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Abstract—Emerging virtual network functions (VNFs) bring new opportunities to network services on the edge within customers’
premises. Network services are realized by chained up VNFs, which are called service function chains (SFCs). These services are
deployed on commercial edge servers for higher flexibility and scalability. Despite such promises, it is still unclear how to provide highly
available and cost-effective SFCs under edge resource limitations and time-varying VNF failures. In this paper, we propose a novel
Reliability-aware Adaptive Deployment scheme named RAD to efficiently place and back up SFCs over both the edge and the cloud.
Specifically, RAD first deploys SFCs to fully utilize edge resources. It then uses both static backups and dynamic ones created on the
fly to guarantee the availability under the resource limitation of edge networks. RAD does not assume failure rates of VNFs but instead
strives to find the sweet spot between the desired availability of SFCs and the backup cost. Theoretical performance bounds, extensive
simulations, and small-scale experiments highlight that RAD provides significantly higher availability with lower backup costs compared
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with existing baselines.
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1 INTRODUCTION

The development of virtual network functions (VNFs) trans-
forms traditional middleboxes, e.g., firewalls, load bal-
ancers, proxies, on dedicated hardware to virtual functions
on commercial servers and thus introducing more flexibility,
scalability, and cost-efficiency. To promote such benefits,
much research has been conducted, e.g., [1]-[4]. With the
rapid development of edge computing and 5G networks,
there is a growing motivation to deploy VNFs on the edge
within customers’ premises for lower latency and better
performance. See [5]-[9] as examples.

Despite such benefits, detaching a network function
from its specifically designed hardware may degrade its
availability [10]-[12]. For instance, in many VNF systems,
a VNF runs as an instance on a virtual machine (VM) with
resources managed by an underlying hypervisor. Therefore,
any failure of the hypervisor may cause the VNFs running
over it unavailable [10]. To make matters worse, when
multiple VNFs chain up to provide a network service as
a whole, a failure of any VNF on this service function chain
(SFC) makes the entire service unavailable. Therefore, the
availability problem of an SFC is more severe than that of a
single VNF [11].

Providing VNF backups is an effective way to improve
the availability and has been widely studied for SFCs de-
ployed in the cloud [11]-[15]. However, schemes designed
for cloud environments face new challenges when SFCs are
deployed on the edge. In particular, while a VNF may need
multiple backups to guarantee its availability [14], resources
on edge networks are often limited compared to those in the
cloud. Simply duplicating each VNF by a prefixed number
of copies may exceed the edge resource capacity. In addition,
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different VNFs may experience distinct failure rates that are
dynamic over time. A thoughtful SFC backup scheme for
edge networks needs to consider all the trade-offs to decide
when to back up each VNF by how many copies and where
to place the copies.

Clearly, cloud resources can be utilized when resources
on the edge are insufficient [16], [17]. However, with the
deployment of a larger number of (smaller) edge servers
in 5G networks, the propagation delay involving multiple
hops from the edge to the cloud is often much larger than
that among edge servers within one edge network [16],
[18]. Furthermore, forwarding service flows from the edge
to the cloud when failures happen introduces extra traffic
and may congest the network. Simply backing up SFCs in
the cloud incurs costs, e.g., extra delay, congestion, cloud
resource usage charge comparing to backing up over the
edge. Therefore, we need a scheme to minimize the backup
cost with limited edge resources while guaranteeing the SFC
availability. One key challenge is that VNF failures are time-
varying and hard to predict due to various failure types and
causes [10].

In this paper, we propose a Reliability-aware Adaptive
SFC Deployment scheme named RAD. An early version of
this work was presented at [19], which focuses on backup
strategies. We now extend RAD into an efficient SFC deploy-
ment scheme integrating SFC placement, adaptive backup
deployment, and resource adjustment over the edge and the
cloud. We also conduct practical experiments to show the
feasibility and efficiency of RAD in real-world scenarios.

Since we focus on SFCs that bring more benefits if
deployed on the edge, the RAD scheme first deploys SFCs
aiming at the highest utilization of edge resources. Existing
work maximizing resource usage of SFCs, e.g., [20], [21], has
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theoretical bounds degrading with the size of the problem.
Authors of [22] proposed a scheme with an approximation
ratio of 6 to the optimal solution. The SFC deployment
scheme in our RAD further pushes the constant bound
to 2 or 4 in different edge resource situations. For those
SFCs deployed in the cloud due to the limitation of edge
resources, their reliability is taken care of by cloud service
providers with Service Level Agreements [12], which is out
of the scope of our paper. For SFCs deployed on the edge
experiencing time-varying failures, RAD guarantees their
reliability with low backup cost.

To achieve this goal, RAD deploys one static backup for
each VNF and determines where to place the backups to
minimize the backup cost under edge resource constraints.
If the static backups of an SFC are deployed in the cloud,
additional backup costs may be paid but its reliability is
guaranteed by cloud service providers. For SFCs with static
backups on the edge, one static backup may not be suffi-
cient to meet the availability requirements [23]. Instead of
deploying more static backups, RAD initializes a dynamic
backup on the edge whenever a VNF or its static backup
fails. The dynamic backup is released when the failure
recovers. The fast creation of a dynamic backup has been
verified by existing VNF platforms, e.g., [24], and can be
accelerated by methods such as early VNF failure detection
[10]. The existence of static backups further makes sure
that a dynamic backup has enough time to set up unless
both the VNF and the static backup fail successively within
a very short time. As most VNFs recover quickly [14],
the lifespan of the dynamic backups is short, making its
resource footprint relatively small. Therefore, these dynamic
backups can often be accommodated.

In the case of sudden failure rate spikes, RAD moves
static backups of SFCs with lower backup cost from the
edge into the cloud, thus freeing up more resources to
accommodate additional dynamic backups on the edge. On
the contrary, the scheme backs up more SFCs on the edge to
reduce cloud backup cost when failure rates decrease. This
adjustment thus optimizes backup placements adaptively
to guarantee the desired availability while minimizing the
backup cost.

While some research considers the availability problem
of VNFs on edge networks [17], [25], [26], to the best of
our knowledge, no existing method applies both static and
dynamic backups over the edge and the cloud without
knowing the failure rate of each VNFE.

Our main contributions are summarized as follows.

e We design RAD for the sweet spot between high
availability and low backup cost of SFCs over the
edge and the cloud without assuming VNF failure
patterns. RAD consists of SFC deployment, static
backup deployment, dynamic backup deployment,
and backup adjustment.

e As the SFC deployment problem is NP-hard, we
solve it using a scheme that contains two sub-
algorithms with approximation ratios of 2 and 4
under different network conditions.

e Similarly, we develop an approximation algorithm
with a theoretical guarantee and good performance
in practice for the static backup deployment problem.
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o We further propose an online algorithm to solve the
dynamic backup deployment problem and prove its
competitive ratio compared to the offline optimal
solution. RAD adjusts VNF backups between the
edge and the cloud based on the feedback from the
online algorithm for better performance.

e We conduct real-world trace-driven numerical sim-
ulations and small-scale experiments. Results high-
light that our proposed RAD provides SFC deploy-
ment with high availability and low backup cost.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the RAD scheme. Section
3 formulates the SFC deployment problem and presents
algorithms placing SFCs with constant bounds. Section 4
continues with the algorithm for the static backup deploy-
ment. Section 5 handles the dynamic backup deployment
and the SFC backup adjustment. The performance evalu-
ation of RAD is presented in Section 6. Section 7 briefly
reviews the related work and Section 8 concludes this paper.

2 OVERVIEW OF THE RAD SCHEME

Fig. 1 demonstrates the procedure of RAD with a brief ex-
ample. In this section, we show the architecture of RAD and
the general idea of designing each of its steps. Theoretical
details will be presented in Section 3, 4, and 5.

In this paper, we consider types of SFCs that should
be deployed at the edge for lower latency and better per-
formance. Thus, the SFC deployment should utilize edge
resources as much as possible to maximize such benefits.
Here, we do not consider cases when some VNFs of one
SFC are deployed on the edge while others are deployed in
the cloud. This is because, in scenarios where RAD applies,
e.g., [16], [18], dividing an SFC between the edge and the
cloud will introduce large network latency and offset the
benefits of placing SFCs on the edge. Therefore, an SFC
will be deployed on the cloud as a whole if any of its
VNFs cannot be deployed on the edge due to edge resource
limitations. The SFC deployment will be described in detail
in Section 3. After placing SFCs, the availability of SFCs on
the edge needs to be further guaranteed. We achieve this
goal by utilizing a novel mechanism with both static and
dynamic backups. It operates with low backup costs and
robust to failures changing over time.

