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Abstract 

Josephson junctions with topological insulators as their weak link (S-TI-S junctions) 

are predicted to host Majorana fermions, which are key to creating qubits for 

topologically protected quantum computing. But the details of the S-TI-S current-

phase relation and its interplay with magnetic fields are not well understood. We 

fabricate a Bi2Se3 junction with NbTi leads and measure the Fraunhofer patterns of the 

junction with applied in-plane fields. We observe that asymmetric Fraunhofer patterns 

appear in the resistance maps of Bz vs. Bx,y, with aperiodic node spacings. These 

asymmetric patterns appear even at zero parallel field and for temperatures up to 1 K. 

The anomalous features are compared to asymmetric Fraunhofer patterns expected for 

finite Cooper pair momentum shifts as well as geometric effects. We show that the 

geometric effects can dominate, independent of in-plane field magnitude. These results 

are important for differentiating geometrical phase shifts from those caused by Cooper 

pair momentum shifting, Majorana mode signatures, or other unconventional 

superconducting behavior.   

 

 

1. Introduction 

Josephson junctions are integral to the ultra-sensitive 

detection of magnetic fields via SQUIDs, and the 

construction of superconducting qubits [1]. A standard 

Josephson junction obeys the Josephson equations, Ic = 

Ic,0sin(∆φ) and V = ~2e−∂(∆φ)∂t,  where ∆φ is the phase 

difference between the contacts of the junction, and Ic,0 

is the critical current of the junction in the absence of a 

magnetic field. Thus the phase difference across a 

Josephson junction is tied to much of the essential 

physics of a device, including the critical current, 

voltage across the junction, and pairing symmetry. 

For a standard Josephson junction, the phase 

difference across the junction is zero when there is no 

current across it. However, it is known that by breaking 

combinations of spatial parity and time reversal 

symmetries, there should be an anomalous current across 

the junction at ∆φ = 0 [2]. In particular, as described in 

Ref. [3], specific combinations of magnetic fields and 

disorder potentials can lead to anomalous phase shifts. 

For example, the combination of an applied field parallel 

to the direction of the current, high spin-orbit coupling, 

and a disorder potential in the direction of the current, 

are enough to cause an anomalous phase shift. In this 

manuscript we discuss anomalous phase shifts due to the 

combination of spin-orbit coupling, sample disorder, and 

applied fields both in and out of the plane of the junction. 

Josephson   junctions   containing   3D   topological 

insulators  are  a  rich  platform  for  studying anomalous 

phase shifts and unconventional superconductivity [4,5]. 

Topological insulators have unique surface states which 

exhibit spin-momentum locking and preferentially 

transport supercurrents [6]. The surface properties, 

combined with strong spin-orbit coupling, enables phase 

manipulation beyond what is typically done in more 

conventional materials. Further, the  interface  between  

an s-wave superconductor and a 3D topological insulator 

is expected to host Majorana zero modes, particles that 

are their own antiparticle that follow non-Abelian 

statistics. Control over Majorana particles would enable 

the construction of highly fault-tolerant quantum 
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computers, but definitive detection of the particles is so 

far controversial. Because S-TI-S junctions are predicted 

to exhibit distinctive properties of Majorana modes [7] 

it is important to obtain a detailed understanding of the 

transport and phase signatures of different junction 

geometries and materials. 

We study a junction made of Nb/Ti-Bi2Se3-Nb/Ti 

under conditions where applied magnetic fields, 

disorder, and spin-orbit coupling are expected to 

produce Josephson phase shifts. The primary 

measurements are magnetic diffraction patterns, or 

Fraunhofer interference patterns, which show a 

modulation of the critical current, and in turn the phase 

across the junction, as a function of the applied magnetic 

field.  We observe asymmetry in the Fraunhofer patterns 

that does not show temperature dependence, and also 

find there are asymmetrical features for fields applied in 

the plane of the junction. Our main conclusion is that 

anomalous Fraunhofer features can manifest primarily 

from geometric effects, i.e. edge-steps and defects across 

the device. Understanding this is important in order to 

differentiate geometrical phase shifts from those caused 

by Cooper pair momentum shifting, Majorana 

signatures, or other unconventional superconducting 

behavior.   

