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a b s t r a c t

Furthering our understanding of many of today’s interesting problems in plasma physics – including
plasma based acceleration and magnetic reconnection with pair production due to quantum electro-
dynamic effects – requires large-scale kinetic simulations using particle-in-cell (PIC) codes. However,
these simulations are extremely demanding, requiring that contemporary PIC codes be designed to
efficiently use a new fleet of exascale computing architectures. To this end, the key issue of parallel load
balance across computational nodes must be addressed. We discuss the implementation of dynamic
load balancing by dividing the simulation space into many small, self-contained regions or ‘‘tiles,’’ along
with shared-memory (e.g., OpenMP) parallelism both over many tiles and within single tiles. The load
balancing algorithm can be used with three different topologies, including two space-filling curves. We
tested this implementation in the code Osiris and show low overhead and improved scalability with
OpenMP thread number on simulations with both uniform load and severe load imbalance. Compared
to other load-balancing techniques, our algorithm gives order-of-magnitude improvement in parallel
scalability for simulations with severe load imbalance issues.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The particle-in-cell (PIC) algorithm is widely used to study
nteresting problems where discrete particles or agents interact
hrough fields. The PIC algorithm has thus been widely used in
he kinetic modeling of plasmas, where the fields can either be
lectrostatic or electromagnetic. However, the nature of tracking
ndividual particles over long periods of time makes the PIC algo-
ithm computationally expensive, requiring the use of large-scale
igh-performance computing (HPC) resources. With the advent
f exascale computing, HPC architectures are undergoing rapid
hange; since 2004, clock rates have stabilized and growth on
op-ranked systems has come almost entirely from increased
arallelism. The PIC algorithm is sensitive to load imbalance
n excessively parallel machines because simulation particles
ove about and may accumulate on a fraction of the computing

esources. As the scale of massively parallel computing architec-
ures continues to intensify, the final push toward exascale and
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eyond will require significant adaptation of software to take
dvantage of the increased parallelism available in the hardware.
Distributing computational load evenly across resources can

e achieved through multiple levels of parallelism. At the highest
evel one can parallelize across distributed-memory processing
lements (PEs). Parallelism on this level is often implemented via
he Message Passing Interface (MPI), and for clarity, in this paper
E always refers to an MPI process. In addition, the increasing
umber of shared-memory CPUs inside compute nodes, as well
s the increasing number of cores inside today’s CPUs, allows
or parallelism within a processing element (e.g., via OpenMP
r Pthreads). Finally, the use of many-core accelerators from
ultiple vendors such as Graphical Processing Units (GPUs) also
llows for parallelism via CUDA, OpenACC, HIP, or SYCL/DPC++.
In this paper we present developments to improve the parallel

calability of the particle-in-cell (PIC) code Osiris [1,2], which
an be applied to any massively parallel PIC code. On top of
he parallel computing challenges presented by evolving hard-
are architectures, parallelizing a PIC code while maintaining

oad balance is inherently challenging on an algorithmic level. A
IC code contains two main data structures that comprise the
omputational load in a simulation: particles that can occupy

ny position in the simulation domain and field quantities that

https://doi.org/10.1016/j.cpc.2020.107633
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107633&domain=pdf
mailto:kylemiller@physics.ucla.edu
mailto:romanlee@physics.ucla.edu
mailto:ricardo.fonseca@iscte-iul.pt
mailto:mori@physics.ucla.edu
https://doi.org/10.1016/j.cpc.2020.107633


K.G. Miller, R.P. Lee, A. Tableman et al. Computer Physics Communications 259 (2021) 107633

a
t
b
c
u
s
i
p
r
n
c
t
m
t
o

n
P
e
n
c
l
t
p
e
c
d
e
i
a
i
t
l
t
a
t
o
d
d
s
a
b
(
a
a
o

a
i
a
d
t
p
t
t
m

re discretized on a mesh grid. Parallelization is done by dis-
ributing particles and grid points among PEs, with load balance
eing achieved when the computational load, here defined as the
alculation time, associated with these structures is distributed
niformly. Osiris [1,2] and most cutting-edge PIC codes use a
patial grid-based domain decomposition [3–5], where each PE
s responsible for a subset of the global spatial grid as well as any
articles located there. While this domain decomposition algo-
ithm is widely used, it suffers from the possibility that a large
umber of particles may move into a single PE (as is often the
ase for simulations of plasma-based acceleration, laser-solid in-
eractions, or magnetic reconnection with pair production). Thus
aintaining acceptable load balance can be challenging, given

hat the computational load will generally scale with the number
f particles.
Various strategies have been implemented in an effort to dy-

amically load balance PIC codes using grid-based decomposition.
erhaps the most straightforward load balancing scheme is to
nlarge distributed-memory spatial domains by using a large
umber of shared-memory cores on each PE and distribute the
omputational load evenly across these cores. This allows for
ocalized load-imbalance situations, such as large density spikes,
o be smoothed out, generally leading to good improvements in
erformance and scalability [2]. This offers limited relief, how-
ver, due to hardware limitations on the available number of
ores. Another solution based on a static equidistant domain
ecomposition is known as the taskfarm alternative [6]. Here,
ach regular and equally sized distributed-memory sub-domain
s further subdivided uniformly into tasks, with particles sorted
ccordingly. To process particles, each PE works serially through
ts own set of tasks before accessing, completing and returning
he tasks of other PEs with higher load. If tasks are small enough,
oad is balanced since no PE is ever idly waiting for remaining
asks to be completed. A different approach is taken by Liewer
nd Decyk who pioneered the idea of shifting PE boundaries in
heir 1988 algorithm GCPIC [7,8]. Computational load is projected
nto one axis so that the problem of load balancing becomes one
imensional. Partitions are found along this axis, and the resulting
omains are partitioned in the second and third dimensions in the
ame way. Similar approaches based on rectilinear partitioning
re taken in [2,9,10]. Dynamic load balancing can also be achieved
y decomposing the simulation into many small units called tiles
or patches). Each PE handles one or more of these units, with the
lgorithm dynamically assigning them between PEs to maintain
n even load [3,11]. Similar strategies have also been employed
n GPU architectures [12].
In this paper we extend the previous dynamic load balancing

