/p in Q, (2.1)
u=v=0 on Of).

Then there exists a positive constant C(n,p) > 0 such that

H(n,p)|Q7? < o < Cln,p)|QI 72,
n

n (2.2)
L, p)[[vll (o) < Mull foe gy < Clnsp) [0l L= (-

o
o
Proof of Lemma 2.1. Under the unimodular affine transformations 7" : R™ — R"
with det T = 1:
Q= T(Q), ulz) = w(T z),v(x) = o(T )

the system (2.1), the quantities o, [|u[| (), ||v]| £ () and [Q| are unchanged. Thus,
by John’s lemma [5], we can assume that {2 satisfies

Br € Q C B,g for some R > 0.

Applying inequality (3.1) in [6] to 0 := m, we obtain for some ¢(n,p) > 0
[l de= ol [ doz ctnplollfe gl (23
Bry2 Br/2
Applying inequality (3.5) in [6] to @ := m, we obtain for some ¢(n) > 0

/ det D%y dz — |\u||gm(ﬂ)/ det D%i dx < c(m)|ulfo L (24)
Bry2 Br/2

Integrating both sides of the first equation of (2.1) over Br/, and then recalling
(2.3)-(2.4), we get

(1, P)[[0]17 o (0 19U < () [Jull e () 127 (2.5)

On the other hand, applying the estimates at the end of the proof of Lemma 3.1 (i)
in [6] to o := m, we obtain

/ det D*u dx = [ullZoe ) / det D*i dx > ||u||zm(9)/ det D@ dx
Q Q {eea(z)<—3}
> ()| 7 el E e (- (2.6)

It follows from (2.6) and first equation of (2.1) that

()| Jul[ o g < /Q det D?u dz = o /Q ol de < ollolf gl (27)
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Therefore, (2.5) and (2.7) give
e, p)[[l17 e 12 < c(m) [l Lo ) 217 < 0] ) 2. (2.8)

Similarly, for the second equation of (2.1), we obtain

2 2

ol p) [t 7o |2 < )0l 0|1 < llul @) (29)
Now, we can easily deduce from (2.8) and (2.9) that
C™H(n,p)|QI7* <0 < C(n,p)|Q| 72,
M p)oli=@) < lullf i) < COn )0l =(a)

for some C(n,p) > 0. The lemma is proved. O

Note that, by [11, Theorem 1.5], when  is a bounded, open, smooth and
uniformly convex domain in R™, the system (2.1) has nontrivial convex solutions
u € CHQ) and v € CY(Q) with a suitable ¢ = o(n,p,Q) > 0. Using the uniform
estimates in Lemma 2.1 and an approximation argument (see, for example, [6, Propo-
sition 5.2]), we can extend the existence result of (2.1) to general bounded open convex
domains in R™. We record this result in the next proposition.

PROPOSITION 2.2. Let Q2 be a bounded open conver domain in R™ (n > 2). Let
p > 0. Then there exist a constant o > 0 and nontrivial convezr functions u and v
solving the system of Monge-Ampere equations (2.1).

Our main result in this section is concerned with global C%% regularity for the

system of Monge-Ampere equations (2.1).

THEOREM 2.3. Let Q) be a bounded, open, smooth and uniformly convexr domain
in R™ where n > 2. Let p > 0. Assume that o > 0 and nontrivial convex functions
u € C(Q) and v € C(Q) solve the following system of Monge-Ampére equations:

det D*u =olv|P  inQ,

det D*v = 0|u\”2/p in Q, (2.10)
u=v=0 on 0f).

Then uw € C?P(Q) for all B; < min{p, ﬁ} and v € C?P2(Q) for all By <
min{%f? 2+2ﬁ7 .

As mentioned in the introduction, the existence of nontrivial convex functions
u € CHQ) and v € C1(Q) solving (2.10) with a suitable o > 0 was obtained in [11].

Proof of Theorem 2.3. The proof is similar to that of Step 2 in the proof of [6,
Theorem 5.5] which relies on the proof of Theorem 1.3 in Savin [9]. Since our setting
of system of Monge-Ampere equations is slightly different, we include some crucial
details for completeness.