In the static backup deployment, we deploy one static
backup onto the edge or into the cloud for each edge VNF
aiming at the minimization of the backup cost without
violating the resource limitation of any edge server. For
the same reason shown in the SFC deployment, if any SFC
cannot be fully backed up on the edge, it is backed up
completely in the cloud. The detailed deployment method is
illustrated in Section 4. After the static backup deployment,
the availability of SFCs with static backups in the cloud
is guaranteed by well-established reliability mechanisms
in the cloud [12]. However, for an SFC backed up on the
edge, a single static backup for each VNF may not meet its
availability requirement. There exist situations when neither
the VNF nor its static backup is responding. To further
guarantee the availability, we need to deploy more backups
for each VNF backed up on the edge. As mentioned in
Section 1, it is difficult to decide how many backups a
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Fig. 1. The demonstration of RAD. In Step 1, RAD deploys SFCs in brown to edge servers for the maximal edge resource utilization. VNFs with
different patterns belong to different SFCs. In Step 2, RAD deploys each VNF at the edge a static backup in blue for the lowest backup cost. Any
SFC or static backup that cannot be deployed at the edge due to resource constraints will be placed in the cloud instead. In Step 3, whenever a VNF
fails (marked by a red cross), RAD deploys a dynamic backup in red for the failed VNF and releases it if the VNF recovers. If edge resources are not
sufficient for dynamic backups, RAD goes to Step 4 and adjusts static backups of some SFCs to the cloud, thus releasing more edge resources.

particular VNF needs and where to place these backups in
advance, since failure rates of VNFs are hard to predict and
change over time. Thus, we prefer not to decide which VNFs
need more backups in advance and solve the problem in an
online manner.

For such purpose, we use a dynamic backup deploy-
ment method which creates a dynamic backup whenever
a VNF or its static backup just fails. With the existence
of static backups, dynamic backups often have sufficient
time to initialize when failures occur. Each dynamic backup
is placed on an edge server using an online algorithm.
The algorithm balances the load on each edge server in
the long term to mitigate resource contention which is a
main cause of VNF failures [27]. When both the VNF and
the static backup resume, the dynamic backup is released.
However, if the current availability (previous time operating
normally/previous operating time) of an SFC is not satis-
fied, dynamic backups of this SFC will not be released, thus
reinforcing the availability of this SFC. Since most VNFs
recover after some short time and release corresponding
dynamic backups, the resource utilization of dynamic back-
ups at each moment is relatively small. Therefore, remaining
edge resources are often sufficient for dynamic backups, and
thus guaranteeing the required availability of SFCs.

When the current edge resources are not enough for up-
coming dynamic backups, the dynamic backup deployment
is paused. We then apply an SFC backup adjustment method
to move backups of the SFC with the lowest cost from the
edge to the cloud. The reliability of this SFC is then guaran-
teed by the cloud and its static and dynamic backups on the
edge are released. The online algorithm then resumes. When
failure rates of VNFs increase, the scheme adaptively adjusts
more SFCs to the cloud to further guarantee the availability.
When failure rates decrease, the scheme adaptively backs
up more SFCs on the edge to reduce the cloud backup cost.
The detailed dynamic backup deployment method and the
SFC backup adjustment method are elaborated in Section 5.
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3 SFC DEPLOYMENT

We start with how to deploy SFCs onto the edge and the
cloud. We aim to utilize as much edge resource as possible
to maximize the benefits of SFCs on the edge. Important
notations used in this paper are summarized in Table 1.

TABLE 1

Notation Definition

vV Set of servers on the edge, V ={1,2,...,v, ..., [V}

F Set of SFCs, F' = {1,2,..., f, ..., | F|}

If Set of VNFs of SEC [, I; = {1,2, ...,4, ..., [I;[}

zf,iv €{0,1} | Decision variable whether VNF ¢ of SFC f is
deployed on server v.

yriw € {0,1} | Decision variable whether static backup i of SFC f is
deployed on server v.

zrw € {0,1} | Decision variable whether dynamic backup & is
deployed on server v.

C Total Resources on the edge

R, Resources on edge server v

ay Resource demand on v before deploying static backups

by Resource demand on v before dynamic backups

By Resource demand of SFC f

By.i Resource demand of VNF ; of SEC f

wy Backup cost of SFC f

0f, Server holding the VNF ¢ of SEC f

Ok,1,0k,2 Servers holding VNF and static backup of k

K Set of dynamic backups K = {1,2, ..., k, ..., | K[}

Y Resource demand of the dynamic backup &

W, Load on v after deploying | K| dynamic backups

3.1 Model of the SFC Deployment

We suppose that the edge network consists of a set of
servers denoted by V' = {1,2,...,v,...,|V]|}. Denote by
R, the resources available for VNFs on server v. We de-
fine the set of SFCs to be deployed in the network as
F = {1,2,..,f,...,|F|}. All VNFs of SFC f form a set
Iy with each VNF ¢ € Iy. We further define the resource
demand of SFC f and any VNF ¢ of this SFC as 8¢ and 8y,
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respectively. We need to determine x; ,, a binary variable
denoting whether VNF i of SFC f is placed on server v.

D_ Ar-min <Z iEf.,i,v)

max
Zfiv

feFr veV
s.t. Z Z B Tpin < Ry, YU EV, 1

fEFic]y
Triv €{0,1}, VfEF Vi€ I, YveV. (2

In the objective function, we aim to maximize the edge
resources used by SFCs. If any VNF i of SFC f is not de-
ployed on the edge, ie., >, % s, = 0, the resource utiliza-
tion of that SFC on the edge, 3¢, will not be counted in the
objective function. The whole SFC f is thus deployed onto
the cloud because it will reduce the left side of Constraint
(1) without changing the objective function. Constraint (1)
restricts that the total resource demand of VNFs on each
server v should not exceed its capacity R,. Constraint (2)
is the integer constraint making sure that a VNF cannot be
split over multiple machines.

When there are many SFCs or edge servers, the compu-
tational complexity of directly solving the problem modeled
above may be unaffordable. The reason is that, when each
SFC only has one VNF and there is only one edge server,
a knapsack problem which is NP-hard can be reduced to
our problem. In this way, our problem is also an NP-hard
problem.

3.2 SFC Deployment Algorithm

To reduce the computational complexity of solving the prob-
lem above, we propose a novel SFC deployment algorithm.
The algorithm consists of two sub-algorithms named Tight-
SFC deployment and Loose-SFC deployment. Either of the
sub-algorithms can solely solve the SFC deployment prob-
lem. Nevertheless, Tight-SFC achieves a tighter theoretical
bound under more restrictive conditions, while the bound
of Loose-SFC stands under most circumstances. For each
specific case, we run both sub-algorithms and the output
of the SFC deployment algorithm is determined by the
winning one of the two sub-algorithms which utilizes more
edge resources.

3.2.1 Tight-SFC Deployment

Tight-SFC has a tighter bound comparing with Loose-SFC
but requires more resource capacity for each edge server.
Denote the total resources for deploying SFCs on the edge

by C, where C = )" R,. Tight-SFC first sorts the set of
veV
edge servers V in a decreasing order of R, to get a set V.

It also sorts the set of SFCs F' in a decreasing order of 3¢ to
get set F'. Tight-SFC further sorts VNFs of each SFC f in F’
in a decreasing order of ¢ ; to get sets I’.

Starting from the last SFC in F’ with the smallest Sy,
the algorithm divides VNFs of each SFC into groups and
makes sure that the aggregated demand of any group in
SFC f + 1 is smaller than that of any group in SFC f.
VNF groups formulate a set GG in a decreasing order of the
aggregated resource demand. We simply denote by g the g*"
largest VNF group in G. Starting from the first VNF group g
that can fit the largest edge server, Tight-SFC deploys VNF
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groups successively into server v in V/ which has the largest
R, and enough remaining resources for this VNF group.
This process stops when G is traversed or a VNF group
cannot fit any v. An SFC is deployed onto the edge if all
its VNFs belong to those deployed successive VNF groups.
Tight-SFC then uses a greedy method (Greedy) to determine
the deployment of remaining SFCs.

Greedy: The method tries to deploy each VNF of remain-
ing SFCs into an edge server with the largest remaining
resources. If any VNF of SFC f cannot find an available
servet, the whole SFC f is deployed onto the cloud instead.