lgorithm of Osiris [2] by dividing the global simulation space
nto many small, self-contained ‘‘tiles’’, which contain all particle
nd grid quantities for a particular region of space. The parallel
omain decomposition is determined by assigning one or more
iles to each PE such that computational load is as balanced as
ossible; in addition, one or more threads are assigned to each
ile within a given PE based on computational load. The ability
o assign multiple threads to each tile – following the shared-
emory parallelization algorithm already present in Osiris –

allows us to significantly improve performance for simulations
with small regions of high particle density by enabling the parallel
use of a multi-core PE on a single tile. This provides significant
improvement over previous tile-based dynamic load balancing
implementations [3,11] that allow for only one thread per tile on
CPUs. We find that this feature allows for the use of larger tiles –
reducing the overhead of passing particles between tiles – while
still maintaining load balance. Our implementation also scales
well with thread number and gives particularly large speedups

for very imbalanced simulations, being well suited for efficient f

2

use in today’s evolving HPC climate as available on-chip thread
count continues to climb.

This paper is organized as follows: In Section 2, we discuss
the implementation of the tile structure into Osiris, includ-
ing both distributed-memory and shared-memory parallelization
schemes. We discuss the overhead and performance of the tiling
scheme in Section 3 by analyzing simulations both with and
without load imbalance, including a 3-D simulation of particle
wakefield acceleration. Compared to previous Osiris algorithms,
our tile-based implementation of dynamic load balancing gives
an order-of-magnitude increase in scalability with thread number
and more than a factor of 2 overall speedup for two different
physics simulations.

2. Methodology

In the last two decades, the continued growth of top-ranked
HPC systems has come almost entirely from increased paral-
lelism, with present systems comprising up to ∼106 cores. At the
highest level of parallelism, these massive computer systems are
viewed as a network of distributed-memory PEs amongst which
the simulation can be partitioned. Given that these PEs do not
share memory, using a spatial domain decomposition requires
that particle and field data be exchanged between neighboring
PEs at each time step. Domains for each PE should be struc-
tured such that the computation time on a given region is much
larger than the time spent communicating boundary information,
i.e. maximizing the computational volume to boundary surface
area ratio to minimize parallelization overhead.

Previously, the domain decomposition in Osiris was struc-
tured such that each PE had only one neighboring PE in each di-
rection (i.e., domain corners always matched up). These domains
could be statically assigned at the beginning of the simulation
or changed dynamically throughout to maintain load balance [2].
Aligning domain corners simplified the communication pattern
for the sharing of boundary information, but limited the achiev-
able load balance. In an effort to improve dynamic load balancing
and to enhance shared-memory parallelism in Osiris, we de-
compose the global simulation space into many small, static,
regularly spaced rectangular regions called ‘‘tiles’’ which have
aligned corners, following a strategy similar to [3,11]. The domain
decomposition is then determined by assigning a collection of
one or more tiles to each PE such that computational load is
balanced. These tiles can be exchanged dynamically between all
PEs at chosen intervals throughout the simulation to maintain
load balance.

2.1. Distributed-memory parallelism

To determine the most balanced parallel partition, i.e., assign-
ment of tiles to PEs, we must first devise a way to quantify and
organize the computational work required to process each tile.
To this end, we create a load array with the same dimensions as
the simulation and containing one entry per tile. Assuming that
the computational load scales linearly with both the number of
particles and the number of grid points,1 we compute the array
entry for the ith tile, Li, as Li = Ni,part + CNi,cells as in [11],
where Ni,part and Ni,cells are the number of particles and cells
in the ith tile, respectively, and the cell weight C represents the
computational load of a single cell compared to one particle. This
depends on simulation parameters such as interpolation level or
field solver type, and is left for the user to define. We found that
for typical 2- and 3-D simulations C ≈ 0.5–2 is effective. The

1 This is accurate for finite-difference-based field solvers. For other types of
ield solvers a different load formula can be straightforwardly derived.
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oad array can then be partitioned into NPE regions of contiguous
iles such that the total load in each partition is as close as
ossible to the ideal average load,

∑
i Li/NPE, where NPE is the

otal number of PEs. Partitioning a 1-D load array in this way
s trivial since boundaries must be determined only along one
imension. However, partitioning a 2- or 3-D load array is more
omplex, and multiple solutions may be considered.
One approach proposed by Saule et al. [9] is to consider 2-
partitions where each PE is left with a rectangular region of

pace, with each boundary connecting to one or more neighbors.
artitions where each boundary connects to a single neighbor
matching corners) – referred to as a rectilinear partition in [9]
was previously implemented in Osiris [2]. A more complex

cheme, referred to as P × Q jagged in [9], allows for multiple
eighbors along boundaries in the x dimension, and only one
eighbor in y. This allows for decomposing the multi-dimensional
oad balance problem into separate uni-dimensional scenarios:
e first define P partitions along x so that the load is evenly
ivided among them; we then proceed by dividing each of these
partitions into Q sub-partitions such that the computational

oad for all Q sub-partitions in a P partition is equal. This process
an be straightforwardly extended to 3 dimensions. The P × Q
agged partition is intuitive and has rather simple boundaries
etween PEs, but for some computational load distributions it
ay not yield a perfectly balanced configuration, given that the
oundary positions are limited to grid cell boundaries. See [8] for
n example of a PIC code using the jagged partition.
Another method to load balance in multiple dimensions is to

lace the tiles sequentially along a space-filling curve [11]. After
stimating the optimal load per PE, we start with the first PE and,
ollowing the curve, assign tiles to it until the load is close to
he optimal value. We then proceed to the next PE/tile until all
iles have been assigned. The advantage of using a space-filling
urve for ordering the tiles as opposed to, say, choosing the tiles
ased solely on their computational load, is that we will end up
ith simulation domains that are contiguous in space and have
elatively simple boundaries with a small number of neighbors.
e implement this method by creating a 1-D load array, where

iles are ordered in the array using their position along the space-
illing curve, then dividing this array into NPE segments with
oughly equal load. Tiles falling on each segment will be assigned
o the corresponding PE.

