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Abstract—The prevalence of affordable cameras and comput-
ing power has given rise to Automatic License Plate Reader
(ALPR) systems that are able to easily collect and catalog license
plate (LP) data from passing cars, providing a database of
locations for drivers at specific times. These systems are often
unsecured and little research has been done to provide a solution
for protecting the privacy of citizens. This paper presents a
system of encrypting the data gathered by these ALPR systems in
a way that is easily implemented and able to reliably retrieve the
encrypted data given legitimate cause. To improve the efficiency,
reliability and scalability of the system, we design an edge based
system to distribute the processing responsibilities of the system,
considering that the main use cases require the system to service
a large number of cameras in a city. The proposed system is
evaluated using a set of metrics considered by the requirements
of the system, with results indicating that the system can feasibly
protect the privacy of anyone whose data is captured and retrieve
specified LP data while maintaining secrecy on unspecified plates
in the captured footage.

I. INTRODUCTION

The rapid increase of Internet of Things (IoT) devices has
driven development of systems that are more easily able to run
on minimal hardware. For example, Automatic License Plate
Reader (ALPR) [17] devices currently range from industry
standard hardware, with ALPR technology built in to the
camera, to hobby-grade systems built using Raspberry Pis and
free and open source software. As such, we have witnessed an
increasing number of cities around the world adopting Internet
connected video systems, for a variety of traffic planning and
law enforcement purposes. At the same time, these systems
are continuously gathering personally identifiable informa-
tion (PII), e.g., the LPs of passing vehicles. Many of these
systems use specialized cameras and software, to log every
passing LP number, the time, and the location of its passing,
compromising the privacy of every passing individual. This
poses a challenge to strike a balance between preserving
the information gathered by these systems, as needed for
legitimate uses by government entities, and maintaining the
privacy of those whose information is gathered.

This can be achieved with a system that provides safeguards,
adapted onto existing systems by adding an additional layer
of edge devices between the existing sensing devices and the
cloud storage system. Due to the strict privacy requirements
posed by various ALPR applications, it is possible to transmit
image/video data to the cloud, and process them on centralized

servers; however, compliance is easier when the edge device
acts as the front-line for privacy protection and policy enforce-
ment. In addition, implementing privacy protection at the edge
layer can save network bandwidth, and add privacy protection
closer to the sources of data. This additional layer is able to
provide the security and privacy protections that are currently
lacking or in some cases non-existent on many of these ALPR
systems.

A. Motivations

Privacy advocates are pushing for better security and privacy
protections covering camera data, while understanding a need
for the recoverability of the information gathered. “Privacy
advocates do not oppose the use of the technology during an
active investigation, but they say that maintaining a database
of LP locations for months or years provides too much
opportunity for abuse by police.” [14] How to achieve a trade-
off between the privacy protection and utility of camera data
becomes a profound yet important research problem.

This issue was recently brought before the Virginia courts in
a case where the American Civil Liberties Union (ACLU) sued
the government regarding the use of these cameras. The ACLU
won an injunction where the county judge ordered the county
police to stop the use of these cameras as passive use of data
from the ALPR cameras violates Virginia privacy law. [14].
This case specifically calls for a solution that provides means
to the police to protect the sensitive information captured by
these cameras, enforcing privacy protections.

Systems in place often have limited or no security measures
to prevent unauthorized access of the information gathered,
presenting a security and privacy risk to everyone whose
information is captured by this system. In an investigation of
open ALPR cameras connected to the Internet, TechCrunch
security editor Zack Whittaker found that over 150 ALPR
cameras were searchable online and easily accessible, with
many also listing default passwords in the user guides [21].

B. Proposed Solution

In order to protect the privacy of citizens, a system is needed
to detect and encrypt the LP information gathered, especially
considering the rising prevalence of ALPR cameras and ease
of use to set up these systems. Examining this need, we design
the PlateGuard system which can retrieve and encrypt PII and
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hide the private information in captured data. While designing
this system, we consider several requirements to ensure its
adoption: ease of setup, accuracy of LP detection, privacy
protection of LP information, and ability of recovering specific
information if provided legitimate cause.

To meet these requirements, our solution takes a three-layer
approach, containing the sensor layer, processing layer, and
application layers. The sensor layer is comprised of all the
cameras that are feeding data into the system, the processing
layer is a network of edge devices servicing the sensor layer
by isolating and encrypting the LP data in the saved videos
and providing storage for them, and the application layer is
deployed on a cloud server allowing end users to query and
retrieve relevant footage for specified LPs. In captured images,
the regions that contain LP information will be encrypted and
only non-sensitive information, e.g, color and type of vehicles,
is accessible to end users.

