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The three-dimensional (3D) quasi-static particle-in-cell (PIC) algorithm is a very efficient method for
modeling short-pulse laser or relativistic charged particle beam-plasma interactions. In this algorithm,
the plasma response, i.e., plasma wave wake, to a non-evolving laser or particle beam is calculated
using a set of Maxwell's equations based on the quasi-static approximate equations that exclude
radiation. The plasma fields are then used to advance the laser or beam forward using a large time step.
The algorithm is many orders of magnitude faster than a 3D fully explicit relativistic electromagnetic
PIC algorithm. It has been shown to be capable to accurately model the evolution of lasers and
particle beams in a variety of scenarios. At the same time, an algorithm in which the fields, currents
and Maxwell equations are decomposed into azimuthal harmonics has been shown to reduce the
algorithmic complexity of a 3D explicit PIC algorithm to that of a 2D algorithm when the expansion
is truncated while maintaining accuracy for problems with near azimuthal symmetry. This hybrid
algorithm uses a PIC description in r-z and a gridless description in ¢. We describe a novel method
that combines the quasi-static and hybrid PIC methods. This algorithm expands the fields, charge and
current density into azimuthal harmonics. A set of the quasi-static field equations is derived for each
harmonic. The complex amplitudes of the fields are then solved using the finite difference method. The
beam and plasma particles are advanced in Cartesian coordinates using the total fields. Details on how
this algorithm was implemented using a similar workflow to an existing quasi-static code, QuickPIC,
are presented. The new code is called QPAD for QuickPIC with Azimuthal Decomposition. Benchmarks
and comparisons between a fully 3D explicit PIC code (OSIRIS), a full 3D quasi-static code (QuickPIC),
and the new quasi-static PIC code with azimuthal decomposition (QPAD) are also presented.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction electron acceleration driven by an electron [1,2], laser [3-9]

or proton beam [10], positron acceleration [11] and PBA-based

Short-pulse, high-intensity laser and beam-plasma interaction
is an active and robust research area. It involves relativistic,
nonlinear and ultrafast plasma physics. It is also a critical topic
to the field of plasma based acceleration (PBA). When an intense
laser or particle beam propagates through a plasma, it excites
a relativistic plasma wave (wakefield). These wakefields sup-
port extremely high and coherent accelerating fields which can
be more than three orders of magnitude in excess of those in
conventional accelerators. The field of PBA has seen rapid experi-
mental progress with many milestones being achieved, including
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radiation generation [12-14].

The rapid progress in experiments has been greatly facilitated
by start-to-end simulations using high fidelity particle based
methods. The nonlinear aspects of the physics require the use
of fully kinetic tools and the particle-in-cell (PIC) method has
proven indispensable. The fully explicit relativistic electromag-
netic (EM) PIC method has been used very successfully [15-17]. In
this method, individual macro-particles described by Lagrangian
coordinates are tracked in continuous phase space as finite size
particles (positions and momentum can have continuous values),
and then moments of the distribution, i.e., current density, are
deposited onto stationary mesh/grid points. The electromagnetic
fields are advanced forward in time on the grid points using a
discretized version of Maxwell’s equations. The new fields are
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then interpolated to the particles positions to push the particles
to new momenta and positions using the relativistic equations of
motion. This sequence is repeated for a desired number of time
steps.

The finite-difference time-domain (FDTD) is the most common
method to solve the time-dependent Maxwell’s equations as it
is simple and versatile for parallelism. In the FDTD method,
the Maxwell’s equations are usually discretized using a second
order accurate central-difference approximation for both space
and time. The electromagnetic fields are advanced in a leapfrog
manner in time and the electric and magnetic field components
are interlaced in space using the Yee mesh grid. The FFT-based
method [15,18-21] is another method that has generated re-
newed interest to solve the Maxwell’s equations in some other
documented PIC codes. This method, sometimes referred to as
a pseudo-spectral method, solves Maxwell's equations in the
Fourier wave number space [15], but advances the fields for-
ward in time using a finite difference approach. This can reduce
numerical errors due to spatial derivatives and thus improve
the numerical dispersion relation compared against the FDTD
method. However, it is achieved at a cost of decreased computa-
tional efficiency and parallel scalability unless the local FFT-based
domain decomposition [22] is used. The time advance of the fields
in Fourier space can also be done analytically if the currents
are assumed constant during a time step. This is referred to as
the pseudo-spectral analytic time domain (PSATD) approach. In
the FDTD or standard FFT-based methods, the time step of the
fully explicit PIC codes is constrained by the Courant-Friedrichs-
Lewy (CFL) condition to prevent a numerical instability. Roughly
speaking, the time step size needs to be less than the smallest cell
size which in turn is determined by the smallest physical scale
of interest. A second order representation of the time derivative
is then used to push the particles. When modeling short-pulse
laser and beam-plasma interactions, the moving window tech-
nique [23] is a typical choice to follow drive beams that travel
at the speed of light and their wakes. This is commonly used to
study PWFA and LWFA including self-modulation regimes. In this
technique, only a finite window that keeps up with the laser is
simulated. New cells and fresh plasma are added to the front,
while cells and plasma are dropped off the back. This works
because no information and physics that has been dropped can
effect the plasma in front of it during the simulation.

Today’s supercomputers are capable of providing ~10'® to
~10' floating point operations per second [24]. To utilize such
computers the algorithm needs data structures that permit tens
of millions of cores to simultaneously push particles. Effective
utilization of such computers [25] has enabled full-scale 3D mod-
eling of intense laser or relativistic charged particles interaction
with plasma in some cases. However, even with today’s comput-
ers and PIC software, it is still not possible to carry out start-
to-end simulations of every experiment or proposed concept in
full 3D using standard PIC codes. In addition, explicit EM PIC
codes can be susceptible to numerical issues including the numer-
ical Cerenkov instability (NCI) [26] and errors to the fields that
surround relativistically moving charges [27]. Furthermore, beam
loading studies can require very fine resolution in the transverse
direction when ion collapse within a particle beam arises [28-30].

