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a b s t r a c t

The three-dimensional (3D) quasi-static particle-in-cell (PIC) algorithm is a very efficient method for
modeling short-pulse laser or relativistic charged particle beam–plasma interactions. In this algorithm,
the plasma response, i.e., plasma wave wake, to a non-evolving laser or particle beam is calculated
using a set of Maxwell’s equations based on the quasi-static approximate equations that exclude
radiation. The plasma fields are then used to advance the laser or beam forward using a large time step.
The algorithm is many orders of magnitude faster than a 3D fully explicit relativistic electromagnetic
PIC algorithm. It has been shown to be capable to accurately model the evolution of lasers and
particle beams in a variety of scenarios. At the same time, an algorithm in which the fields, currents
and Maxwell equations are decomposed into azimuthal harmonics has been shown to reduce the
algorithmic complexity of a 3D explicit PIC algorithm to that of a 2D algorithm when the expansion
is truncated while maintaining accuracy for problems with near azimuthal symmetry. This hybrid
algorithm uses a PIC description in r–z and a gridless description in φ. We describe a novel method
that combines the quasi-static and hybrid PIC methods. This algorithm expands the fields, charge and
current density into azimuthal harmonics. A set of the quasi-static field equations is derived for each
harmonic. The complex amplitudes of the fields are then solved using the finite difference method. The
beam and plasma particles are advanced in Cartesian coordinates using the total fields. Details on how
this algorithm was implemented using a similar workflow to an existing quasi-static code, QuickPIC,
are presented. The new code is called QPAD for QuickPIC with Azimuthal Decomposition. Benchmarks
and comparisons between a fully 3D explicit PIC code (OSIRIS), a full 3D quasi-static code (QuickPIC),
and the new quasi-static PIC code with azimuthal decomposition (QPAD) are also presented.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Short-pulse, high-intensity laser and beam–plasma interaction
s an active and robust research area. It involves relativistic,
onlinear and ultrafast plasma physics. It is also a critical topic
o the field of plasma based acceleration (PBA). When an intense
aser or particle beam propagates through a plasma, it excites
relativistic plasma wave (wakefield). These wakefields sup-
ort extremely high and coherent accelerating fields which can
e more than three orders of magnitude in excess of those in
onventional accelerators. The field of PBA has seen rapid experi-
ental progress with many milestones being achieved, including

✩ The review of this paper was arranged by Prof. David W. Walker.
∗ Corresponding author.

E-mail addresses: lifei11@ucla.edu (F. Li), anweiming@bnu.edu.cn (W. An).
https://doi.org/10.1016/j.cpc.2020.107784
0010-4655/© 2020 Elsevier B.V. All rights reserved.
electron acceleration driven by an electron [1,2], laser [3–9]
or proton beam [10], positron acceleration [11] and PBA-based
radiation generation [12–14].

The rapid progress in experiments has been greatly facilitated
by start-to-end simulations using high fidelity particle based
methods. The nonlinear aspects of the physics require the use
of fully kinetic tools and the particle-in-cell (PIC) method has
proven indispensable. The fully explicit relativistic electromag-
netic (EM) PIC method has been used very successfully [15–17]. In
this method, individual macro-particles described by Lagrangian
coordinates are tracked in continuous phase space as finite size
particles (positions and momentum can have continuous values),
and then moments of the distribution, i.e., current density, are
deposited onto stationary mesh/grid points. The electromagnetic
fields are advanced forward in time on the grid points using a

discretized version of Maxwell’s equations. The new fields are
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hen interpolated to the particles positions to push the particles
o new momenta and positions using the relativistic equations of
otion. This sequence is repeated for a desired number of time
teps.
The finite-difference time-domain (FDTD) is the most common

ethod to solve the time-dependent Maxwell’s equations as it
s simple and versatile for parallelism. In the FDTD method,
he Maxwell’s equations are usually discretized using a second
rder accurate central-difference approximation for both space
nd time. The electromagnetic fields are advanced in a leapfrog
anner in time and the electric and magnetic field components
re interlaced in space using the Yee mesh grid. The FFT-based
ethod [15,18–21] is another method that has generated re-
ewed interest to solve the Maxwell’s equations in some other
ocumented PIC codes. This method, sometimes referred to as
pseudo-spectral method, solves Maxwell’s equations in the

ourier wave number space [15], but advances the fields for-
ard in time using a finite difference approach. This can reduce
umerical errors due to spatial derivatives and thus improve
he numerical dispersion relation compared against the FDTD
ethod. However, it is achieved at a cost of decreased computa-

ional efficiency and parallel scalability unless the local FFT-based
omain decomposition [22] is used. The time advance of the fields
n Fourier space can also be done analytically if the currents
re assumed constant during a time step. This is referred to as
he pseudo-spectral analytic time domain (PSATD) approach. In
he FDTD or standard FFT-based methods, the time step of the
ully explicit PIC codes is constrained by the Courant–Friedrichs–
ewy (CFL) condition to prevent a numerical instability. Roughly
peaking, the time step size needs to be less than the smallest cell
ize which in turn is determined by the smallest physical scale
f interest. A second order representation of the time derivative
s then used to push the particles. When modeling short-pulse
aser and beam–plasma interactions, the moving window tech-
ique [23] is a typical choice to follow drive beams that travel
t the speed of light and their wakes. This is commonly used to
tudy PWFA and LWFA including self-modulation regimes. In this
echnique, only a finite window that keeps up with the laser is
imulated. New cells and fresh plasma are added to the front,
hile cells and plasma are dropped off the back. This works
ecause no information and physics that has been dropped can
ffect the plasma in front of it during the simulation.
Today’s supercomputers are capable of providing ∼1016 to

1017 floating point operations per second [24]. To utilize such
omputers the algorithm needs data structures that permit tens
f millions of cores to simultaneously push particles. Effective
tilization of such computers [25] has enabled full-scale 3D mod-
ling of intense laser or relativistic charged particles interaction
ith plasma in some cases. However, even with today’s comput-
rs and PIC software, it is still not possible to carry out start-
o-end simulations of every experiment or proposed concept in
ull 3D using standard PIC codes. In addition, explicit EM PIC
odes can be susceptible to numerical issues including the numer-
cal Cerenkov instability (NCI) [26] and errors to the fields that
urround relativistically moving charges [27]. Furthermore, beam
oading studies can require very fine resolution in the transverse
irection when ion collapse within a particle beam arises [28–30].
Various methods have been developed to more efficiently

odel the short-pulse laser and beam–plasma interactions in
BA, such as self-injection and acceleration, beam loading, hosing,
nd ion motion. These include the boosted frame technique [31],
he quasi-static approximation [32–38], and an azimuthal mode
xpansion method [21,39–41]. The first two are based on the
ssumption that all relevant waves move forward with velocities
ear the speed of light, e.g., no radiation propagates backwards.

ome of these methods can be combined [21,42].