We implemented both the P × Q jagged partition and the
pace-filling curve methods in Osiris, with two choices for the
pace-filling curve. The first choice (Snake) simply passes through
ach tile by snaking back and forth in simulation space. This
urve has no restrictions on domain size and yields the simplest
oundaries, but does not maximize the ratio between compu-
ational volume and boundary surface area. The second choice
Hilbert) traces through the tiles using a Hilbert curve [13], will
aximize the ratio between computational volume and boundary
urface area, but requires that the tile number be a power of 2
n the smallest dimension (and integer multiples of that num-
er in other dimensions) and leads to more complex boundary
hapes, potentially with more neighbors. Fig. 1 shows schematics
f various domain decompositions using 4 PEs for a simulation
eaturing a high-density diagonal stripe of particles (blue) sur-
ounded by vacuum. We show a uniform partition without using
iles, as well as partitions using the three load balancing schemes
mplemented here. Note that with uniform partitioning, two PEs
ontain very few particles. For the density profile and tile size
hown here, all three tile schemes achieve roughly the same
egree of load balance across PEs, though for more complicated
rofiles the P×Q jagged scheme will usually not load balance as
ell as the Snake/Hilbert schemes. To minimize communication

verhead, we group messages from multiple tiles with the same

3

Fig. 1. Domain decomposition using 4 PEs for a high-density diagonal stripe of
particles (blue). We show a uniform partition without tiles, as well as partitions
using the three load balancing schemes implemented here. Gray lines indicate
tile boundaries, black lines indicate PE (i.e., MPI) boundaries, and red arrows
trace out tile ordering along the space-filling curve. Note that with uniform
partitioning, two PEs contain very few particles. For the density profile and tile
size shown here, all three tiles schemes achieve roughly the same degree of
load balance.

destination PE into a single message, which greatly improves MPI
performance.

To summarize, load balancing is performed by calculating
the load array, determining the load-balanced domain decom-
position, and then distributing the tiles among PEs accordingly.
This can be done solely at the beginning of the simulation or
dynamically throughout the simulation at chosen intervals us-
ing current simulation information. The domain decomposition
defines a mapping between tiles and PEs, which is used to de-
termine which tiles are to be sent and received, where tiles with
the same destination PE are grouped into a single MPI buffer to
minimize the effect of latency. Note that each successive domain
decomposition is independent of the previous decomposition,
i.e., a single PE may send all of its tiles to various other PEs and
receive entirely new ones.

2.2. Shared-memory parallelism

The parallelization and load balancing algorithm described in
the previous section works well for several problems, but does
not guarantee ideal load balance for challenging scenarios where
a large number of particles accumulate in a small number of
tiles. Consider such a situation, where the load on a particular
tile corresponds to α times the optimal load per PE, where α >

. In this case, the best the load balancing algorithm can do is
o assign that tile to a single PE. However, the load for that
E will be α times the optimal value, and we will experience
slowdown by a factor of α. To address these situations and

urther improve parallel performance, we exploit the possibil-
ty for shared-memory parallelism that is available on most of
oday’s computer systems, where a single PE may have many
ores or threads that share memory with one another. While
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oad balancing across distributed memory must be done with the
oarse resolution of one tile, load balancing within a single PE
ith many threads can be done to greater resolution, for example,
y dividing particles evenly among shared-memory threads.
For the case where multiple tiles are assigned to a single

E, there are two common approaches for processing the tiles
sing shared-memory parallelism. If there are many more tiles
han available threads on the PE, load balance can be achieved
y looping over tiles using a dynamic scheduler (‘‘first come,
irst served’’), with one thread per tile. This has been previously
emonstrated by [3]. However, if one single tile contains a very
arge number of particles, the associated thread will take much
onger than the others and load balance will fail.

Alternatively, tiles can be processed in serial with all threads
orking on a single tile at any given time. This way a single
hread is never stuck on a tile with many particles. Dividing
p particles in a single region of space amongst shared-memory
esources is a strategy commonly implemented in GPU codes
12,14]. However, given that all threads are assigned to the same
egion of space (tile), we must avoid memory collisions when
oing the current deposition. This can be achieved either by
sing atomic operations, or by creating a separate electric current
rid for each thread, then summing these arrays together after
he current deposition is complete. Both options have specific
rawbacks that impede parallel scalability for large numbers of
hreads, but the latter option generally gives better performance
n CPUs and is used in Osiris [2].
We take a novel approach and include both types of shared-

emory parallelism in a single framework. For a given PE with T
hreads and total load L, let Lj be the load found on its jth tile.
ach time step we calculate which tiles should be processed in
arallel (one thread per tile) and which tiles should be processed
n serial (T threads per tile). A tile is deemed ‘‘heavy’’ if its load
s greater than the average load per thread, i.e., if Lj ≥ L/T , and
‘light’’ otherwise. However, if a PE has fewer tiles than threads,
ll tiles are classified as ‘‘heavy’’ to avoid idle threads. For routines
ike those in particle processing, light tiles are processed first by
ssigning one thread per tile using a dynamic scheduler (we use
penMP). Once all light tiles are completed, each heavy tile is
xecuted one at a time, with all threads processing particles on
hat tile in parallel.