Various methods have been developed to more efficiently
model the short-pulse laser and beam-plasma interactions in
PBA, such as self-injection and acceleration, beam loading, hosing,
and ion motion. These include the boosted frame technique [31],
the quasi-static approximation [32-38], and an azimuthal mode
expansion method [21,39-41]. The first two are based on the
assumption that all relevant waves move forward with velocities
near the speed of light, e.g., no radiation propagates backwards.
Some of these methods can be combined [21,42].
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The quasi-static approximation (QSA) was first presented as
an analytical tool for studying short-pulse laser interactions
[43,44]. The applicability of QSA originates from the disparity
in time/length scales between how the laser or particle beam
evolves and the period/wavelength of the plasma wake (the
plasma response). In the QSA the plasma response is calculated by
assuming that the shape of the laser or particle beam (envelope
and energy or frequency) is static and the resulting fields from
the plasma response are then used to advance the laser or beam
forward using a very large time step. It was not until the work
of Antonsen and Mora that a PIC algorithm was developed to uti-
lized the QSA. They showed how to push a slice of plasma through
a static laser (or move a static laser past a slice of plasma). Their
code WAKE [32] is two dimensional (2D) using r-z coordinates
and it can model both lasers and particle beams. Whittam also
independently developed a QSA PIC code for modeling particle
beam-plasma interaction [33]. In this implementation, it was
assumed that plasma particles motion is approximated to be non-
relativistic so plasma particles do not move in the beam propaga-
tion direction. LCODE [34] is another 2D r-z PIC code based on the
QSA that only models particle beam drivers. QuickPIC [35,37] was
the first fully 3D QSA based code and it is fully parallelized includ-
ing a pipelining parallel algorithm [37,45]. HiPACE [38] is a more
recent 3D PIC code based on the QSA. QuickPIC can efficiently
simulate both laser pulses and particle beams. It can achieve 10?
to 10* speedup without loss of accuracy when compared against
fully explicit PIC codes (e.g., OSIRIS [46]) for relevant problems.

Another method to enhance the computational efficiency ap-
plies the azimuthal Fourier decomposition [39,40]. In this
method, all the field components and current (and charge) den-
sity are expanded into a Fourier series in ¢ in the azimuthal
direction (into azimuthal harmonics denoted by m); and the
series can be truncated at a value of m determined by the degree
of asymmetry for the problem of interest. This algorithm can be
viewed as a hybrid method where the PIC algorithm is used in
r-z grid and a gridless method is used in ¢ and it is sometimes
referred to as quasi-3D. By using this algorithm, the problem
reduces to solving the complex amplitude (coefficients for Fourier
series) for each harmonic on a 2D grid. The complex amplitude, as
a function of r and z, is updated only at a cost similar to an r-z 2D
code. Therefore, if only a few harmonics are kept the algorithm
is very efficient. For example, a linearly polarized laser with a
symmetric spot size can be described by only the first harmonic.
In addition to the much lower cost for advancing fields, much
fewer macro-particles are needed for high fidelity. It has been
found that speedups of more than two orders of magnitude over
a full 3D code are possible.

The quasi-3D method has been implemented into some fully
explicit 3D PIC codes [21,40,41] and used to study laser
[14,47] and beam [11] plasma interactions. It also been success-
fully combined with the boosted frame method [21,42]. However,
the azimuthal mode expansion has not been combined with the
QSA method or implemented into a quasi-static PIC code. If the
quasi-3D technique can be successfully combined with the QSA
then dramatic speedups will be possible for problems which are
nearly azimuthally symmetric. Such a code will greatly extend the
scope of PBA research problems that can be studied numerically.

In this paper, we describe a new code that combines a QSA
3D PIC code with an azimuthal Fourier decomposition, called
QPAD (QuickPIC with azimuthal decomposition). The code con-
tains similar procedures and workflow as the 3D quasi-static PIC
code QuickPIC, but with the entirely new framework to utilize the
azimuthal decomposition. While QuickPIC uses FFT based Poisson
solvers to update the fields in each 2D slice of plasma, QPAD
computes the fields by means of finite-difference (FD) solvers
using the cyclic reduction method [48]. Without loss of accuracy,
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the code achieves dramatic speedup over fully 3D QuickPIC for a
wide range of beam-driven plasma acceleration problems. QPAD
currently only supports particle beam drivers.

The paper is organized as follows: In Section 2, we derive
the governing equations for the complex amplitudes for each
harmonic of the relevant fields under the QSA. Section 3 provides
details of how the algorithm is implemented. First, the entire
numerical workflow that utilizes the three-layer nested loop is
described. Next, we introduce the FD implementation of Poisson
solvers for each harmonic amplitude and the boundary conditions
associated with them. This is followed by a description of the de-
position schemes for the source terms for each harmonic needed
for the field equations. In Section 4, we compare simulation
results between QPAD, QuickPIC and OSIRIS for the beam-driven
wakefields and for the hosing instability. A qualitative discussion
on the computational speedup is presented in Section 5. Lastly,
we give a conclusion and a discussion for future work.

2. Azimuthal decomposition of electromagnetic fields under
QSA

In this section, we describe the physics arguments behind
QPAD including a detailed description of the field equations. As
mentioned above, the fundamental differences between a fully
explicit 3D PIC code and QPAD are twofold. First, QPAD is a
code based on the QSA which separates the time scale of the
plasma evolution from that of a drive laser pulse or high-energy
particle beam that moves at the speed of light c. The assumptions
behind the QSA are based on the fact that the characteristic
evolution time for a laser driver or a particle beam driver is
several orders of magnitude larger than the plasma oscillation
period, 27 /w, where w), is the plasma frequency. In a quasi-static
code, a Galilean spatial transformation is made from (x,y, z, t)
(where the laser or beam moves in the Z direction) to a co-moving
frame described by coordinates (x,y, & = ct — z,s = z). All the
Lagrangian quantities associated with the plasma particles evolve
on the fast-varying time-like variable, &, while those of the beam
particles moving close to ¢ evolve on the slow-varying “time”
scale, s. The transformations d; = cdg, 9, = d;— 0 are applied for
all the Eulerian quantities, i.e., fields, charge density and current
density. The QSA assumes that s is the slow-varying time-like
scale, i.e, s < 0, so that all the terms associated with 9d; are
small and can thus be neglected.

For remainder of the paper, we use normalized units for all the
physical quantities; time, length and mass are normalized to w,, 1
c/w, and the electron rest mass m,. The normalized Maxwell’s
equations under the QSA can thus be written as

dB,
\Y% E, =——e,, 1
1L XE) IE 4 (1)
d
V., xEe, = af —(B, —e, xE,), (2)
V. xB, —J,e, = 8Eze (3)
1 1 zCz — a%_ Zs
ad
V. xBe —]J, = BS(EL+92XBL) (4)
vV, -E _ % (5)
1-EL —p= 85’
dB,
V,-B =—, 6
1-BL=3¢ (6)
where V, = e.d + e,d,. For convenience, the equations for

the transverse and longitudinal fields are written separately. In
this context, transverse and longitudinal are defined with respect
to the direction of laser or particle beam propagation and not
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to the direction of the wavenumber of the fields. Taking linear
combinations of Egs. (1), (3), (5) and (6) leads to equations for
the divergence and curl of the transverse force, E; +e, x B,, on
a particle moving at the speed of light along Z,
VJ_ X(EJ_“f‘ez XBJ_):O,

Vi -(EL+e xBi)=p—].
We can infer from the first of these equations that the transverse
force can be described by the transverse gradient of a scalar
potential which we call v,
E, +e, xB, =—V_ ¢. (7)
Substituting this relationship into the second equation, leads to a
Poisson equation for the pseudo potential v,

—Viy =(p—J) ®)

By taking e, x on both sides of Eq (2) and using the relation (7),
it can be inferred that E, = This relationship also follows

dé
directly from the definition, E, = — g—f — aai[z, and the QSA, where ¢
and A, are the scalar potential and the Z-component of the vector

potential.