2

The quasi-static approximation (QSA) was first presented as
an analytical tool for studying short-pulse laser interactions
[43,44]. The applicability of QSA originates from the disparity
in time/length scales between how the laser or particle beam
evolves and the period/wavelength of the plasma wake (the
plasma response). In the QSA the plasma response is calculated by
assuming that the shape of the laser or particle beam (envelope
and energy or frequency) is static and the resulting fields from
the plasma response are then used to advance the laser or beam
forward using a very large time step. It was not until the work
of Antonsen and Mora that a PIC algorithm was developed to uti-
lized the QSA. They showed how to push a slice of plasma through
a static laser (or move a static laser past a slice of plasma). Their
code WAKE [32] is two dimensional (2D) using r–z coordinates
and it can model both lasers and particle beams. Whittam also
independently developed a QSA PIC code for modeling particle
beam–plasma interaction [33]. In this implementation, it was
assumed that plasma particles motion is approximated to be non-
relativistic so plasma particles do not move in the beam propaga-
tion direction. LCODE [34] is another 2D r–z PIC code based on the
QSA that only models particle beam drivers. QuickPIC [35,37] was
the first fully 3D QSA based code and it is fully parallelized includ-
ing a pipelining parallel algorithm [37,45]. HiPACE [38] is a more
recent 3D PIC code based on the QSA. QuickPIC can efficiently
simulate both laser pulses and particle beams. It can achieve 102

to 104 speedup without loss of accuracy when compared against
fully explicit PIC codes (e.g., OSIRIS [46]) for relevant problems.

Another method to enhance the computational efficiency ap-
plies the azimuthal Fourier decomposition [39,40]. In this
method, all the field components and current (and charge) den-
sity are expanded into a Fourier series in φ in the azimuthal
direction (into azimuthal harmonics denoted by m); and the
series can be truncated at a value of m determined by the degree
of asymmetry for the problem of interest. This algorithm can be
viewed as a hybrid method where the PIC algorithm is used in
r–z grid and a gridless method is used in φ and it is sometimes
referred to as quasi-3D. By using this algorithm, the problem
reduces to solving the complex amplitude (coefficients for Fourier
series) for each harmonic on a 2D grid. The complex amplitude, as
a function of r and z, is updated only at a cost similar to an r–z 2D
code. Therefore, if only a few harmonics are kept the algorithm
is very efficient. For example, a linearly polarized laser with a
symmetric spot size can be described by only the first harmonic.
In addition to the much lower cost for advancing fields, much
fewer macro-particles are needed for high fidelity. It has been
found that speedups of more than two orders of magnitude over
a full 3D code are possible.

The quasi-3D method has been implemented into some fully
explicit 3D PIC codes [21,40,41] and used to study laser
[14,47] and beam [11] plasma interactions. It also been success-
fully combined with the boosted frame method [21,42]. However,
the azimuthal mode expansion has not been combined with the
QSA method or implemented into a quasi-static PIC code. If the
quasi-3D technique can be successfully combined with the QSA
then dramatic speedups will be possible for problems which are
nearly azimuthally symmetric. Such a code will greatly extend the
scope of PBA research problems that can be studied numerically.

In this paper, we describe a new code that combines a QSA
3D PIC code with an azimuthal Fourier decomposition, called
QPAD (QuickPIC with azimuthal decomposition). The code con-
tains similar procedures and workflow as the 3D quasi-static PIC
code QuickPIC, but with the entirely new framework to utilize the
azimuthal decomposition. While QuickPIC uses FFT based Poisson
solvers to update the fields in each 2D slice of plasma, QPAD
computes the fields by means of finite-difference (FD) solvers

using the cyclic reduction method [48]. Without loss of accuracy,
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he code achieves dramatic speedup over fully 3D QuickPIC for a
ide range of beam-driven plasma acceleration problems. QPAD
urrently only supports particle beam drivers.
The paper is organized as follows: In Section 2, we derive

he governing equations for the complex amplitudes for each
armonic of the relevant fields under the QSA. Section 3 provides
etails of how the algorithm is implemented. First, the entire
umerical workflow that utilizes the three-layer nested loop is
escribed. Next, we introduce the FD implementation of Poisson
olvers for each harmonic amplitude and the boundary conditions
ssociated with them. This is followed by a description of the de-
osition schemes for the source terms for each harmonic needed
or the field equations. In Section 4, we compare simulation
esults between QPAD, QuickPIC and OSIRIS for the beam-driven
akefields and for the hosing instability. A qualitative discussion
n the computational speedup is presented in Section 5. Lastly,
e give a conclusion and a discussion for future work.

. Azimuthal decomposition of electromagnetic fields under
SA

In this section, we describe the physics arguments behind
PAD including a detailed description of the field equations. As
entioned above, the fundamental differences between a fully
xplicit 3D PIC code and QPAD are twofold. First, QPAD is a
ode based on the QSA which separates the time scale of the
lasma evolution from that of a drive laser pulse or high-energy
article beam that moves at the speed of light c. The assumptions
ehind the QSA are based on the fact that the characteristic
volution time for a laser driver or a particle beam driver is
everal orders of magnitude larger than the plasma oscillation
eriod, 2π/ωp where ωp is the plasma frequency. In a quasi-static
ode, a Galilean spatial transformation is made from (x, y, z, t)
(where the laser or beammoves in the ẑ direction) to a co-moving
frame described by coordinates (x, y, ξ = ct − z, s = z). All the
Lagrangian quantities associated with the plasma particles evolve
on the fast-varying time-like variable, ξ , while those of the beam
particles moving close to c evolve on the slow-varying ‘‘time’’
scale, s. The transformations ∂t = c∂ξ , ∂z = ∂s−∂ξ are applied for
all the Eulerian quantities, i.e., fields, charge density and current
density. The QSA assumes that s is the slow-varying time-like
cale, i.e., ∂s ≪ ∂ξ , so that all the terms associated with ∂s are
mall and can thus be neglected.
For remainder of the paper, we use normalized units for all the

hysical quantities; time, length and mass are normalized to ω−1
p ,

/ωp and the electron rest mass me. The normalized Maxwell’s
equations under the QSA can thus be written as

∇⊥ × E⊥ = −
∂Bz

∂ξ
ez, (1)

∇⊥ × Ezez = −
∂

∂ξ
(B⊥ − ez × E⊥), (2)

∇⊥ × B⊥ − Jzez =
∂Ez
∂ξ

ez, (3)

⊥ × Bzez − J⊥ =
∂

∂ξ
(E⊥ + ez × B⊥), (4)

∇⊥ · E⊥ − ρ =
∂Ez
∂ξ
, (5)

∇⊥ · B⊥ =
∂Bz

∂ξ
, (6)

where ∇⊥ = ex∂x + ey∂y. For convenience, the equations for
the transverse and longitudinal fields are written separately. In
this context, transverse and longitudinal are defined with respect
to the direction of laser or particle beam propagation and not
3

to the direction of the wavenumber of the fields. Taking linear
combinations of Eqs. (1), (3), (5) and (6) leads to equations for
he divergence and curl of the transverse force, E⊥ + ez × B⊥, on
particle moving at the speed of light along ẑ,

⊥ × (E⊥ + ez × B⊥) = 0,
∇⊥ · (E⊥ + ez × B⊥) = ρ − Jz .

e can infer from the first of these equations that the transverse
orce can be described by the transverse gradient of a scalar
otential which we call ψ ,

⊥ + ez × B⊥ = −∇⊥ψ. (7)

ubstituting this relationship into the second equation, leads to a
oisson equation for the pseudo potential ψ ,

−∇
2
⊥
ψ = (ρ − Jz). (8)

y taking ez× on both sides of Eq. (2) and using the relation (7),
t can be inferred that Ez =

∂ψ

∂ξ
. This relationship also follows

directly from the definition, Ez = −
∂ϕ

∂z −
∂Az
∂t , and the QSA, where ϕ

and Az are the scalar potential and the ẑ-component of the vector
potential.

