Asymmetric Fraunhofer Spectra in a Topological Insulator-Based Josephson Junction
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Abstract

Josephson junctions with topological insulators as their weak link (S-TI-S junctions)
are predicted to host Majorana fermions, which are key to creating qubits for
topologically protected quantum computing. But the details of the S-TI-S current-
phase relation and its interplay with magnetic fields are not well understood. We
fabricate a Bi>Ses junction with NbTi leads and measure the Fraunhofer patterns of the
junction with applied in-plane fields. We observe that asymmetric Fraunhofer patterns
appear in the resistance maps of B, vs. By,, with aperiodic node spacings. These
asymmetric patterns appear even at zero parallel field and for temperatures up to 1 K.
The anomalous features are compared to asymmetric Fraunhofer patterns expected for
finite Cooper pair momentum shifts as well as geometric effects. We show that the
geometric effects can dominate, independent of in-plane field magnitude. These results
are important for differentiating geometrical phase shifts from those caused by Cooper
pair momentum shifting, Majorana mode signatures, or other unconventional

superconducting behavior.

1. Introduction

Josephson junctions are integral to the ultra-sensitive
detection of magnetic fields via SQUIDs, and the
construction of superconducting qubits [1]. A standard
Josephson junction obeys the Josephson equations, /. =
1. osin(A@) and V' = ~2e—0(Ap)0ot, where Ag is the phase
difference between the contacts of the junction, and /.o
is the critical current of the junction in the absence of a
magnetic field. Thus the phase difference across a
Josephson junction is tied to much of the essential
physics of a device, including the critical current,
voltage across the junction, and pairing symmetry.

For a standard Josephson junction, the phase
difference across the junction is zero when there is no
current across it. However, it is known that by breaking
combinations of spatial parity and time reversal
symmetries, there should be an anomalous current across
the junction at Ap = 0 [2]. In particular, as described in
Ref. [3], specific combinations of magnetic fields and
disorder potentials can lead to anomalous phase shifts.

For example, the combination of an applied field parallel
to the direction of the current, high spin-orbit coupling,
and a disorder potential in the direction of the current,
are enough to cause an anomalous phase shift. In this
manuscript we discuss anomalous phase shifts due to the
combination of spin-orbit coupling, sample disorder, and
applied fields both in and out of the plane of the junction.

Josephson junctions containing 3D topological
insulators are a rich platform for studying anomalous
phase shifts and unconventional superconductivity [4,5].
Topological insulators have unique surface states which
exhibit spin-momentum locking and preferentially
transport supercurrents [6]. The surface properties,
combined with strong spin-orbit coupling, enables phase
manipulation beyond what is typically done in more
conventional materials. Further, the interface between
an s-wave superconductor and a 3D topological insulator
is expected to host Majorana zero modes, particles that
are their own antiparticle that follow non-Abelian
statistics. Control over Majorana particles would enable
the construction of highly fault-tolerant quantum
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computers, but definitive detection of the particles is so
far controversial. Because S-TI-S junctions are predicted
to exhibit distinctive properties of Majorana modes [7]
it is important to obtain a detailed understanding of the
transport and phase signatures of different junction
geometries and materials.

We study a junction made of Nb/Ti-Bi,Ses;-Nb/Ti
under conditions where applied magnetic fields,
disorder, and spin-orbit coupling are expected to
produce Josephson phase shifts. The primary
measurements are magnetic diffraction patterns, or
Fraunhofer interference patterns, which show a
modulation of the critical current, and in turn the phase
across the junction, as a function of the applied magnetic
field. We observe asymmetry in the Fraunhofer patterns
that does not show temperature dependence, and also
find there are asymmetrical features for fields applied in
the plane of the junction. Our main conclusion is that
anomalous Fraunhofer features can manifest primarily
from geometric effects, i.e. edge-steps and defects across
the device. Understanding this is important in order to
differentiate geometrical phase shifts from those caused
by Cooper pair momentum shifting, Majorana
signatures, or other unconventional superconducting
behavior.