The transverse force E; + e, x B, in Eq. (4) and the quantity
B, —e, xE | in Eq. (2) are not independent. Therefore, the quasi-
static form of Maxwell’s equations given above cannot be used to
advance the fields forward in time, i.e., &£, using the FDTD methods
as is done in fully explicit PIC codes. Therefore, in QuickPIC, a set
of Poisson-like equations are employed to directly solve the fields,

J
V2B, — e, x (Tg + wz> , (9)
V2B, = —e,- (VL x],), (10)
V2E, =V, ],. (11)

which can be derived by applying the QSA to the wave equations
for E and B. After obtaining B, from Eq. (9) and ¢ from Eq. (8),
we can calculate E, by subtracting e, x B, from —V_ y. Although
it is not directly used in QuickPIC, for completeness we write out
the Poisson-like equation for E |,
VIE, =Vip+ L (12)
0

We next expand the electromagnetic fields, charge density
and current density in cylindrical coordinates with each quantity
being decomposed into a Fourier series in the azimuthal direction.
To obtain a set of equations for the Fourier amplitude of each az-
imuthal harmonic, we first write the field equations, Eqs. (7)-(12),
in cylindrical coordinates,

Y 10y
= ~—~ —(—E, +B,)e, — (E, +B 13
"ar +e¢r8¢ (—E + d))er ( o+ r)e¢7 (13)
Viy =—(p—J) (14)
vg B _ 20 _ 10 as)
R ) E 1
By  20B 8jz
V2B, — 2 4 27 16
om0 T e (16)
1 a 19),
V2B -t 17
L7 rar(]¢) r d¢ (17)
E 2 9E a,o 3,
V2E — L 20 20 18
L5 2 g2 ¢ + 9E’ (18)
E, 2 dE 1ap )y
V2E, — 2 4 277 19
=T a5 Trae T e (19)
19 1),
V2E, = —— ) 20
1Ez rar(r]r) r 90 (20)
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where the 2D (transverse) Laplacian is defined as V = 1 .2 (r2)
1 92
+ a2

. Expanding the electromagnetic fields, charge and current
der151ty into a Fourier series in the azimuthal direction, gives

+00
Z U™(r)e™®
m=—o0 o
=U%r)+2 ) %e{U™} cos(mg) (21)

m=1

+00
—2) " Im{U™}sin(me)

m=1
where U represents an arbitrary scalar field or components of a
vector field, and note that the amplitude of each harmonic U™
is complex. It follows that U™ = (U™)* because U(r, ¢) is real,
which indicates that only the evolution of m > 0 modes need
to be considered. Substituting the expansion into Egs. (13)-(20)
yields the following governing equations for each mode

Y™ im

e ;” ey " = (£ + B e, — (B + By, (22)
D™ = —(p" =], (23)

BM  2im Ay im
ApBl— L —pn—__—¢ _ _ym 24
r2 r2 ¢ aé_- r ]Z ’ ( )

By 21m ajm  gIm
ApBl— 2 4 pm = =z 25
mBy — = + T +; (25)

m 19, . im

Am B, = —;5(7’]4, )+ Tjr , (26)

EM  2im dpm M
A Em £ - = L, 27
T2 r2 ¢ or + 9 (27)

5 2im im aly

¢ _ ¢

10

A B = = (") + —1;;’ (29)

rar

where Ay =12 (r2) — 'f—z This set of equations is overdeter-

mined and therefore, similarly to what is currently used in the
3D QuickPIC algorithm [37], we select Eqs. (22)-(26) and (29) to
solve for the electromagnetic fields.

Similar to other QSA codes and Darwin model codes [49], it
is not straightforward to solve the Poisson-like equations and
therefore a predictor-corrector iteration is necessary to implicitly
determine part of field components. The difficulty in our code
arises because the source terms in Eqs. (24) and (25) are not
known at the appropriate time step. We use the same time
indexing as in QuickPIC [35,37]. The momentum p and Lorentz
factor y for the plasma particles are defined on integer time steps,
& = ng Ag, while the transverse position x, and all the Eulerian
quantities including ¥™, E™, B", (p—J,)™,J™ and 9¢J"] are defined
on half-integer time steps, £ = (n + %)Ag. In order to deposit

9:J'" and J™, the momentum p™ +3 (the superscript denotes the
index of &) needs to be known. These could be obtained by
averaging p"st! and p* but p*! is not known because the
fields at & = (ng + 5 )Ag are not known. Therefore, an 1terat10n
procedure is needed. The B™ and E™ solved at £ = (n; )Ag are
used as an appropriate initial guess at & = (ng + 5 )Ag These are

then used to predict p™*' in a leapfrog manner and the p™ +3 s
simply evaluated by the average (p™ +p":+1)/2, which we call the
predictor procedure. We note that as described in Ref. [37], 3]
is obtained by analytically evaluating the derivative of the shape
function and not through a finite difference operation of J'. Using
this method the particle positions do not need be updated within
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the predictor procedure. The predicted p™ +3 are then used to
deposit the source terms d¢J'" and J™ which are used to improve
the values of B™ and E™ from the initial guesses/predictions.
This operation is called corrector procedure. To guarantee the
procedure for correcting BT is stable and that it converges, an
iterative form of the Poisson equation is used

1 2im
D BT (1 + 72) By — B!

s B )
()s r

2im
I+1 I+1 J
Am By — <1+ )Bm++—r2 B

— % +8J;n’ _Bm,l
A€ ar ¢

where the superscript [ denotes the iteration step. The other com-
ponents of the fields, E'?, B!, EI' can then be obtained once B,
is known via Egs. (22), (26) and (29) respectively (note that ™
is already known before the predictor-corrector iteration). This
predictor—corrector iteration can be conducted for an arbitrary
number of times until the answers are convergence to a desired
accuracy.