The transverse force E⊥ + ez × B⊥ in Eq. (4) and the quantity
⊥−ez ×E⊥ in Eq. (2) are not independent. Therefore, the quasi-
tatic form of Maxwell’s equations given above cannot be used to
dvance the fields forward in time, i.e., ξ , using the FDTD methods
s is done in fully explicit PIC codes. Therefore, in QuickPIC, a set
f Poisson-like equations are employed to directly solve the fields,

2
⊥
B⊥ = ez ×

(
∂J⊥
∂ξ

+∇⊥Jz

)
, (9)

∇
2
⊥
Bz = −ez · (∇⊥ × J⊥), (10)

∇
2
⊥
Ez = ∇⊥ · J⊥. (11)

hich can be derived by applying the QSA to the wave equations
or E and B. After obtaining B⊥ from Eq. (9) and ψ from Eq. (8),
we can calculate E⊥ by subtracting ez×B⊥ from−∇⊥ψ . Although
it is not directly used in QuickPIC, for completeness we write out
the Poisson-like equation for E⊥,

∇
2
⊥
E⊥ = ∇⊥ρ +

∂J⊥
∂ξ

. (12)

We next expand the electromagnetic fields, charge density
and current density in cylindrical coordinates with each quantity
being decomposed into a Fourier series in the azimuthal direction.
To obtain a set of equations for the Fourier amplitude of each az-
imuthal harmonic, we first write the field equations, Eqs. (7)–(12),
in cylindrical coordinates,

er
∂ψ

∂r
+ eφ

1
r
∂ψ

∂φ
= (−Er + Bφ)er − (Eφ + Br )eφ, (13)

∇
2
⊥
ψ = −(ρ − Jz), (14)

∇
2
⊥
Br −

Br

r2
−

2
r2
∂Bφ
∂φ

= −
∂ Jφ
∂ξ

−
1
r
∂ Jz
∂φ
, (15)

2
⊥
Bφ −

Bφ
r2

+
2
r2
∂Br

∂φ
=
∂ Jr
∂ξ

+
∂ Jz
∂r
, (16)

∇
2
⊥
Bz = −

1
r
∂

∂r
(rJφ)+

1
r
∂ Jr
∂φ
, (17)

∇
2
⊥
Er −

Er
r2

−
2
r2
∂Eφ
∂φ

=
∂ρ

∂r
+
∂ Jr
∂ξ
, (18)

∇
2
⊥
Eφ −

Eφ
r2

+
2
r2
∂Er
∂φ

=
1
r
∂ρ

∂φ
+
∂ Jφ
∂ξ
, (19)

∇
2
⊥
Ez =

1
r
∂

∂r
(rJr )+

1
r
∂ Jφ
∂φ
. (20)
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here the 2D (transverse) Laplacian is defined as ∇2
⊥
≡

1
r
∂
∂r

(
r ∂
∂r

)
1
r
∂2

∂φ2
. Expanding the electromagnetic fields, charge and current

ensity into a Fourier series in the azimuthal direction, gives

U(r, φ) =
+∞∑

m=−∞

Um(r)eimφ

= U0(r)+ 2
+∞∑
m=1

Re{Um
} cos(mφ)

− 2
+∞∑
m=1

Im{Um
} sin(mφ)

(21)

where U represents an arbitrary scalar field or components of a
vector field, and note that the amplitude of each harmonic Um

is complex. It follows that U−m
= (Um)∗ because U(r, φ) is real,

which indicates that only the evolution of m ≥ 0 modes need
to be considered. Substituting the expansion into Eqs. (13)–(20)
yields the following governing equations for each mode

er
∂ψm

∂r
+ eφ

im
r
ψm

= (−Em
r + Bm

φ )er − (Em
φ + Bm

r )eφ, (22)

△m ψ
m
= −(ρm

− Jmz ), (23)

△m Bm
r −

Bm
r

r2
−

2im
r2

Bm
φ = −

∂ Jmφ
∂ξ

−
im
r
Jmz , (24)

△m Bm
φ −

Bm
φ

r2
+

2im
r2

Bm
r =

∂ Jmr
∂ξ

+
∂ Jmz
∂r
, (25)

△m Bm
z = −

1
r
∂

∂r
(rJmφ )+

im
r
Jmr , (26)

△mEm
r −

Em
r

r2
−

2im
r2

Em
φ =

∂ρm

∂r
+
∂ Jmr
∂ξ
, (27)

△mEm
φ −

Em
φ

r2
+

2im
r2

Em
r =

im
r
ρm

+
∂ Jmφ
∂ξ
, (28)

△m Em
z =

1
r
∂

∂r
(rJmr )+

im
r
Jmφ (29)

here △m ≡
1
r
∂
∂r

(
r ∂
∂r

)
−

m2

r2
. This set of equations is overdeter-

mined and therefore, similarly to what is currently used in the
3D QuickPIC algorithm [37], we select Eqs. (22)–(26) and (29) to
solve for the electromagnetic fields.

Similar to other QSA codes and Darwin model codes [49], it
is not straightforward to solve the Poisson-like equations and
therefore a predictor–corrector iteration is necessary to implicitly
determine part of field components. The difficulty in our code
arises because the source terms in Eqs. (24) and (25) are not
nown at the appropriate time step. We use the same time
ndexing as in QuickPIC [35,37]. The momentum p and Lorentz
factor γ for the plasma particles are defined on integer time steps,
ξ = nξ∆ξ , while the transverse position x⊥ and all the Eulerian
quantities including ψm, Em, Bm, (ρ−Jz)m, Jm and ∂ξ Jm⊥ are defined
n half-integer time steps, ξ = (nξ + 1

2 )∆ξ . In order to deposit

ξ Jm⊥ and Jm, the momentum pnξ+ 1
2 (the superscript denotes the

ndex of ξ ) needs to be known. These could be obtained by
averaging pnξ+1 and pnξ but pnξ+1 is not known because the
ields at ξ = (nξ + 1

2 )∆ξ are not known. Therefore, an iteration
procedure is needed. The Bm and Em solved at ξ = (nξ− 1

2 )∆ξ are
sed as an appropriate initial guess at ξ = (nξ + 1

2 )∆ξ . These are
hen used to predict pnξ+1 in a leapfrog manner and the pnξ+ 1

2 is
simply evaluated by the average (pnξ+pnξ+1)/2, which we call the
redictor procedure. We note that as described in Ref. [37], ∂ξ Jm⊥
s obtained by analytically evaluating the derivative of the shape
unction and not through a finite difference operation of Jm

⊥
. Using

this method the particle positions do not need be updated within
 i

4

the predictor procedure. The predicted pnξ+ 1
2 are then used to

eposit the source terms ∂ξ Jm⊥ and Jm which are used to improve
the values of Bm and Em from the initial guesses/predictions.
This operation is called corrector procedure. To guarantee the
procedure for correcting Bm

⊥
is stable and that it converges, an

iterative form of the Poisson equation is used

△m Bm,l+1
r −

(
1+

1
r2

)
Bm,l+1
r −

2im
r2

Bm,l+1
φ

= −

(
∂ Jmφ
∂ξ

)l

−
im
r
Jm,lz − Bm,l

r ,

△m Bm,l+1
φ −

(
1+

1
r2

)
Bm,l+1
φ +

2im
r2

Bm,l+1
r

=

(
∂ Jmr
∂ξ

)l

+
∂ Jm,lz

∂r
− Bm,l

φ ,

here the superscript l denotes the iteration step. The other com-
onents of the fields, Em

⊥
, Bm

z , E
m
z can then be obtained once B⊥

s known via Eqs. (22), (26) and (29) respectively (note that ψm

s already known before the predictor–corrector iteration). This
redictor–corrector iteration can be conducted for an arbitrary
umber of times until the answers are convergence to a desired
ccuracy.
Unlike in 3D QuickPIC where the equations for the two compo-

ents of the B⊥ are decoupled, Eqs. (24) and (25) are coupled. For
umerical reasons, we instead seek solutions to a set of decoupled
quations by introducing new variables Bm

+
= Bm

r + iBm
φ and

m
−

= Bm
r − iBm

φ in QPAD. With these new field variables, the
ecoupled equations can be written as(
∂2

∂r2
+

1
r
∂

∂r
−

(m± 1)2

r2
− 1

)
Bm,l+1
± = Sm,l± − Bm,l

± (30)

here

m
±
= −

∂ Jmφ
∂ξ

−
im
r
Jmz ± i

(
∂ Jmr
∂ξ

+
∂ Jmz
∂r

)
.

