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UNIQUENESS FOR A SYSTEM OF MONGE-AMPÈRE EQUATIONS∗

NAM Q. LE†

Dedicated to Professor John Urbas on the occasion of his 60th birthday

Abstract. In this note, we prove a uniqueness result, up to a positive multiplicative constant,
for nontrivial convex solutions to a system of Monge-Ampère equations⎧⎪⎪⎨

⎪⎪⎩
detD2u = γ|v|p in Ω,

detD2v = μ|u|n2/p in Ω,

u = v = 0 on ∂Ω

on bounded, smooth and uniformly convex domains Ω ⊂ R
n provided that p is close to n ≥ 2. When

p = n, we show that the uniqueness holds for general bounded convex domains Ω ⊂ R
n.
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1. Introduction and statement of the main results. In this note, we are
interested in uniqueness issues for the following system of Monge-Ampère equations
on a bounded open convex domain Ω ⊂ R

n (n ≥ 2) with positive constants p, γ, μ
and convex functions u and v:⎧⎪⎨

⎪⎩
detD2u = γ|v|p in Ω,

detD2v = μ|u|n2/p in Ω,

u = v = 0 on ∂Ω.

(1.1)

When Ω is a bounded, smooth and uniformly convex domain, Zhang-Qi [11, Theorem
1.5] show that (1.1) has nontrivial convex solutions u and v if and only if γ and μ
satisfy

γμp/n = C(n, p,Ω) (1.2)

for some positive constant C(n, p,Ω). Throughout, by solutions of the Monge-Ampère
equations, we always mean their convex solutions in the sense of Aleksandrov; see [1, 2]
for more details.

One can view (1.2) as a sort of uniqueness result for the constants γ and μ. A
particular corollary of this analysis (see [11, Corollary 1.6]) when p = n is that the
system of Monge-Ampère equations⎧⎪⎨

⎪⎩
detD2u = μ|v|n in Ω,

detD2v = μ|u|n in Ω,

u = v = 0 on ∂Ω

(1.3)

with μ > 0 has nontrivial convex solutions u and v on a bounded, smooth and
uniformly convex domain Ω if and only if μ is the Monge-Ampère eigenvalue of the
domain Ω.
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One crucial point in Zhang-Qi’s proof of their Theorem 1.5 in [11] is the global
Lipschitz regularity for solutions to the Monge-Ampère equations on smooth and
uniformly convex domains with globally continuous right hand side and zero boundary
data. With this global regularity, Zhang and Qi were able to apply the boundary
Hopf lemma in their fixed point argument using decoupling technique to verify the
conditions of a generalized Krein-Rutman theorem developed in Jacobsen [4], thereby
obtaining the existence of solutions to (1.1).

An interesting question that was left open in the analysis of [11] is the uniqueness
of nontrivial convex solutions u and v to (1.1) when γ and μ satisfy (1.2). Here,
uniqueness should be interpreted as up to a positive multiplicative constant, for if u
and v solve (1.1) then τp/nu and τv also solve (1.1) for any positive constant τ > 0.
This question is motivated by the following uniqueness results for Monge-Ampère
equations:

(1) The single equation analogue of (1.3), that is the Monge-Ampère eigenvalue
problem, has uniqueness of solutions. This was shown by Lions [8] for smooth
and uniformly convex domains and by the author [6] for general bounded convex
domains.
(2) The single equation analogue of (1.1), that is the degenerate Monge-Ampère
equation for 0 < p �= n {

detD2u = |u|p in Ω,

u = 0 on ∂Ω,

also has uniqueness of nontrivial solutions when p < n + ε(n) for some small
ε(n) > 0. For 0 < p < n, the uniqueness was obtained by Tso [10] while for
n < p < n+ ε(n), the uniqueness was obtained recently by Huang [3].

In [6], the author proved the existence, uniqueness and variational character-
ization of the Monge-Ampère eigenvalue, and uniqueness of convex Monge-Ampère
eigenfunctions on general bounded convex domains Ω ⊂ R

n. These results are the sin-
gular counterpart of those obtained by Lions [8] and Tso [10] in the smooth, uniformly
convex setting. For convenience, we recall part of [6, Theorem 1.1] here.

Theorem 1.1. Let Ω be a bounded open convex domain in R
n. Define λ = λ[Ω]

by

λ[Ω] = inf

{∫
Ω |w| detD2w dx∫

Ω |w|n+1 dx
: w ∈ C(Ω), w is convex, nonzero in Ω, w = 0 on ∂Ω

}
. (1.4)

Then,
(i) There exists a nonzero convex solution w ∈ C0,β(Ω) ∩ C∞(Ω) for all β ∈
(0, 1) to the Monge-Ampère eigenvalue problem{

detD2w = λ|w|n in Ω,

w = 0 on ∂Ω.
(1.5)

Thus the infimum in (1.4) is achieved. The constant λ[Ω] is called the Monge-
Ampère eigenvalue of Ω and w is called a Monge-Ampère eigenfunction of Ω.
(ii) The eigenvalue-eigenfunction pair (λ,w) to (1.5) is unique in the following
sense: If the pair (Λ, w̃) satisfies detD2w̃ = Λ|w̃|n in Ω where Λ > 0 is a
positive constant and w̃ ∈ C(Ω) is convex, nonzero with w̃ = 0 on ∂Ω, then
Λ = λ and w̃ = mw for some positive constant m.
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Our main results regarding the uniqueness of solutions to (1.1) are the following.