Unlike in 3D QuickPIC where the equations for the two compo-
nents of the B, are decoupled, Eqs. (24) and (25) are coupled. For
numerical reasons, we instead seek solutions to a set of decoupled
equations by introducing new variables B} = B + iBg; and

B™ = B — iBy in QPAD. With these new field variables, the
decoupled equations can be written as

82 19 (mil)z m,l+1 m,l m,|

_—t—— —— —1 )BT =5 — B 30
<8r2 ror r2 + + + (30)
where
Sﬁz—%—iﬂz’"i U7 312 .

& r &

As we will see in the next section, after discretization, the de-
coupled equations become tri-diagonal linear systems for which
the efficient cyclic reduction algorithm [48] can be applied. On
the other hand, the original coupled equations would be solved
using classic iterative methods or sparse matrix techniques which
typically are computationally less efficient.

For computational simplicity, in the azimuthal mode expan-
sion method, we treat the fields from the beam separately. Due to
the approximation that the transverse current J | is negligible for
beam particles and these particles travel at a speed very closed to
the speed of light, c it follows that pfl, =~ - Meam- 1here is thus no
transverse current from the beam which implies that longitudinal
fields B]' and E]" from the beam vanish, and that Egs. (24) and (25)
reduce to an electrostatics problem,

im 0AT

BT =e—A"+e
Tre ? or

1 ,beam

and A7' satisfies

- AmAm = 2beam = Iotr)neam' (31)
Once BY ..., is known then the components of the electric fields
can be obtained through Elveam = Bj beam aNd Eflpesy = —Bleam-

3. Algorithm implementation
3.1. Numerical workflow in QPAD

In this section, we briefly introduce the numerical workflow
in QPAD. We choose Fortran 2003 to develop QPAD. This code
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quasi-3D loop
, 2D routine for
deposit beam charge plasma & field :
== i
| t< tmax - = -7 | 3
‘ - -
termination P>t _ - interpolate field & |,
! - push beam particles | 1

compute 2D beam deposit plasma compute y & extract compute E-B,,

: field charge to particles E,*B, 3

i 68 |

L ; : |

: 8 b pJg;egf;Sli:: fpl)zlr(:if;es predictor-corrector 3

A - _:_;_7.-—_,’__’_,_’__’,__’ __________________________ —

- \
- \
=TT - predictor-corrector iteration \\

| .| update particle depositJ,, J, update B & B compute E &B _._.i

i r (] z z |

! momenta 9 &0, convergence

: ) criterion

: L convergence criteron not reached J reached

Fig. 1. The numerical workflow of QPAD.

consists of three loops (see Fig. 1). The outermost level is the
quasi-3D loop in which the charge (current) of the beam particles
are deposited onto the r-£ plane for multiple Fourier harmonics,
and the beam particles are pushed in s in the full 3D space
described by (x, y, &) coordinates. The particles are pushed using
the leapfrog method with second-order accuracy.

The quasi-2D loop is embedded into the quasi-3D loop to solve
the harmonic amplitudes for all the fields with the plasma and
beam charges and currents as sources. The motion of plasma
particles is in the 2D space described by (x, y) and particles are
pushed in the coordinate &. In this loop, the evolution of fields and
the motion of plasma particles are updated slice by slice along
the negative £-direction. The transverse fields from the particle
beam are first calculated at a given slice. This together with the
self-consistent fields from the plasma particles is used to advance
the particles to new position and momenta at the next slice. In
the quasi-static algorithm the particle’s charge depends on its
speed in the Z direction and there are well defined relationships
between p,, p, and . Therefore, the pseudo-potential 1 must
also be interpolated to each particle’s position and stored for the
subsequent particle push. The equation of motion for a plasma
particle is,

dp, qy [ (p )]
=L _ E +(=xB

& 1+iy [T\ 7))
and

C14p (1= LYY
T 20—y

Once v is known, then the transverse fields E, — B, and Eg + B,
can be obtained by taking a transverse gradient of ¢ according to
Eq. (22). The next step is to call the predictor-corrector iteration
to implicitly solve the fields induced by plasma as described ear-
lier. The iteration loop starts with updating the particle momenta
by using an initial guess for E and B. The predicted momenta
are then used to deposit the source terms J and d¢J, needed to
solve for B, . The updated E is evaluated by subtracting B, from
—V. v according to Eq. (22). With the updated J, the longitudinal
field components E, and B, can be straightforwardly solved using
Eqs. (29) and (26). This iteration is terminated when a maximum
iterative step is reached or the updated fields meet a specified
criterion for convergence

max|B*! — BY|

; < tol.
max|B|

where the chosen tolerance is typically 10~3 or smaller for the
nonlinear PWFA simulations. The threshold value may vary for
other types of problems and should be determined through nu-
merical convergence tests. The last step in the quasi-2D loop is
pushing the plasma particles with the converged electromagnetic
fields (interpolating the fields onto the particle position) and
previously stored on each particle.

In QPAD, the position and momenta of both beam and plasma
particles are advanced using the Boris integrator. In the particle
push, we directly iterate over particles, performing random access
to the fields. The field values are then linearly interpolated onto
the particles’ positions on-the-fly. We currently use a vectorizable
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algorithm which processes particles in blocks. In the current im-
plementation, particles are not sorted nor are tile data structures
used to limit random memory access. This is an area for future
work. However, we note that for many problems the bottleneck is
the field solve and not the particle push. All the fields in QPAD are
solved using second-order accurate finite difference methods in
conjunction with the cyclic reduction method. A finite difference
version of free boundary conditions for different types of field
components is implemented into QPAD as well. New current and
charge deposition schemes needed for cylindrical geometry and
azimuthal decomposition are also developed and implemented. In
the next two sections, we describe the numerical implementation
of the field solver and deposition in detail.

3.2. Finite difference Poisson field solver

In 3D quasi-static PIC codes based on Cartesian coordinates,
e.g., QuickPIC and HiPACE [38] (it also can be used in r-z with
azimuthal symmetry as is done in WAKE and LCODE) the fields
are solved using FFTs as they are fast and accurate. High parallel
scalability is obtained through careful considerations on minimiz-
ing data transfer and the use of a pipelining algorithm [37,45]. In
QPAD, we adopt finite difference (FD) methods to solve Poisson
equations because FFTs can no longer be directly used in cylindri-
cal geometry. We define all the fields on the integer grid points r;,
ie,r,=iA, fori=1,..., N where N is the total number of grid
points in F-direction and A, is the radial cell size. Using a 3-point
discretization, the A,, operator with second-order precision can
be written as

AU = B Uizq — Ui + B Uisg

where

lg;t — i + ; o = i + mﬁz
! A2 7oA A2 ?

and U is an arbitrary scalar field. The operator 9, is approximated
with the central difference indexing with second-order precision.
Similarly, the operator in Eq. (30) is discretized as

32+1a (m £ 1)
ar2  ror r2

with

- 1) U — B Uisy — il + B Uit

2 (m%1y

A2 2
A r;

In QPAD, the governing equations (22), (23), (26), (29), (30)
and (31) are all discretized. These Poisson equations are con-
verted into tri-diagonal linear systems which can benefit from
fast solvers using the cyclic reduction method. These solvers
are implemented with the library Hypre [50] developed and
maintained by LLNL.

mi= +1

3.3. Boundary conditions

Both conducting and free (open) boundary conditions have
been implemented in QPAD. The conducting boundary condition
is implemented by simply setting the tangential components of
the electric field and the normal component of the magnetic field
to zero. The basic idea for free or open boundaries is to assume
that the space outside the computational domain is vacuum and
that it extends to infinity. Therefore, solutions can be obtained by
solving a series of Laplace equations. The boundary values can be
determined by utilizing the fact that the fields are continuous at
the boundary. See the Appendix for the details of the derivation.