Fraunhofer interference can be understood by
considering a flat, rectangular junction where the flux
penetrating perpendicular to the plane of the junction
(the z-direction, as shown in Fig. 1a) causes a winding
of the superconducting phase that leads to Equation 1
[8,9]:
sin(mBA/®y) .

nBA/®,

Equation 1 shows that the critical current across the
junction varies with the applied magnetic field, and the
nodes in the critical current Fraunhofer pattern are
located at B = n®y/A, where B is the applied magnetic
field, A is the cross-sectional area of the junction, and
@y = h/2e is the flux quantum. The nodes occur when an
integer number of @/®, enter the junction.

The standard Fraunhofer pattern that follows the
sin(®)/® form from Equation 1 can be modified in
several ways, such as by the geometry of the sample
[8,10], the temperature of the sample (through thermal
cycling) [12], and as discussed above, by magnetic fields
applied in-plane with the current. While behaviour that
deviates from the standard Fraunhofer pattern has been
documented and, in some cases, explained, all of the
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mechanisms responsible for deviation are not
completely understood. Features such as lifted nodes or
suppressed lobes can be a result of multiple parameters,
and simulations of these anomalous features sometimes
rely on empirical methods, rather than a detailed
theoretical understanding [3,9,13].

Other experiments on similar devices have shown an
evolution of the critical current as a function of B,
consistent with a typical Fraunhofer pattern. But with an
applied in-plane magnetic field parallel to the current,
By, the Fraunhofer pattern develops side lobes that
persist at higher By than the central lobe [10]. These side
lobes can be caused by a Zeeman effect, which appears
in the Hamiltonian of the surface states as [10,14,15]:

guB
H = v, <ky - #) oy + hvpkyo, ().

f
In Equation 2, the momentum states k, are translated
by guBx/hvt, which is known as a finite momentum shift

of the Fermi surface. In the Hamiltonian, vy is the Fermi
velocity, g is the g-factor, and u is the Bohr magneton.
Each Cooper pair on the Dirac cone gets double this
finite momentum shift, and so has a phase modulation
2guxBx/hve in the y-direction. Additionally, there may be
an Aharonov-Bohm phase modulation, mxBy#/@, [10].
Thus, there is motivation to further understand the
conditions under which momentum shifts are apparent
in Fraunhofer patterns with applied in-plane magnetic
fields, versus contributions from other effects (such as
disorder or steps).

Equation 1 describes the Fraunhofer pattern for a
rectangular, flat junction with only an out of plane
magnetic field, and no screening effects [8], but
asymmetries in the junction, in-plane magnetic fields,
and magnetic domains in the junction can cause
deviations from the standard pattern [3,10,16]. More
specifically, as discussed earlier, an anomalous phase
shift can arise from breaking sets of symmetries in the
junction that change the relation, I(+B;) = I.(—B,)
[3,13,15]. A strong spin-orbit coupling combined with
an applied By is sufficient to produce an asymmetric
Fraunhofer pattern, even within a geometrically
symmetric junction. Tables of the operators that can
break the symmetry of a Josephson junction are
available in Ref. [3] and Ref. [15]. The important
operator for this manuscript is V(x,y), as an asymmetric
disorder potential by itself is enough to generate
asymmetric Fraunhofer patterns. An asymmetric V(x,y)
can exist because of asymmetric contact at the interface
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FIG. 1: (a) An AFM scan of the sample showing the flake (~35 nm in height) and the quasi-four-point configuration
of the leads, along with a height profile across the width of the flake. A large edge step is apparent in the height
profile. (b) The resistance across the sample as a function of the temperature. NbTi is known to superconduct at
~9 K. (c) The dV/dI curve for the same sample, taken at 15 mK and zero magnetic field. The peaks at +3 pA

delineate the critical current of the junction.

between the superconducting leads and the TI, because
of geometrical asymmetry in the TI flake itself, or
because of inconsistent current density across the TIL
The following sections will show that microscopic
disorder in the junction, arising from the TI flake itself,
is enough to cause asymmetry and aperiodicity
comparable to that generated by applied magnetic fields.