Algorithm 1 Tight-SFC Algorithm
Input: Set F,V, {R.}, {Bs}, {By.i}
Output: The deployment of SFCs in F'
1: Calculate C' = ) R,.

veV

2: Sort V in a decreasing order of R, to get V.
3: Sort F' in a decreasing order of 3y to get F.
4: Sort Iy in a decreasing order of 3y, to get I%.
5: G+ 0, gpr < 0
6: for f =|F’'|,...,1do
7. fori=|I}|,..,1do
8: if the resource demand of ungrouped VNFs of f is
smaller than g.,, then
9: Group all unpacked VNFs of f to geu, G < G N geu,
Gpr 4= Geu, geu < 0, break.
10: end if
11: if gcu < gpr then
12: Jeu < geu NVNFE(f,1).
13: else
14: G+ GnN Geu, Gpr < Geu, Geu @
15: end if
16:  end for
17: end for

18: Sort G in a decreasing order.
19: forall g € G do
20:  forallv e V' do

21: if v is capable for g then

22: Group g is deployed on v and break.
23: end if

24:  end for

25:  if No server v can hold g then

26: Break.

27:  end if

28: end for

29: Apply Greedy to deploy SFCs in Ficinain, Which contains all
SFCs with VNFs not deployed onto the edge.

30: for all f € Fremain do

31: forallie I} do

32: forallv e V' do

33: if v is capable for i then

34: Group g is deployed on v.
35: end if

36: end for

37:  end for

38: if All VNFsin f can be deployed then
39: f is placed onto the edge.

40:  else

41: f is placed into the cloud.

42:  end if

43: end for

Tight-SFC is shown in detail in Algorithm 1. The com-
plexity of sorting all the sets in Algorithm 1 is | F||I|log(|1]),
where |I| is the size of the maximal I;. The complexity of
generating VNF groups is |F||I|. Deploying VNF groups
and running Greedy both take the complexity of |F'||I||V|.
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Thus, the general computational complexity of Algorithm 1
is |F'||I]|V|. Finally, the theoretical guarantee of Algorithm
1 is stated in the following theorem.

Theorem 1. Suppose the edge resources used by Algorithm 1 is
Z1 and we have Z* as the edge resources utilized by an optimal

:
solution. Assuming max < min{R,}, we have Z- > 1.
8 qec{ﬂg} - vev{ o} Zx = 2

Here, f3, is the resource demand of VNF group g.

The assumption in Theorem 1 means that the edge
server with the fewest VNF resources can hold the largest
VNF group. Since the largest VNF group utilizes no more
resources than the largest SFC and an edge server often has
sufficient resources for one network service, i.e., an SFC, this
assumption is achieved in many cases. To prove Theorem 1,
we need the following lemma.

Lemma 1. Assume max{8,} < min{R,}. If Algorithm 1
geG = veV

cannot deploy all VNF groups on the edge, the resource demand
of VNF groups deployed on the edge is at least %

Proof. Since max{f,} < min{R,}, if Algorithm 1 cannot
geG veV

deploy all VNF groups onto the edge, it starts from the first
group and stops after deploying the group g, ie., g + 1
cannot fit any edge server. Also due to the assumption,
all edge servers are deployed with VNF groups when the
deployment stops. Assuming the total resource demand
of all VNF groups deployed in server v is d,, we have
that d, + dyy1 > R, for v € {1,2,....|V’| — 1}. This is
because if d, + dy,4+1 < R,, all VNF groups in v + 1 will
be deployed in v instead. Summing the inequality up from
V-1 V-1
1to |V’| — 1, we have d; +2| le dy + djyr| > | 2‘: R,.
In addition, we have d; + d|V’T_§ Ry > Ry, o’zjﬂelrwise
all VNF groups in server |V’| can be deployed in server

1. Therefore, summing up the two inequality, we have
g V'] V']
S B=2d >t SR, =€ O
g=1 v=1 v=1

With Lemma 1, we can now prove Theorem 1 as follows.

Proof. According to Lemma 1, Algorithm 1 either deploys

all SFCs on the edge or utilizes at least half of the edge

resources. Obviously, any optimal algorithm can at most

utilize all edge resourcgs/. Thus, the approximation ratio of
2 _ 1

Algorithm 1 is at least =5~ = 3. O

3.2.2 Loose-SFC Deployment

Compared to Tight-SFC, Loose-SFC preserves a theoretical
bound when capacities of edge servers are much smaller.
Similar to Tight-SFC, Loose-SFC first gets V'’ and F’ by sort-
ing. It then successively picks SFC f in F’ and formulates
an empty set F5. If the sum of current resource demand
of set Fy and [ does not exceed %, f is added to F5.
This process stops when the sum becomes larger than %
for the first time or F' is traversed. In this way, we have

> By < % Denote all VNFs of SFCs in set F5 as Io
feF:
and sort I in a decreasing order of 5y to get I5. Loose-

SEC then successively deploys the largest VNF ¢ in I} to
the capable server v in V' with the largest R,. If a VNF
of any SFC cannot be deployed, the whole SFC will not be
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deployed. The process continues until I} is traversed. At this
time, SFCs in F} with all VNFs deployed onto edge servers
are deployed on the edge. Loose-SFC then applies Greedy
similar to that in Algorithm 1 to determine the deployment
of remaining SFCs. The detailed algorithm is illustrated in
Algorithm 2.

Algorithm 2 Loose-SFC Algorithm

Input: Set I, V', {R.}, {8}, {Bs.:}
Output: The deployment of SFCs in F
1. F5=0

2: forall f € F' do
3 if Y B+ B < & then
JEF
4 Fs + Fo U f
5:  end if
6: end for
7: Denote the set of all VNFs in F» by I,. Sort I> in a

decreasing order of 3y, and get I3.
8: foralli c I} do
9: forallve V' do

10: if v is capable for VNF i then
11: VNF i is deployed at v

12: Break.

13: end if

14:  end for

15:  if VNF i is not deployed at any v then

16: The SFC with VNF f will not be deployed.
17:  end if

18: end for

19: Apply Greedy to deploy remaining SFCs.

Similar to Algorithm 1, the computational complexity
of Algorithm 2 is |F||I||[V]. We now show the theoretical
bound of Algorithm 2 by proving Theorem 2 as follows.

Theorem 2. Suppose the result of Algorithm 2 is Z' and
we have Z* as the result of the optimal solution. Assuming

fénl%'}éz{ﬂf”} - gg‘r}{ o} an I}lea}({ﬁf} = g We fave
zt 51
Zx = 4

In Theorem 2, we assume that the edge server with the
fewest VNF resources can hold the largest VNF on any SFC.
This assumption is looser than that in Theorem 1 and can
often be satisfied in edge networks. We also exclude extreme
cases that an SFC demands more than half of the total edge
resources, i.e., I}lea}({ 15} f} < % To prove Theorem 2, we need

to introduce the following Lemma 2.

L 2. Assumi A < min{R,}, i <
emma ssuming fg}%)é[{@ﬂ < Erél‘r/l{ } szgg B <

%, then all SFCs in F can be deployed on edge servers.

Proof. We prove by contradiction and assume that the re-
source demand of SFCs is less than % and there exist some
SFCs cannot be deployed on the edge completely. According
to the proof of Lemma 1, there must exist one VNF i which
does not fit any server v when all servers are deployed with
some VNFs. According to Lemma 1, the current resource
demand of all deployed VNFs is thus larger than %, which

is contradicting to the assumption. O
With Lemma 2, we then prove Theorem 2 as follows.

Proof. Lines 1-6 makes sure that the total resource demand
of SFCs to be deployed on the edge is less than <. According
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to Lemma 2 and the proof of Theorem 1, lines 7-14 can
deploy all VNFs on these SFCs on edge servers. We then
need to prove that the total resource demand of these SFCs
are above %.

We assume ?eafg({ﬂf} < £ and focus on the case that

|F'| |F’|
Zl By = %. This is because, if le By < %, all SFCs can

f=
be deployed on the edge according to Lemma 2. Thus, the
performance of Algorithm 2 is as good as that of the optimal

solution according to Lemma 2.
|F”]
With ) 5y > %, if all SFCs starting from 1 in F” are
=1

in Fy and_deployed on the edge, the resource demand of
deployed SFCs is of course larger than %. If there exists one
f in Fy that SFC f + 1 is not in F5 for the first time, we
f |f|
have 2f2—:1 By > fZ_:l By + ﬂf+1 > % Since SFCs from 1 to
f belong to F5, the resource demand of SFCs in F3 is larger
or equal to %. Therefore, Algorithm 2 can at least utilize %
edge resources which proves Theorem 2. O

4 STATIC BACKUP DEPLOYMENT

In this section, we present the static backup deployment
which deploys each VNF on the edge a static backup while
minimizing the backup cost.