When implementing the field solvers in cylindrical geometry,
issues with respect to singularities on the axis are inevitable
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issue because of the presence of the 1/r term. As we discussed
above, all the field components in QPAD are defined on integer
grid points. Therefore, all of the Poisson equations can have a
singularity at r = 0. These singularities can be properly treated
by considering the properties of different field components at
r = 0. As pointed out by Constantinescu and Lele [51], for any
scalar of component of a field in Cartesian coordinate directions,
ie, (V,¢,E;,B;,p — J;,J;), the m = 0 mode is non-zero at
r = 0 while other modes are zero at r = 0. On the other
hand, for the field components in cylindrical coordinate directions
(Er,Eg, Br, By, Jr, Jp) the m = 1 mode is non-zero at r = 0 and the
other modes are zero at r = 0.

The field components whose boundary values at r = 0 need
to be determined therefore only include ¥°, ¢° B?, E? and BL;
all other field components vanish at r = 0. The singularity of the
: %Lr’ term on the LHS of each Poisson equation (where U denotes
any of fields mentioned above) can be eliminated by applying
L'Hospital’s rule, so that 19 — ‘2%’ The terms having 1/r on the
RHS of Poisson equation can be treated in the same manner. There
is another important property for components in the cylindrical
coordinate directions [51]. The combinations U, +imUg and Uy —
imU, vanish at r = 0 for arbitrary m, which implies Bi (recalling
the definition is B} = B + iBZ;) vanishes at r = 0 even though
both B! and Bé are non-zero on the axis. For m # 1 modes B" and
Bg' are naturally zero at r = 0 according to previous discussion,
therefore, BT vanishes on the axis for arbitrary m. Considering the
symmetry of different fields around the axis, the discrete version
of boundary conditions at r = 0 can therefore be summarized as
follows:

AP0 — =) = —(p — L )§=°A7 (32)
2T —ENSO) =0 A, (33)
2B — BIGY) = =150 A, (34)

m=1
4(B™' —B"Y) = — [(2@)
0

3.4. Deposition of source terms

3)r N
(8&) +2i A i| A

(35)

In order to solve the 1D Poisson equations for each har-
monic amplitude, the source terms on the RHS of the governing
equations (22)-(26) and (29) must be deposited from the parti-
cle information (charge, position and momentum) onto the grid
points. The source terms to be deposited include p™ — J, J™
and ag]T Since these source terms are defined on the grid in
the r-direction while the particles are described by Cartesian
coordinates, we need to transform the particle positions and mo-
menta from the cylindrical to Cartesian coordinates in QPAD. The
following equation is used to deposit the current as in QuickPIC,

qip;
I=var — 1— v, Sy =) = Gor 21— i w, i)

(36)

where S(x, —x;, ) is the particle shape function to interpolate the
particle quantities at ith particle’s transverse position x;; onto
the grid position x,. The pseudo-potential felt by an individual
particle ; is obtained by interpolating the i solved on the grid
to the position of the particle. The second expression for J can be
obtained by multiplying the numerator and denominator of the
first expression by the Lorentz factor y;, and using the constant
of motion under the QSA, y —p, = 1—(q/m)y. In order to derive
the deposition scheme in QPAD in which the azimuthal direction
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is gridless, we expand S(x; — x;, ) into a Fourier series as well. In
cylindrical geometry, the interpolation function is defined as

S(x1 — %)=

1
?Sr(r —17)Sy(P — 1),

which is subject to the normalization condition f drd¢ S;Sy = 1.
Next, we expand S, into azimuthal harmonics

Sp(¢p — ) = Zsm i)™
where
1 2 ) ,
P90 = o fo d¢’ Sy’ — dle™

and require both S; and S, to satisfy the normalization condition
JdrS; = 1and [d$S, = 1. If we take S, to be a Dirac delta
function (which we do in QPAD), then Sg‘ = %e‘im‘f’i. In addition,
the current J defined on the r-z grid can be expanded as

=D J"rem™,

the deposition for J™

1 qul
Vol. Iﬁz

is found to be

"= Bt - rspn.
Therefore, it is actually not necessary to calculate each m mode
but only the m = 0 mode from each particle. Any m > 0
mode for an individual particle can be obtained from the m = 0
contribution by simply multiplying by a phase factor through the
relation J™ = J%¢ ™% or recursively through J™ = J" e % if
5(¢ — ¢i) = (¢ — ¢i) is used.

Likewise, according to Ref. [37], the deposition for (p — J,)™
can be written as

(o —J)" Ls,(r — )5y

~ Vol.

where (p —J,)™ = (p —J,)™ e~ for each particle.

In Section 3.1, we showed that in the predictor-corrector
iteration the source term 9¢J' at the half-integer time step & =
(n+1/2)A¢ needs to be calculated. This can be done in two ways.
The first method, which was adopted in the original version of
QuickPIC [35], is to predict J;" and J' at the next integer time step
& = (ng+1)A; and approximate the derivative using the centered
difference 35] |"5+5— U’“ |7 +1 ]’" |"¢)/ Ag. However, this ap-
proach requ1res repartltlonmg the partlcles within a single pass
through the iteration loop when using domain decomposition as
it requires updating the particle positions and storing previous
and predicted values. In the current version of QuickPIC [37], this
approach is replaced by analytically calculating the derivative of
the current in terms of x,, p, and v using their particle shapes,
which allows direct deposition without the computationally ex-
pensive particle repartitioning procedure. In QPAD, we use the
approach in the current version of QuickPIC to deposit d¢J]. By
definition, we have

aJ" 1 0 szrz 1. om
-y = —5,S"
& Vol. o0& 11— iy, T
1 qi [ depri
= — = ———S5,S 37
vOl.Zr<1—g;,w,-’¢ 37