A schematic of the heavy-light tile organization is shown in
ig. 2 for a PE with five light tiles, two heavy tiles, and four
hreads. Using light tiles avoids data dependency issues when
here are many more tiles than threads. The inclusion of heavy
iles ensures that no threads are idle in cases with (1) fewer
iles than threads on a PE or (2) disproportionately large load
n a single tile. This implementation is critical for simulations
ith very high particle densities, such as plasma wakefield or
hock simulations, where the distributed-memory load balance
ay result in PEs having just one tile containing a majority of
articles. Note that tile G is queued for execution by the first
vailable thread. If all light tiles have similar load, this leftover tile
ould double the execution time of light tiles compared to having
nly four light tiles. The number of light tiles could be adjusted to
e divisible by the number of threads, or light tiles could be sorted
y decreasing load to mitigate this overhead. However, we do not
ddress this particular issue here since the impact is minimal.
Alternatively, it is possible to use a task-based approach to

hread over tiles. The algorithm begins by creating one task per
ile, for all tiles. Light tiles will then be processed without further
arallelism, while heavy tiles will be processed using multiple
hreads per tile, with the number of threads being proportional
o the number of particles in the tile. The number of threads for
ach heavy tile can be calculated as Ti = ⌊T × (Ni/N )⌉ (round to

earest integer), where T is the total number of available threads

4

Fig. 2. Work flow for shared-memory parallelization on a single MPI process
with four threads. Each MPI process handles its tiles differently depending on
their computational weight – a feature unique to our implementation. Using
shared-memory threads (OpenMP in our case), tiles with load less than the
average load per thread on that MPI process (light tiles) are processed in parallel
with one thread per tile. The gray dashed thread in tile G represents a light
tile queued for execution by the first available thread. Lastly, tiles with above-
average load (heavy tiles) are processed in serial with all threads dividing work
on that tile evenly.

in the PE, N is the total number of particles in the PE, and Ni is
the number of particles in the tile. These tasks will be scheduled
dynamically, assigning, if possible, a higher priority to light tiles.
This approach should, in most scenarios, reduce the number of
threads assigned to individual heavy tiles and ensure better load
distribution across cores inside a PE, and will be further explored
in a future publication.

2.3. Tile boundary management

When using a parallelization scheme based on spatial domain
decomposition (such as the tiling scheme described here), each
tile is required to exchange information with the neighboring
tiles at each time step. This includes both grid information (edge
values of fields and densities) and particle information (particles
moving to/coming from another tile). Since each tile is self-
contained, boundary information must be exchanged between
all neighboring tiles – both tiles found within a single PE and
those located across a PE–PE boundary. The exchange of boundary
information introduces overhead not only from the MPI com-
munications, but also from reassigning particles to different tiles
within the same PE, with the latter overhead increasing as tile
size decreases. If not optimized, these overheads can outweigh
the benefit of the load balance algorithm, severely limiting its
applicability.

In our implementation, boundary information between differ-
ent PEs is packed into buffers and shared via MPI; tile boundary
information within a single PE is instead referenced directly in
shared memory. Whenever tiles are (re)assigned to PEs, each
PE will gather and store information regarding which of its tile
boundaries are internal and which are external. Each time step
when boundary information is exchanged, boundaries are pro-
cessed sequentially over the number of dimensions to avoid
corner communications. When exchanging grid information, we
loop over all tiles using parallel threads; local tile boundary values
are copied directly in shared memory (no buffer required), and
boundary values to be sent to other PEs are packed into one
buffer per target PE and sent via MPI. We then loop over all tiles
with external boundaries (again using parallel threads) to copy
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n boundary values from the received communication buffers.
articles moving between tiles are processed in a similar manner.
ach tile maintains buffers to store exiting particles; buffered
articles moving to a local tile are referenced and unpacked,
hile particles moving to a different PE are packed and sent over
PI. Grouping MPI messages going from a local PE to the same

arget PE greatly improves performance (as opposed to using one
essage per tile boundary, for example) by reducing the number
f messages and limiting the impact of communication latency,
ince message sizes are larger.
Using the tiling scheme with either of the space-filling curves

ill lead to a small increase in communication time when com-
ared to a uniform partition. This is mainly due to an increased
umber of neighboring PEs (the corners of each PE are no longer
ligned) that communicate smaller messages (i.e., communication
s mostly latency-dominated). This increase in communication
ime can be offset by obviating the particle sorting step required
n most PIC codes while still ensuring data locality and cache
oherency (due to the small size of a tile). Furthermore, the
enefit of proper parallel load balance can greatly outweigh any
enalties incurred from communication overhead for otherwise
nbalanced runs.

.4. Best practices

In this section we briefly discuss parameters a user or de-
eloper should consider when working with a tile-based PIC
ode. First, the choice of tile size has a significant impact on the
erformance of the algorithm: smaller tile sizes improve data
ocality and load balance at the expense of a higher overhead from
ile boundary management, as the number of particles (compared
o the total particles in a tile) crossing boundaries will increase, as
ill the number of boundaries between PEs. On the other hand,

arger tile sizes reduce the boundary management overhead but
an interfere with data locality and hinder parallel load balancing
y limiting the available resolution of the parallel partition. The
ptimal tile size will be problem-specific, as discussed in further
etail in Section 3.1.
Second, the choice of how frequently to perform the dynamic

oad balance is problem-specific, but in our experience it should
e done rather frequently, e.g., once every 20 or 40 time steps.
or all simulations in Section 3, the amount of total simulation

time spent performing the dynamic load balance was always
below 4%, (usually between 1%–2%). Good load balance was main-
tained for a very rapidly evolving plasma with little overhead by
repartitioning every 20 time steps.

Finally, perhaps the biggest concern for developers and users
of a tile-based PIC code is memory management. Specifically,
extra buffers need to be maintained to store particles migrating
between self-consistent tiles and PEs. As mentioned briefly in
Section 2.3, our Osiris implementation maintains two types of
uffers at the tile level and one extra type of particle buffer
t the PE level. Each tile must have (1) a buffer to hold all of
ts particles and (2) a buffer (or multiple) to store the particles
hat have left its domain and need to be moved elsewhere. In
ddition, each PE requires separate buffers to store particles to
e communicated to various neighbor PEs. The sizes of buffers
sed to store migrating particles must be chosen carefully to
aximize performance (e.g., limit reallocation and number of MPI
essages) without running out of memory. When buffers are
rown to include additional particles, increasing the buffer size by
nly a small amount may trigger memory reallocation every few
ime steps during a large influx of particles. However, if buffers
re grown by a large amount, a small influx of particles across
large portion of the simulation space could be very expensive.

n our case, we give the user the ability to define the initial size
5

of the main particle buffers in each tile, along with the amount
by which the buffer is grown when necessary. These parameters
are problem-specific, and may require some experimentation to
appropriately define. Internal memory management could also
be used to write checkpoint data when the allocated memory
approaches the hardware limit.