4.1 Model of the Static Backup Deployment

For the deployment of static backups, we need to determine
Yf.i0, @ binary variable denoting whether the backup of
VNF i of SFC f is placed on server v. Denote by Feqge
the set of SFCs deployed on the edge by the SFC deploy-
ment. We use U(Y) to denote the total backup cost, where
Y = {ysiv|Vf € Fedge,Vi € I;,Yv € V}. We minimize
Uy) subject to constraints of resources, reliability, and
indivisibility of VNFs as follows.

min  U(Y)

s.t. Z Z 6}"71 “Yfiw S Rv — Oy, Yo € ‘/7 (3)
fGF'gdge icly
Yriw =0, Vf € Feage,Vi € Iy, v = 0y, @)

Yriv €{0,1}, Vf € Feqge,Vi € If,Yv € V. (5)

In this paper, we restrict our attention to a particular
objective function. The method can be applied to more
general scenarios. In our application scenario mentioned in
Section 1, the backup cost of SFC f is the extra cost incurred
by backing up f in the cloud instead of on the edge. Denote
the backup cost of SFC f by wy, which depends on factors
such as types and quantity of VNFs, the resource demand
and the delay requirement of SFC f. We thus formulate

+

f€Fecdge veV

If any VNF ¢ of SFC f is not backed up on the edge (ie.,
> Yf.i0 = 0), the whole SFC f is backed up into the cloud,

veV
and the backup cost wy is thus counted.

ublication/redistribution re
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For resource constraint (3), the overall resource demand
on v cannot exceed the total resources on this server, R,,.
Since SFCs are deployed on edge servers, we denote a,
as the resource demand on v before deploying static back-
ups. The resource demand of static backups cannot exceed
R, — a,. For Constraint (4), denote by o¢,; the node holding
VNF i of SFC f. According to the reliability requirement, the
backup VNF cannot be deployed on the same server with
the original one in case of hardware failures. Therefore, for
each f and i, we have ys; , = 0if v = o ;. Constraint (5) is
the integer constraint restricting that a VNF cannot be split.

Similar to the proof in 3.1, we can transform the static
backup deployment problem and reduce a knapsack prob-
lem to it. Thus, the static backup deployment problem is
also NP-hard. We omit the details due to space limitations.

4.2 Static Backup Deployment Algorithm

In this section, we propose a static backup deployment
algorithm to solve the problem with much lower complex-
ity while guaranteeing a theoretical bound to the optimal
solution. In the algorithm, we define a new binary variable

ys and let y; = ma}x(l — > yfiw)t. The variable y;
’ vely veEV '
represents whether an SFC on the edge is backed up in the

cloud, ie., y¢ = 1 represents that SFC f is backed up in
the cloud. We substitute y for max(1 — Y yy,)" in the
icly VEV

objective function and formulate an equivalent ILP problem
with both y;; , and y¢ and an extra constraint, which is

1= yriv<ys, Vf€Fege,Vicly.  (6)
veV

By relaxing v € {0,1} and yr € {0,1} to fi. € [0,1]
and gy € [0,1], we then get a linear programming (LP)
problem. We solve the LP problem with an LP solver [28]
and get relaxed solutions {¥y,; .} and {gy}.

We further need to determine whether each yy;, and
y¢ should be 0 or 1 based on the relaxed solutions. In the
static backup deployment algorithm, we first determine 7
and let the value of y; determines the corresponding set of
Yg.i.0 for the same SFC. If y; = 1 for a particular f/, there
must be at least one i € Iy with (1 — Y yp,)" = 1.

veV
Then we can make (1 — Y yp )T = 1foralli € Iy.

veV
Since this will not change the objective but reduce the left
side of Constraint (3) as all yy ;. = 0. If yp» = 0, it is clear
that (1 — Y yp )" =0foralli e Ip.
veV

For a particular i € Iy, since Constraint (3) is linear,
we only choose one v € V and make y -, = 1 while
satisfying Constraint (4). This is because multiple y;/ ;/ , = 1
will not reduce the objective function but only increase the
left side of Constraint (3). Based on the fractional result
{Ut,iv}, when Y ys i, = 1, we look for the y¢ ;s ,, with
the largest ¢/ ; , among all v and make it 1. By following
steps above, whenever the rounding of y; is given, all
corresponding ¥y ; , are determined.

To determine {y;}, we first sort all g in a decreasing
order. Denote by 6 the threshold for rounding and always
equal to the largest 4/ in each iteration. In the first iteration,
all yy are set to 0. For each f and i, s, with the largest
Jt.i,0 among all v are set to 1. In each iteration, any y¢ with
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Jr = 0 is set to 1 and corresponding ¥y ;. are set to 0.
This means that the static backup deployment algorithm
determines these SFCs to be backed up in the cloud. Then,
the value of g is set to 0. After all y; with gy = 6 are
determined and there still exist violated constraints, a new
iteration begins until all constraints are satisfied for the first
time. The total number of iterations is limited by |F.qge|-
When this process finishes, all y; with gy > 6 are rounded
to 1 and others rounded to 0. We further add a withdraw
procedure for better performance. For each f € F,q4. and
yr = 1, we set y; back to 0 and corresponding y ; ,, back to
1, if no constraint is violated by doing so. The detailed static
backup deployment algorithm is presented in Algorithm 3.

Algorithm 3 Static Backup Deployment Algorithm

Input: {J;; .} and {g;} from the LP solver.
Output: Binary output {yy,i,v}, {ys} and threshold
1: for all f € Feqge,i € I do

2: if Yfi,0 = Mmax {gf,i,v} then
vEV\oy ;
3: Yfiv 1
4: else
5: Ysiw < 0
6: end if
7: end for
8: Denote the set {ys,iv|yf:,0 = 1} for each yy as Y.

9: while Constraints are not satisfied do
10: 6+ max {yr}
fE€Fedge

11:  for all j; =6 do

12: yr <0
13: ys < 1 and corresponding yy,i < 0
14:  end for

15: end while

16: for all f € Feqge do

17:  if y; = 1 and setting y7,:,» € Yy back to 1 does not violate
any constraint then

18: ys < 0 and set all yy ;. € Yy back to 1.
19:  end if
20: end for

In Algorithm 3, the complexity of getting corresponding
Yriw = 1 for every yy is |Feqge||I]|V]log(]V'|). The process
of determining yy with the withdraw procedure totally
takes |Fr4gc|?|V|. Since the number of SFCs is often much
larger than the maximal length of SFCs (|Fegge| > |I), the
computational complexity of Algorithm 3 except solving an
LP is |F,qgc|*|V|. We then prove that } is a bound between
the result of Algorithm 3 and that of the optimal solution.

Theorem 3. Suppose the result of Algorithm 3 is ZT and we
have Z* as the result of the optimal solution. Then, we have Z1 <
1oz,

Proof. Since y; = rfg}f((l — > yfiw)T, the goal is to

veV

minimize ), wy - yy. First, since the optimal solution

fE€Feage
of a relaxed problem is at least as good as the original ILP
problem, we have
z* Z Z wg - g f-
fE€Fecqge
From Algorithm 3, we get the threshold 6 which sets all y;
with §¢ above it as 1 and below it as 0. It is clear that

d.owpir= ) >

f€Feage {97195 >0%} {yslyg=1}

wf~g]f20- wy Y.
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Suppose the set of y; that are set back to 0 through the
withdraw process is Y. It is clear that

> D

{yrlyr=1} {yslyy=1}/Ys

In this way, we have Z* > AR O

Whenever Algorithm 3 is finished, the bound ; is
known. In addition, the performance is often much better
than the bound with the withdraw procedure. The efficiency
of Algorithm 3 will be evaluated in Section 6.

5 DYNAMIC BACKUP DEPLOYMENT

When Algorithm 3 finishes, each VNF backed up on the
edge has one static backup. Since the availability of SFCs
may not be guaranteed yet and future failures of VNFs are
hard to predict, we decide which SFC needs more backups
in an online manner. RAD deploys dynamic backups for
SFCs with failed VNFs or static backups.

When deploying dynamic backups, we need to balance
the load of each server to avoid resource contention as
much as possible. Deploying dynamic backups without
considering load balancing may cause some servers with
heavy load. Heavy-loaded servers suffer from resource
contention which is a main reason for unavailable VNFs.
In addition, VNF failures occur successively over time. To
guarantee the availability, we cannot wait for later failures
before deploying previous dynamic backups. Therefore, we
need an algorithm to deploy dynamic backups in an online
manner while balancing load on servers. In this section, we
formulate the dynamic backup deployment problem and
design an online algorithm with a proven competitive ratio
to the offline optimum. We also discuss conditions to release
dynamic backups and the SFC backup adjustment method
which deals with insufficient or excessive edge resources
during the dynamic backup deployment.