While Equation 1 holds true for an ideal junction in a
perpendicular applied field, there is a more general way
of writing the critical current of a Josephson junction,

considering the size of the junction and an in-plane field:
wW/2 q

le = max f fjo sin (9 () + 9x:(2) + 9 + 0o()) dy dz (3).

-W/2 0

Equation 3 expresses the critical current as a function of
By and B,, where W is the width of the junction in the y-
direction, d is the thickness of the flake, j, is the critical
current density, @y is the flux produced by B, which is
proportional to yB,, ¢, is the flux produced by By, which
is proportional to zB,, ¢’ is a phase shift that is allowed
to vary to maximize the critical current, and ¢ is an
anomalous phase shift that varies with y due to disorder
in the junction [3]. Including y-dependence, of an

applied field or anomalous phase, in the calculation of
the critical current allows for asymmetry. When ¢ is
constant, any changes it would make to the Fraunhofer
pattern are cancelled out by the maximizing of ¢'.
However, if ¢ varies with y, then the Fraunhofer pattern
can show asymmetry, aperiodicity, and lifted nodes.

2. Experiment

Two devices were fabricated and measured, and showed
similar behaviour, we present data from a single device
that is representative of both. Figure 1a shows an AFM
scan of the 2.26um x 0.35um junction, with a quasi-four-
point lead design. Between the leads, the Bi,Ses flake
was ~ 35 nm thick, with 45 nm thick NbTi leads. NbTi
was chosen for its relatively high critical field of ~ 9 T.
The actual height of the sample at each point is important
to the analysis in this paper, as a measure of geometric
variations. At the top of Figure la is a height profile of
the flake in the y-direction, where large steps and height
variations show the variations in flake thickness. It is
important to note that these thickness variations can
cause anomalous features in magneto-transport
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FIG. 2: (a) An asymmetric Fraunhofer pattern at 18 mK. The black dashed lines mark the positions of the first
several nodes, while the red line roughly traces the critical current. (b) The Fraunhofer pattern at 500 mK (left), 700
mK (middle), and 1 K (right). (c) I'(B,,») for each node, n, at all four temperatures.

measurements of the junction, including the asymmetry
we present. All transport measurements were done in an
Oxford Triton dilution refrigerator with base
temperature of 12 mK and a 6:1:1 T vector magnet, using
a lock-in amplifier and DC-DAQ as current sources. The
devices were made by mechanically exfoliating Bi,Ses
crystals with bulk carrier density, n ~ 5x10'7cm™, onto
Si having a 300 nm thick oxide layer. Candidate flakes
were identified using an optical microscope and their
thicknesses were verified via AFM. We targeted a
thickness of 20 nm to 40 nm, to yield junctions thin
enough to have limited bulk conduction but thick enough
to avoid hybridization effects.

3. Results

Both devices were first measured to confirm that the
leads and Bi»Ses superconduct at low temperatures.
Figures 1b and ¢ show that the representative junction
superconducts at a critical temperature of ~ 9 K, and has

a critical current of ~ 3 pA, measured at 5 mK. The
normal state resistance of the junction is 25€2, giving
I.RNe = 0.075 meV, while the expected gap energy of
the leads is, A = 3.05 meV [17,18]. These values agree
with what is expected for S-TI-S junctions [9].

The measured area of the junction in the x-y plane is
given by the junction length and the width of the sample
between the leads: 2.26 pum x 0.35 pm = 0.79 pum?
However, flux focusing increases the effective area of
the junction to 2.2 um? Flux focusing occurs when
magnetic field lines that would have penetrated the leads
are diverted to the closest non-Meissner state area, which
means more magnetic field lines are penetrating the TI
flake than would be if the leads were not a
superconducting material. Additionally, there is some
penetration depth of the magnetic field into the leads,
increasing the effective area by adding 2AL to the
distance between the leads. The effective area due to flux
focusing, 2.2 um?, agrees well with an estimation done



by fitting the first few nodes of the Fraunhofer patterns
in Figure 2.