Theorem 1.2. Let Ω be a bounded, open, smooth and uniformly convex domain
in R

n. Then, provided |p − n| is small, nontrivial convex solutions u and v to (1.1)
are unique in the following sense: if û and v̂ are other nontrivial convex solutions to
(1.1) then there is a positive constant τ > 0 such that û = τp/nu and v̂ = τv.

When p = n, we show that the uniqueness holds for general bounded convex
domains Ω ⊂ R

n.

Theorem 1.3. Let Ω be a bounded open convex domain in R
n. Assume that

μ > 0 and nontrivial convex functions u and v satisfy (1.3). Then μ must be the
Monge-Ampère eigenvalue of the domain Ω, u = v and u must be a Monge-Ampère
eigenfunction of Ω.

Remark 1.4. From Proposition 2.2, we obtain the existence of nontrivial convex
solutions to (1.1) with a suitable constants γ > 0 and μ > 0 when the domain Ω is only
assumed to be bounded and convex. It would be interesting to prove the uniqueness of
solutions to (1.1) in this nonsmooth setting when p �= n.

Remark 1.5. By considering

ū := γ− 1
nC

1
n+p ‖v‖−p/n

L∞(Ω)u, v̄ := ‖v‖−1
L∞(Ω)v, σ := C

n
n+p (n, p,Ω),

if necessary, we can assume in the system (1.1) that

γ = μ = σ and ‖v‖L∞(Ω) = 1.

We will use this remark throughout this note. Moreover, we will also use the fact
that nontrivial convex solutions to (1.1) or to (1.3) are strictly convex and C∞(Ω) on
any bounded convex domain Ω; see, for example [6, Proposition 2.8] for a proof.

We now indicate some ingredients in the proofs of our main results. For Theorem
1.3, we will use the variational characterization of the Monge-Ampère eigenvalue in
Theorem 1.1 together with a nonlinear integration by parts in [6] which we will recall
in Proposition 3.1. We will prove Theorem 1.2 by using a contradiction argument
and the uniqueness result for the limiting case of p = n in Theorem 1.3. A critical
ingredient in this argument will be the global C2,β regularity for solutions to (1.1).
We will establish this result in Theorem 2.3.

The rest of the note is organized as follows. In Section 2, we will establish uniform
estimates and global C2,α regularity for solutions to (1.1). In Section 3, we will prove
Theorem 1.3. The proof of Theorem 1.2 will be given in Section 4.

2. Uniform estimates and global C2,α regularity. In this section, we estab-
lish uniform estimates and global C2,α regularity for solutions to (1.1). For conve-
nience, by using Remark 1.5, we can assume that

γ = μ = σ > 0.

We start with the following uniform estimates.
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Lemma 2.1. Let Ω be a bounded open convex domain in R
n (n ≥ 2). Let p > 0.

Assume that σ > 0 and nontrivial convex functions u and v solve the following system
of Monge-Ampère equations:⎧⎪⎨

⎪⎩
detD2u = σ|v|p in Ω,

detD2v = σ|u|n2/p in Ω,

u = v = 0 on ∂Ω.

(2.1)

Then there exists a positive constant C(n, p) > 0 such that

C−1(n, p)|Ω|−2 ≤ σ ≤ C(n, p)|Ω|−2,

C−1(n, p)‖v‖L∞(Ω) ≤ ‖u‖
n
p

L∞(Ω) ≤ C(n, p)‖v‖L∞(Ω).
(2.2)

Proof of Lemma 2.1. Under the unimodular affine transformations T : Rn → R
n

with detT = 1:

Ω → T (Ω), u(x) → u(T−1x), v(x) → v(T−1x)

the system (2.1), the quantities σ, ‖u‖L∞(Ω), ‖v‖L∞(Ω) and |Ω| are unchanged. Thus,
by John’s lemma [5], we can assume that Ω satisfies

BR ⊂ Ω ⊂ BnR for some R > 0.