5.1 Model of Dynamic Backup Deployment

For the deployment of dynamic backups, denote by K
the set of dynamic backups arriving over time, where
K = {1,2,...,k,..,|K|}. For simplicity, we assume no
VNF recovers during this time which leads to the heaviest
overall load and the fiercest resource contention. Dynamic
backup k has a resource demand +;. We define a decision
variable zj, which denotes whether the dynamic backup
k is deployed on node v. We also define a variable W,
representing the load (resource demand/resource capacity)
on node v after deploying |K| dynamic backups. We aim
to minimize the maximal W,,. This goal should be achieved
under constraints of resource and reliability requirements.
We formulate the dynamic backup deployment problem as
follows.
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min max W,
veV
by Vi

s.t. zt > R—U-zm:Wv, Yo eV, ?)

keK

W,<1, WweV, (8)
Y zmw=1, VkEK, 9)
veV
Rk = Oa Vk € K,’U = {Ok,h O/C,Q}a (10)
zkw €{0,1}, W, >0, Vk € K,Vv e V. (11)

With the deployment of static backups from Algorithm
3, we denote b, as the current resource demand on v.
Therefore, Constraint (7) makes sure that W, is the final load
on node v after deploying all dynamic backups, which is the
sum of VNFs, static backups, and dynamic backups over
the resource. Constraint (8) serves as the resource constraint
and ensures that W, the load on server v, is restricted by
1. Constraint (9) restricts that there must be one edge server
chosen to hold each dynamic backup. Constraint (10) is the
reliability constraint, where oy, ; and o, 2 are servers holding
the VNF and the static backup of k. We cannot deploy
dynamic backup k on o1 or o 2.

The formulated problem is non-trivial since failures of
VNFs happen in an online manner over time. Dynamic
backup k should be allocated to an edge server as soon as
its VNF or static backup fails without knowing any future
information such as 7y, where k' > k. The formulated prob-
lem is thus an online integer linear programming problem.
To solve this problem, we propose an online algorithm with
a competitive ratio of log(|V]) to the offline optimum.

5.2 Online Algorithm with a Competitive Ratio

With the sequence of total K dynamic backups, the online
algorithm operates in total N iterations (/N is bounded). In
iteration n, the algorithm maintains a load parameter M,,.
For each server v, it also maintains an iteration parameter
Mn,v- Before deploying the first dynamic backup, we set
M, to 0 for all v. M, is the largest load on any v with
the current deployment of VNFs and static backups, i.e.,
M, = ?ea&({%}' At the beginning of placing each dynamic
backup k, we exclude servers that cannot hold k from the
set V. If V becomes empty, the algorithm is terminated and
the backup adjustment mechanism introduced in Section 5.4
is triggered. We define an increment 5fw = =15 — for each

Ry-My,
remaining server v. We sort remaining Servers i an increas-

. k
ing order of ¢ Ton.v — ¢ to get V/, where € € (1, "—:1],

p > 1. We find the smallest server v’ in V' which does not
belong to the set {oy.1, 0% 2}. If 9y 0 + 0%, < loge(;2 V),

n,v’
the dynamic backup k is deployed on this server and
T’ = Mnp + 5fL o+ 1f not, a new iteration starts with all

Mn+1,0 = 0 and My = 2 - M,. The detailed process is
presented in Algorithm 4.

Denote the result of Algorithm 4 (the offline optimal
solution) by M (M*, respectively). We now prove that the
result of Algorithm 4 is bounded by a competitive ratio to
the offline optimum in Theorem 4.

Theorem 4. Assume that Algorithm 4 has not excluded the
optimal server for dynamic backup k when deploying it. We have

ublication/redistribution re

Algorithm 4 Dynamic Backup Deployment Algorithm

Input: Set of edge servers V, deployment of current static
backups, dynamic backup set K.

Output: Placement of each dynamic backup {z.|Vk €
K,Yv eV}

Tn<« 1m0« 0,VoeV; M +— Hlea‘i({g‘;}

: Whenever a dynamic backup comes, over flow < True and

do lines 3-23.

3: for a%cl ve V do

4 if 3 P -z, + 7E > 1then

k/:l v v

5: V< Vv

6: end if

7

8

N

: end for
. if V = () then
9:  Terminate the algorithm and execute backup adjustment.
10: end if
11: while over flow = True do
12: overflow = False
13: forallv e V do
14: S T
15:  end for .
16:  Sort servers in V in an increasing order of eMmovtony
€™ to get V', where € € (1, %}], p>1.
17:  Find the smallest v in V' satisfying v ¢ {ok,1, 0k,2}-
18 if 1m0 + 5ﬁ,1), > loge(527|V]) then

19: n — n+ LM, < 2 - My_1;0m, +— 0,YVv €
V' over flow <+ True

20:  else

21: Tk, = 1;77n,v’ < Nnyo! + 6712,1;/

22:  end if

23: end while

Mt < (1+4loge (525 |V))- M*, where e € (1, %1] and p > 1.

When |V| > 1, the bound in Theorem 4 is minimized
if p satisfies 2=1 . erttloa(h) = |V|. This conclusion and
the detailed value of p can be obtained by well-established
numerical methods. To prove Theorem 4, we first need to

prove the following lemma.

Lemma 3. If M* < M,, Algorithm 4 can deploy all dynamic
backups within the nt" iteration.

Proof. We assume 10, ,(k) as the parameter 7, , of server
v in iteration n after deploying dynamic backup k. We
also represent 6, by 6, (k). Suppose ®,(k) is the set
of backups deployed by Algorithm 4 in iteration n after
deploying backup k, (k) is the set of backups deployed
by the offline optimum on v after deploying backup . Thus,

’
k! e®p (K)N®Y (k) . .
we have 7 (k) = . We define a function

R,-M,
Eo(k) =3 ey €M ®). (p—mny, »(k)), where p > 1. Here, we
first prove that F), (k) is a non-increasing function. Knowing
V' may be shrinking due to lines 3-7 in Algorithm 4, we
denote by V' (k) the set V when deploying dynamic backup
k and have V(k 4+ 1) C V (k). We first have

D

veV (k+1)

Fo(k+1) — Fu(k) = e D (p— (R + 1))

enn,v(k) . (p - n:,,v(k))

>

veV (k+1)
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— Y e o ),
VeV (R\V (k+1)
Since 77,’;71,(1@‘) < %—n <1 < p, we further have

>

veV (k+1)

Fo(k +1) — Fu(k) < e D (p— (R + 1))

W (o (k) = Hi  (12)

>

veV (k+1)

We define vT and v* as corresponding nodes chosen by
Algorithm 4 and offline algorithm to place dynamic backup
k + 1. According to the assumption in Theorem 4, we have
v* € V(k 4+ 1). When v' and v* are different nodes, we
simplify the right hand side of (12) and get

Hy = (Mot BFD — et W) (p — (k)
Mo (B 5 (B 1).
When v' and v* are the same node, we have
Hy = (e W — e W) - (p — (k)
—emo D 5 (k4 1),

Here, v can be either v’ or v*. Since —emer(k+1) <
—g'n,v* (k), considering both cases, we have

Hy < (Mot FFD — emat W) (p—pr (k)

—emer®) 6 (k+1) = Hy. (13)

We further have
Hy<p- (€nwf(k+1) — e"n~”(k)) — o (k) On.o (k+1).

Due to lines 16 and 17, we have v, v* ¢ {0y 1,0k 2} and
enn,vT (k+1) — enn,vT (k) S Enn,’u* (k+1) — Enn,'u* (k) Therefore’

the inequality goes
Hy < p- (€M (RHD) _ ginor (K)) e (K) Ope (k1)
= ¢Mmox (k) [p- (eén,v»«(kﬂ) —1) = O (b +1)].

Since v* is the choice of the offline optimum, we have

ol _ " M*
#t < M*. Then we have §,, .- (k + 1) = Rq,fflcfn <i <

1. Then p- (¢¥* (D) 1) — 4, . (k+1) < 0, for e € [1, 251],
In this way, F, (k) is a non-increasing function. With this
conclusion, we further prove Lemma 3. We know 7;, (k) <
1 and thus F,,(k) > (p — 1) - 3,y €’ *). Combining the
non-increasing of F},(k), we have 1, ,,(k) = log,(e?+(*)) <
log (517 Fu(k)) < log (;27F(0)) < log.(;27 - [V(0)]) =
log (527 - [V]). In this way, line 18 of Algorithm 4 will not
be violated and thus Lemma 3 is proved. O

With Lemma 3, we now prove Theorem 4.