Fraunhofer interference can be understood by 

considering a flat, rectangular junction where the flux 

penetrating perpendicular to the plane of the junction 

(the z-direction, as shown in Fig. 1a) causes a winding 

of the superconducting phase that leads to Equation 1 

[8,9]: 

𝐼𝑐 = 𝐼𝑐,0 |
𝑠𝑖𝑛(𝜋𝐵𝐴/𝛷0)

𝜋𝐵𝐴/𝛷0
| (1). 

Equation 1 shows that the critical current across the 

junction varies with the applied magnetic field, and the 

nodes in the critical current Fraunhofer pattern are 

located at B = nΦ0/A, where B is the applied magnetic 

field, A is the cross-sectional area of the junction, and 

Φ0 = h/2e is the flux quantum. The nodes occur when an 

integer number of Φ/Φ0 enter the junction. 

The standard Fraunhofer pattern that follows the 

sin(Φ)/Φ form from Equation 1 can be modified in 

several ways, such as by the geometry of the sample 

[8,10], the temperature of the sample (through thermal 

cycling) [12], and as discussed above, by magnetic fields 

applied in-plane with the current. While behaviour that 

deviates from the standard Fraunhofer pattern has been 

documented and, in some cases, explained, all of the 

mechanisms responsible for deviation are not 

completely understood. Features such as lifted nodes or 

suppressed lobes can be a result of multiple parameters, 

and simulations of these anomalous features sometimes 

rely on empirical methods, rather than a detailed 

theoretical understanding [3,9,13]. 

Other experiments on similar devices have shown an 

evolution of the critical current as a function of Bz 

consistent with a typical Fraunhofer pattern.  But with an 

applied in-plane magnetic field parallel to the current, 

Bx, the Fraunhofer pattern develops side lobes that 

persist at higher Bx than the central lobe [10]. These side 

lobes can be caused by a Zeeman effect, which appears 

in the Hamiltonian of the surface states as [10,14,15]: 

𝐻 = 𝑣𝑓 (𝑘𝑦 −
𝑔𝜇𝐵𝑥

ℏ𝑣𝑓
) 𝜎𝑦 + ℏ𝑣𝑓𝑘𝑦𝜎𝑥 (2). 

In Equation 2, the momentum states ky are translated 

by gμBx/hvf, which is known as a finite momentum shift 

of the Fermi surface. In the Hamiltonian, 𝑣𝑓 is the Fermi 

velocity, 𝑔 is the g-factor, and 𝜇 is the Bohr magneton. 

Each Cooper pair on the Dirac cone gets double this 

finite momentum shift, and so has a phase modulation 

2gμxBx/hvf in the y-direction. Additionally, there may be 

an Aharonov-Bohm phase modulation, πxByt/Φ0 [10]. 

Thus, there is motivation to further understand the 

conditions under which momentum shifts are apparent 

in Fraunhofer patterns with applied in-plane magnetic 

fields, versus contributions from other effects (such as 

disorder or steps). 

Equation 1 describes the Fraunhofer pattern for a 

rectangular, flat junction with only an out of plane 

magnetic field, and no screening effects [8], but 

asymmetries in the junction, in-plane magnetic fields, 

and magnetic domains in the junction can cause 

deviations from the standard pattern [3,10,16]. More 

specifically, as discussed earlier, an anomalous phase 

shift can arise from breaking sets of symmetries in the 

junction that change the relation, Ic(+Bz) = Ic(−Bz) 

[3,13,15]. A strong spin-orbit coupling combined with 

an applied By is sufficient to produce an asymmetric 

Fraunhofer pattern, even within a geometrically 

symmetric junction. Tables of the operators that can 

break the symmetry of a Josephson junction are 

available in Ref. [3] and Ref. [15]. The important 

operator for this manuscript is V(x,y), as an asymmetric 

disorder potential by itself is enough to generate 

asymmetric Fraunhofer patterns. An asymmetric V(x,y) 

can exist because of asymmetric contact at the interface 
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between the superconducting leads and the TI, because 

of geometrical asymmetry in the TI flake itself, or 

because of inconsistent current density across the TI. 

The following sections will show that microscopic 

disorder in the junction, arising from the TI flake itself, 

is enough to cause asymmetry and aperiodicity 

comparable to that generated by applied magnetic fields.  

While Equation 1 holds true for an ideal junction in a 

perpendicular applied field, there is a more general way 

of writing the critical current of a Josephson junction, 

considering the size of the junction and an in-plane field:  

𝐼𝑐 = max
𝜑′

∫ ∫ 𝑗0 sin (𝜑𝑥𝑦(𝑦) + 𝜑𝑥𝑧(𝑧) + 𝜑′ + 𝜑0(𝑦)) 𝑑𝑦 𝑑𝑧

𝑑

0

 

𝑊/2

−𝑊/2

(3). 