Applying inequality (3.1) in [6] to v̂ := v
‖v‖L∞(Ω)

, we obtain for some c(n, p) > 0

∫
BR/2

|v|p dx = ‖v‖pL∞(Ω)

∫
BR/2

|v̂|p dx ≥ c(n, p)‖v‖pL∞(Ω)|Ω|. (2.3)

Applying inequality (3.5) in [6] to û := u
‖u‖L∞(Ω)

, we obtain for some c(n) > 0

∫
BR/2

detD2u dx = ‖u‖nL∞(Ω)

∫
BR/2

detD2û dx ≤ c(n)‖u‖nL∞(Ω)|Ω|−1. (2.4)

Integrating both sides of the first equation of (2.1) over BR/2 and then recalling
(2.3)-(2.4), we get

σc(n, p)‖v‖pL∞(Ω)|Ω| ≤ c(n)‖u‖nL∞(Ω)|Ω|−1. (2.5)

On the other hand, applying the estimates at the end of the proof of Lemma 3.1 (i)
in [6] to û := u

‖u‖L∞(Ω)
, we obtain

∫
Ω

detD2u dx = ‖u‖nL∞(Ω)

∫
Ω

detD2û dx ≥ ‖u‖nL∞(Ω)

∫
{x∈Ω:û(x)≤− 1

2}
detD2û dx

≥ c(n)|Ω|−1‖u‖nL∞(Ω). (2.6)

It follows from (2.6) and first equation of (2.1) that

c(n)|Ω|−1‖u‖nL∞(Ω) ≤
∫
Ω

detD2u dx = σ

∫
Ω

|v|p dx ≤ σ‖v‖pL∞(Ω)|Ω|. (2.7)
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Therefore, (2.5) and (2.7) give

σc(n, p)‖v‖pL∞(Ω)|Ω| ≤ c(n)‖u‖nL∞(Ω)|Ω|−1 ≤ σ‖v‖pL∞(Ω)|Ω|. (2.8)

Similarly, for the second equation of (2.1), we obtain

σc(n, p)‖u‖
n2

p

L∞(Ω)|Ω| ≤ c(n)‖v‖nL∞(Ω)|Ω|−1 ≤ σ‖u‖
n2

p

L∞(Ω)|Ω|. (2.9)

Now, we can easily deduce from (2.8) and (2.9) that

C−1(n, p)|Ω|−2 ≤ σ ≤ C(n, p)|Ω|−2,

C−1(n, p)‖v‖L∞(Ω) ≤ ‖u‖
n
p

L∞(Ω) ≤ C(n, p)‖v‖L∞(Ω)

for some C(n, p) > 0. The lemma is proved.

Note that, by [11, Theorem 1.5], when Ω is a bounded, open, smooth and
uniformly convex domain in R

n, the system (2.1) has nontrivial convex solutions
u ∈ C1(Ω) and v ∈ C1(Ω) with a suitable σ = σ(n, p,Ω) > 0. Using the uniform
estimates in Lemma 2.1 and an approximation argument (see, for example, [6, Propo-
sition 5.2]), we can extend the existence result of (2.1) to general bounded open convex
domains in R

n. We record this result in the next proposition.

Proposition 2.2. Let Ω be a bounded open convex domain in R
n (n ≥ 2). Let

p > 0. Then there exist a constant σ > 0 and nontrivial convex functions u and v
solving the system of Monge-Ampère equations (2.1).

Our main result in this section is concerned with global C2,α regularity for the
system of Monge-Ampère equations (2.1).

Theorem 2.3. Let Ω be a bounded, open, smooth and uniformly convex domain
in R

n where n ≥ 2. Let p > 0. Assume that σ > 0 and nontrivial convex functions
u ∈ C(Ω) and v ∈ C(Ω) solve the following system of Monge-Ampère equations:⎧⎪⎨

⎪⎩
detD2u = σ|v|p in Ω,

detD2v = σ|u|n2/p in Ω,

u = v = 0 on ∂Ω.

(2.10)

Then u ∈ C2,β1(Ω) for all β1 < min{p, 2
2+p} and v ∈ C2,β2(Ω) for all β2 <

min{n2

p , 2

2+n2

p

}.

As mentioned in the introduction, the existence of nontrivial convex functions
u ∈ C1(Ω) and v ∈ C1(Ω) solving (2.10) with a suitable σ > 0 was obtained in [11].

Proof of Theorem 2.3. The proof is similar to that of Step 2 in the proof of [6,
Theorem 5.5] which relies on the proof of Theorem 1.3 in Savin [9]. Since our setting
of system of Monge-Ampère equations is slightly different, we include some crucial
details for completeness.

Step 1: Global C2 regularity. We can assume that ‖v‖L∞(Ω) = 1. Then, Lemma
2.1 gives

C−1(n, p) ≤ ‖u‖L∞(Ω) ≤ C(n, p) and C−1(n, p)|Ω|−2 ≤ σ ≤ C(n, p)|Ω|−2
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for some positive constant C(n, p).
First of all, we obtain, as in [6, inequalities (7.1) and (7.2)], from the convexity

of u and the boundedness of the right hand side of detD2u = σ|v|p the following
estimates

c(n, p,Ω)dist (x, ∂Ω) ≤ |u(x)| ≤ C(n, p,Ω)dist (x, ∂Ω) for all x ∈ Ω (2.11)

for some positive constants c(n, p,Ω) and C(n, p,Ω).
It follows from (2.11) that if x0 ∈ ∂Ω then 0 < c(n, p,Ω) ≤ |Du(x0)| ≤ C(n, p,Ω).