As we will see in the next section, after discretization, the de-
coupled equations become tri-diagonal linear systems for which
the efficient cyclic reduction algorithm [48] can be applied. On
the other hand, the original coupled equations would be solved
using classic iterative methods or sparse matrix techniques which
typically are computationally less efficient.

For computational simplicity, in the azimuthal mode expan-
sion method, we treat the fields from the beam separately. Due to
the approximation that the transverse current J⊥ is negligible for
beam particles and these particles travel at a speed very closed to
the speed of light, c it follows that ρm

beam ≃ Jmz,beam. There is thus no
ransverse current from the beam which implies that longitudinal
ields Bm

z and Em
z from the beam vanish, and that Eqs. (24) and (25)

educe to an electrostatics problem,

m
⊥,beam = er

im
r
Am
z + eφ

∂Am
z

∂r
nd Am

z satisfies

−△mAm
z = Jmz,beam = ρm

beam. (31)

nce Bm
⊥,beam is known then the components of the electric fields

an be obtained through Em
r,beam = Bm

φ,beam and Em
φ,beam = −Bm

r,beam.

. Algorithm implementation

.1. Numerical workflow in QPAD

In this section, we briefly introduce the numerical workflow
n QPAD. We choose Fortran 2003 to develop QPAD. This code
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Fig. 1. The numerical workflow of QPAD.
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onsists of three loops (see Fig. 1). The outermost level is the
uasi-3D loop in which the charge (current) of the beam particles
re deposited onto the r-ξ plane for multiple Fourier harmonics,
nd the beam particles are pushed in s in the full 3D space
escribed by (x, y, ξ ) coordinates. The particles are pushed using
he leapfrog method with second-order accuracy.

The quasi-2D loop is embedded into the quasi-3D loop to solve
he harmonic amplitudes for all the fields with the plasma and
eam charges and currents as sources. The motion of plasma
articles is in the 2D space described by (x, y) and particles are
ushed in the coordinate ξ . In this loop, the evolution of fields and
he motion of plasma particles are updated slice by slice along
he negative ξ -direction. The transverse fields from the particle
eam are first calculated at a given slice. This together with the
elf-consistent fields from the plasma particles is used to advance
he particles to new position and momenta at the next slice. In
he quasi-static algorithm the particle’s charge depends on its
peed in the ẑ direction and there are well defined relationships
etween pz , p⊥ and ψ . Therefore, the pseudo-potential ψ must
lso be interpolated to each particle’s position and stored for the
ubsequent particle push. The equation of motion for a plasma
article is,

dp⊥
dξ

=
qγ

1+ q
mψ

[
E⊥ +

(
p
γ

× B
)
⊥

]
and

pz =
1+ p2

⊥
− (1− q

mψ)2
q .
2(1− mψ)
5

Once ψ is known, then the transverse fields Er − Bφ and Eφ + Br
can be obtained by taking a transverse gradient of ψ according to
Eq. (22). The next step is to call the predictor–corrector iteration
to implicitly solve the fields induced by plasma as described ear-
lier. The iteration loop starts with updating the particle momenta
by using an initial guess for E and B. The predicted momenta
re then used to deposit the source terms J and ∂ξ J⊥ needed to
olve for B⊥. The updated E⊥ is evaluated by subtracting B⊥ from
∇⊥ψ according to Eq. (22). With the updated J , the longitudinal

ield components Ez and Bz can be straightforwardly solved using
qs. (29) and (26). This iteration is terminated when a maximum
terative step is reached or the updated fields meet a specified
riterion for convergence

max|Bl+1
− Bl

|

max|Bl
|

< tol.

where the chosen tolerance is typically 10−3 or smaller for the
nonlinear PWFA simulations. The threshold value may vary for
other types of problems and should be determined through nu-
merical convergence tests. The last step in the quasi-2D loop is
pushing the plasma particles with the converged electromagnetic
fields (interpolating the fields onto the particle position) and ψ
previously stored on each particle.

In QPAD, the position and momenta of both beam and plasma
particles are advanced using the Boris integrator. In the particle
push, we directly iterate over particles, performing random access
to the fields. The field values are then linearly interpolated onto
the particles’ positions on-the-fly. We currently use a vectorizable
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lgorithm which processes particles in blocks. In the current im-
lementation, particles are not sorted nor are tile data structures
sed to limit random memory access. This is an area for future
ork. However, we note that for many problems the bottleneck is
he field solve and not the particle push. All the fields in QPAD are
olved using second-order accurate finite difference methods in
onjunction with the cyclic reduction method. A finite difference
ersion of free boundary conditions for different types of field
omponents is implemented into QPAD as well. New current and
harge deposition schemes needed for cylindrical geometry and
zimuthal decomposition are also developed and implemented. In
he next two sections, we describe the numerical implementation
f the field solver and deposition in detail.

.2. Finite difference Poisson field solver

In 3D quasi-static PIC codes based on Cartesian coordinates,
.g., QuickPIC and HiPACE [38] (it also can be used in r–z with
zimuthal symmetry as is done in WAKE and LCODE) the fields
re solved using FFTs as they are fast and accurate. High parallel
calability is obtained through careful considerations on minimiz-
ng data transfer and the use of a pipelining algorithm [37,45]. In
PAD, we adopt finite difference (FD) methods to solve Poisson
quations because FFTs can no longer be directly used in cylindri-
al geometry. We define all the fields on the integer grid points ri,
.e., ri = i∆r for i = 1, . . . ,N where N is the total number of grid
points in r̂-direction and ∆r is the radial cell size. Using a 3-point
discretization, the △m operator with second-order precision can
be written as

△mU → β−

i Ui−1 − αiUi + β
+

i Ui+1

where

β±

i =
1
∆2

r
±

1
2ri∆r

, αi =
2
∆2

r
+

m2

r2i
nd U is an arbitrary scalar field. The operator ∂r is approximated

with the central difference indexing with second-order precision.
Similarly, the operator in Eq. (30) is discretized as

∂2

∂r2
+

1
r
∂

∂r
−

(m± 1)2

r2
− 1

)
U → β−

i Ui−1 − µiUi + β
+

i Ui+1

with

µi =
2
∆2

r
+

(m± 1)2

r2i
+ 1.

In QPAD, the governing equations (22), (23), (26), (29), (30)
nd (31) are all discretized. These Poisson equations are con-
erted into tri-diagonal linear systems which can benefit from
ast solvers using the cyclic reduction method. These solvers
re implemented with the library Hypre [50] developed and
aintained by LLNL.