C. Contributions

To the best of our knowledge, we are the first to propose
a system of protecting LP data using ALPR to detect, isolate
and protect the plate areas; preserving the main video data
using the LP number as key for encryption to allow only
specified plates to be recovered. Through our experimenta-
tion and evaluation, we show that PlateGuard provides an
improved scope of security for individuals, while also creating
a distributed network to allow for lower network usage for
transferring video, and a faster response time when querying
a range of cameras across the edge network. The proposed
framework does not limit the choice of encryption algorithms
for protecting LP information, instead, it supports a wide range
of encryption solutions, including AES, Chacha, Salsa20,
etc. These algorithms can be replaced by others, considering
different system requirements and levels of security protection.

The structure of this paper is as follows, Section II explains
the challenges faced and our design of PlateGuard to overcome
these challenges. Section III discusses the results of our testing
and the feasibility of the system. Section IV examines other
work in this area and how PlateGuard builds upon those ideas.
Section V presents conclusions and future directions that this
work could be taken.

II. PLATEGUARD: LICENSE PLATE PRIVACY PROTECTION

The PlateGuard system aims to protect vehicles’ li-
cence plate data by hiding such sensitive information in
videos/images captured by roadside cameras or those installed
on autonomous vehicles. Although the cameras on autonomous
vehicles are mainly used to help vehicles detect objects [6]
and recognize road signs, they can potentially leak other
vehicles’ private information. On the other hand, to facilitate
LP searching, e.g., in tracking suspicious vehicles, the Plate-
Guard system also allows users to quickly identify whether
target vehicles (or certain licence plate numbers) appear in
the captured videos. To ensure the PlateGuard system works
effectively in practice, the system must be secure, scalable
and responsive. In our approach to this system, we have three

Fig. 1. System Architecture of PlateGuard. Video recorded from the Sensing
layer is transferred to the Processing layer. The Application layer is where
requests for decryption are generated. Once the request is sent the edge device
sends back the video that has been decrypted.

challenges to overcome in ensuring that (1) when searching
for LPs we have an acceptable response time, (2) we maintain
privacy of those whose LP data is captured, (3) and we can
deploy the system in a large-scale setting, e.g., covering urban
areas of a large city.

To address these challenges, we develop the PlateGuard
system using edge computing as a way to reduce processing
load on the cloud and better protect privacy. Once captured by
sensor devices, video data is transferred to edge devices for
processing. The cloud service provides an interface for users
to search and retrieve relevant data. Each of these parts will
be explained in detail in the following sections.

A. System Architecture

To better understand the PlateGuard system, we decouple
PlateGuard into three layers: sensing, processing, and applica-
tion layer. As shown in Fig. 1, the sensing layer composes of
various types of image-based sensors which are installed on
roadside infrastructure (e.g., traffic lights) and/or autonomous
vehicles. The processing layer lies in between the sensing
and application layers, which provides the data processing
capability so that videos captured by the sensing layer are
processed and protected to hide vehicles’ private information.
Here, we assume the wireless communication capability is
available on vehicles [22], and videos captured by vehicle
cameras can be transmitted to edge servers wirelessly. The
top layer is the application layer which is usually deployed on
cloud services where users (e.g., from the law enforcement
departments) can search and retrieve information from the
encrypted database. The system design is rooted from the edge
computing paradigm which has been proven to be able to offer
better response time and scalability [23, 7], as well as stronger
security and privacy protection of captured data [20].

B. Privacy Protection

The main challenge faced in developing the PlateGuard
system is how to ensure the privacy of those whose plates are
captured by the cameras installed on roadside infrastructures or
in autonomous/conventional vehicles. The privacy protection
of licence plate information is realized on two different levels.
The videos captured from cameras are first encrypted locally
using stream cipher techniques [11], and only encrypted data
is transferred to nearby edge servers. Then, after edge servers
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receive the encrypted videos, they decrypt the data to obtain
the original video for further processing. From the original
videos, an edge server executes the ALPR algorithm [9] to
detect possible licence plates. After locating the areas of each
frame of video that contain LPs and extracting the pixel
data, the edge server encrypts that data into a separate file
along with the pixel location data to ensure the information
can be retrieved later. This process is scalable, for instances
where multiple plates are found in the same frame, each
separate plate area will be retrieved from the frame and saved
in individual per plate files. The key used to encrypt the
data is the same as the license number detected. As such,
if application layer users want to search a licence plate, the
plate number itself will be used as the key to decrypt the
captured videos. During the decryption process the separate
files of LP data are scanned and decrypted on key successfully
matching, then re-integrated back into the playback footage
for review. Clearly, only frames that contain the target plate
number can be decrypted successfully, i.e., the privacy of
vehicles is protected.