As a consequence, using the smoothness and uniform convexity of ∂Ω, we find that
on ∂Ω the function u separates quadratically from its tangent plane at each x0 ∈ ∂Ω,
that is,

ρ|x− x0|2 ≤ u(x)− u(x0)−Du(x0) · (x− x0) ≤ ρ−1|x− x0|2 for all x ∈ ∂Ω (2.12)

for some positive constant ρ = ρ(n, p,Ω).

Similarly, using the equation detD2v = σ|u|n
2

p , we also obtain

c(n, p,Ω)dist (x, ∂Ω) ≤ |v(x)| ≤ C(n, p,Ω)dist (x, ∂Ω) for all x ∈ Ω (2.13)

and that for each x0 ∈ ∂Ω, the following quadratic separation estimates for v hold:

ρ|x− x0|2 ≤ v(x)− v(x0)−Dv(x0) · (x− x0) ≤ ρ−1|x− x0|2 for all x ∈ ∂Ω. (2.14)

From (2.13) and the boundedness of σ, we can apply [9, Proposition 3.5] to the first
equation of (2.10) to conclude that u is pointwise C1,1/3 at all points on ∂Ω, that is,

0 ≤ u(x)− u(x0)−Du(x0) · (x− x0) ≤ C(n, p,Ω)|x− x0|4/3 for all x ∈ Ω and all x0 ∈ ∂Ω.

This implies that Du ∈ C1/3(∂Ω) and that

g(x) :=
|u(x)|

dist (x, ∂Ω)
has a uniform C1/3 modulus of continuity on ∂Ω. (2.15)

Similarly, Dv ∈ C1/3(∂Ω) and that

h(x) :=
|v(x)|

dist (x, ∂Ω)
has a uniform C1/3 modulus of continuity on ∂Ω. (2.16)

From {
detD2u = σ|v|p in Ω,

u = 0 on ∂Ω.
(2.17)

together with (2.12) and (2.16), we can use [9, Remark 8.2] to conclude that u ∈
C1,γ(Ω) for all γ < 1. This implies that

g ∈ Cγ(Ω) for all γ < 1. (2.18)

Similarly, we also have

h ∈ Cγ(Ω) for all γ < 1. (2.19)

Now, by using [9, Theorem 2.6], we obtain from (2.17), (2.12) and (2.19) the global
C2(Ω) regularity of u.
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Similarly, we obtain from (2.14) and (2.18) and{
detD2v = σ|u|n

2

p in Ω,

v = 0 on ∂Ω
(2.20)

the global C2(Ω) regularity of v.

Step 2: Global C2,β regularity. A consequence of the global C2(Ω) regularity for
u and v in Step 1 is that g, h ∈ C0,1(Ω). Then the conditions of Theorem 1.2 in [7]
are satisfied for the equations (2.17) and (2.20) and therefore, we can conclude from
this theorem that u ∈ C2,β1(Ω) for all β1 < min{p, 2

2+p} and v ∈ C2,β2(Ω) for all

β2 < min{n2

p , 2

2+n2

p

}.

Remark 2.4. In the setting of Theorem 2.3, if we normalize ‖v‖L∞(Ω) = 1,
then from [7, Theorems 1.1 and 1.2], we obtain more precise information about D2u
near the boundary. Indeed, the eigenvalues λ1(D

2u) ≤ · · · ≤ λn(D
2u) of the Hessian

matrix D2u satisfy

λ1 ≥ c(n, p,Ω)dist p(x, ∂Ω) and λ2 ≥ c(n, p,Ω)

for some positive constant c(n, p,Ω).

3. Proof of Theorem 1.3. In the proof of Theorem 1.3, we will use the following
nonlinear integration by parts established in [6, Proposition 1.7].

Proposition 3.1. Let Ω be a bounded open convex domain in R
n. Suppose that

u, v ∈ C(Ω)∩C5(Ω) are strictly convex functions in Ω with u = v = 0 on ∂Ω and that
there is a constant M > 0 such that∫

Ω

(detD2u)
1
n (detD2v)

n−1
n dx ≤ M, and

∫
Ω

detD2v dx ≤ M. (3.1)

Then ∫
Ω

|u| detD2v dx ≥
∫
Ω

|v|(detD2u)
1
n (detD2v)

n−1
n dx. (3.2)

Proof of Theorem 1.3. To simplify notation, let us denote the Monge-Ampère
eigenvalue λ[Ω] of Ω by λ. Let w be a Monge-Ampère eigenfunction of Ω as in
Theorem 1.1(i). We note that nontrivial convex solutions u and v to (1.3) satisfy
|u(x)| > 0 and |v(x)| > 0 for all x ∈ Ω.