Equation 3 expresses the critical current as a function of 

By and Bz, where W is the width of the junction in the y-

direction, d is the thickness of the flake, j0 is the critical 

current density, φxy is the flux produced by Bz which is 

proportional to 𝑦𝐵𝑧, φxz is the flux produced by By, which 

is proportional to 𝑧𝐵y, φ′ is a phase shift that is allowed 

to vary to maximize the critical current, and φ0 is an 

anomalous phase shift that varies with y due to disorder 

in the junction [3]. Including y-dependence, of an 

applied field or anomalous phase, in the calculation of 

the critical current allows for asymmetry. When φ0 is 

constant, any changes it would make to the Fraunhofer 

pattern are cancelled out by the maximizing of φ′. 

However, if φ0 varies with y, then the Fraunhofer pattern 

can show asymmetry, aperiodicity, and lifted nodes. 

2. Experiment 

Two devices were fabricated and measured, and showed 

similar behaviour, we present data from a single device 

that is representative of both. Figure 1a shows an AFM 

scan of the 2.26μm x 0.35μm junction, with a quasi-four-

point lead design. Between the leads, the Bi2Se3 flake 

was ~ 35 nm thick, with 45 nm thick NbTi leads. NbTi 

was chosen for its relatively high critical field of ∼ 9 T. 

The actual height of the sample at each point is important 

to the analysis in this paper, as a measure of geometric 

variations. At the top of Figure 1a is a height profile of 

the flake in the y-direction, where large steps and height 

variations show the variations in flake thickness. It is 

important to note that these thickness variations can 

cause anomalous features in magneto-transport 

FIG. 1: (a) An AFM scan of the sample showing the flake (∼35 nm in height) and the quasi-four-point configuration 

of the leads, along with a height profile across the width of the flake. A large edge step is apparent in the height 

profile.  (b) The resistance across the sample as a function of the temperature. NbTi is known to superconduct at 

∼9 K. (c) The dV/dI curve for the same sample, taken at 15 mK and zero magnetic field. The peaks at ±3 μA 

delineate the critical current of the junction. 
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measurements of the junction, including the asymmetry 

we present. All transport measurements were done in an 

Oxford Triton dilution refrigerator with base 

temperature of 12 mK and a 6:1:1 T vector magnet, using 

a lock-in amplifier and DC-DAQ as current sources. The 

devices were made by mechanically exfoliating Bi2Se3 

crystals with bulk carrier density, n ∼ 5×1017cm−3, onto 

Si having a 300 nm thick oxide layer. Candidate flakes 

were identified using an optical microscope and their 

thicknesses were verified via AFM. We targeted a 

thickness of 20 nm to 40 nm, to yield junctions thin 

enough to have limited bulk conduction but thick enough 

to avoid hybridization effects.  

3. Results 

Both devices were first measured to confirm that the 

leads and Bi2Se3 superconduct at low temperatures. 

Figures 1b and c show that the representative junction 

superconducts at a critical temperature of ∼ 9 K, and has 

a critical current of ∼ 3 μA, measured at 5 mK. The 

normal state resistance of the junction is 25Ω, giving 

IcRNe = 0.075 meV, while the expected gap energy of 

the leads is, ∆ = 3.05 meV [17,18]. These values agree 

with what is expected for S-TI-S junctions [9]. 

The measured area of the junction in the x-y plane is 

given by the junction length and the width of the sample 

between the leads: 2.26 μm × 0.35 μm = 0.79 μm2. 

However, flux focusing increases the effective area of 

the junction to 2.2 μm2. Flux focusing occurs when 

magnetic field lines that would have penetrated the leads 

are diverted to the closest non-Meissner state area, which 

means more magnetic field lines are penetrating the TI 

flake than would be if the leads were not a 

superconducting material. Additionally, there is some 

penetration depth of the magnetic field into the leads, 

increasing the effective area by adding 2λL to the 

distance between the leads. The effective area due to flux 

focusing, 2.2 μm2, agrees well with an estimation done 

FIG. 2: (a) An asymmetric Fraunhofer pattern at 18 mK. The black dashed lines mark the positions of the first 

several nodes, while the red line roughly traces the critical current. (b) The Fraunhofer pattern at 500 mK (left), 700 

mK (middle), and 1 K (right). (c) Γ(Bz,n) for each node, n, at all four temperatures. 