Although the adversary could potentially launch a brute-
force attack by searching all possible licence plates in the
PlateGuard system, we believe a strict access control mecha-
nism is in place on the cloud to prevent such attacks. Various
access control solutions, e.g., role-based access control or
attribute-based access control [19, 12], could limit the access
of the PlateGuard system to only authorized users, e.g., police,
Department of Transportation (DOT), etc.

The proposed design offers two additional advantages which
make the system more user friendly. First, the PlateGuard
system ensures should someone be able to gain access to the
footage on the edge servers, he/she is only able to see the cars,
not the LP data. As the edge servers are usually maintained
by different entities, e.g., state DOTs or cellular companies,
to provide various value-added services, it is possible that
the videos are used for different purposes. For example, state
DOTs may use the data to monitor traffic volumes or incidents;
therefore, being able to view the vehicles is essential. As
the PlateGuard system only protects the LP information, it
would not hurt the traffic monitoring or incident detection
applications. Second, because we store the footage on the edge
servers, instead of transferring it directly to the cloud, the
entire system’s response time and scalability is significantly
improved. In this way, we are reducing the number of attacks
to the footage, as it is recorded by cameras and transferred
to the edge device where it is processed, instead of a second
transfer to the cloud through the public Internet. This also
ensures that should one edge node become compromised, the
footage kept on separate edge devices still remains secure
as it is stored separately and vehicles’ private information is
protected.

C. Response Time

Given the massive amount of videos generated, it is crucial
to design a system that can handle continuous image data in
an effective manner. It is prohibitively expensive to transfer

all videos to the cloud, processing data on edge servers is a
more suitable solution as, not only will data transmission cause
long network delay, the cloud may also become the point of
failure of the entire system. To achieve a fast response time
in processing/encrypting the captured videos, we offload the
data processing tasks from the sensing layer to the processing
layer. This allows the sensing layer to process the videos with
a stream cipher encryption and then upload to the processing
layer, where dedicated edge devices can work to process the
videos fully for LP detection and encryption.

Although edge servers typically offer higher computing
powers, it is a profound issue to achieve the best trade-off be-
tween fast response and less computation needed. As the data
process task requires executing ALPR to identify LPs from
videos and then encrypting regions in frames to protect users’
privacy, the processing time could be very long. To address
this issue, we design the PlateGuard system to dynamically
execute ALPR based on previous data gathered. In PlateGuard,
we use a combination of the openALPR algorithm and image
trackers. The trackers used are initialized to the coordinates
of the LP in the frame, then track the changes in the next
frame to determine the new coordinates of the plate. To begin
PlateGuard runs ALPR on the first frame, then uses trackers
to monitor the LP location and skip frames where ALPR is
run, increasing the amount of frames skipped by a factor of
three each time ALPR is run.

On the ALPR run, if we detect a different number of LPs
from the previous run, or if one of the trackers drops the LP
in between ALPR runs, then the ALPR algorithm’s run period
is reset. For our testing the video we were processing was
recorded at 30 frames/sec, PlateGuard prevents skipping more
than 30 frames between runs to ensure new LPs are not missed.
With the process of skipping ALPR runs in place we next need
to ensure the accuracy of capturing plate numbers. Most cases
for ALPR on a given frame produce an 80% accuracy rate on
the LP number. To increase the accuracy, PlateGuard saves the
detected plate numbers and then computes the mathematical
mode of the LP numbers gathered to determine the correct
plate number from the most frequently found number, using
that as the key for the encryption process.

This method introduces another potential issue, with each
run of the ALPR algorithm we need to determine if the
plates detected are new plates or if they were previously
captured. If they were previously captured, we need to ensure
that the plate number is tracked correctly with the previously
collected data for that plate. To accomplish this, we adapt the
K Nearest Neighbor algorithm to PlateGuard. It compares the
last location of each plate with the new locations detected by
ALPR and appends the matches to the previously recorded
data.