Figures 2a and 2b show Fraunhofer patterns for the
device at 7= 18mK, 500mK, 700mK, and 1K. Using the
effective area, the plot axes in Figures 2a and 2b are
converted from Tesla to units of flux divided by the flux
quantum, in order to compare the measured pattern with
Equation 1. The yellow superconducting regions should
be symmetric in spacing and intensity, according to Eq.
1. However, it is clear in the Figure that for all
temperatures, the patterns are asymmetric in node
spacing as well as in intensity for +B, and -B,. The
spacing of the nodes is not significantly changed by the
temperature, but higher temperatures do lower the
amplitude of the pattern and washout the higher field
features. From Equation 1, the nodes in the Fraunhofer
pattern are expected at B, = n®y/A4, i.e. when integer
number of flux quanta enter the junction. If 4 in
Equation 1 is the effective area due to flux focusing, the
observed node spacing in Figures 2a and 2b only roughly
agrees with the spacing expected from Equation 1. The
trace of /. for the 18 mK measurement shows the shape
of the nodes and antinodes, and examination of the
distance from each node to the next (dotted black lines
in Fig. 2), makes it clear that the spacing for the first few
nodes and antinodes is aperiodic, which is not predicted
by Equation 1. The deviation factor, [(B.n) =
n®o/B,nAerr, captures the observed difference between
the expected position of the n-th node and the actual
position, and is plotted in Figure 2c¢. In Figure 2¢ we see
that as B, increases, /" has a concave shape, approaching
unity for nodes at higher field values. In other words, the
deviation disappears at large field values, but is
significant (I ~ 0.7) elsewhere, with the first node
especially different from the 3%, 4" and 5. It can also
be seen that the overall shape of I”is not affected by the
temperature of the sample.

Aperiodic spacing of Fraunhofer lobes has been
observed before in AIl-TI-Al junctions [9,17]. One
phenomenological explanation given for this data argues
that as the applied field increases, the superconducting
leads transition from a Meissner state to a state with
vortices, resulting in less flux being redirected into the
sample. Consequently, at higher fields, the effective area
of the junction is smaller, and the nodes are spaced
farther apart [13]. However, we observe that as the
magnetic field increases, the nodes of the Fraunhofer
patterns in Figures 2a and 2b become more closely
spaced together, which is inconsistent with the

weakened flux focusing picture. It has also been
observed that an S-TI-S junction can become SQUID-
like with a non-uniform current density [19] or with
sufficient By [13]. However, we observe that this form of
aperiodicity exists at Bx = 0 and By = 0, which rules out
the Bx-SQUID picture. Thus, the aperiodic node spacing
we observe is likely the result of non-uniform current
density caused by the geometry of the flake itself, e.g.
voltage drops that occur at atomic steps in the TI, such
as those that can be seen in Figure 1a.

The amplitude of the Fraunhofer lobes deviates from
the expected symmetry as well. Amplitude asymmetry
can be thought of as arising from a skip in the phase
difference in the plane of the junction, with the skip
generated by an in-plane magnetic field [19].
Additionally, a varying flake thickness changes the
value of the Rashba coefficient and can produce
asymmetry in the Fraunhofer patterns via phase skipping
[3]. It is possible the trapped flux or flux focusing effects
could create a finite in-plane magnetic field that would
cause an amplitude asymmetry at no applied field bias
[13,20,21]. To test this, in Figure 3 we show how the
Fraunhofer patterns vary with in-plane magnetic fields.
The Figure shows that asymmetries in node spacing and
amplitude exist for all values and both directions of in-
plane fields. A possible explanation for this is that the
current density in the junction is anisotropic. Because
there is not a value of By or By that produces a pattern
symmetric in B, the asymmetries cannot be due to the
creation of in-plane magnetic fields. An asymmetry in
the superconducting contacts of a Josephson Junction
has also been shown to lead to asymmetric Fraunhofer
patterns [3,10], but the ratio of the widths of our
contacts, a = Wi/W>=1.02, is close enough to 1 that it is
unlikely to cause such a large asymmetry when
compared to calculations. Consequently, it is likely that
both the asymmetry and aperiodicity of the B, vs. [
Fraunhofer patterns is primarily due to steps in the flake
itself.