Step 1: Global C? regularity. We can assume that [[v]|ze(q) = 1. Then, Lemma
2.1 gives

Cil(nap) < ||u||L°°(Q) < C(nap) and Cil(nvp)|Q|72 <o< C(’I’L,p)|Q‘72
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for some positive constant C'(n, p).

First of all, we obtain, as in [6, inequalities (7.1) and (7.2)], from the convexity
of u and the boundedness of the right hand side of det D*u = o|v|P the following
estimates

c(n,p, Q)dist (z,00) < |u(z)| < C(n,p, Q)dist (z, Q) for all z € Q (2.11)

for some positive constants ¢(n,p,Q2) and C(n,p, Q).

It follows from (2.11) that if 2o € €2 then 0 < ¢(n, p, Q) < |Du(zg)| < C(n,p,Q).
As a consequence, using the smoothness and uniform convexity of 02, we find that
on 9N the function u separates quadratically from its tangent plane at each xg € 992,
that is,

plr — x0? < u(x) —u(zo) — Du(zo) - (x — 20) < p~ o — x0|* for all z € 9Q (2.12)
for some positive constant p = p(n, p, Q).
Similarly, using the equation det D?v = a\u|%2, we also obtain
c(n,p, Q)dist (z,0Q) < |v(x)] < C(n,p, Q)dist (z,00Q) for all z € Q (2.13)
and that for each zg € 09, the following quadratic separation estimates for v hold:
plz — x0]? < v(z) — v(z0) — Du(z0) - (T — 20) < p~ Lt — 20]? for all z € IN. (2.14)

From (2.13) and the boundedness of o, we can apply [9, Proposition 3.5] to the first
equation of (2.10) to conclude that wu is pointwise C'»'/3 at all points on 9, that is,

0 < u(z) — u(zo) — Du(zo) - (x — x0) < C(n, p, )|z — zo|*’® for all z € Q and all 2o € Q.
This implies that Du € C'/3(99) and that

|u(@)|

g(x) = st (2,09) has a uniform C'/? modulus of continuity on 9.  (2.15)
ist (z,

Similarly, Dv € C/3(9Q) and that

A U(C)]

= st (2, ) has a uniform C'/3 modulus of continuity on 9Q.  (2.16)

From

(2.17)

det D*u = ofv|? in Q,
u=20 on 0N).

together with (2.12) and (2.16), we can use [9, Remark 8.2] to conclude that u €
C17(Q) for all v < 1. This implies that

g € C7(Q) for all v < 1. (2.18)
Similarly, we also have
h € C7(Q) for all v < 1. (2.19)

Now, by using [9, Theorem 2.6], we obtain from (2.17), (2.12) and (2.19) the global
C?(Q) regularity of .
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Similarly, we obtain from (2.14) and (2.18) and

2
2 _ n_ .,
{detD v =olul 7 in Q, (2.20)

v=>0 on 0f?

the global C?(Q2) regularity of v.

Step 2: Global C*P regularity. A consequence of the global C?(€) regularity for
uw and v in Step 1 is that g,h € C%(Q). Then the conditions of Theorem 1.2 in [7]
are satisfied for the equations (2.17) and (2.20) and therefore, we can conclude from
this theorem that u € C*#1(Q) for all 8; < min{p, ﬁ} and v € C*P2(Q) for all

. 2
P2 < min{"-, 2+2L2 }.O
P

REMARK 2.4. In the setting of Theorem 2.3, if we normalize |[v]|p~q) = 1,
then from [7, Theorems 1.1 and 1.2], we obtain more precise information about D*u
near the boundary. Indeed, the eigenvalues \i(D*u) < --- < \,(D?u) of the Hessian
matriz D*u satisfy

A1 > e(n,p, Q)dist?(x,00Q) and Ay > c(n, p, )
for some positive constant ¢(n,p,$2).

3. Proof of Theorem 1.3. In the proof of Theorem 1.3, we will use the following
nonlinear integration by parts established in [6, Proposition 1.7].