.3. Boundary conditions

Both conducting and free (open) boundary conditions have
een implemented in QPAD. The conducting boundary condition
s implemented by simply setting the tangential components of
he electric field and the normal component of the magnetic field
o zero. The basic idea for free or open boundaries is to assume
hat the space outside the computational domain is vacuum and
hat it extends to infinity. Therefore, solutions can be obtained by
olving a series of Laplace equations. The boundary values can be
etermined by utilizing the fact that the fields are continuous at
he boundary. See the Appendix for the details of the derivation.

When implementing the field solvers in cylindrical geometry,

ssues with respect to singularities on the axis are inevitable

6

ssue because of the presence of the 1/r term. As we discussed
bove, all the field components in QPAD are defined on integer
rid points. Therefore, all of the Poisson equations can have a
ingularity at r = 0. These singularities can be properly treated
y considering the properties of different field components at
= 0. As pointed out by Constantinescu and Lele [51], for any

calar of component of a field in Cartesian coordinate directions,
.e., (ψ, ϕ, Ez, Bz, ρ − Jz, Jz), the m = 0 mode is non-zero at
= 0 while other modes are zero at r = 0. On the other

and, for the field components in cylindrical coordinate directions
Er , Eφ, Br , Bφ, Jr , Jφ) the m = 1 mode is non-zero at r = 0 and the
ther modes are zero at r = 0.
The field components whose boundary values at r = 0 need

o be determined therefore only include ψ0, ϕ0, B0
z , E

0
z and B1

±
;

ll other field components vanish at r = 0. The singularity of the
1
r
∂U
∂r term on the LHS of each Poisson equation (where U denotes

any of fields mentioned above) can be eliminated by applying
L’Hospital’s rule, so that 1

r
∂U
∂r →

∂2U
∂r2

. The terms having 1/r on the
RHS of Poisson equation can be treated in the same manner. There
is another important property for components in the cylindrical
coordinate directions [51]. The combinations Ur + imUφ and Uφ−
mUr vanish at r = 0 for arbitrary m, which implies B1

+
(recalling

the definition is Bm
+
≡ Bm

r + iBm
φ ) vanishes at r = 0 even though

both B1
r and B1

φ are non-zero on the axis. For m ̸= 1 modes Bm
r and

Bm
φ are naturally zero at r = 0 according to previous discussion,
herefore, Bm

+
vanishes on the axis for arbitrary m. Considering the

ymmetry of different fields around the axis, the discrete version
f boundary conditions at r = 0 can therefore be summarized as
ollows:

(ψm=0
1 − ψm=0

0 ) = −(ρ − Jz)m=0
0 ∆2

r (32)

2(Em=0
z,1 − Em=0

z,0 ) = Jm=0
r,1 ∆r (33)

2(Bm=0
z,1 − Bm=0

z,0 ) = −Jm=0
φ,1 ∆r (34)

4(Bm=1
−,1 − Bm=1

−,0 ) = −

[(
∂ Jφ
∂ξ

)m=1

0
+ i

(
∂ Jr
∂ξ

)m=1

0
+ 2i

Jm=1
z,1

∆r

]
∆2

r

(35)

3.4. Deposition of source terms

In order to solve the 1D Poisson equations for each har-
monic amplitude, the source terms on the RHS of the governing
equations (22)–(26) and (29) must be deposited from the parti-
cle information (charge, position and momentum) onto the grid
points. The source terms to be deposited include ρm

− Jmz , Jm
and ∂ξ Jm⊥. Since these source terms are defined on the grid in
the r̂-direction while the particles are described by Cartesian
oordinates, we need to transform the particle positions and mo-
enta from the cylindrical to Cartesian coordinates in QPAD. The

ollowing equation is used to deposit the current as in QuickPIC,

=
1

Vol.

∑
i

qivi

1− viz
S(x⊥ − xi⊥) =

1
Vol.

∑
i

qipi

1− qi
mi
ψi

S(x⊥ − xi⊥)

(36)

here S(x⊥−xi⊥) is the particle shape function to interpolate the
article quantities at ith particle’s transverse position xi⊥ onto

the grid position x⊥. The pseudo-potential felt by an individual
particle ψi is obtained by interpolating the ψ solved on the grid
to the position of the particle. The second expression for J can be
obtained by multiplying the numerator and denominator of the
first expression by the Lorentz factor γi, and using the constant
of motion under the QSA, γ −pz = 1− (q/m)ψ . In order to derive
the deposition scheme in QPAD in which the azimuthal direction
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s gridless, we expand S(x⊥ − xi⊥) into a Fourier series as well. In
ylindrical geometry, the interpolation function is defined as

(x⊥ − xi⊥) ≡
1
r
Sr (r − ri)Sφ(φ − φi),

hich is subject to the normalization condition
∫
drdφ SrSφ = 1.

Next, we expand Sφ into azimuthal harmonics

Sφ(φ − φi) =
∑
m

Smφ (φi)eimφ

here

m
φ (φi) =

1
2π

∫ 2π

0
dφ′ Sφ(φ′

− φi)e−imφ′ ,

and require both Sr and Sφ to satisfy the normalization condition∫
drSr = 1 and

∫
dφSφ = 1. If we take Sφ to be a Dirac delta

unction (which we do in QPAD), then Smφ =
1
2π e

−imφi . In addition,
the current J defined on the r–z grid can be expanded as

J (r, φ) =
∑
m

Jm(r)eimφ,

the deposition for Jm is found to be

Jm =
1

Vol.

∑
i

qipi

1− qi
mi
ψi

1
r
Sr (r − ri)Smφ (φi).

herefore, it is actually not necessary to calculate each m mode
ut only the m = 0 mode from each particle. Any m > 0
ode for an individual particle can be obtained from the m = 0
ontribution by simply multiplying by a phase factor through the
elation Jm = J0e−imφi or recursively through Jm = Jm−1e−iφi if
(φ − φi) = δ(φ − φi) is used.
Likewise, according to Ref. [37], the deposition for (ρ − Jz)m

an be written as

ρ − Jz)m =
1

Vol.

∑
i

qi
r
Sr (r − ri)Smφ (φi),

here (ρ − Jz)m = (ρ − Jz)m−1e−iφi for each particle.
In Section 3.1, we showed that in the predictor–corrector

teration the source term ∂ξ Jm⊥ at the half-integer time step ξ =

n+1/2)∆ξ needs to be calculated. This can be done in two ways.
he first method, which was adopted in the original version of
uickPIC [35], is to predict Jmr and Jmφ at the next integer time step
= (nξ+1)∆ξ and approximate the derivative using the centered
ifference ∂ξ Jmr,φ |

nξ+ 1
2= (Jmr,φ |

nξ+1
−Jmr,φ |

nξ )/∆ξ . However, this ap-
roach requires repartitioning the particles within a single pass
hrough the iteration loop when using domain decomposition as
t requires updating the particle positions and storing previous
nd predicted values. In the current version of QuickPIC [37], this
pproach is replaced by analytically calculating the derivative of
he current in terms of x⊥, p⊥ and ψ using their particle shapes,
hich allows direct deposition without the computationally ex-
ensive particle repartitioning procedure. In QPAD, we use the
pproach in the current version of QuickPIC to deposit ∂ξ Jm⊥. By
efinition, we have

∂ Jmr
∂ξ

=
1

Vol.

∑
i

∂

∂ξ

(
qipr,i

1− qi
mi
ψi

1
r
SrSmφ

)

=
1

Vol.