Proof. According to lines 3-7, load on any excluded server is
smaller than the maximal load among the remaining servers
after Algorithm 4. Therefore, M is the maximal load among
remaining servers. Suppose the maximal load increment in
iteration n is An. When N = 1, since Ay <log, (% - [V]) -

M; and M* > M,;, we have %Ti < 1+ log. (55 - V).

When N > 1, we have A,, < loge(# V] -2t M.
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N N
Then, ]\4']L S M1 + Zn:l An S M1 + Zn:l logé(p—ﬁl . ‘V|) .
2"=1 . M. We know M* > 2N=2. M, since Algorithm
4 will stop at N — 1 otherwise. We then have ]\]‘2“ <

M1+ N_ log (527 |V])-2" "t M
1 S ! <1+4log. (52 -|V]). D

The proof of Theorem 4 indicates that the number of
iterations N is bounded by O(log(M™*)). Suppose Ymaz
is the largest resource demand of dynamic backups and
T'min 1S the the minimal server resources, we have M* <
M; + M Thus, N is bounded by O(log(M; +

IKr\w)) In addition, the complexity of each iteration is
O([K]|V|1og(]V])), In this way, the computational complex-
ity of Algorithm 4 is O(|K||V/| log(|V|)~10g(M1—|—|KT“ﬂ)).

Related work proposes algorithms for online load bal-
ancing problems, e.g., [29], [30]. Different from their work,
Algorithm 4 balances the load under reliability constraints
of dynamic backups, i.e., Constraint (10). In addition, the
proof of Theorem 4 considers a shrinking server set and
applies more generalized parameters compared with previ-
ous work. In this way, our algorithm covers a wider range
of situations while preserving a theoretical performance
guarantee.

5.3 Availability Reinforcement and Dynamic Backup
Release

If two of the three copies (i.e., the VNEF, the static backup,
and the dynamic backup) fail, the dynamic backup deploy-
ment method will deploy the second dynamic backup. By
doing so, the dynamic backup deployment always makes
sure there are at least two functioning instances at a time
for each VNF. If the availability (previous time operating
normally /previous operating time) of a particular SFC does
not reach its availability requirement, all dynamic backups
of this SFC will not be released at recovery and work like
static backups to reinforce the availability. These semi-static
backups will be released when the availability is satisfied. In
this way, we dynamically guarantee the availability of SFCs
backed up on the edge.

5.4 SFC Backup Adjustment

During the deployment of dynamic backups, there exist
situations that there are not enough resources to deploy the
next dynamic backup. This means more VNFs are currently
unavailable (e.g., a burst of failures) on the edge, and we
need more resources to deploy dynamic backups. There are
also opposite cases that edge resources are excessive and
more SFCs can be backed up on the edge to save backup
cost. To deal with these situations, RAD further moves
backups of SFCs between the edge and the cloud to balance
the availability and backup cost.

When edge resources are not sufficient, Algorithm 4 will
be terminated. We sort SFCs backed up on the edge and pick
the SFC f with the smallest w¢. We then back up SFC f in
the cloud instead. After the backup of SFC f is established
in the cloud, all static and dynamic backups of VNFs of f
are released from the edge and Algorithm 4 starts again.
Since SFC f is now backed up in the cloud, its availability is
taken care of by the cloud. Meanwhile, more resources are
available for dynamic backups of the SFCs still backed up
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on the edge. Due to these reasons, the availability of all SFCs
is increased. Above steps will be repeated until reaching the
point that Algorithm 4 can be processed continuously.

The adjustment method also maintains ¢, the running
time of Algorithm 4 without termination. When t grows
larger than a predefined threshold 71, the method deploys
static backups for each VNF of SFC f which has the largest
wy and has been moved to the cloud previously. If ¢ contin-
uously increases and becomes larger than another threshold
Ty, all copies of SFC f in the cloud are released and f is
placed on the edge again. In this way, the backup cost is
reduced. Smaller 71 and 75 will make the backup adjustment
more sensitive and reduce the backup cost whenever failure
rates decrease. However, the backup adjustment also intro-
duces extra cost (e.g., cost of VNF migration between edge
and cloud). Therefore, we choose relatively large 71 and 7
in Section 6 so that the extra cost can be omitted compared
with the backup cost.

5.5 Overhead Analysis of the RAD Scheme

As mentioned in previous sections, the overheads of SFC de-
ployment, static backup deployment and dynamic backup
deployment are |F||I||V|, |Feage|?|V| plus solving an LP
problem, and O(|K||V|log(|V]) - log(M; + %)), re-
spectively. The SFC deployment algorithm and the static de-
ployment algorithm only need to be executed once through-
out the RAD scheme. Although the total overhead of the
dynamic backup deployment algorithm is determined by
||, the number of failures, the executing time of deploying
each dynamic backup is often covered by the time waiting
for the next failure to happen. Since failure rates are low in
most cases, time intervals between failures are often long
enough to deploy a dynamic backup before the next failure
happens. Similarly, the overhead of SFC backup adjustment
which is determined by the speed of migrating VNFs is also
covered by the time of waiting VNF failures in general. In
this way, the general overhead of the RAD scheme is mild
and affordable under most scenarios.

6 PERFORMANCE EVALUATION

In this section, we first evaluate the performance of RAD
with extensive simulations. We then conduct small-scale
experiments to demonstrate its feasibility and effectiveness
in real-world cases.

6.1 Simulation Setup

For the simulation setup, we refer to basic settings of the
VNF platform on commercial servers in [24]. We consider
each edge server as a commercial server with a single
CPU of 6 cores. As edge servers may have tasks other
than VNFs, we assume each server randomly has 1 to
6 cores available (uniformly distributed). In the network,
each SFC is randomly chained up by 1 to 5 VNFs. We
focus on CPU utilization to represent the VNF resource
demand (e.g., a VM uses 0.6 CPU core). In our simulations,
we use the real-world trace of VM CPU utilization in MS
Azure [31]. The numbers of SFCs and edge servers vary
in different simulation sets to show the advantages of RAD
from different aspects. Therefore, the distributions of normal
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SFCs and backups also change from case to case due to
the deployment algorithms in RAD. For instance, when the
number of SFCs ranges from 30 to 50 and there are 20 edge
servers available, the average ratios of normal SFCs and
static backups to the total edge resources are 69.6% and
25.3% over 100 repeated simulations. When edge servers
increase to 60, the ratios change to 26.4% and 24.2%. More
details will be illustrated along with simulation figures. The
distributions of dynamic backups change over time and
adapt to real-time failures, which can be reflected by the
following Fig 5(b). The backup cost of an SFC depends on
its delay requirement and resource utilization. We assign
each SFC a random number uniformly distributed in the
range [1,5] to represent the relative tightness in delay re-
quirements. We then multiply this number with the total
resource demand of all VNFs in this SFC to obtain its backup
cost.

6.2 Performance of SFC Deployment Algorithms

We first show the performance of our SFC deployment algo-
rithms, i.e., Tight-SFC and Loose-SFC, under corresponding
resource assumptions in Theorem 1 and 2. Fig. 2(a) shows
simulation results when the edge server with the minimal
resources can hold all VNFs of the largest SFC. Lines in red
and blue show resource utilization rates of Tight-SFC and
Loose-SFC respectively when the number of edge servers
increases. Each node represents the average result of 100
simulations with 80-120 SFCs. The black dashed line rep-
resents the total resource ratio which is the average ratio
between the resources needed by all SFCs and the total edge
resources. We observe that all three lines converge with the
increase of edge resources and start to unify when the total
resource ratio is below 79.8%. This means that when the
assumption in Theorem 1 is satisfied, both algorithms can
deploy all SFCs on the edge if the total resource demand of
SECs is less than 79.8% of edge resources.
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Fig. 2. The edge resource utilization rates of Tight-SFC and Loose-SFC
when assumptions in Theorem 1 and Theorem 2 stand. (a) shows the
resource utilization rates of both algorithms, when the edge resources
increase and always satisfy the assumption in Theorem 1. (b) shows the
resource utilization rates of both algorithms, when the edge resources
increase and always satisfy the assumption in Theorem 2.

Fig. 2(b) shows the edge resource utilization of both
algorithms but under a looser condition that the edge server
with the minimal resources can hold the largest VNF on any
SFC. It is clear that three lines also converge and start to
unify at the resource ratio of 74.7%. This indicates that when
the assumption in Theorem 2 is satisfied, both algorithms
can deploy all SFCs on the edge with the total resource
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demand of SFCs less than 74.7% of edge resources. Fig. 2
shows that both algorithms work much better than their
theoretical bounds, i.e., 50% for Tight-SFC and 25% for
Loose-SFC.