3. Results

To evaluate the performance of our dynamic load balance
algorithm using tiles we will benchmark it against the baseline
performance of Osiris using a static, regular spatial domain de-
composition (referred to as ‘‘no tiles’’ or ‘‘Osiris’’ in all figures). As
mentioned earlier, these results depend on the type of problem
and level of imbalance, as well as user choices such as tile size
and dynamic load balance frequency. We will analyze simulations
of a uniform warm plasma, an ambipolar diffusion problem, and
a plasma wakefield accelerator. All simulations were performed
on Haswell compute nodes of the Cori system at NERSC, each
with two sockets, and each socket containing a 2.3 GHz 16-core
Haswell CPU (Intel Xeon Processor E5-2698 v3) supporting 2
hyper-threads, leading to a total of 64 hardware threads per node.

3.1. Uniform warm plasma

A uniform warm plasma is a perfectly balanced problem that
can be simulated using standard static spatial domain decompo-
sition techniques with excellent parallel efficiency, since the load
for every PE is uniform throughout the simulation. Simulating a
warm plasma is thus ideal for benchmarking the overhead of the
tiling algorithm compared to the default parallelization strate-
gies – both pure MPI and MPI/OpenMP hybrid parallelization
options are available in Osiris (see [2] for details) – and opti-
mizing tile size for best performance. The default MPI/OpenMP
hybrid parallelization scheme divides the simulation space evenly
amongst PEs, then processes particles within an entire PE domain
in parallel amongst threads, with each thread using a separate
electric current grid that must be summed at each time step (see
Section 2.2). We simulate a uniform warm plasma in 2D and 3D
using four compute nodes, for a total of 128 cores (256 threads).
The product of the number of MPI processes (M) and the number
of threads per process (N) is kept constant at M × N = 256, for
N = 2, 4, 8, 16 and 32. The 2-D runs use a 10242 cell grid with
cell size (0.0174 c/ωp)2 and a total of ∼150 million particles, and
the 3-D runs use a 1283 cell grid with cell size (0.0211 c/ωp)3
and a total of ∼134 million particles; both runs use a time step
of 0.012ω−1

p . Particle velocities were initialized from a thermal
distribution with a proper thermal velocity of uth = 0.1 c. All sim-
ulations were done using second-order (quadratic) interpolation
for particles with periodic boundary conditions in all directions,
and were run for 1000 time steps. Tile size was 162 cells in 2D
and 83 cells in 3D. Fig. 3 shows the performance of the code for
the various cases.

The performance of the default hybrid parallelization in Osiris
is shown to decrease with increasing thread number. This is to
be expected as the shared-memory algorithm is required to do
additional work (zeroing additional current arrays and reducing
the results from all threads) with increasing thread count. Since
all tiled simulations in this configuration have only ‘‘light’’ tiles
(16 tiles for every thread), the new tiling algorithm does not
suffer from this limitation and shows good scalability all the way
up to 32 threads. The drop in performance is mostly due to the
fact that not all routines have been shared-memory parallelized,
as they do not represent a significant overhead for small thread
counts.
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Fig. 3. Thermal plasma simulation performance in 2D and 3D for varying
number of threads, with (dashed line) and without (solid line) tiling algorithm.
Tiles were 16 cells square in 2D and 8 cells cube in 3D. Number of MPI processes
times number of threads per process was kept constant at 256. Performance is
calculated as the number of particles pushed (including field solve and other
elements) per second, normalized to the fastest run.

Table 1
Optimal tile sizes (cells on each side) in 2D and 3D for a thermal plasma with
varied particles per cell. Decreasing the tile size introduces more overhead but
improves cache locality, which is important for simulations with many particles
per cell.

2D 3D

Particles per cell 1 16 64+ 1 8+
Optimal tile size 32–64 32 16 16 8

The new algorithm is only outperformed by default Osiris
for 3D geometry with small (2,4) number of threads. This is
related to the overhead of moving particles between domains;
default Osiris without tiles uses larger domains, so there will be
fewer particles (compared to the particles in the domain) crossing
boundaries. However, for larger thread counts the limitations of
default Osiris outweigh this overhead, and the new algorithm
performs much better.

To determine the optimal tile size, we repeated the above
simulations for varied tile sizes and number of particles per cell.
The latter parameter is important because it directly impacts the
computational load of each tile. The number of particles per cell
were varied between 1, 16, 64 and 144, and the tile sizes were
varied by powers of 2, with values ranging from 8–64 cells on
each side. Smaller values are not possible using second-order
(quadratic) interpolation, as a minimum of 5 cells is required.
Table 1 summarizes our results. We found that the optimal tile
side length varied between 16–64 cells in 2D and 8–16 cells in
3D. These results are consistent with our expectations: when the
amount of computation per tile is larger (as is the case with
higher numbers of particles per cell), the overhead of moving
particles between tiles has a smaller impact, and the benefits of
smaller tiles in terms of data locality lead to higher performance.
For smaller numbers of particles per cell this is no longer the case,
and larger tiles perform better.