D. Scalability

Cities have access to dozens or even hundreds of cameras
that record, whether they are stationary cameras or mobile
cameras attached to vehicles. Some of these cameras may
have ALPR functionality included, if that is the case, the
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licence plate information and locations in videos will be
transmitted (in encryption) to the edge servers. Otherwise,
encrypted videos will be transmitted to edge servers which
then conduct the needed data processing. Due to the distributed
nature of the computing process, e.g., data is processed and
encrypted on either cameras or edge servers, the computation
is implemented in a parallel manner. As such, the system’s
scalability is guaranteed by allocating adequate computing and
network resources on edge servers. The required resources on
an edge server could be estimated from traffic volume, which
is highly predictable, allowing the resources to be dynamically
allocated to meet real-time demands. For the extreme cases
where the amount of videos suddenly increases in a certain
area, due to traffic incidents, the serving edge server can
mitigate its computing task to nearby edge servers [5].

The system is not only scalable in processing data, it also
provides an efficient service to the end users. Once encrypted,
the searching process to find specific LPs would introduce a
large amount of latency as it works through this data storage.
PlateGuard instead keeps the data distributed, i.e., encrypted
videos are stored on the edge servers. When file retrieval is
necessary the LP number needed is sent from the cloud to edge
devices which then do the searching in parallel, signaling when
the plate is found. As soon as the target LP is detected by an
edge server, the trajectory of the vehicle can be predicted based
on the vehicle’s current movement. As such, only a subset
of edge servers, along the vehicles path, will be triggered to
continue searching the vehicle. In this way, as fewer edge
servers get involved in the searching process, more searching
requests can be served by the PlateGuard system, allowing
our system to be scalable in terms of serving sheer amount of
requests in a short period.

III. PERFORMANCE EVALUATION

When designing PlateGuard as a system to ensure privacy
of the collected data and the ability to recover the data with
legitimate cause, we design a set of metrics to test if these
goals are achieved. For the system to be feasible it needs to
process the data in a timely manner. We also check the memory
footprint of the system through each of the buffer sizes to
show the system could be run across different edge device
configurations.

A. Dataset

While developing the PlateGuard system, we created a data
set of videos recorded at a 4K resolution, recording cars in
a parking lot, during a peak busy time. This allows capture
of plates from cars that are entering and exiting, as well as
for cars remaining in place while other cars drove past. This
dataset provides scenarios to test for the entrance and exit of
multiple plates per frame as well as handling lost tracking of
obscured plates.

B. Experiments

As part of our evaluation of the PlateGuard system, and the
benefits of deploying on an edge system instead of through a
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Fig. 2. Decryption on edge and cloud of a two-minute video. Simulating
multiple cameras, cloud device decrypting N separate two-minute videos back
to back. These tests were conducted using single core processing to provide
comparative analysis of loads between base processing scenarios.

cloud platform, we utilize the dataset videos in a variety of
experimental scenarios. We test the scalability of the system
to handle multiple incoming video streams on cloud versus a
distributed network of edge devices. We also evaluate the capa-
bilities of the system to process frames quickly and accurately.
Finally, we test a variety of encryption algorithms to determine
the best one for performance and security protection.

For our test system, we use a Raspberry Pi 3B+ to simulate
the sensor layer, transmitting data to our server that acts as the
edge device. The server is set up with 32 GB of RAM with a
Intel Xeon quad-core processor at 3.3 GHz. The systems were
running Ubuntu 16.04 LTS and OpenALPR v2.3.0.

C. Edge vs Cloud

To determine the effectiveness of the system on a cloud
based system versus the distributed edge system, we look
at the load on the cloud system when receiving multiple
video streams, simulating processing information for multiple
cameras in a service area. These tests prove inconclusive on
our testing hardware as additional streams quickly overfill
available system resources and cause the test system to crash.
Further testing in this area is needed, however testing done for
the decryption of multiple video streams can provide us with
insight into the performance of the cloud based system versus
the distributed edge network.

In the scalability tests for decryption, we find that the
response time for the cloud system when tasked with searching
multiple archived camera streams increases linearly in time to
finish processing, as shown in Fig. 2. These results in a real-
life scenario would depend on the number of camera streams
to search as well as the length of the videos to process through.
While this could be improved with optimizations to limit the
videos to search based on outside knowledge of potential paths
taken for the target car, we find that by using the distributed
edge network of devices to process videos and act as parallel
searches we are able to achieve a much faster response time
on locating footage with the required plate.
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Fig. 3. The average processing time per frame is listed based on the counting
algorithm used to determine how frequently ALPR runs, ranging from running
every frame to delaying exponentially up to a factor of 5.