As in [6, Proposition 5.3], we can show that for all β ∈ (0, 1), we have u, v ∈
C0,β(Ω) with the estimate

|u(x)|+|v(x)| ≤ C(n, β, diam (Ω))[dist(x, ∂Ω)]β
(‖u‖L∞(Ω) + ‖v‖L∞(Ω)

)
for all x ∈ Ω.

(3.3)
From the convexity of u and u = 0 on ∂Ω, we have the gradient estimate

|Du(x)| ≤ |u(x)|
dist (x, ∂Ω)

for all x ∈ Ω. (3.4)

Using (3.3) and (3.4), we can argue as in the proof of [6, Lemma 5.7] to obtain∫
Ω

(Δu+Δv)|w|n−1 dx ≤ C(n,Ω)
(‖u‖L∞(Ω) + ‖v‖L∞(Ω)

) ‖w‖n−1
L∞(Ω). (3.5)
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Because u + v is smooth and convex in Ω, by the Arithmetic-Geometric inequality,
we have

n(detD2(u+ v))
1
n ≤ Δ(u+ v).

From (3.5), we find that
∫
Ω

(detD2(u+ v))
1
n (detD2w)

n−1
n dx ≤ 1

n

∫
Ω

λ
n−1
n Δ(u+ v)|w|n−1 dx

≤ C(n,Ω)
(‖u‖L∞(Ω) + ‖v‖L∞(Ω)

) ‖w‖n−1
L∞(Ω). (3.6)

Step 1: μ ≥ λ.
By the characterization of λ in Theorem 1.1(i) and the first two equations of (1.3),

we find that

λ

∫
Ω

(|u|n+1 + |v|n+1
)
dx ≤

∫
Ω

|u| detD2udx+

∫
Ω

|v| detD2vdx

= μ

∫
Ω

(|u||v|n + |v||u|n) dx. (3.7)

On the other hand, for each x ∈ Ω, we have

|u(x)|n+1 + |v(x)|n+1 − (|u(x)||v(x)|n + |v(x)||u(x)|n)

= (|u(x)| − |v(x)|)2
n∑

i=1

|u(x)|n−i|v(x)|i−1 ≥ 0, (3.8)

with equality if and only if |u(x)| = |v(x)|.
Combining (3.7) with (3.8), we obtain μ ≥ λ as claimed.

Step 2: μ ≤ λ.
In this step, we will use the matrix inequality

[det(A+B)]
1
n ≥ (detA)

1
n + (detB)

1
n for A,B symmetric, positive definite

with equality if and only if A = cB for some positive constant c.
For all x ∈ Ω, we have from the above inequality and (1.3) that

(detD2(u+ v)(x))
1
n ≥ (detD2u(x))

1
n + (detD2v(x))

1
n = μ

1
n |u(x) + v(x)| (3.9)

with equality if and only if D2u(x) = C(x)D2v(x) for some positive constant C(x).
By (3.6), we can apply Proposition 3.1 to u+ v and w. Applying Proposition 3.1

to u+ v and w and using (3.9), we obtain
∫
Ω

λ|u+ v||w|n dx =

∫
Ω

|u+ v| detD2w dx ≥
∫
Ω

(detD2(u+ v))
1
n (detD2w)

n−1
n |w| dx

≥
∫
Ω

μ
1
n λ

n−1
n |u+ v||w|n dx.

It follows that λ ≥ μ.

Step 3: conclusion.
From Step 1 and Step 2, we find that μ = λ and we must have equalities in (3.8)

and (3.9) for all x ∈ Ω. It follows that |u| = |v| in Ω. Thus u = v and u solves
detD2u = λ|u|n in Ω with u = 0 on ∂Ω. By Theorem 1.1 (ii), u is a Monge-Ampère
eigenfunction of Ω.
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4. Proof of Theorem 1.2. In this section, we prove the uniqueness result as
stated in Theorem 1.2. Our proof is inspired by that of [3, Theorem 1.1(2)].

Proof of Theorem 1.2. By Remark 1.5, it suffices to prove the uniqueness of
nontrivial convex solutions to the system of Monge-Ampère equations:

⎧⎪⎨
⎪⎩

detD2u = σ|v|p in Ω,

detD2v = σ|u|n2/p in Ω,

u = v = 0 on ∂Ω.

By the symmetry of p and n2/p, it suffices to prove uniqueness for p − n > 0 small
since the case p = n is covered by Theorem 1.3. We argue by contradiction.