∑
i

qi
r

(
dξpr,i

1− qi
mi
ψi

SrSmφ

+

pr,idξ ( q
mi
ψi)

(1− qi ψ )2
SrSmφ +

pr,i
1− qi ψ

∂(SrSmφ )

∂ξ

)
.

(37)
mi i mi i k

7

It should be pointed out that the ψi in the denominator is the
otal value which is obtained by summing all the harmonics. The
erivative of ψi with respect to ξ is calculated by

dψi

dξ
= Ez,i +

∂ψi

∂ri

dri
dξ

+
∂ψi

∂φi

dφi

dξ
(38)

here the terms Ez,i,
∂ψi
∂ri

and ∂ψi
∂φi

are regarded as the interpolated
value of Ez ,

∂ψ

∂r and ∂ψ

∂φ
at the particle’s position (ri, φi). The terms

dri
dξ and dφi

dξ are evaluated by

dri
dξ

=
pr,i

1− qi
mi
ψi
,

dφi

dξ
=

1
ri

pφ,i
1− qi

mi
ψi
.

or the last term in the bracket of Eq. (37), ∂ξ (SrSmφ ) is calculated
y

∂

∂ξ

(
Sr (r − ri)Smφ (φi)

)
= −

dri
dξ
∂Sr
∂r

Smφ +
dφi

dξ

∂Smφ
∂φi

Sr

= −
pr,i

1− qi
mi
ψi

∂Sr
∂r

Smφ +
pφ,i

1− qi
mi
ψi

1
ri

∂Smφ
∂φi

Sr

= −
e−imφi

2π

(
pr,i

1− qi
mi
ψi

∂Sr
∂r

+
pφ,i

1− qi
mi
ψi

imSr
ri

)
.

where we have applied Sφ = δ(φ − φi) again. Substituting these
expressions into Eq. (37), we finally obtain the deposition for ∂ξ Jmr

∂ Jmr
∂ξ

=
1

2πVol.

{∑
i

qie−imφi

(
dξpr,i

1− qi
mi
ψi

+
pr,idξ ( q

mψi)
(1− qi

mi
ψi)2

−
pr,ipφ,i

(1− qi
mi
ψi)2

im
ri

−
p2r,i

(1− qi
mi
ψi)2

1
r

)
Sr
r
−
∂

∂r

(∑
i

qie−imφi
p2r,i

(1− qi
mi
ψi)2

Sr
r

)}
,

and likewise we can derive the deposition formula for ∂ξ Jmφ

∂ Jmφ
∂ξ

=
1

2πVol.

{∑
i

qie−imφi

(
dξpφ,i

1− qi
mi
ψi

+
pφ,idξ ( q

mψi)
(1− qi

mi
ψi)2

−
p2φ,i

(1− qi
mi
ψi)2

im
ri

−
pr,ipφ,i

(1− qi
mi
ψi)2

1
r

)
Sr
r
−
∂

∂r

(∑
i

qie−imφi
pr,ipφ,i

(1− qi
mi
ψi)2

Sr
r

)}
.

(39)

. Simulation results

In this section, we present a small sample of benchmark tests
or QPAD compared against results from QuickPIC and 3D OSIRIS.
hese benchmarks are related to the plasma wakefield acceler-
tor (PWFA) concept which uses high-energy particle beams to
xcite a plasma wave wake. The plasma wake provides very large
ccelerating and focusing forces as compared with conventional
ccelerator structures. These fields can be used to accelerate
nd/or focus a trailing beam riding on an appropriate phase inside
he wake. We present benchmarks for driving wakefields in both
he linear and nonlinear regimes with only a single mode (only
= 0 mode). We also present a benchmark for a case where
second witness beam is placed inside a nonlinear wakefield

52,53] with an offset in one direction with respect to the drive
eam. This leads to a hosing instability [54,55] and requires
eeping at least the m = 1 mode.
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Fig. 2. Comparison of beam-driven wakefield in linear regime between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) Ez field. (c) On-axis lineouts
of Ez fields from OSIRIS, QuickPIC and QPAD.
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4.1. Plasma wakefield excitation

We start by simulating linear wakefield excitation. The linear
regime refers to the case that the peak density of the drive beam
nb is much smaller than the background plasma density np, so that
the drive beam only introduces a weak perturbation to the plasma
and the background electrons oscillate in a nearly sinusoidal
fashion. In this case, the drive beam has a bi-Gaussian density
profile with a spot size kpσr = 2.0, bunch length kpσz = 0.5, and
peak density nb/np = 0.1, where k−1

p is the plasma skin depth
where nb =

N
(2π )3/2

exp[−( r2

2σ2
r
+

z2

2σ2
z
)] and N is the number of

articles in the bunch. Since this scenario possesses azimuthal
ymmetry, we only include the m = 0 mode in QPAD which
s equivalent to a 2D r–z simulation using codes such as WAKE
r LCODE. In the QuickPIC and OSIRIS simulations, the cell size
s ∆x = ∆y = 0.0234 k−1

p ,∆z = 0.0195 k−1
p . In the QPAD

imulation, ∆r = 0.0234 k−1
p ,∆z = 0.0195 k−1

p . The drive beams
re initialized with 128 × 128 × 256 particles in x, y and z for
he QuickPIC simulation and with 128 × 32 × 256 particles in
, φ and z for the QPAD simulation. For the plasma, we use 2 × 2
articles per 2D cell in QuickPIC and uniformly distribute 2 × 32
articles within a ring of width ∆r in QPAD. In OSIRIS, 2 × 2 × 2
articles per 3D cell are used to initialize both the plasma and
eam.
The simulation results are shown in Fig. 2. In Fig. 2(a) and (b),

e compare the plasma electron density and Ez field between
uickPIC and QPAD runs. The drive beams, whose centers reside
t ξ = 2, move downward and are not displayed in these figures.
ig. 2(c) compares the lineouts of Ez on the r = 0 axis between
PAD, QuickPIC and OSIRIS. Here, only one predictor–corrector
teration is conducted in QPAD and this already gives excellent
greement with QuickPIC and OSIRIS. We also conducted con-
ergence tests for the predictor–corrector loop by iterating 1, 3
nd 5 times. We found in this scenario, the predictor–corrector
oop converges so rapidly that only one iteration is sufficient to
each the desired simulation accuracy. The off-axis data are also
ompared in this linear wake case as well as in the following
onlinear blowout wake and positron-beam-excited wake cases,
nd excellent agreement is achieved between OSIRIS, QuickPIC
nd QPAD.
Next, we simulate drive beam parameters for which a nonlin-

ar plasma wakefield is excited. In this case the peak density of
he beam is much larger than the plasma density, i.e., nb ≫ np.
ere, we show an example for which nb/np = 4, kpσr = 0.25,
hich leads to the normalized current per unit length of the drive
eam Λ ≡ (nb/np)(kpσr )2 = 0.25, and keep other numerical

arameters the same as those in the linear regime case. In the 3

8

onlinear regime, the Ez on axis now looks similar to a sawtooth
ave as shown in Fig. 3(c). In the region where the background
lasma electrons are fully evacuated by the drive beam (from ξ =

to ξ = 7), the Ez field almost drops linearly to its minimum at
he rear of the first ion bubble. From Fig. 3, we can see that QPAD
ith only one predictor–corrector iteration still gives results in
lmost perfect agreement with OSIRIS and QuickPIC. Similarly
o the convergence test for the linear regime, the predictor–
orrector iteration is found to converge rapidly. Running the
teration more than once does not make an observable difference
o the simulation results.