Pr,idé( l//l) Dr.i a(srsgl)
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It should be pointed out that the v; in the denominator is the
total value which is obtained by summing all the harmonics. The
derivative of y; with respect to & is calculated by
dyi _p | didn | dvidg
de or; dg da¢; d&

where the terms E;. ,, wa and - 8‘/" are regarded as the interpolated

(38)

value of EZ, and at the partlcle's position (r;, ¢;). The terms

3;‘ and d"" are evaluated by

% _ __Dbri % 1 P¢ i
dé 1 Ly7 dg r1-4 Ly

For the last term in the bracket of Eq. (37), 8§(Sr5$) is calculated
by

0 " dr; 9S; m d¢l
— (S(r = ST () = %

- S
o dg ar % ' dg ag;
_ prr 8Sr m p(j),i l 85;15
Lyor ™ T 1— Ly o
_ _e’””"" Pri S ppi  imS
27 — %d/‘l or 1-— %lﬂl T ’

where we have applied Sy = 8(¢ — ¢;) again. Substituting these
expressions into Eq. (37), we finally obtain the deposition for ¢

a]m 1 Zq —im; depri I pr,idé(%wi)
l i i
9€  2mVol. T— gy (1= L)
ppe im
(] - ,%wl)z Ti

P?z —1m¢, pT' Sr
(- Lyp )r (Zq’ (1— Gy )}

and likewise we can derive the deposition formula for 9 ]¢

dp 1 > gemm dePoi  Poide()
98 2mVol. | &7 T— iy (1= g
_ P im
(1= Zyp
Dr.iPg.i o imdi PriPgi Sr
—_—— — e — q L
(1= Zyp )r (ZI (1= vy >}

(39)
4. Simulation results

In this section, we present a small sample of benchmark tests
for QPAD compared against results from QuickPIC and 3D OSIRIS.
These benchmarks are related to the plasma wakefield acceler-
ator (PWFA) concept which uses high-energy particle beams to
excite a plasma wave wake. The plasma wake provides very large
accelerating and focusing forces as compared with conventional
accelerator structures. These fields can be used to accelerate
and/or focus a trailing beam riding on an appropriate phase inside
the wake. We present benchmarks for driving wakefields in both
the linear and nonlinear regimes with only a single mode (only

= 0 mode). We also present a benchmark for a case where
a second witness beam is placed inside a nonlinear wakefield
[52,53] with an offset in one direction with respect to the drive
beam. This leads to a hosing instability [54,55] and requires
keeping at least the m = 1 mode.



F. Li, W. An, V.K. Decyk et al.

Computer Physics Communications 261 (2021) 107784

(] v
(?‘ 10 [ T T | T T T L | T T T T | T T ] 8 0.1 ...... OSIRIS
- (b) 8° - -QuickPIC, iter=1

81— = —QPAD, iter=1
- r B 0.05
=n r ] —~
2 3o e >
$ O r 1H13 2 o
o = 4 JHE &
E) L i LL]N |_|JN
g L J
° oL o ] -0.05
- [ QuickPIC QPAD 13 (c)
~ 0 T S O O W I g _01

-5 5 ' 0 5 10
x [c/w ] glc/w]

Fig. 2. Comparison of beam-driven wakefield in linear regime between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) E; field. (c¢) On-axis lineouts

of E, fields from OSIRIS, QuickPIC and QPAD.

4.1. Plasma wakefield excitation

We start by simulating linear wakefield excitation. The linear
regime refers to the case that the peak density of the drive beam
np is much smaller than the background plasma density n,, so that
the drive beam only introduces a weak perturbation to the plasma
and the background electrons oscillate in a nearly sinusoidal
fashion. In this case, the drive beam has a bi-Gaussian density
profile with a spot size k,0; = 2.0, bunch length kyo, = 0.5, and
peak density np/n, = 0.1, where k;! is the plasma skin depth
where n, = ﬁ exp[—(% + 22722)] and N is the number of
particles in the bunch. Since this scenario possesses azimuthal
symmetry, we only include the m = 0 mode in QPAD which
is equivalent to a 2D r-z simulation using codes such as WAKE
or LCODE. In the QuickPIC and OSIRIS simulations, the cell size
is Ay = A, = 0.0234 k;ﬂ A, = 0.0195 k;1. In the QPAD
simulation, A, = 0.0234 k;1, A, = 0.0195 k;‘. The drive beams
are initialized with 128 x 128 x 256 particles in x, y and z for
the QuickPIC simulation and with 128 x 32 x 256 particles in
r, ¢ and z for the QPAD simulation. For the plasma, we use 2 x 2
particles per 2D cell in QuickPIC and uniformly distribute 2 x 32
particles within a ring of width A; in QPAD. In OSIRIS, 2 x 2 x 2
particles per 3D cell are used to initialize both the plasma and
beam.

The simulation results are shown in Fig. 2. In Fig. 2(a) and (b),
we compare the plasma electron density and E, field between
QuickPIC and QPAD runs. The drive beams, whose centers reside
at £ = 2, move downward and are not displayed in these figures.
Fig. 2(c) compares the lineouts of E; on the r = 0 axis between
QPAD, QuickPIC and OSIRIS. Here, only one predictor-corrector
iteration is conducted in QPAD and this already gives excellent
agreement with QuickPIC and OSIRIS. We also conducted con-
vergence tests for the predictor-corrector loop by iterating 1, 3
and 5 times. We found in this scenario, the predictor-corrector
loop converges so rapidly that only one iteration is sufficient to
reach the desired simulation accuracy. The off-axis data are also
compared in this linear wake case as well as in the following
nonlinear blowout wake and positron-beam-excited wake cases,
and excellent agreement is achieved between OSIRIS, QuickPIC
and QPAD.

Next, we simulate drive beam parameters for which a nonlin-
ear plasma wakefield is excited. In this case the peak density of
the beam is much larger than the plasma density, i.e., n, > np.
Here, we show an example for which n,/n, = 4, k0, = 0.25,
which leads to the normalized current per unit length of the drive
beam A = (np/ny)kyo:)> = 0.25, and keep other numerical
parameters the same as those in the linear regime case. In the

nonlinear regime, the E, on axis now looks similar to a sawtooth
wave as shown in Fig. 3(c). In the region where the background
plasma electrons are fully evacuated by the drive beam (from & =
3to & =7), the E, field almost drops linearly to its minimum at
the rear of the first ion bubble. From Fig. 3, we can see that QPAD
with only one predictor-corrector iteration still gives results in
almost perfect agreement with OSIRIS and QuickPIC. Similarly
to the convergence test for the linear regime, the predictor-
corrector iteration is found to converge rapidly. Running the
iteration more than once does not make an observable difference
to the simulation results.