Suppose that for a sequence pk ↘ n, the following system of Monge-Ampère
equations

⎧⎪⎨
⎪⎩

detD2uk = σk|vk|pk in Ω,

detD2vk = σk|uk|n2/pk in Ω,

uk = vk = 0 on ∂Ω

(4.1)

has at least two distinguished pairs of convex solutions (uk, vk) and (ũk, ṽk) where

‖vk‖L∞(Ω) = ‖ṽk‖L∞(Ω) = 1. (4.2)

We can assume that for all k

n < pk ≤ n+
1

2
, and ‖uk‖L∞(Ω) ≥ ‖ũk‖L∞(Ω). (4.3)

Taking a subsequence if necessary, and without loss of generality, we can assume that

lim
k→∞

‖ṽk − vk‖L∞(Ω)

‖ũk − uk‖L∞(Ω)
= τ ∈ [0, 1]. (4.4)

Let

φk =
ũk − uk

‖ũk − uk‖L∞(Ω)
, and ϕk =

ṽk − vk
‖ṽk − vk‖L∞(Ω)

.

We will prove (see Step 6) that for all k large

φk > 0, and ϕk > 0 in Ω

and this will clearly lead to a contradiction to (4.2). Hence, we must have the unique-
ness of solutions as stated in the theorem. We now proceed with proof with several
steps.

Step 1: Convergence of σk to the Monge-Ampère eigenvalue of Ω and convergence of
uk, vk, ũk and ṽk in C0, 1

n (Ω) to the same Monge-Ampère eigenfunction of Ω.

Recalling (2.2) together with (4.2), and using the Aleksandrov maximum principle
(see [1, Theorem 2.8] and [2, Theorem 1.4.2]) and the compactness of solutions to the
Monge-Ampère equation (see [1, Corollary 2.12] and [2, Lemma 5.3.1]), we find that
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up to extracting a subsequence, σk → σ, while uk → u and vk → v uniformly in
C0, 1

n (Ω), and the following system holds⎧⎪⎨
⎪⎩

detD2u = σ|v|n in Ω,

detD2v = σ|u|n in Ω,

u = v = 0 on ∂Ω.

By Theorem 1.3, we have the uniqueness, that is, σ = λ is the Monge-Ampère eigen-
value of Ω and u = v = w is the Monge-Ampère eigenfunction of Ω with L∞ norm
being 1: ⎧⎪⎨

⎪⎩
detD2w = λ|w|n in Ω,

w = 0 on ∂Ω,

‖w‖L∞(Ω) = 1.

(4.5)

By this uniqueness, we actually have the full convergences of σk to λ, uk to w and vk
to w uniformly in C0, 1

n (Ω) when k → ∞. Similarly, we also have the full convergences

of ũk to w and ṽk to w uniformly in C0, 1
n (Ω) when k → ∞.

We denote by W = (W ij)1≤i,j≤n = cof (D2w) the cofactor matrix of the Hessian
D2w, so that

W = (detD2w)(D2w)−1 in Ω.

For later use, we note that for some constant c(Ω) > 0

c(Ω)dist (x,Ω) ≤ |w(x)| = −w(x) ≤ c−1(Ω)dist (x,Ω). (4.6)

In the next steps, the convex function ψ ∈ C∞(Ω) solving the Monge-Ampère equation{
detD2ψ = 1 in Ω,

ψ = 0 on ∂Ω

will be very useful in our comparison arguments.
Observe that for some constant c0 = c0(n,Ω) > 0

D2ψ ≥ c0In, and c0dist (x, ∂Ω) ≤ |ψ(x)| ≤ c−1
0 dist (x, ∂Ω) in Ω. (4.7)

Step 2: Systems of linearized Monge-Ampère equations for φk and ϕk.

Throughout, we will use the following notation: fij =
∂2f

∂xi∂xj
for a function f and

Aij for the (i, j) entry of a matrix A.
Note that

detD2uk − detD2ũk = U ij
k (uk − ũk)ij and (−vk)

pk − (−ṽk)
pk = Vk(ṽk − vk)

where

U ij
k =

∫ 1

0

[cof (tD2uk + (1− t)D2ũk)]ijdt,

and

Vk =

∫ 1

0

pk[−tvk − (1− t)ṽk]
pk−1dt =

∫ 1

0

pk|tvk + (1− t)ṽk|pk−1dt.
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From

detD2uk − detD2ũk = σk(−vk)
pk − σk(−ṽk)

pk

we obtain

−U ij
k (ũk − uk)ij = σkVk(ṽk − vk),

or, φk and ϕk satisfies the following linearized Monge-Ampère equation

U ij
k φk,ij + σkVkϕk

‖ṽk − vk‖L∞(Ω)

‖ũk − uk‖L∞(Ω)
= 0. (4.8)

Similarly, we have

V ij
k ϕk,ij + σkUkφk

‖ũk − uk‖L∞(Ω)

‖ṽk − vk‖L∞(Ω)
= 0. (4.9)

where

V ij
k =

∫ 1

0

[cof (tD2vk + (1− t)D2ṽk)]ijdt and Uk =

∫ 1

0

n2

pk
|tuk + (1− t)ũk|

n2

pk
−1

dt.