3.2. Ambipolar diffusion

Ambipolar diffusion is of particular importance to a large
range of physics scenarios, such as laser-solid interactions and
inertial confinement fusion [15–17]. This is a particularly difficult
problem to simulate using spatial domain decomposition as the
plasma, which is initially confined to a small region of space,
expands into vacuum (or near vacuum). We will use this problem
6

to test the effectiveness of our algorithm under extreme load
imbalance. We perform a simulation of the expansion of an
electron–ion plasma undergoing ambipolar diffusion in 3D, using
the various parallelization strategies discussed in Section 2. We
start with a constant-density sphere of electrons and ions, where
the electrons have a temperature of 130keV, the ions are cold,
the ion-to-electron mass ratio is 1836, and each species has 1000
particles per cell. The sphere of particles has radius 1.4 c/ωp and
is stationed in the center of a cubic periodic box of side length
16 c/ωp with 1603 cells. The electrons quickly diffuse outward,
but are soon slowed by the ambipolar space charge fields of
the ions. The ions are in turn pulled out and start to expand,
which slows down the expansion of the electrons. Afterwards
the electrons will again start to diffuse, leading to an oscillatory
expansion of both species. We ran each simulation a total time of
300ω−1

p with a time step of 0.0577ω−1
p , and we used first-order

(linear) interpolation for particles.
Fig. 4 shows the combined electron–ion particle density for

an analogous 2-D simulation at times 0, 153, and 300ω−1
p after

the beginning of the expansion, where ωp is the electron plasma
frequency before expansion. The domains of the 16 PEs over-
lay the density; density slices along any dimension in 3D show
similar behavior, but the parallel domain decomposition can be
better visualized and understood in 2D. For the first half of the
3-D simulation, about 70% of the particles are contained within a
sphere of radius 2.5 c/ωp, or just 1.6% of the entire simulation
volume. By the end of the simulation, 70% of the particles are
contained within a sphere of radius 5 c/ωp (13% of the total
volume). Since the particles largely reside in the center of the
simulation box, a traditional spatial domain decomposition with
uniform partition sizes will only allow good parallel load balance
for up to 2 PEs per dimension (8 PEs total), and will show severe
imbalance if the number of PEs is increased to 4 or more. This
simulation is also challenging for our tile-based approach: using
a total of 4096 cube-shaped tiles with 10 cells to a side, 70% of
the particles are contained within just 56 tiles for the first third
of the simulation, steadily increasing to 432 tiles by the end of
the simulation.

We test the strong scaling parallel speedup of this simulation,
keeping the problem size constant and running on 128 to 2048
cores for various cases: the default hybrid MPI/OpenMP algorithm
without (‘‘Osiris, no dlb’’) and with (‘‘Osiris dlb’’) the previously
implemented dynamic load balance [2], light tiles only and heavy
tiles only, each with dynamic load balance using the Hilbert
space-filling curve (‘‘light tiles’’ and ‘‘heavy tiles’’, respectively),
and a combination of light/heavy tiles with dynamic load bal-
ancing using all three schemes (‘‘Hilbert’’, ‘‘Snake’’, and ‘‘P × Q
jagged’’). Recall that the previously implemented dynamic load
balance uses the rectilinear partition from [9], similar to P × Q
jagged but with only one neighboring PE on each domain side. As
mentioned in Section 2.2, the shared-memory parallelization of
light and heavy tiles is as follows: light tiles are assigned only one
thread each, with tiles processed in parallel on a first-come-first-
served basis; heavy tiles are processed in serial, with all threads
working on a single tile at once. The two cases without tiles
use the maximum number of threads per MPI process without
hyperthreading (16), as this is most favorable for the default
hybrid algorithm. The cases with tiles use 2, 4, 8, 16, and 16
threads per MPI process for the five runs with increasing core
counts, respectively. Dynamic load balancing was performed at
every 20 time steps and occupied just a few percent of the total
simulation time. The chosen cell weight parameter was C = 2. For
the ‘‘Hilbert’’ run using 2048 cores, dynamically load balancing
every 10 and 40 time steps caused the total run time to increase
by 10% and 11%, respectively. Fig. 5 shows the results in terms
of (a) overall simulation performance and (b) load per core,
normalized to the fastest simulation with 128 cores.
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Fig. 4. The 16 PE subdivisions overlaying particle density of the ambipolar diffusion problem in 2D at various times. Cell weight is C = 2.0 for this case.
Fig. 5. Strong scaling test of a 3-D ambipolar diffusion simulation. Performance in (a) is calculated as the number of particles pushed (including field solve and other
elements) per second, and load in (b) is calculated as the maximum time any core spent in the advance-deposit routine, both normalized to the fastest run with 128
total cores. The ‘‘Osiris, no dlb’’ and ‘‘Osiris, dlb’’ runs are both done without tiles, one without load balancing and one with the previously implemented dynamic
load balance. The ‘‘light tiles’’ and ‘‘heavy tiles’’ runs use the new dynamic load balance via the Hilbert space-filling curve, but with only light or only heavy tiles,
respectively. The ‘‘Hilbert’’, ‘‘Snake’’, and ‘‘P ×Q jagged’’ runs use the new dynamic load balance along with a combination of light and heavy tiles, where the names
efer to the load-balancing scheme used. The two cases without tiles are performed with 16 threads per MPI process, and tiled runs use an optimal configuration
or each run (2, 4, 8, 16, and 16 threads per MPI process for the five runs with increasing core counts, respectively).
The default hybrid algorithm without dynamic load balancing
s unable to scale due to load imbalance issues. Fig. 5 also shows
hat the scalability of the light tiles algorithm is severely limited
s a result of its inability to parallelize within each tile, and in fact
he light tiles algorithm is the slowest algorithm at all core counts.
o explain the poor performance when using only light tiles,
onsider the simulations with 1024 or 2048 total cores, where
ach PE has 16 threads. During the first third of the simulation,
he 56 computationally expensive tiles could be spread across just
PEs (64 cores) since the algorithm groups together tiles close

n space and requires that each PE has at least as many tiles as
hreads. Each light tile can only be processed by a single core,
eading to significant performance degradation that worsens with
ncreasing core counts. Using only heavy tiles significantly boosts
erformance since a PE may be assigned just a single tile, but note
he drastic drop in performance for the first run using 16 threads
1024 total cores). This overhead is a result of summing the 16
eparate electric current grids for each tile, which is especially
etrimental for PEs with many tiles containing few particles.
The limitation in parallel scalability when using only light or

nly heavy tiles is overcome by our new algorithm that uses a
ombination of light and heavy tiles. We implement an additional
evel of parallelization within each tile, which allows a PE to
fficiently devote all of its cores to process a single computation-
lly expensive tile. As seen in Fig. 5, our algorithm (a) maintains
uch better overall parallel scalability compared to any other
ethod and (b) achieves near ideal load balance for up 1024
ores. At all core counts, the combination of heavy/light tiles
7

always outperforms the use of light tiles only, being ∼2 times
faster for 128 cores and ∼6 times faster for the largest core
count. The average number of heavy tiles over the course of the
simulation steadily increases with thread count, ranging between
0.5% and 8.2% of all tiles from 128 to 2048 cores, respectively.
The small drop in (b) from ideal scalability at 2048 cores has to
do with the problem/tile size: at this core count we will have on
average only 2 tiles per PE, which does not allow for effective
load balancing. Reducing the tile size may improve performance
for this case.