PROPOSITION 3.1. Let Q be a bounded open conver domain in R". Suppose that
u,v € C(Q)NC3(Q) are strictly convex functions in Q withu = v =0 on O and that
there is a constant M > 0 such that

n—1

/ (det D?u)# (det D?v)“% da < M, and / det D?v dz < M. (3.1)
Q Q

Then

n—

/ |u| det D*v dx 2/ |v|(det DZu)%(det D2v)Tl dx. (3.2)
Q Q

Proof of Theorem 1.3. To simplify notation, let us denote the Monge-Ampere
eigenvalue A\[Q2] of © by A. Let w be a Monge-Ampere eigenfunction of 2 as in
Theorem 1.1(1). We note that nontrivial convex solutions u and v to (1.3) satisfy
lu(z)| > 0 and |v(x)| > 0 for all z € Q.

As in [6, Proposition 5.3], we can show that for all g € (0,1), we have u,v €
C%8 () with the estimate

lu(z)|+]v(z)| < C(n, B, diam (Q))[dist(z, 992)]? (|[ul| L= () + [v]|L~(q)) for allz € Q.
(3.3)
From the convexity of u and u = 0 on 9f2, we have the gradient estimate

|u@)|

|Du(z)| < m

for all = € Q. (3.4)
Using (3.3) and (3.4), we can argue as in the proof of [6, Lemma 5.7] to obtain

/Q (Au+ Ao dr < Cn,Q) (full @ + [0]e@) [wl3zkg).  (35)
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Because u 4+ v is smooth and convex in 2, by the Arithmetic-Geometric inequality,
we have

n(det D*(u + v))% < A(u +v).
From (3.5), we find that

/(det D2(u+v))%(det Dzw)%1 dzx < %/ A%A(u+v)|w\"7l dx
Q Q

< C(n, Q) (lullLos (@) + vl @) lwli=q- (3.6)

Step 1: u > M.
By the characterization of A in Theorem 1.1(i) and the first two equations of (1.3),
we find that

)\/ (Ju "' + o) da S/ |u| det DQudx+/ |v| det D*vdx:
Q Q Q

— /S (lullo]" + ol jul") da- (3.7)
On the other hand, for each x € 2, we have

[u(@)|"* + Ju(@) " = (Ju(@)[Jo(@)]" + |v(@)][u(z)]")

n

= (Ju(2)| = |v(= 2Z:Iu " o(@)[ 7t >0, (3.8)

with equality if and only if |u(z)| = |v(x)].
Combining (3.7) with (3.8), we obtain > A as claimed.

Step 2: p < A,
In this step, we will use the matrix inequality

[det(A + B)]% > (det A)% + (det B)% for A, B symmetric, positive definite

with equality if and only if A = ¢B for some positive constant c.
For all 2 € 2, we have from the above inequality and (1.3) that

(det D?(u + v)(x))* > (det D?u(x))™ + (det D>v(z))* = pw|u(z) + v(z)|  (3.9)

with equality if and only if D?u(z) = C(x)D?v(x) for some positive constant C(x).
By (3.6), we can apply Proposition 3.1 to u + v and w. Applying Proposition 3.1
to u 4+ v and w and using (3.9), we obtain

//\|u+v||w|" dm:/ lu+ v| det D*w d > /(detDQ(u+u))%(detp2w)%|w| dz
Q Q Q

> / ,uTll)\n%lerva\" dz
Q
It follows that A > pu.

Step 3: conclusion.

From Step 1 and Step 2, we find that u = A and we must have equalities in (3.8)
and (3.9) for all x € Q. Tt follows that |u| = |v] in Q. Thus v = v and wu solves
det D?u = Mu|™ in Q with u = 0 on 9. By Theorem 1.1 (ii), u is a Monge-Ampere
eigenfunction of Q. O
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4. Proof of Theorem 1.2. In this section, we prove the uniqueness result as
stated in Theorem 1.2. Our proof is inspired by that of [3, Theorem 1.1(2)].

Proof of Theorem 1.2. By Remark 1.5, it suffices to prove the uniqueness of
nontrivial convex solutions to the system of Monge-Ampeére equations:

det D*u =o[v|?  inQ,
det D*v = U|u|”2/p in Q,

u=v=0 on 0f).

By the symmetry of p and n?/p, it suffices to prove uniqueness for p — n > 0 small
since the case p = n is covered by Theorem 1.3. We argue by contradiction.