We further simulate Tight-SFC and Loose-SFC with real-
world settings of SFCs and servers in Section 6.1 and
compare their performance with that of a greedy baseline
algorithm. As existing algorithms for SFC deployment either
vary in the objective functions optimized [1]-[4] or do not
focus on deploying SFC on the edge [20]-[22], it is hard
to compare our comprehensive scheme directly to them.
Instead, we use a greedy algorithm as the baseline. In this
greedy algorithm, whenever an SFC arrives, the server with
the most available resources is picked for the first VNF and
this procedure iterates until all VNFs of this SFC are placed.
If there are not enough resources in the edge networks for
any of these VNFs, the SFC will be placed in the cloud.

Fig. 3(a) presents the average edge resource utilization
rates of the greedy algorithm, Tight-SFC, and Loose-SFC
with 80-120 SFCs and an increasing number of edge servers.
We observe that both Tight-SFC and Loose-SFC outperform
the greedy algorithm significantly. Fig. 3(b) presents the
CDF of Tight-SFC, Loose-SFC and the greedy baseline over
1,000 simulations with 40 edge servers. We can observe
from the figure that more than 95% simulations of Loose-
SFC utilizes more than 90% total edge resources. Tight-
SFC performs even better since it has more simulations
with higher edge resource utilization rates. Both algorithms
outperform the greedy algorithm.
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G
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(a) (b)
Fig. 3. The performance of Tight-SFC, Loose-SFC, and the greedy
algorithm with real-world traces. (a) shows the average resource utiliza-
tion rate of three algorithms with an increasing number of servers. (b)
presents the CDF of three algorithms with 40 edge servers.

6.3 Performance of Static and Dynamic Backup Place-
ment Algorithms

In this section, we present the evaluation of the backup
placement algorithms. We conduct the following simula-
tions with 20 edge servers in the network. For the static
backup deployment, we again use a greedy algorithm as
the baseline. With the VNF placed, the greedy algorithm
deploys static backups starting from the SFC with the largest
backup cost and follows a decreasing order in the backup
cost. For each VNF backup of the SFC currently considered,
the greedy algorithm places it on the server with the most
available resources. If any VNF of an SFC cannot be backed
up on the edge, the whole SFC is backed up in the cloud.
Besides the greedy algorithm, we also use the solution of
a relaxed LP problem (LP) [28] as another baseline. The
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relaxed LP solution serves as a lower bound of the optimal
integral solution. We are doing this because it is compu-
tationally inefficient to solve the original integer problem
directly. This provides a conservative comparison for our
algorithms.

Fig. 4(a) shows the average backup cost of different
algorithms with an increasing number of SFCs. The cost is
the average value of 100 simulations. It is evident that our
algorithm significantly reduces the backup cost compared
to the greedy baseline, and its cost is not far from the
relaxed optimal cost. In particular, when there are abundant
resources for backups (with 10-30 SFCs and an average of
20.0%-53.9% load of SFCs), the static backup deployment
algorithm reduces cost by 61.1%-50.9%. Even with limited
edge resources for backups (e.g., with 50 SFCs and an av-
erage of 80.2% load on the edge before deploying backups),
our algorithm can still save 15.9%.
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(a) (b)
Fig. 4. Effectiveness of the proposed backup deployment algorithms. (a)
illustrates the average backup cost of the LP, the static backup deploy-
ment algorithm, and the greedy baseline with an increasing humber of
SFCs. (b) shows the maximal load on edge servers from the dynamic
backup deployment algorithm normalized by the offline optimum when
failure rates increase.

We continue to evaluate the performance of the dynamic
backup deployment algorithm with 30-50 SFCs deployed in
the network. Each box in Fig. 4(b) concludes the maximal
load on edge servers from the dynamic backup deployment
algorithm in 100 simulations under a particular failure rate
of VNFs. The results are normalized by offline optimal solu-
tions solved by an ILP solver with all upcoming dynamic
backups known in advance. Fig. 4(b) highlights that, in
the majority of simulations, our algorithm achieves near-
optimal performance. Even with a relatively large failure
rate (10%), more than 75% of simulations are below 1.4
times of the offline optimal solution. This means the dy-
namic backup deployment algorithm is effective in balanc-
ing the load on edge servers, and thus reducing resource
contention in an online manner.

6.4 Benefits of the RAD Scheme

In this section, we evaluate the performance of the entire
reliability-aware adaptive deployment scheme with numer-
ous simulations. 30-50 SFCs are deployed in the network of
20 edge servers. We choose rather limited edge resources
since backup schemes are more challenged with limited
backup resources at the edge. In each time slot, we assume
each VNF (original, static backup, or dynamic backup) has
a failure rate, and the VNF is randomly working or failed
according to the rate [11]-[15]. By default, we assume a VNF
recovers after 10 time slots (the creation of a VNF takes 1
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time slot) and we vary the recover time and create time
in Fig. 7 to evaluate its impacts. Note the create time of a
dynamic backup is the time between its deployment and
the moment it starts to work.

We compare our RAD scheme with two representative
baselines, i.e., static backup scheme with h backups for each
VNEF (STA-h) and predictive backup scheme with prediction
accuracy ! (PRE-I). STA-h is similar to that of the greedy
algorithm in Section 6.3 but deploys h static backups instead
of one. The PRE-l scheme can predict an upcoming VNF
failure utilizing methods such as early failure detection [10]
or machine learning [32]. The detailed prediction method is
out of the scope of our paper. However, the performance
of predictive methods can be measured by the prediction
accuracy [ and higher [ leads to better results. PRE-/ in our
simulations can correctly predict a VNF failure at the rate of
I and get a backup copy ready before the failure happens.
It can also predict the failure of the backup at the same rate
and create a second backup.
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(b)
Fig. 5. Adaptive features of RAD. (a) The availability of SFCs with
different schemes when failure rate spikes occur. (b) The change of
backup cost with RAD when failure rate spikes happen.

We first demonstrate how our scheme adaptively bal-
ances the trade-off between the backup cost and the avail-
ability without knowing failure rates. Fig. 5(a) shows the
availability of SFCs (averaged from the beginning to the
current time slot) with RAD, PRE-95% and STA-3 during
3,000 time slots. There are two failure rate spikes shown
by the black line. Clearly, the availability curve of RAD
outperforms the baselines, meaning our scheme is more
robust against bursts of VNF failures comparing with STA-3
using 3 static backups for each edge VNF or PRE-95% with
high prediction accuracy of 95%.

Fig. 5(b) illustrates how RAD reacts to sudden failure
rate spikes. In particular, when a spike happens, RAD
creates more backups to handle the failures. When the spike
ends, RAD waits until the time-averaged availability meets
requirements before releasing the backups. Specifically, the
backup cost increases when the failure rates start to burst.
This is because RAD keeps deploying new dynamic backups
to increase the availability against the failure rate spikes.
More SFCs are thus backed up onto the cloud to release
more edge resources for these dynamic backups. When
failure rates fall back, the scheme does the opposite which
releases unnecessary backups and reduces the backup cost.
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Considering the total running time as 3,000 time slots, we

make the backup adjustment parameters 7, = 100 and
79 = 50 in our simulations.
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Fig. 6. Performance of RAD and baselines under different failure rates.
(a) Average availability of SFCs with RAD, STA-h, and PRE-I when VNF
failure rates increase. (b) Average backup costs applying RAD and STA-
1. All backup costs are normalized by the static backup cost from the
static backup deployment algorithm.

We then compare the performance of RAD with the base-
lines in extensive simulations. Each value in the following
figures is the average of 100 independent simulations with
1000 time slots. Fig. 6(a) shows availability of SFCs applying
different schemes when VNF failure rates increase. Fig. 6(b)
presents corresponding backup costs of these schemes. We
first find in Fig. 6(a) that RAD always preserves the highest
SFC availability compared to baseline schemes and the su-
periority is more obvious with higher failure rates. We also
observe that predictive backup schemes (PRE-[) degrade
sharply with increasing failure rates even when the pre-
diction accuracy is high, i.e., PRE-95%. Therefore, although
they have little backup cost due to no deployment of static
backups (omitted in Fig. 6(b)), predictive backup schemes
cannot guarantee sufficient SFC availability as RAD does
when VNF failures are more frequent or failure spikes
happen. For the static backup scheme (STA-h), we find in
Fig. 6(a) that larger h, i.e., the number of static backups for
each VNF, leads to higher SFC availability. It is possible for
STA-h to have comparable SFC availability to RAD if h is
larger than 4. However, such availability improvement is
at the cost of much higher backup cost according to Fig.
6(b)). In this way, we can conclude from Fig. 6 that our RAD
scheme achieves the highest SFC availability with moderate
backup cost and outperforms both baselines.
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Fig. 7. Impacts of the recover time and the creation time to RAD. (a)
The average availability of SFCs with RAD and the baselines when the
recover time grows. (b) The average availability of SFCs applying RAD
with different creation time.