Besides an electron beam, a very short positron or proton
eam can also excite a bubble-like plasma wake. Due to the
ttractive force from the positron bunch, the background elec-
rons are ‘‘sucked in’’ first by the drive beam rather than ‘‘blown
ut’’ as is the case for an electron beam driver. This leads to the
ackground electrons forming a density peak at the front of the
irst bucket, and the Ez field being negative in that region. After
he plasma electrons collapse to the axis, they then overshoot and
ventually form a blowout type wake in the second wavelength.
n Fig. 4(a) and (b), a bi-Gaussian positron beam with nb/np =

.5, kpσr = 0.8, kpσξ = 0.46 and the center resides at ξ = 3
oves downward. Again, we use only one predictor–corrector

teration to achieve good agreement with the results of QuickPIC
nd OSIRIS.

.2. Hosing instability

In this section, we present a simulation of what is called the
osing instability in PWFA [55]. The hosing instability is one of
he major impediments for PWFA and can lead to beam breakup.
lthough an azimuthally symmetric r–z code such as WAKE and
CODE is very efficient to model PWFA, it cannot be used to
nvestigate the physics involving asymmetries such as the hosing
nstability. For hosing we only compare QPAD against QuickPIC.
he drive beam has a bi-Gaussian profile with a peak density
b/np = 93.5, an rms spot-size kpσr = 0.14 and an rms bunch
ength kpσz = 0.48 which corresponds to Λ ≃ 1.8. The trailing
eam parameters are nb/np = 56, kpσr = 0.14 and kpσz = 0.24.
or both the plasma and the beams there are 16 macro-particles
istributed in φ while for the plasma there are 2 macro-particles
er r–z cell. Within the region [−5σr ,+5σr ] × [−5σz,+5σz] the
rive beam and trailing beam have 128 × 512 and 128 × 256
articles respectively, and have 16 particles azimuthally. The
rive beam is initialized axisymmetrically while the trailing beam
as a small centroid offset of 0.038 k−1

p in x-direction. For the full
D QuickPIC simulation, the plasma has 2 × 2 × 2 particles per
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Fig. 3. Comparison of beam-driven wakefield in nonlinear regime between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) Ez field. (c) On-axis
lineouts of Ez fields from OSIRIS, QuickPIC and QPAD.
Fig. 4. Comparison of positron-beam-driven wakefield between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) Ez field. (c) On-axis lineouts of Ez
ields from OSIRIS, QuickPIC and QPAD.
f

ell and the drive beam and trailing beam have 128 × 128 × 512
nd 128 × 128 × 256 particles within the 5σ rectangular block.
n both QPAD and QuickPIC simulations, the transverse and lon-
itudinal resolutions are chosen to be ∆x = ∆y = ∆r = 0.038k−1

p
nd ∆z = 0.022k−1

p . The selected value of the transverse cell size
s exactly the same as the initial centroid offset of the trailing
eam so that it can be considered as a reasonable upper limit
or well resolving the seeded instability. The initial longitudinal
roper velocity corresponds to γ βz = 20000 for both the drive
nd trailing beams. In the QPAD simulation, modes m = 0, 1, 2,
nd 3 are included. Fig. 5 shows the density distribution with
he background plasma electrons and beams colored blue and
ed respectively. The snapshots were taken at ωpt = 20000. It
an be seen that there is excellent agreement between QPAD
nd QuickPIC for the motion of the trailing beam even for this
onlinear problem.
A more careful comparison between the hosing results is ob-

ained by investigating the beam centroid oscillation during the
ntire acceleration distance for different beam slices. Fig. 6(a)–(c)
lots the centroid oscillation for three slices, residing at +σz, 0
nd −σz with respect to the beam center ξ0. The centroid is de-
ined as 1

N

∑
xi where the sum is taken over all particles within a

slice at z±0.1k−1
p and N is the number of particles. The amplitude

of the centroid oscillation for the slice closer to the beam head
[Fig. 6(c)] remains nearly constant in s, the amplitude grows in s
with a larger growth rate the farther the slice is behind the center
of the beam [Fig. 6(a) and (b)]. This qualitatively agrees well with
the theoretical prediction on the instability growth. Except for
 t

9

a slight phase difference that is evident for larger values of s,
there is excellent agreement between QPAD and full 3D QuickPIC
simulations. These differences may be due to the truncation of
the azimuthal mode expansion at m = 3. We emphasize that a
code such as QPAD is also a powerful tool for carrying out large
parameter scans even if the results are not quantitatively correct.

5. Algorithm complexity

The azimuthal-decomposition-based algorithm has the poten-
tial to greatly reduce the computational requirements without
much loss in accuracy when modeling 3D physics when the
problem only has low order azimuthal asymmetry. This is because
it requires fewer grid points and hence few particles. We can
make a straightforward estimation of the speedup over a full 3D
quasi-static code.

In QuickPIC, the fields are solved on a 2D slab (usually a
square) with nmesh = N2 grid points, so the cost of the Poisson
solver is O(N2 log(N)) assuming the fast FFT method is used. In
QPAD, we solve fields on a 1D mesh with nmesh = N/2 grid points
for 2mmax + 1 components (m = 0 mode and real/imaginary
parts for m > 0 modes) where mmax is the index of the highest
azimuthal mode that is kept. Therefore, the cost of the Poisson
solver is (2mmax + 1)O[(N/2) log(N/2)] using the cyclic reduction
method. The speedup for the field solve will therefore scale as
∼ O(N)/(mmax+

1
2 ) compared with the FFT method used in Quick-

PIC. In QuickPIC, a total number of N2Nppc,xNppc,y macro-particles
or plasma species are used where Nppc,η, (η = x, y) denotes
he particle number per cell in the η-direction. In QPAD, there
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f
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n
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t
a

Fig. 5. Density distribution of plasma electrons and beams in (a) full 3D QuickPIC and (b) QPAD simulations. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Fig. 6. Beam centroid oscillation of slice residing at (a) +σz , (b) 0 and (c) −σz with respect to the beam center ξ0 .
p
N
t
p
s
g

re only NNppc,rNp,φ/2 macro-particles for each plasma species,
here Nppc,r is number of particles per r-z cell and Np,φ is the
umber of particles distributed over 0 < φ < 2π . Assuming
he computational cost of pushing particles is proportional to
he total macro-particle number, the speedup therefore scales
s 2NNppc,xNppc,y/(Nppc,rNp,φ) ∼ O(N). For a majority of PWFA
10
roblems, the configuration with mmax ≤ 2 and particle number
p,φ ∼ 10, Nppc,r ∼ Nppc,x or Nppc,y are enough to capture
he dominant azimuthal asymmetry to effectively simulate the
hysics with nearly round drive beams, so that considerable
peedup can be achieved for typical numerical parameters. The
oal of this paper is to describe how to implement an azimuthal
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ode expansion into a quasi-static PIC code. Issues with respect
o optimization will be addressed in future publications. The par-
llelization in QPAD is also similar to that in QuickPIC. The code
s parallelized using MPI to run on distributed memory clusters,
hich is implemented by means of spatial decomposition in r
nd z dimensions. However, owing to the basic numerical scheme
f a quasi-static code, the parallelization in r direction differs
ssentially from the that in ξ direction. The parallelization in r is
imilar to that in full explicit PIC codes with the macro-particles
xchange between neighboring processors. The interprocess ex-
hange of field values at the domain boundaries is handled by
he built-in routines of Hypre library. In the ξ direction, we use
ipelining algorithm to allow the transverse process slabs to run
synchronously, which can significantly inhibit the idle time.