Suppose that for a sequence py \, n, the following system of Monge-Ampere
equations

det D2uk = ok |vg|P* in Q,
det D%v, = Uk|uk|”2/p" in ©, (4.1)

Uk = V = 0 on Jf2
has at least two distinguished pairs of convex solutions (uy,vy) and (ug, U ) where
[vkllzoe (@) = [|OkllLoe @) = 1. (4.2)
We can assume that for all k&
1 -
n<p,<n-+ > and [[ug | o) > [trll L) (4.3)
Taking a subsequence if necessary, and without loss of generality, we can assume that

0% — vkl Lo ()

lim — =7¢€0,1). 4.4
Let
Up — Uk Uk — Vg

Ok , and ¢, =

k= ukll L o) [0 — vkl ()

We will prove (see Step 6) that for all k large
ok >0, and ¢ > 0in Q

and this will clearly lead to a contradiction to (4.2). Hence, we must have the unique-
ness of solutions as stated in the theorem. We now proceed with proof with several
steps.

Step 1: Convergence of o to the Monge-Ampére eigenvalue of 2 and convergence of
U, Uk, Uk and U in C’O’%(ﬁ) to the same Monge-Ampére eigenfunction of €.
Recalling (2.2) together with (4.2), and using the Aleksandrov maximum principle
(see [1, Theorem 2.8] and [2, Theorem 1.4.2]) and the compactness of solutions to the
Monge-Ampere equation (see [1, Corollary 2.12] and [2, Lemma 5.3.1]), we find that
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up to extracting a subsequence, o — o, while uy — u and vy — v uniformly in

CO (©), and the following system holds
det D*u = olv|™ in Q,
det D*v = olu|™ in Q,
u=v=0 on Jf).

By Theorem 1.3, we have the uniqueness, that is, ¢ = A is the Monge-Ampere eigen-
value of 2 and u = v = w is the Monge-Ampere eigenfunction of 2 with L norm
being 1:

det D*w = Aw|™ in Q,
w =0 on 0, (4.5)
|wl[re () = 1.

By this uniqueness, we actually have the full convergences of o to A, ug to w and vy
R
to w uniformly in C%= () when k — oo. Similarly, we also have the full convergences

of iy, to w and ¥ to w uniformly in C%w () when k — oc.
We denote by W = (W¥),<; j<, = cof (D?w) the cofactor matrix of the Hessian
D?w, so that

W = (det D*w)(D*w) ™! in Q.
For later use, we note that for some constant ¢(€2) > 0
c(Q)dist (, Q) < |w(z)| = —w(z) < H(Q)dist (z,9Q). (4.6)

In the next steps, the convex function 1 € C*°(Q) solving the Monge-Ampere equation

det D* =11in Q,
¥ =0 on 0N

will be very useful in our comparison arguments.
Observe that for some constant ¢ = ¢o(n,Q2) >0

D?* > ¢ol,,, and codist (2,09Q) < |1h(z)| < cg 'dist (2, 0Q) in Q. (4.7
Step 2: Systems of linearized Monge-Ampére equations for ¢y and pg.
Throughout, we will use the following notation: f;; = 8578’(% for a function f and

A;; for the (i,7) entry of a matriz A.
Note that

det D2uk — det DQ’[lk = U,?(uk — ﬂk)ij and (—vk)p"‘ — (—ﬁk)pk = Vk('[}k — ’Uk)
where
. 1
Uil — / lcof (EDuy + (1 — ) D2yt
0

and

1 1
Vi = / pk[ftvk — (]. — t)f)k]pkildt = / pk‘tl}k =+ (]. — t)ﬁk|pk71dt.
0 0
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From
det D%uy, — det D%y, = ok (—vg)P* — op (— 0k )Px
we obtain
U (g — up)ij = ok Vi (Tr, — vg),
or, ¢ and y, satisfies the following linearized Monge-Ampere equation

0% — vkl Lo ()