D. Frame Processing

As discussed in section II-C, running ALPR every frame
is impractically slow, running an average of 2.6 seconds per
frame to process. To determine the best rate to use for our
dynamic ALPR method, we look at running ALPR every third
frame, as well as exponentially increasing the delay between
running ALPR by a factor of two, three, four, five and six, as
see in Fig. 3. Running it every third frame shows significant
improvement in processing time, cutting the time down to less
than one second per frame. The exponential delay yields the
best results, showing an average of .44 seconds per frame.

Using these results, we then look at the accuracy, ensuring
that we retrieve the correct plate number so that decryption
can occur if needed. As can be seen in Fig. 4, the exponential
delay by a factor of three performs the same in accuracy as
running ALPR every frame, at 71%.

Based on these two sets of experiments we decided to use
the exponential increase by a factor of three to achieve the
lower processing time while still keeping the highest possible
accuracy of plate recognition. To further improve this, we next
examine different buffer sizes to use on the system, in order to
gather a large enough pool of data to determine the mode of
the LPs gathered and correctly assign the plate number as key,
while also ensuring the system can reasonably be deployed on
edge devices comprised of different specifications.

We implement six different buffer sizes to gauge the accu-
racy benefit provided by each. We found that in buffer sizes
of as little as 150 frames we were able to achieve a 100%
accuracy of plate recognition, showing our system is able to
accurately record and store the data, and be deployed on a
variety of hardware specifications. For the bulk of our testing,
we use a 300 frame buffer size as our test system is equipped
with enough memory to maintain that buffer limit, but the
system could easily be implemented on a system with less
memory using the 150 frame buffer and still reliably process
the video streams.

Fig. 4. Here we are examining how accurate each counting algorithm is
with the delay between running ALPR on frames. We can see that using the
exponential factor of 3 remains accurate while accuracy decreases at higher
factors.

E. Encryption Processing

For our system we benchmark three encryption types to
determine which provides the best performance while main-
taining the security we needed. For our tests, we use the AES,
ChaCha and Salsa20 encryption algorithms, looking at the
average encryption time taken per frame of data. From our
tests, Salsa20 performs the worst, averaging over 27ms per
frame while ChaCha is the fastest, averaging just over 25ms
per frame. We decide to use AES for in our system as the time
taken is slightly over that of ChaCha, around 25.5ms, while
providing superior protection over the stream ciphers.

IV. RELATED WORK

There has been significant work into the improvement
of LP recognition, and the protection of PII collected by
vehicle surveillance systems. In [2], work was done examining
the prevalence of cameras in traffic scenarios finding that
edge computing layers were needed to meet response time
requirements. [1, 9] both examine the current state of LP
recognition work, looking at various recording conditions as
well as testing different algorithms on still image recording.
[18, 16] look at novel methods of LP recognition, with [16]
achieving an an 86.0% recognition rate and while [18] was
able to achieve between 97 and 98% recognition accuracy on
the plates using a CNN approach.

[15] explored the widespread use of video surveillance by
law enforcement and the need to provide privacy protections
on the data collected. [10, 4, 8] tested obscuring PII by
distorting the images in an unrecoverable manner, leaving
the non-PII portions of the image intact. In [3] research was
done on methods of obscuring LP data with a pseudo-random
generated number key for recovery of the data in the video
stream, and in [13] looked at possible replacements for the
physical LP, using electronic plates that would allow privacy
of the individual with more accurate identification by law
enforcement as needed.

Our work builds on this research by utilizing plate recogni-
tion methods for initial plate number recognition and, through
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the buffer system, generate a large enough sample of plate
numbers for a more accurate final plate number reading to
then be used as the key for encryption, allowing recovery of
the LP later, while maintaining the privacy of others.

V. CONCLUSION AND FUTURE WORK

The PlateGuard system we develop is able to reliably detect
and encrypt the LP areas of supplied video streams. While
this is achieving the goal we set out with, there is room to
improve the system, with the LP recognition system being the
main bottleneck in our system.

Our solution uses the open-source version of openALPR.
We find in our initial tests of this system that the LP recog-
nition confidence rate is typically 80%, and the processing
time for accurate reads is much slower than is practical.
At this time there are industry standard implementations of
ALPR, including specialized cameras that implement ALPR
directly, allowing more fine tuning of the camera to achieve
optimal conditions for recognition. Utilizing these systems
would improve the speed and accuracy of the PlateGuard
system, allowing more focus on the privacy security of the
data once detected.
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