. Conclusion

We have describe QPAD, a new quasi-static PIC code that uses
he azimuthal Fourier decomposition for the fields. The new code
tilizes the workflow and routines of QuickPIC in which a 2D
ode for evolving the plasma particles in a time like variable ξ is
mbedded into a 3D code that advances beam particles in a time
ike variable s. In QPAD, all the field components are decomposed
nto a few Fourier harmonics in φ. In the 2D part of the code
ach amplitude depends on r and evolves in ξ . Therefore, in
his part of the code the fields are only defined on a 1D grid
n r . The quasi-static version of Maxwell’s equations for each
armonic amplitude is therefore one-dimensional, making the
ew code much faster. A full set of Poisson-like equations that
xactly correspond to those used in the full 3D QuickPIC is written
n cylindrical geometry. A full set of 1D Poisson equations in r
s solved for the Fourier amplitudes in φ for the relevant fields.
o simplify the calculation, we introduced linear combinations of
he complex amplitudes, Bm

±
, to decouple the equations for Bm

r and
m
φ . Open (free) boundary conditions are implemented for all the
ields. For the particle module, the macro-particles are distributed
nd advanced in ξ in a 2D space (r, φ). A predictor–corrector
outine is described. A novel deposition method for ∂J

∂ξ
, J and ρ−Jz

or each harmonic is described and implemented. This scheme
oes not require updating the particle positions to obtain ∂J

∂ξ

hich reduces the complexity of the predictor–corrector routine.
he new code was benchmarked and compared against results
rom 3D OSIRIS and QuickPIC for a few sample cases. Excellent
greement was found for both wake excitation of plasma wave
akes from particle beam drivers (electrons and positrons) and

or the electron hosing instability. Directions for future work
nclude optimizing the field solver to reduce the across-node data
ommunication, adding multi-threading features (OpenMP), and
mplementing more physics including field-ionization, radiation
eaction, and the ponderomotive guiding center model for a laser.
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Appendix. Implementation of free boundary conditions for
electromagnetic fields

In this appendix, we describe the implementation of the open
(free) boundary conditions used to solve Eqs. (23)–(26) and (29).
ig. A.7 shows the grid setup for solving the fields with total N
rid points within the solution region. The dashed line defines the
oundary and the physical domain. It is assumed that outside this
egion there is vacuum out to infinity.

The basic idea is to obtain the analytic solution in vacuum
y solving Laplace equations and then applying solutions at the
oundary. We first consider the scalar Laplace equation,

△m Um
= 0, for r > R, (A.1)

here Um represents the mth mode of ψ , Az , Bz and Ez . It has the
olution
0
= CU,0 + DU,0 ln(r) (A.2)

nd
m>0

= CU,mr−m
+ DU,mrm. (A.3)

he determination of the constants CU,m and DU,m differs depend-
ng on the types of fields. For ψ , it can be shown that Dψ,0 = 0.
y applying Gauss’ theorem to Eq. (8) and considering a circular
egion S of integration with a radius greater than R, leads to∮
∂S
∇⊥ψ dl = 2πr

∂ψ0

∂r
= −

∫
S
(ρ − Jz)dS. (A.4)

ote that the m > 0 modes of ψ do not contribute to the integral
n the left because of the presence of the term eimφ . From the
ontinuity equation under the QSA
∂

∂ξ
(ρ − Jz)+∇⊥ · J⊥ = 0. (A.5)

and using the fact that J⊥ vanishes at the boundary of the surface
integral ∂S, we have
∂

∂ξ

∫
S
(ρ − Jz)dS = 0. (A.6)

hich indicates this integral is zero for any ξ because it is initially
ero (neutral plasma). Therefore, according to Eq. (A.4), we have
πr ∂ψ

0

∂r |r>R= 0 which gives Dψ,0 = 0 by inserting Eq. (A.2).
Requiring ψ → 0 while r → 0, we can determine that Cψ,0 = 0
nd Dψ,m = 0 (m > 0), and thus the solution in the vacuum has
he form

0
= 0, ψm

=
Cψ,m
rm

. (A.7)

For the longitudinal component of beam’s vector potential Az ,
DAz ,0 ̸= 0 because the charge of the beam is apparently non-
neutralized. Applying the natural boundary condition Bφ,beam =
∂Az
∂r → 0 when r → 0 and ignoring the arbitrary constant, we
ave

0
z = DAz ,0 ln(r), Am

z =
CAz ,m

rm
. (A.8)

For Bz and Ez , the only constraint is Bz, Ez → 0 when r → 0,
so that

E0
z = 0, Em

z =
CEz ,m

rm
(A.9)

nd

0
= 0, Bm

=
CBz ,m . (A.10)
z z rm



F. Li, W. An, V.K. Decyk et al. Computer Physics Communications 261 (2021) 107784

t

△

△

I

B

a

B

H
c

n
b
e
c

U

T
t

A

S⎛⎜⎝
a(
Fig. A.7. Grid points layout in r-direction.
The transverse magnetic fields induced by the plasma satisfy
he coupled Laplace equations in the vacuum,

mBm
r −

Bm
r

r2
−

2im
r2

Bm
φ = 0, (A.11)

mBm
φ −

Bm
φ

r2
+

2im
r2

Bm
r = 0. (A.12)

t can be verified that the general solution can be written as

0
r =

CBr ,0

r
, Bm

r =
CBr ,m

rm+1 + DBr ,mr
m−1, (A.13)

nd

0
φ =

CBφ ,0

r
, Bm

φ =
CBφ ,m

rm+1 + DBφ ,mr
m−1. (A.14)

ere, DBr ,m = DBφ ,m = 0 because of the natural boundary
onditions that Br , Bφ → 0 when r → 0.
After obtaining the analytical solution for each field (compo-

ents) in the vacuum, we derive the finite difference form of the
oundary conditions used for solving the discrete Poisson-like
quations. For an arbitrary field Um, the value on the ghost cell
an be evaluated through Taylor expansion (central difference)

m
N+1 = Um

N +
∂Um

∂r

⏐⏐⏐⏐
N
∆r + O(∆2

r ). (A.15)

he derivative at rN+ 1
2
(note that rN+ 1

2
= R) is evaluated using

he analytical formula. For A0
z ,

0
z,N+1 ≃ A0

z,N +
DAz ,0

R
∆r ≃ A0

z,N +
∆r

R ln R
A0
z,N+1 (A.16)

therefore

A0
z,N+1 ≃

(
1+

∆r

R ln(R)

)
A0
z,N . (A.17)

imilarly, for m > 0 modes of ψ, Az, Bz and Ez , we can obtain

ψ

Az
Bz
Ez

⎞⎟⎠
m

N+1

≃

(
1−

m∆r

R

)⎛⎜⎝ψAz
Bz
Ez

⎞⎟⎠
m

N

(A.18)

nd for all the modes of Br and Bφ associated with plasma

Br
Bφ

)m

N+1
≃

(
1−

(m+ 1)∆r

R

)(
Br
Bφ

)m

N
. (A.19)

As Bm
±
rather that Bm

r and Bm
φ are directly solved in QPAD, we need

to perform the linear transformation Bm
±
= Bm

r ± iBm
φ on both sides

of the above equation to obtain the boundary condition for Bm
±

Bm
±,N ≃

(
1−

(m+ 1)∆r

R

)
Bm
±,N+1. (A.20)
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