U breij + Uka(pkm =0. (4.8)
Similarly, we have
V;fj%,z’j + GkUk%m = (4.9)
where
1 1,2 2
v :/0 [cof (tD%vy, 4 (1 — ) D?%y,)]i;dt and Uy, :/O Z—k\tuk (1 — t)ay| e dt.
When k& — oo, we deduce from Step 1 and Theorem 2.3 that for £ := 34%1,
Vi = njw|"™t, Uy — n|w|"~* uniformly on C%#(Q), (4.10)
while
U,ij — W4, Vkij — W% uniformly on C?(Q). (4.11)
Step 3: |pr(x)] < C(n, Q)dist(x,00) for k large.
By (4.7), it suffices to show that for all k large
¢k < C(n, Q]3] in Q. (4.12)
Indeed, as in (2.13) of the proof of Theorem 2.3, we have
c(Q)dist (x, Q) < |vg(x)] < C(n, Q)dist (z,09Q)
and
c(Q)dist (z, Q) < | (z)| < C(n, Q)dist (x, 09).
Therefore, for all k, we have
[Vi(z)| < ppCOP*~1(n, Q)dist P+~ (2, 09) < Oy (n, Q)dist "~ (z, 09) (4.13)

where we used (4.3) in the last inequality.
On the other hand, by Step I and (4.4)

lox = vl

or < 2, -
||Uk _Uk||L°°(Q)

< 27 + 1 for all large k.
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Thus, in view of (4.8), for all k large, we have in

N2 = vkl 2N(27 + 1)|Vi| < Co(n, Q)dist "~ (z, 9).

U b,ij| = ok Vil o] |k — ukl| L= (0)

From Remark 2.4, we infer that the eigenvalues Ay 1 < -+ < Ag,, of U,ij Satisﬁ(eil’fii
some ¢; = ¢1(n,Q) >0
Men = €13 A\g1 > cpdist P* (2, 09).
It follows from the above estimates and (4.7) that
U,ijwij > cotrace(U,ij) > cocy 1= Co. (4.15)

Thus for C(n, ) and k large, we have from (4.14) and (4.15)
U (=C(n, Q)9)ij < UY drij < U (C(n, D))y in Q.
Using the maximum principle, we obtain (4.12).

Step 4: T > 0.

Indeed, suppose otherwise that 7 defined by (4.4) satisfies 7 = 0. In this case,
we use the result of Step 3 together with (4.10) and (4.11) (in fact, only the locally
uniform convergences suffice) to pass to the limit of & — oo in (4.8). By Step 3,
we can assume, up to extracting a subsequence, that ¢ converges locally uniformly
in C%#(Q) and uniformly in C%!(Q) to a Lipschitz function ¢ € C*5(Q) N C%1(Q).
Letting k¥ — oo in (4.8) and using (4.10), (4.11), (4.13) and 7 = 0, we find that ¢
satisfies

W4¢;; =0in Q, and ¢ =0 on 0.
From
W¥w;; = ndet D*w = nAw|™ > 0 in Q

and the maximum principle, we have |¢| < e(—w) in © for all ¢ > 0. This implies
¢ = 0. However, this contradicts the fact that [¢|| ;) = 1. Hence 7 > 0.

Step 5: ¢r and ;. converge uniformly in C%1(Q) to |w| defined in (4.5).
As in Step 3, now with 0 < 7 <1, we use
lim ||1fk — Ukl Lo () _ 1
k—o0 ||1)k — Uk”Loo(Q) T
in (4.9) to obtain
il < Cn, Q)] < Cln, Qdist (, ).

Thus, up to extracting a subsequence, we can assume that {¢x } and {¢y }, respectively,
converge locally uniformly in C%#(Q) and uniformly in C%' () to Lipschitz functions
¢ € C(Q) N CY(Q) and ¢ € CF(Q) N C*(Q), respectively. Using (4.10) and
(4.11) together with o, — A in the linearized Monge-Ampere equations (4.8) and
(4.9), we find that these functions ¢ and ¢ satisfy

W4 4+ Anjw|"'r¢ =0in Q,
Wi + /\n|w|”*1? =01in Q,
T
¢ = =0 on 0.
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Therefore,
W9 (¢ —7¢)i; — Anjw|" " (¢ —7¢) =01in Q, and ¢ — 7 = 0 on IQ.