When comparing the various load-balancing schemes, using
the Hilbert space-filling curve was consistently the fastest, and
with 2048 cores it was 1.2, 1.5, and 1.4 times faster than the P×Q
jagged scheme, snake space-filling curve scheme, and previous
dynamic load balance, respectively. An overall speedup of a factor
of 2.2 was gained compared to original Osiris without dynamic
load balance. Though the snake space-filling curve consistently
gave excellent load balance, extra overhead from MPI commu-
nications due to the shapes of PE boundaries ultimately caused
those runs to be slower than the other topologies.

3.3. Plasma wakefield acceleration

Since its inception in the seminal paper by Tajima and Daw-
son [18], the field of plasma wakefield acceleration has been
an active area of intense research. Plasma based acceleration
(PBA) [19] is an accelerator scheme which uses an intense elec-

tron bunch – particle wakefield acceleration (PWFA) [20] – or a
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Fig. 6. MPI subdivisions (black lines) overlaying electron density for a quasi-3D
PWFA simulation with 2048 MPI processes.

laser – laser wakefield acceleration (LWFA) – to accelerate parti-
cles. As the beam propagates through the plasma, the electrons
are pushed away from the beam to leave an exposed ion column,
resulting in a region of space supporting large electric fields that
travels at nearly the speed of light. Particles can be injected and
trapped from the background plasma through various mecha-
nisms [21–24], then accelerated to high energies. The excitation
of the wake by the drive beam is strongly nonlinear, as can be the
evolution of the driver and the injected and accelerated beams,
making PIC simulations the tool of choice for modeling these
scenarios.

Simulations of PWFA naturally contain regions of very high
particle density – the injected particle bunch and beam driver –
that are dynamic in nature, surrounded by regions of relatively
low-density background plasma. These density distributions can
result in severe load imbalance, for which finding a single PE
decomposition that balances load for the entire simulation may
be near impossible. Effective dynamic load balancing of the sim-
ulation is therefore crucial for efficient numerical modeling of
PWFA, particularly when using large core counts. We test the
performance of our dynamic load balancing algorithm with a
PWFA scenario similar to that studied by Dalichaouch et al. [25].
The driving beam is initialized with a radius of σr = 2.1 c/ωp and
then evolves self-consistently, focusing down to a radius of σr =

0.2 c/ωp in the moving simulation window. When initializing
a beam, to provide good statistics we use a fixed number of
particles per cell and variable weights on the particles to vary
the density. The beam evolution leads to a large load imbalance
due to the large number of simulation particles concentrated in a
small cell volume. Additionally, the accelerating structure formed
with particles from the background plasma will show a density
spike at the back of this structure that can be several orders of
magnitude larger than the background density, creating a second
load imbalance region.

To illustrate the complexity of finding an optimal domain
decomposition, we show in Fig. 6 a snapshot from an analo-
ous simulation using the quasi-3D version of Osiris that uses
geometry (2-D r-z in space, azimuthal expansion in θ ) [26].
oad balance was performed using the Hilbert space-filling curve
nd a cell weight C = 1 for 2048 PEs; the simulation size was
048 × 1536 cells, with 256 × 128 tiles each of size 8 × 12
ells. The total simulation space was of size 16× 12 c/ωp, with 8
articles per cell for each of the driver and background electron
pecies, and we used second-order (quadratic) interpolation for
8

Fig. 7. Particle load imbalance (maximum/average load) of a 3-D PWFA simu-
lation using 2048 total cores with and without dynamic load balancing using
tiles for two different MPI/OpenMP configurations. The dot-dashed line shows
an ideal load imbalance of 1.0.

particles. This snapshot is about halfway through the simulation
when the particle driver has focused tightly near to the axis,
and the figure shows an overlay of PE boundaries with elec-
tron density. Note the large concentration of small domains near
the beam driver, bubble sheath and injected particles, and the
large domains in the near-vacuum region. Similar behavior occurs
for 3D simulations, but the visualization of these structures is
cluttered and brings little insight.

We tested the efficiency of our algorithm on 3D simulations of
this PWFA scenario by performing a set of simulations with dif-
ferent parallelization options. All simulations were performed on
64 compute nodes with the architecture described above (2048
cores total) and varying numbers of MPI processes/threads, for
the default hybrid parallelization without load balance and for the
dynamic light/heavy tiles parallelization. The simulation size was
512× 768× 768 cells, and the tile size was 16× 12× 12 cells for
the tile-based simulations. The total simulation space was of size
16×24×24 c/ωp, with 1 particle per cell for each of the driver and
background electron species and second-order interpolation for
particles. The simulation was run for a total of 12800 time steps
to a time of 200ω−1

p , with dynamic load balancing performed at
every 40 time steps. For load calculations we chose a cell weight
parameter of C = 0.5.