Equation 1 predicts that the Fraunhofer amplitude
decays like 1/B about B = 0, but an additional By
magnetic field along the direction of the current will
transfer amplitude from the central lobe to side lobes [3].
The junction in this experiment is fabricated similarly to
the samples in Ref. [10], but shows a much less
pronounced raising of the side lobes than those devices.
The same experiment shows via simulations that
samples with a large bulk transport carrier density will
have greatly reduced side branches, because the bulk
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FIG. 3: B, vs Bx (a), and B, vs By (b), both plots have
been rotated so that the lobes are vertical. The maps
show an asymmetrical resistance pattern at all values of
By and B,.

carriers do not pick up a significant Aharanov-Bohm
phase. Thus, the current experiment may be in a high-
carrier density regime where side lobe branches are
suppressed.

As a comparison to our data, in Fig. 4a we show a
plot of a Fraunhofer pattern generated from Equation 3
and utilizing the @o(y) shown in Fig. 4b, which has an
explicit phase jump. The Fraunhofer pattern in Figure 4
comes directly from numerically integrating Equation 3,
and choosing W = 2, d = 1, and j, = 0.5, to create an
easily readable, unitless scale. g is set to the linear form
shown in Fig. 4b, where ¢, and ¢, are geometric
functions of the magnetic field, and we let B, = 0 to get
a 1D slice. Fig. 4a shows that a linear ¢o(y) with a single
phase jump can generate asymmetry, aperiodicity, and
lifted nodes. A phase jump like this could be caused by
a height jump, or disorder potential in the junction, like
what we observe in our BixSes flake.

It has also been reported that in Josephson junctions
with inversion symmetry-breaking weak links there can
be an asymmetry in the Fraunhofer patterns that depends
on the current direction, |IF(B)| # |I7 (B)|, as well as
asymmetry that depends on the applied field direction,
[IZ(B)| # |I¥(—=B)| [22]. It is possible that this
inversion-symmetry breaking contributes to the
asymmetry observed in our Fraunhofer patterns;
however, we do not observe the mirror symmetry
expected in this case, indicating that disorder effects may
dominate in our devices.

4. Conclusion

An S-TI-S junction fabricated from NbTi and Bi,Ses
shows an asymmetric Fraunhofer pattern at zero in-plane
field, which persists from <15 mK to >1 K. We observe
additional asymmetry due to an applied By in the plane
of the junction, but perpendicular to the direction of the
current, which shifts amplitude from one polarity of the
Fraunhofer pattern to the other. The measurements of
amplitude asymmetry in both the By and By directions
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FIG. 4: (a) A Fraunhofer pattern generated using
Equation 3 and the ¢o(y) shown below, with B, = 0. The
pattern demonstrates amplitude asymmetry,
aperiodicity, and lifted nodes. The critical current is
normalized to 1 and the magnetic field has arbitrary
units. b) The ¢o(y) used in Equation 3 to generate the
Fraunhofer pattern above, where y is an arbitrary unit of
distance, and ranges from one edge of the junction to the
other.



point to a current density origin of these effects, caused
by edge-stepping or other disorder effects in the TL
Finally, we observe aperiodic spacing of the Fraunhofer
lobes/nodes that is contrary to previously observed
behaviour that was attributed to weakened flux focusing
effects. Our observation that the spacing rises for the
first few nodes, then falls towards a regular pattern
suggests a more complicated, geometry dependent
critical current-flux relationship [8,19,24,25]. To probe
the strength of these effects further, it will be useful to
fabricate junctions with intentionally symmetry
breaking properties, that are expected to dominate the
anomalous features of the critical current and Fraunhofer
patterns.
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