As in Step 4, we use the maximum principle to get |¢p — T7¢| < e(—w) in Q for all
€ > 0. It follows that ¢ = T¢. Since ||¢|| =) = ||¢llz~) = 1, we have 7 = 1; hence
¢ = p and ¢ satisfies

W4 + Anjw|" " t¢ =0 in Q.

Using (4.6) and Step 3, we have M(—w) — ¢ > 0 in € for a large constant M > 0.
Now, M (—w) — ¢ and —uw are positive eigenfunctions corresponding to the eigenvalue

A of the operator 7%&5 in Q. Note that
Wij d tD2 n—1 )\n—l
det = (de w) = )
n‘w|n71 nn|w|n(n—1) nn

It follows that M(—w) — ¢ = 6(—w) for some positive constant 6; see, for example
[8, Proposition A.2]. Therefore, ¢ = 7w for some constant 7. From ||@||z =) =
HwHLoo(Q) = ].7 we find

¢ =p=tw.

To show that ¢ = |w|, it suffices to show that the limit function ¢ > 0 at some interior
point of Q.

Let 21, € Q be a minimum point of ug. Then, from (4.2) and Lemma 2.1, we have
luk (k)] = lug L) = C~*(n,p). By the Aleksandrov maximum principle (see [1,
Theorem 2.8] and [2, Theorem 1.4.2]) and the bound on o in Lemma 2.1, we have

lug (z1)]™ < C(n)(diam Q)™ dist (xk,ﬁQ)/ det D%uy, dx < C(n,p, Q)dist (x5, 09).
Q

This implies that

dist (zy,09Q) > C~(n, p, Q). (4.16)
At zp, by (4.3), we have
g (rr) — ur (k) = [Jurl| Lo (@) + Uk (zr) > [JurllLe (@) — llakllLo @) =0
and thus
or(zx) = 0.

This together with (4.16) shows that ¢(z) > 0 where z € Q is a limit point of {zy}.
In conclusion,

¢=p=—w=]uwl

Step 6: ¢r. > 0 and ¢y, > 0 when k is large enough.
We are going to show if k& and M are large, and § > 0 small, then

n:=M§"Y — dw
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is a lower barrier for ¢ in the boundary ring
Qs = {z € Q|dist (z,90) < }.

Let ¢3 := ¢(€2)/2 where ¢(Q2) is as in (4.6). Then, by Step 5 and (4.6), for any fixed
0 >0, we can find a large positive integer kg = ko(0,2) such that

¢r > 30 in Q\ Qs for all k > k. (4.17)
In view of (4.11), we have the following uniform convergence in C(Q)
U,ijwij — W¥w;; = ndet D*w = nA\|w|™ < Cy(n, Q)dist " (z, 0Q),
which implies that
U,ijwij < Chdist " (z,00Q) + & in Q

where €, — 0 when k — oo.
Therefore, using Step 3 together with (4.15) and (4.13), we have in Qs

U (b = n)ij = Uy b — MUY i + 68U w
< ANT|Vidy| — M&"¢o + 8Cydist ™ (, 9Q) + de
< Cy(n, Q)dist " (x, 09Q) — M"co + 6Cydist " (x, 0Q) + def, < 0 (4.18)

provided that M is large (depending only on n and Q) and k > k1(d,n, Q) where k;
is large.

On the other hand, for k > kq, using (4.17) together with (4.6) and (4.7), we
have, on 95\

bp — 1 = dp + MI" | — S|lw| > 38 + oM™ — 16?2 >0

provided 6 < dy where 09 = do(n,2) > 0 is small.
Now, it follows from (4.18) and the maximum principle that, for all & >
ka2(6,m, Q) := max{ko, k1} and ¢ < g,

¢ —n = 0in Qs.
Consequently, using (4.6) and (4.7) once more time, we have for all k > ko

b >n=—M&" || + S|lw| > —cy ' M&"dist (z, 02) + dedist (z,09)

> ?dist (x,09) in Qs

provided § < d;(n, ) small. This combined with (4.17) shows that ¢ > 0 in Q for k
large enough.

The same argument shows that @) > 0 in Q for k large enough. This completes
the proof of our theorem. O
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