Besides an electron beam, a very short positron or proton
beam can also excite a bubble-like plasma wake. Due to the
attractive force from the positron bunch, the background elec-
trons are “sucked in” first by the drive beam rather than “blown
out” as is the case for an electron beam driver. This leads to the
background electrons forming a density peak at the front of the
first bucket, and the E, field being negative in that region. After
the plasma electrons collapse to the axis, they then overshoot and
eventually form a blowout type wake in the second wavelength.
In Fig. 4(a) and (b), a bi-Gaussian positron beam with n,/n, =
2.5, kyor = 0.8, kyor = 0.46 and the center resides at § = 3
moves downward. Again, we use only one predictor-corrector
iteration to achieve good agreement with the results of QuickPIC
and OSIRIS.

4.2. Hosing instability

In this section, we present a simulation of what is called the
hosing instability in PWFA [55]. The hosing instability is one of
the major impediments for PWFA and can lead to beam breakup.
Although an azimuthally symmetric r-z code such as WAKE and
LCODE is very efficient to model PWFA, it cannot be used to
investigate the physics involving asymmetries such as the hosing
instability. For hosing we only compare QPAD against QuickPIC.
The drive beam has a bi-Gaussian profile with a peak density
np/n, = 93.5, an rms spot-size k,o; = 0.14 and an rms bunch
length k,o, = 0.48 which corresponds to A ~ 1.8. The trailing
beam parameters are n,/n, = 56, kyo, = 0.14 and k,o, = 0.24.
For both the plasma and the beams there are 16 macro-particles
distributed in ¢ while for the plasma there are 2 macro-particles
per r-z cell. Within the region [—50;, +50;] x [—50,, +50,] the
drive beam and trailing beam have 128 x 512 and 128 x 256
particles respectively, and have 16 particles azimuthally. The
drive beam is initialized axisymmetrically while the trailing beam
has a small centroid offset of 0.038 k; 1in x-direction. For the full
3D QuickPIC simulation, the plasma has 2 x 2 x 2 particles per
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Fig. 3. Comparison of beam-driven wakefield in nonlinear regime between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) E, field. (c) On-axis

lineouts of E, fields from OSIRIS, QuickPIC and QPAD.
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Fig. 4. Comparison of positron-beam-driven wakefield between OSIRIS, QuickPIC and QPAD. (a) Background electron density. (b) E, field. (c) On-axis lineouts of E,

fields from OSIRIS, QuickPIC and QPAD.

cell and the drive beam and trailing beam have 128 x 128 x 512
and 128 x 128 x 256 particles within the 5¢ rectangular block.
In both QPAD and QuickPIC simulations, the transverse and lon-
gitudinal resolutions are chosentobe Ay = A, = A, = 0.038k;l
and A; = 0.022k; 1. The selected value of the transverse cell size
is exactly the same as the initial centroid offset of the trailing
beam so that it can be considered as a reasonable upper limit
for well resolving the seeded instability. The initial longitudinal
proper velocity corresponds to y8, = 20000 for both the drive
and trailing beams. In the QPAD simulation, modes m = 0, 1, 2,
and 3 are included. Fig. 5 shows the density distribution with
the background plasma electrons and beams colored blue and
red respectively. The snapshots were taken at w,t = 20000. It
can be seen that there is excellent agreement between QPAD
and QuickPIC for the motion of the trailing beam even for this
nonlinear problem.

A more careful comparison between the hosing results is ob-
tained by investigating the beam centroid oscillation during the
entire acceleration distance for different beam slices. Fig. 6(a)-(c)
plots the centroid oscillation for three slices, residing at +o,, 0
and —o, with respect to the beam center &p. The centroid is de-
fined as ﬁ > x; where the sum is taken over all particles within a
slice at zj:O.lk;1 and N is the number of particles. The amplitude

of the centroid oscillation for the slice closer to the beam head
[Fig. 6(c)] remains nearly constant in s, the amplitude grows in s
with a larger growth rate the farther the slice is behind the center
of the beam [Fig. 6(a) and (b)]. This qualitatively agrees well with
the theoretical prediction on the instability growth. Except for

a slight phase difference that is evident for larger values of s,
there is excellent agreement between QPAD and full 3D QuickPIC
simulations. These differences may be due to the truncation of
the azimuthal mode expansion at m = 3. We emphasize that a
code such as QPAD is also a powerful tool for carrying out large
parameter scans even if the results are not quantitatively correct.

5. Algorithm complexity

The azimuthal-decomposition-based algorithm has the poten-
tial to greatly reduce the computational requirements without
much loss in accuracy when modeling 3D physics when the
problem only has low order azimuthal asymmetry. This is because
it requires fewer grid points and hence few particles. We can
make a straightforward estimation of the speedup over a full 3D
quasi-static code.

In QuickPIC, the fields are solved on a 2D slab (usually a
square) with nmesn = N? grid points, so the cost of the Poisson
solver is O(N?log(N)) assuming the fast FFT method is used. In
QPAD, we solve fields on a 1D mesh with nyesy = N/2 grid points
for 2mmax + 1 components (m = 0 mode and real/imaginary
parts for m > 0 modes) where my,,x is the index of the highest
azimuthal mode that is kept. Therefore, the cost of the Poisson
solver is (2mpmax + 1)O[(N/2)log(N/2)] using the cyclic reduction
method. The speedup for the field solve will therefore scale as
~ O(N)/(Mmax+ %) compared with the FFT method used in Quick-
PIC. In QuickPIC, a total number of N?Nppc «Nppcy macro-particles
for plasma species are used where Ny, ,, (7 = X,y) denotes
the particle number per cell in the n-direction. In QPAD, there
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Fig. 5. Density distribution of plasma electrons and beams in (a) full 3D QuickPIC and (b) QPAD simulations. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Beam centroid oscillation of slice residing at (a) +o,, (b) 0 and (c) —o, with respect to the beam center &,.

are only NNppc Ny 4/2 macro-particles for each plasma species,
where Nppcr is number of particles per r-z cell and N, 4 is the
number of particles distributed over 0 < ¢ < 2m. Assuming
the computational cost of pushing particles is proportional to
the total macro-particle number, the speedup therefore scales
as 2NNppe xNppe,y/(Nppe,rNp,¢) ~ O(N). For a majority of PWFA

10

problems, the configuration with my,, < 2 and particle number
Nps ~ 10, Npper ~ Nppex OF Nppy are enough to capture
the dominant azimuthal asymmetry to effectively simulate the
physics with nearly round drive beams, so that considerable
speedup can be achieved for typical numerical parameters. The
goal of this paper is to describe how to implement an azimuthal
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mode expansion into a quasi-static PIC code. Issues with respect
to optimization will be addressed in future publications. The par-
allelization in QPAD is also similar to that in QuickPIC. The code
is parallelized using MPI to run on distributed memory clusters,
which is implemented by means of spatial decomposition in r
and z dimensions. However, owing to the basic numerical scheme
of a quasi-static code, the parallelization in r direction differs
essentially from the that in & direction. The parallelization in r is
similar to that in full explicit PIC codes with the macro-particles
exchange between neighboring processors. The interprocess ex-
change of field values at the domain boundaries is handled by
the built-in routines of Hypre library. In the & direction, we use
pipelining algorithm to allow the transverse process slabs to run
asynchronously, which can significantly inhibit the idle time.