 

(c) 

(a) 
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by fitting the first few nodes of the Fraunhofer patterns 

in Figure 2.  

Figures 2a and 2b show Fraunhofer patterns for the 

device at T = 18mK, 500mK, 700mK, and 1K. Using the 

effective area, the plot axes in Figures 2a and 2b are 

converted from Tesla to units of flux divided by the flux 

quantum, in order to compare the measured pattern with 

Equation 1. The yellow superconducting regions should 

be symmetric in spacing and intensity, according to Eq. 

1. However, it is clear in the Figure that for all 

temperatures, the patterns are asymmetric in node 

spacing as well as in intensity for +Bz and -Bz. The 

spacing of the nodes is not significantly changed by the 

temperature, but higher temperatures do lower the 

amplitude of the pattern and washout the higher field 

features. From Equation 1, the nodes in the Fraunhofer 

pattern are expected at Bz = nΦ0/A, i.e. when integer 

number of flux quanta enter the junction. If A in 

Equation 1 is the effective area due to flux focusing, the 

observed node spacing in Figures 2a and 2b only roughly 

agrees with the spacing expected from Equation 1. The 

trace of Ic for the 18 mK measurement shows the shape 

of the nodes and antinodes, and examination of the 

distance from each node to the next (dotted black lines 

in Fig. 2), makes it clear that the spacing for the first few 

nodes and antinodes is aperiodic, which is not predicted 

by Equation 1. The deviation factor, Γ(Bz,n) = 

nΦ0/Bz,nAeff, captures the observed difference between 

the expected position of the n-th node and the actual 

position, and is plotted in Figure 2c. In Figure 2c we see 

that as Bz increases, Γ has a concave shape, approaching 

unity for nodes at higher field values. In other words, the 

deviation disappears at large field values, but is 

significant (Γ ~ 0.7) elsewhere, with the first node 

especially different from the 3rd, 4th, and 5th. It can also 

be seen that the overall shape of Γ is not affected by the 

temperature of the sample.  

Aperiodic spacing of Fraunhofer lobes has been 

observed before in Al-TI-Al junctions [9,17]. One 

phenomenological explanation given for this data argues 

that as the applied field increases, the superconducting 

leads transition from a Meissner state to a state with 

vortices, resulting in less flux being redirected into the 

sample. Consequently, at higher fields, the effective area 

of the junction is smaller, and the nodes are spaced 

farther apart [13]. However, we observe that as the 

magnetic field increases, the nodes of the Fraunhofer 

patterns in Figures 2a and 2b become more closely 

spaced together, which is inconsistent with the 

weakened flux focusing picture. It has also been 

observed that an S-TI-S junction can become SQUID-

like with a non-uniform current density [19] or with 

sufficient Bx [13]. However, we observe that this form of 

aperiodicity exists at Bx = 0 and By = 0, which rules out 

the  Bx-SQUID picture. Thus, the aperiodic node spacing 

we observe is likely the result of non-uniform current 

density caused by the geometry of the flake itself, e.g. 

voltage drops that occur at atomic steps in the TI, such 

as those that can be seen in Figure 1a. 

The amplitude of the Fraunhofer lobes deviates from 

the expected symmetry as well. Amplitude asymmetry 

can be thought of as arising from a skip in the phase 

difference in the plane of the junction, with the skip 

generated by an in-plane magnetic field [19]. 

Additionally, a varying flake thickness changes the 

value of the Rashba coefficient and can produce 

asymmetry in the Fraunhofer patterns via phase skipping 

[3]. It is possible the trapped flux or flux focusing effects 

could create a finite in-plane magnetic field that would 

cause an amplitude asymmetry at no applied field bias 

[13,20,21]. To test this, in Figure 3 we show how the 

Fraunhofer patterns vary with in-plane magnetic fields. 

The Figure shows that asymmetries in node spacing and 

amplitude exist for all values and both directions of in-

plane fields. A possible explanation for this is that the 

current density in the junction is anisotropic.  Because 

there is not a value of Bx or By that produces a pattern 

symmetric in Bz, the asymmetries cannot be due to the 

creation of in-plane magnetic fields. An asymmetry in 

the superconducting contacts of a Josephson Junction 

has also been shown to lead to asymmetric Fraunhofer 

patterns [3,10], but the ratio of the widths of our 

contacts, α = W1/W2 = 1.02, is close enough to 1 that it is 

unlikely to cause such a large asymmetry when 

compared to calculations. Consequently, it is likely that 

both the asymmetry and aperiodicity of the Bz vs. I 

Fraunhofer patterns is primarily due to steps in the flake 

itself. 