When k → ∞, we deduce from Step 1 and Theorem 2.3 that for β := 2
3+n ,

Vk → n|w|n−1, Uk → n|w|n−1 uniformly on C2,β(Ω), (4.10)

while

U ij
k → W ij , V ij

k → W ij uniformly on Cβ(Ω). (4.11)

Step 3: |φk(x)| ≤ C(n,Ω)dist (x, ∂Ω) for k large.
By (4.7), it suffices to show that for all k large

|φk| ≤ C(n,Ω)|ψ| in Ω. (4.12)

Indeed, as in (2.13) of the proof of Theorem 2.3, we have

c(Ω)dist (x,Ω) ≤ |vk(x)| ≤ C(n,Ω)dist (x, ∂Ω)

and

c(Ω)dist (x,Ω) ≤ |ṽk(x)| ≤ C(n,Ω)dist (x, ∂Ω).

Therefore, for all k, we have

|Vk(x)| ≤ pkC
pk−1(n,Ω)dist pk−1(x, ∂Ω) ≤ C1(n,Ω)dist

n−1(x, ∂Ω) (4.13)

where we used (4.3) in the last inequality.
On the other hand, by Step 1 and (4.4)

σk ≤ 2λ,
‖ṽk − vk‖L∞(Ω)

‖ũk − uk‖L∞(Ω)
≤ 2τ + 1 for all large k.
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Thus, in view of (4.8), for all k large, we have in Ω

|U ij
k φk,ij | = σk|Vk||ϕk|

‖ṽk − vk‖L∞(Ω)

‖ũk − uk‖L∞(Ω)
≤ 2λ(2τ + 1)|Vk| ≤ C2(n,Ω)dist

n−1(x, ∂Ω).

(4.14)
From Remark 2.4, we infer that the eigenvalues λk,1 ≤ · · · ≤ λk,n of U ij

k satisfies for
some c1 = c1(n,Ω) > 0

λk,n ≥ c1;λk,1 ≥ c1dist
pk(x, ∂Ω).

It follows from the above estimates and (4.7) that

U ij
k ψij ≥ c0trace(U

ij
k ) ≥ c0c1 := c2. (4.15)

Thus for C(n,Ω) and k large, we have from (4.14) and (4.15)

U ij
k (−C(n,Ω)ψ)ij < U ij

k φk,ij < U ij
k (C(n,Ω)ψ)ij in Ω.

Using the maximum principle, we obtain (4.12).

Step 4: τ > 0.
Indeed, suppose otherwise that τ defined by (4.4) satisfies τ = 0. In this case,

we use the result of Step 3 together with (4.10) and (4.11) (in fact, only the locally
uniform convergences suffice) to pass to the limit of k → ∞ in (4.8). By Step 3,
we can assume, up to extracting a subsequence, that φk converges locally uniformly
in C2,β(Ω) and uniformly in C0,1(Ω) to a Lipschitz function φ ∈ C2,β(Ω) ∩ C0,1(Ω).
Letting k → ∞ in (4.8) and using (4.10), (4.11), (4.13) and τ = 0, we find that φ
satisfies

W ijφij = 0 in Ω, and φ = 0 on ∂Ω.

From

W ijwij = n detD2w = nλ|w|n > 0 in Ω

and the maximum principle, we have |φ| ≤ ε(−w) in Ω for all ε > 0. This implies
φ ≡ 0. However, this contradicts the fact that ‖φ‖L∞(Ω) = 1. Hence τ > 0.

Step 5: φk and ϕk converge uniformly in C0,1(Ω) to |w| defined in (4.5).
As in Step 3, now with 0 < τ ≤ 1, we use

lim
k→∞

‖ũk − uk‖L∞(Ω)

‖ṽk − vk‖L∞(Ω)
=

1

τ

in (4.9) to obtain

|ϕk| ≤ C(n,Ω)|ψ| ≤ C(n,Ω)dist (x, ∂Ω).

Thus, up to extracting a subsequence, we can assume that {φk} and {ϕk}, respectively,
converge locally uniformly in C2,β(Ω) and uniformly in C0,1(Ω) to Lipschitz functions
φ ∈ C2,β(Ω) ∩ C0,1(Ω) and ϕ ∈ C2,β(Ω) ∩ C0,1(Ω), respectively. Using (4.10) and
(4.11) together with σk → λ in the linearized Monge-Ampère equations (4.8) and
(4.9), we find that these functions φ and ϕ satisfy⎧⎪⎪⎨

⎪⎪⎩
W ijφij + λn|w|n−1τϕ = 0 in Ω,

W ijϕij + λn|w|n−1φ

τ
= 0 in Ω,

φ = ϕ = 0 on ∂Ω.
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Therefore,

W ij(φ− τϕ)ij − λn|w|n−1(φ− τϕ) = 0 in Ω, and φ− τϕ = 0 on ∂Ω.

As in Step 4, we use the maximum principle to get |φ − τϕ| < ε(−w) in Ω for all
ε > 0. It follows that φ = τϕ. Since ‖φ‖L∞(Ω) = ‖ϕ‖L∞(Ω) = 1, we have τ = 1; hence
φ = ϕ and ϕ satisfies

W ijφij + λn|w|n−1φ = 0 in Ω.