6. Conclusion

We have describe QPAD, a new quasi-static PIC code that uses
the azimuthal Fourier decomposition for the fields. The new code
utilizes the workflow and routines of QuickPIC in which a 2D
code for evolving the plasma particles in a time like variable & is
embedded into a 3D code that advances beam particles in a time
like variable s. In QPAD, all the field components are decomposed
into a few Fourier harmonics in ¢. In the 2D part of the code
each amplitude depends on r and evolves in &. Therefore, in
this part of the code the fields are only defined on a 1D grid
in r. The quasi-static version of Maxwell’s equations for each
harmonic amplitude is therefore one-dimensional, making the
new code much faster. A full set of Poisson-like equations that
exactly correspond to those used in the full 3D QuickPIC is written
in cylindrical geometry. A full set of 1D Poisson equations in r
is solved for the Fourier amplitudes in ¢ for the relevant fields.
To simplify the calculation, we introduced linear combinations of
the complex amplitudes, BT, to decouple the equations for Bf* and
B'. Open (free) boundary conditions are implemented for all the
fields. For the particle module, the macro-particles are distributed
and advanced in £ in a 2D space (r, ¢). A predictor-corrector
routine is described. A novel deposition method for %,] and p—J,
for each harmonic is described and implemented. This scheme
does not require updating the particle positions to obtain %
which reduces the complexity of the predictor-corrector routine.
The new code was benchmarked and compared against results
from 3D OSIRIS and QuickPIC for a few sample cases. Excellent
agreement was found for both wake excitation of plasma wave
wakes from particle beam drivers (electrons and positrons) and
for the electron hosing instability. Directions for future work
include optimizing the field solver to reduce the across-node data
communication, adding multi-threading features (OpenMP), and
implementing more physics including field-ionization, radiation
reaction, and the ponderomotive guiding center model for a laser.
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Appendix. Implementation of free boundary conditions for
electromagnetic fields

In this appendix, we describe the implementation of the open
(free) boundary conditions used to solve Egs. (23)-(26) and (29).
Fig. A.7 shows the grid setup for solving the fields with total N
grid points within the solution region. The dashed line defines the
boundary and the physical domain. It is assumed that outside this
region there is vacuum out to infinity.

The basic idea is to obtain the analytic solution in vacuum
by solving Laplace equations and then applying solutions at the
boundary. We first consider the scalar Laplace equation,

AnU™ =0, forr >R, (A.1)

where U™ represents the mth mode of v, A;, B, and E,. It has the
solution

U® = Cy.o + Dyoln(r) (A2)
and
U™ = Cy ™ + Dy ™. (A3)

The determination of the constants Cy n,, and Dy p, differs depend-
ing on the types of fields. For v, it can be shown that Dy, o = 0.
By applying Gauss’ theorem to Eq. (8) and considering a circular
region S of integration with a radius greater than R, leads to

9 0

7§ Vo dli= 202 —/(p — ],)dS.
as or s

Note that the m > 0 modes of ¥ do not contribute to the integral

on the left because of the presence of the term e™?. From the

continuity equation under the QSA

(A4)

d

ﬁ(p =)+ VL], =0.
and using the fact that J; vanishes at the boundary of the surface
integral 0S, we have

0
— —J,)dS = 0.
85/5(;) 1)

which indicates this integral is zero for any & because it is initially
zero (neutral plasma). Therefore, according to Eq. (A.4), we have
2nr¥|r>R: 0 which gives Dy, o = 0 by inserting Eq. (A.2).
Requiring ¥ — 0 while r — 0, we can determine that Cy o =0
and Dy, » = 0 (m > 0), and thus the solution in the vacuum has
the form

yo=0, y"

For the longitudinal component of beam'’s vector potential A,,
Dy, 0 # 0 because the charge of the beam is apparently non-
neutralized. Applying the natural boundary condition By peam =
% — 0 when r — 0 and ignoring the arbitrary constant, we
have

(A5)

(A.6)

_ Gym

rm

(A7)

Ca,,
A? =Dy oln(r), A= rT'" (A8)
For B, and E,, the only constraint is B,, E, — 0 when r — 0,

so that

CEz,m
=0, E'=—2% (A9)
and
B =0, B'= oo (A.10)
rm
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Fig. A.7. Grid points layout in r-direction.

The transverse magnetic fields induced by the plasma satisfy
the coupled Laplace equations in the vacuum,

BT 2im
m r m __
AmB — T r—23¢ =0, (A11)
B} 2im
m [ m __
It can be verified that the general solution can be written as
C,.0 Cp _
0 T, r,1m 1
Br = o Blr,n = m +D3r,mr’" s (A]B)
and
Cs,.0 Cp,.m
0 __ ¢ m __ ¢ m—1
By = — " By = S5t + Daymt™ (A.14)
Here, Dy, m = Dp,m = 0 because of the natural boundary

conditions that B, By — 0 when r — 0.

After obtaining the analytical solution for each field (compo-
nents) in the vacuum, we derive the finite difference form of the
boundary conditions used for solving the discrete Poisson-like
equations. For an arbitrary field U™, the value on the ghost cell
can be evaluated through Taylor expansion (central difference)

m m ou™ 2
UN+1 = UN + T AT + O(Ar)
N

(A.15)

The derivative at r,, 1 (note that 1= R) is evaluated using
the analytical formula. For A?,

Da, 0

A

0 20 ~ 20 T 40
Ao Aoy + = Ar = Ay A (A.16)
therefore

A

0 ~ r 0
AN = (1 + Rln(R))AZ*N' (A17)
Similarly, for m > 0 modes of v, A, B, and E,, we can obtain

AN "

A, mA:\ | A,

~|1-— A.18
B, ( R ) B, ( )
E; N+1 z/ N

and for all the modes of B, and B, associated with plasma

(5),. = (- "5) (),
By )i ™ R By )y

As B! rather that BY" and By are directly solved in QPAD, we need
to perform the linear transformation B} = B]" +iB on both sides
of the above equation to obtain the boundary condition for BT

- N(l_(m+1)Ar> m
+,N — R +,N+1°

(A.19)

(A.20)
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