Equation 1 predicts that the Fraunhofer amplitude 

decays like 1/B about B = 0, but an additional Bx 

magnetic field along the direction of the current will 

transfer amplitude from the central lobe to side lobes [3]. 

The junction in this experiment is fabricated similarly to 

the samples in Ref. [10], but shows a much less 

pronounced raising of the side lobes than those devices. 

The same experiment shows via simulations that 

samples with a large bulk transport carrier density will 

have greatly reduced side branches, because the bulk 
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carriers do not pick up a significant Aharanov-Bohm 

phase. Thus, the current experiment may be in a high-

carrier density regime where side lobe branches are 

suppressed. 

As a comparison to our data, in Fig. 4a we show a 

plot of a Fraunhofer pattern generated from Equation 3 

and utilizing the φ0(y) shown in Fig. 4b, which has an 

explicit phase jump. The Fraunhofer pattern in Figure 4 

comes directly from numerically integrating Equation 3, 

and choosing 𝑊 = 2, 𝑑 = 1, and 𝑗0 = 0.5, to create an 

easily readable, unitless scale. φ0 is set to the linear form 

shown in Fig. 4b, where φxy and φxz are geometric 

functions of the magnetic field, and we let 𝐵𝑦 = 0 to get 

a 1D slice. Fig. 4a shows that a linear φ0(y) with a single 

phase jump can generate asymmetry, aperiodicity, and 

lifted nodes. A phase jump like this could be caused by 

a height jump, or disorder potential in the junction, like 

what we observe in our Bi2Se3 flake. 

It has also been reported that in Josephson junctions 

with inversion symmetry-breaking weak links there can 

be an asymmetry in the Fraunhofer patterns that depends 

on the current direction, |𝐼𝑐
+(𝐵)| ≠ |𝐼𝑐

−(𝐵)|, as well as 

asymmetry that depends on the applied field direction, 

|𝐼𝑐
±(𝐵)| ≠ |𝐼𝑐

±(−𝐵)| [22]. It is possible that this 

inversion-symmetry breaking contributes to the 

asymmetry observed in our Fraunhofer patterns; 

however, we do not observe the mirror symmetry 

expected in this case, indicating that disorder effects may 

dominate in our devices. 

4. Conclusion 

An S-TI-S junction fabricated from NbTi and Bi2Se3 

shows an asymmetric Fraunhofer pattern at zero in-plane 

field, which persists from <15 mK to >1 K. We observe 

additional asymmetry due to an applied By in the plane 

of the junction, but perpendicular to the direction of the 

current, which shifts amplitude from one polarity of the 

Fraunhofer pattern to the other. The measurements of 

amplitude asymmetry in both the Bx and By directions 

FIG. 4: (a) A Fraunhofer pattern generated using 

Equation 3 and the φ0(y) shown below, with 𝐵𝑦 = 0. The 

pattern demonstrates amplitude asymmetry, 

aperiodicity, and lifted nodes. The critical current is 

normalized to 1 and the magnetic field has arbitrary 

units. b) The φ0(y) used in Equation 3 to generate the 

Fraunhofer pattern above, where y is an arbitrary unit of 

distance, and ranges from one edge of the junction to the 

other. 

 

FIG. 3: Bz vs Bx (a), and Bz vs By (b), both plots have 

been rotated so that the lobes are vertical. The maps 

show an asymmetrical resistance pattern at all values of 

Bx and By. 
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point to a current density origin of these effects, caused 

by edge-stepping or other disorder effects in the TI. 

Finally, we observe aperiodic spacing of the Fraunhofer 

lobes/nodes that is contrary to previously observed 

behaviour that was attributed to weakened flux focusing 

effects. Our observation that the spacing rises for the 

first few nodes, then falls towards a regular pattern 

suggests a more complicated, geometry dependent 

critical current-flux relationship [8,19,24,25]. To probe 

the strength of these effects further, it will be useful to 

fabricate junctions with intentionally symmetry 

breaking properties, that are expected to dominate the 

anomalous features of the critical current and Fraunhofer 

patterns. 
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