We further evaluate how the recover time and the cre-
ation time affect the RAD scheme. Fig. 7(a) shows the
performance of RAD and the baselines when the recover
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time increases. Failure rates of VINFs are 0.02 in this set of
simulations. Although availability of SFCs achieved by all
backup schemes decreases when the recover time increases,
RAD degrades with the slowest speed. This indicates that
RAD can tolerant slower VNF recoveries and guarantee
high SFC availability compared to static and predictive
backup schemes. Since the creation time of a VNF is influ-
enced by multiple factors (e.g., VNF type, resource demand,
and load of the edge server), we define a C-time represent-
ing the range within which the creation time is uniformly
distributed. For instance, C-time = 4 means the creation time
of each dynamic backup is uniformly distributed between
1 and 4 slots. Fig. 7(b) shows the performance of RAD
with different creation time. With longer creation time, the
average SFC availability of RAD decreases. However, even
with larger creation time, the average SFC availability of
our scheme is still much better than that of the baselines
according to Fig. 6(a). In summary, RAD is applicable and
performs much better than the baselines when VNF recover
and creation time is relatively large.

6.5 Experiment

We conduct small-scale experiments with two types of real-
world service function chains. The first SFC (SFC 1) consists
of two functions, i.e., an image transcoder and an image
classifier. The image transcoder transforms input images
from png to jpg. The processed images then go through the
image classifier to recognize their content. On the second
SFC (SFC 2), a video transcoding function is followed by an
action recognition function. Input videos are first transcoded
from mjpeg to h.264 then processed by the action recognizer
to identify actions in the videos. Details of these functions
can be found in [33]-[35].

For each service chain, we apply three different backup
strategies, our RAD scheme, the baseline with static back-
ups at the edge (Static), and the baseline with only cloud
backups (Cloud). For the RAD strategy proposed in this
paper, the SFC, static backups, and dynamic backups are
supported by three LXC containers [36]. Containers for the
SFC and static backups can hold both VNFs while the
container for dynamic backups has limited resources only
for one dynamic backup, i.e., it can either support VNF
1 or VNF 2. For the baseline Static, two containers hold
the SFC and its two static backups, respectively. For the
baseline Cloud, only one container holds the SFC. If any
failure happens, the service is forward to static backups in
the cloud. All containers are running on an edge server with
an Intel Core i7-9700k processor and 32 GB memory. All
cloud backups are supported by VMs from the Google cloud
platform and each VM has 4 cores and 16GB memory.

Fig. 8 presents the performance of SFC 1 applying the
three backup strategies when different numbers of syn-
chronous failures occur. In our experiments, when neither
static nor dynamic backups cover the VNF failures, the
service is forwarded to the cloud. Backups on the cloud are
thus initialized on the fly to cover this failure at the cost of
longer delay. Extra delay is also introduced by transmitting
data from VNFs to backups or initializing dynamic backups
on the edge. In this way, the availability of SFCs applying
different backup methods are measured by the extra delay
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Fig. 8. Performance of SFC 1 with different backup strategies when the
number of synchronous failures increases. (a) shows the average delay
introduced by different backup schemes. The delay time is normalized
by the average execution time of the SFC with no failure. (b) shows
corresponding backup costs for each backup strategy, normalized by
the cost of deploying static backups in the cloud.

introduced by them. Fig. 8(a) shows the delay introduced
by RAD and baselines when different numbers of failures
happen at the same time. The value is normalized by the
execution time of SFC 1 when no failure happens. It is clear
that our RAD introduces the least delay under different
failure conditions. Even when three failures happen at the
same time on SFC 1 and its edge backups, RAD still reduces
40% delay compared to the baselines.

Fig. 8(b) presents backup costs of different backup strate-
gies with varying numbers of failures. Since we apply pay-
to-use cloud resources, the backup cost incurs in the cloud
can be represented by the execution time of backups. The
value is normalized by the cost of deploying static backups
in the cloud, which run all the time when an SFC is in
service. When two failures happen synchronously, RAD can
save 67% backup cost compared to the static backup scheme
by simply adding one dynamic backup on the edge. Even
when rare cases happen with three failures at the same time,
RAD achieves 40% lower backup cost compared with the
baselines.
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Fig. 9. Performance of SFC 2 with different backup strategies when the
number of synchronous failures increases. (a) shows the average delay
introduced by different backup schemes. The delay time is normalized
by the average execution time of the SFC with no failure. (b) shows
corresponding backup costs for each backup strategy, normalized by
the cost of deploying static backups in the cloud.
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Fig. 9 shows corresponding performance of the backup
strategies applied to SFC 2 processing videos. Advantages of
RAD are also evident. Moreover, by comparing Fig. 8 with
Fig. 9, we find that our RAD strategy introduces even less
delay when applied to SFCs with larger input data size. For
instance, in the same failure condition (two failures at the
same time), RAD can save 63% delay for SFC 1 dealing with
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images while saving at least 83% delay for SFC 2 processing
videos of larger sizes. Experiment results from both figures
highlight that the RAD scheme can work efficiently in real-
world cases and significantly reduce the backup cost while
guaranteeing the availability of SFCs on the edge compared
to the baselines.

7 RELATED WORK

Despite the popularity of VNF and SFC, how to guarantee
the availability is considered as a key issue and has drawn
much research attention [10]-[15], [23], [24], [37]. Much
related work is committed to improving the availability of
VNFs in the cloud and the majority of them focuses on
using redundancy. Fan. et al. [11], [12] propose a scheme
to minimize the total number of backups while meeting
availability requirements. Zhang et al. [23] propose a novel
method pursuing a similar goal while considering the het-
erogeneous resource demands of VNFs. Kanizo et al. [14],
instead, maximize the availability with a given number of
backups taking advantage of the resource-sharing ability of
VNFs. All the work assumes the knowledge of failure rates
is known, while our RAD scheme does not assume it. In
addition, RAD provides performance guarantees for both
approximation ratio and competitive ratio.

When considering the availability of SFCs chained up
by multiple VNFs, Beck et al. [37] propose algorithms to
provide backup VNFs and links parallel to the VNE. Shang
et al [13], [15] propose rerouting strategies to guarantee
the availability of SFCs in case of node and link failures
and take network congestion into consideration. Instead
of introducing redundancy, Taleb [10] propose a novel al-
ternative framework which ensures the resilience of SFCs
using efficient and proactive restoration mechanisms. These
schemes create replacing VNFs at the early detection of
failures. Martins et al. [24] realize a virtual VNF platform
called ClickOS which enables fast creation of VNFs. In this
paper, we combine the ideas of backups and fast creation of
dynamic backups and propose the RAD scheme.

When it comes to deploying VNF on the edge, work in
[5]-[9] has proposed algorithms and systems to explore its
potential in multiple aspects. To guarantee the availability
of VNFs on the edge, Zhu et al. [25] propose methods to
track the availability and cost impact and place VNFs on
edge networks considering both resource cost and applica-
tion availability. Yala et al. [26] propose a VNF placement
scheme between the edge and the cloud to optimize the
trade-off between availability and latency. The work above
only considers placing VNFs without deploying backups,
thus may leading to infeasible solutions with longer service
chains and lower availability. Dinh et al. [17] propose a cost-
efficient redundancy allocation scheme for VNFs based on
measuring the availability improvement potential of each
VNF. However, as far as we are concerned, none of them
consider the trade-off between the availability of SFCs and
the backup cost when failure rates of VNFs are unknown
and vary over time.

8 CONCLUSION

In this paper, we propose a reliability-aware adaptive de-
ployment scheme RAD to find the sweet spot between the
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SFC availability and backup costs without assuming VNF
failure rates. RAD first deploys SFCs over the edge and
the cloud to maximize edge resource utilization. It simulta-
neously runs two sub-algorithms with constant theoretical
bounds and picks the better output as the SFC deploy-
ment. RAD then uses a low complexity algorithm with
a theoretical bound to deploy one static backup for each
VNF while minimizing the backup cost. It further deploys
dynamic backups using an online algorithm with a provable
competitive ratio to guarantee the desired availability of
SFCs backed up on the edge. RAD also adjusts backups
between the edge and the cloud dynamically to accommo-
date the fluctuations in VNF failure rates and edge resource
availability. Simulation results highlight that the proposed
scheme fully utilizes edge resources, significantly reduces
the backup cost, and guarantees the availability without
predicting VNF failure rates. Small-scale experiments also
show that RAD is feasible and efficient in real-world cases.
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