Fig. 7 shows the evolution of the parallel particle load imbal-
ance over the course of a simulation using 2048 total cores with
two MPI/OpenMP configurations (see Table 2 for more detail) as
the ratio between the maximum computational load on a single
PE and the average computational load across all PEs. The load
imbalance is shown for both the static uniform partition (no tiles)
and the dynamic partition (tiles). As shown in the plot, the high-
density regions near the propagation axis lead to a severe load
imbalance about halfway through the simulation. For 2048 pro-
cesses each with 1 thread, the imbalance reaches a peak (average)
value of 37.1 (10.6) without dynamic load balancing. This result
can be improved through the use of the hybrid MPI/OpenMP
algorithm [2] that smears out the load imbalance by allowing
for large domains to be assigned to each PE, leading to a peak
(average) imbalance value of 5.1 (3.5) at 128 processes each with
16 threads. It should, however, be noted that this large number of
threads leads to some performance degradation due to overhead,
as described in Sections 2.2 and 3.1. To further reduce the parallel
load imbalance we must use the dynamic tile load balance. Using
this algorithm we can lower the peak (average) value of the
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able 2
otal simulation time with and without tiles (and dynamic load balancing) for
he 3-D PWFA simulation. The total number of cores was kept constant (2048),
nly varying the number of OpenMP threads and MPI processes.
MPI processes OpenMP threads Time [a.u.] no tiles Time [a.u.] tiles

2048 1 4.63 1.19
1024 2 4.55 1.03
512 4 2.45 1.00
256 8 2.57 1.03
128 16 2.18 1.10

imbalance down to 8.0 (1.7) with 2048 processes, as shown in
Fig. 7. Furthermore, using our heavy/light tile parallelization we
can assign multiple threads to the heavy tiles, achieving a peak
(average) load imbalance of just 1.7 (1.3) with 128 processes.
Note that for this run, nearly all tiles were processed as light
except for an average of 175 heavy tiles near the focus of the
beam driver during the middle 10% of the simulation time.

Finally, we compare the total simulation times for the different
onfigurations of MPI processes and OpenMP threads for the
tatic uniform partition and the dynamic tiles partition. Table 2
hows the results, with time values normalized to the fastest
imulation (512 MPI processes with 4 OpenMP threads and dy-
amic load balance). As shown in the table, performance of the
tatic partition (no tiles) can be improved by over a factor of
simply by increasing the number of threads. However, the

ile-based algorithm maintains good performance for all thread
ounts and always outperforms the static partition, being 2.18
imes faster between the fastest runs. Cumulative load balance
s roughly the same for tile-based runs with 4, 8, and 16 OpenMP
hreads, but the overhead discussed in Section 2.3 is slightly
arger with 16 threads. The overhead associated with the dynamic
oad balance effort, however, was found to be only ∼1% of the
otal simulation time in all cases. We also see that the timings for
he tile-based algorithm vary less than 10% with varying number
f threads, which is to be expected, as the computation should
cale well with number of threads. This small variation highlights
he versatility of the algorithm in terms of efficiency on various
rchitectures supporting different numbers of threads.

. Conclusion

Many of today’s frontier problems in plasma physics neces-
itate fully kinetic simulations, which can in many cases only
e achieved through particle-in-cell simulations. Although the
IC algorithm has been quite successful in addressing many
inetic plasma problems (and can be extended straightforwardly
ith additional physics models), it is numerically expensive,
ften requiring large-scale, massively-parallel computational re-
ources. However, the traditional parallelization of the PIC al-
orithm is susceptible to parallel load imbalance. In problems
uch as plasma-based acceleration, laser-solid interactions, and
agnetic reconnection with pair production, simulation particles
ay accumulate in small regions of space, leading to an uneven
omputational load. Dynamic load balancing across distributed-
emory processing elements (PEs) and the efficient use of
hared-memory cores are therefore essential to perform large-
cale simulations of these physics problems.
In this paper we presented a novel hybrid parallelization

trategy for the PIC algorithm that combines two different shared-
emory parallelization algorithms, achieving excellent perfor-
ance even for simulations with extreme imbalance. Our
lgorithm uses small, regularly spaced, self-contained regions of
he simulation space that we refer to as tiles. These tiles contain
ll particle and grid quantities for a particular region of space
nd are dynamically traded between all PEs at chosen intervals
9

to maintain computational load balance. Unique to our tile-
based implementation of dynamic load balancing is the ability
to assign either one or multiple threads to each tile depending
on computational weight. This is especially useful for simulations
with localized high-density regions for which the load-balanced
domain decomposition may result in a PE having a single tile
containing a majority of particles, or for simulations where a
given PE has fewer tiles than threads. Furthermore, the ability to
assign multiple threads to each tile allows us to use larger tiles,
which can reduce the overhead of the tiling algorithm while still
maintaining good load balance and high performance.

Our algorithm was shown to perform well for balanced sim-
ulations: it was on par with or faster than the traditional par-
allelization algorithm on the same hardware and scaled better
with increasing thread count, with an overhead of less than ∼5%
or the highest thread count. Our algorithm gave a speedup of
ore than a factor of 2 compared to simulations without dynamic

oad balance of an expanding plasma undergoing ambipolar dif-
usion, a critically difficult problem to parallelize with 70% of the
articles contained within only 13% of the simulation volume. In
articular, it was ∼6 times faster than running the simulation
sing only 1 thread per tile and attained near-ideal load balance
or 8 times as many cores compared to running without tiles.
e also analyzed the performance of our algorithm on plasma

ccelerator simulations and verified a speedup of over a factor of
when compared to performance without dynamic load balance,
ith the dynamic load balance itself only taking about 1% of the
otal simulation time. Even greater speedups are expected for
arger simulations, where shared-memory thread number is small
ompared to total computing resources. Our results also show
hat the performance of the algorithm does not vary significantly
ith different combinations of PE and thread numbers.
This algorithm was tested on a CPU architecture using MPI/

penMP for distributed/shared memory parallelism, and can be
traightforwardly extended to other architectures and program-
ing models, such as the MPI-3 Shared Memory model, Coarray
ortran, extension to GPUs using, for example, CUDA, or extension
o other architectures using Intel oneAPI. We are currently inves-
igating the best way to implement this load-balancing algorithm
n many-core accelerators, though similar algorithms have been
hown to operate efficiently on such architectures [11,27]. The
oftware may need to be carefully structured to ensure that
ll threads are executing the same kernel while allowing for a
ombination of heavy/light tiles. The algorithm can also be com-
ined with vectorized versions of the PIC algorithm, efficiently
xploiting all parallelism levels available in present and near-
uture HPC systems and opening new avenues for the numerical
imulation of kinetic plasmas.
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