Using (4.6) and Step 3, we have M(−w) − φ > 0 in Ω for a large constant M > 0.
Now, M(−w)−φ and −w are positive eigenfunctions corresponding to the eigenvalue

λ of the operator − W ij

n|w|n−1 ∂ij in Ω. Note that

det

(
W ij

n|w|n−1

)
=

(detD2w)n−1

nn|w|n(n−1)
=

λn−1

nn
.

It follows that M(−w) − φ = θ(−w) for some positive constant θ; see, for example
[8, Proposition A.2]. Therefore, φ = τw for some constant τ . From ‖φ‖L∞(Ω) =
‖w‖L∞(Ω) = 1, we find

φ = ϕ = ±w.

To show that φ = |w|, it suffices to show that the limit function φ ≥ 0 at some interior
point of Ω.

Let xk ∈ Ω be a minimum point of uk. Then, from (4.2) and Lemma 2.1, we have
|uk(xk)| = ‖uk‖L∞(Ω) ≥ C−1(n, p). By the Aleksandrov maximum principle (see [1,
Theorem 2.8] and [2, Theorem 1.4.2]) and the bound on σk in Lemma 2.1, we have

|uk(xk)|n ≤ C(n)(diamΩ)n−1dist (xk, ∂Ω)

∫
Ω

detD2uk dx ≤ C(n, p,Ω)dist (xk, ∂Ω).

This implies that

dist (xk, ∂Ω) ≥ C−1(n, p,Ω). (4.16)

At xk, by (4.3), we have

ũk(xk)− uk(xk) = ‖uk‖L∞(Ω) + ũk(xk) ≥ ‖uk‖L∞(Ω) − ‖ũk‖L∞(Ω) ≥ 0

and thus

φk(xk) ≥ 0.

This together with (4.16) shows that φ(z) ≥ 0 where z ∈ Ω is a limit point of {xk}.
In conclusion,

φ = ϕ = −w = |w|.

Step 6: φk > 0 and ϕk > 0 when k is large enough.
We are going to show if k and M are large, and δ > 0 small, then

η := Mδnψ − δw
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is a lower barrier for φk in the boundary ring

Ωδ := {x ∈ Ω|dist (x, ∂Ω) < δ}.

Let c3 := c(Ω)/2 where c(Ω) is as in (4.6). Then, by Step 5 and (4.6), for any fixed
δ > 0, we can find a large positive integer k0 = k0(δ,Ω) such that

φk ≥ c3δ in Ω\Ωδ for all k ≥ k0. (4.17)

In view of (4.11), we have the following uniform convergence in C(Ω)

U ij
k wij → W ijwij = n detD2w = nλ|w|n ≤ C1(n,Ω)dist

n(x, ∂Ω),

which implies that

U ij
k wij ≤ C1dist

n(x, ∂Ω) + εk in Ω

where εk → 0 when k → ∞.

Therefore, using Step 3 together with (4.15) and (4.13), we have in Ωδ

U ij
k (φk − η)ij = U ij

k φk,ij −MδnU ij
k ψij + δU ij

k wij

≤ 4λτ |Vkφk| −Mδnc2 + δC1dist
n(x, ∂Ω) + δεk

≤ C2(n,Ω)dist
n(x, ∂Ω)−Mδnc2 + δC1dist

n(x, ∂Ω) + δεk < 0 (4.18)

provided that M is large (depending only on n and Ω) and k ≥ k1(δ, n,Ω) where k1
is large.

On the other hand, for k ≥ k1, using (4.17) together with (4.6) and (4.7), we
have, on ∂Ωδ\∂Ω

φk − η = φk +Mδn|ψ| − δ|w| ≥ c3δ + c0Mδn+1 − c−1δ2 > 0

provided δ ≤ δ0 where δ0 = δ0(n,Ω) > 0 is small.

Now, it follows from (4.18) and the maximum principle that, for all k ≥
k2(δ, n,Ω) := max{k0, k1} and δ ≤ δ0,

φk − η ≥ 0 in Ωδ.

Consequently, using (4.6) and (4.7) once more time, we have for all k ≥ k2

φk ≥ η = −Mδn|ψ|+ δ|w| ≥ −c−1
0 Mδndist (x, ∂Ω) + δcdist (x, ∂Ω)

≥ cδ

2
dist (x, ∂Ω) in Ωδ

provided δ ≤ δ1(n,Ω) small. This combined with (4.17) shows that φk > 0 in Ω for k
large enough.

The same argument shows that ϕk > 0 in Ω for k large enough. This completes
the proof of our theorem.

Acknowledgements. The author would like to thank the referees for their help-
ful comments.



UNIQUENESS FOR A SYSTEM OF MONGE-AMPÉRE EQUATIONS 29
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