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ABSTRACT

Developing data-driven subgrid-scale (SGS) models for large eddy simulations (LESs) has received substantial attention recently. Despite
some success, particularly in a priori (offline) tests, challenges have been identified that include numerical instabilities in a posteriori (online)
tests and generalization (i.e., extrapolation) of trained data-driven SGS models, for example, to higher Reynolds numbers. Here, using
the stochastically forced Burgers turbulence as the test-bed, we show that deep neural networks trained using properly pre-conditioned
(augmented) data yield stable and accurate a posteriori LES models. Furthermore, we show that transfer learning enables accurate/stable gen-

eralization to a flow with 10x higher Reynolds number.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040286

Due to their high computational cost, the direct numerical simu-
lation (DNS) of turbulent flows will remain out of reach for many
real-world applications in the foreseeable future. As a result, the need
for parameterization of subgrid-scale (SGS) processes in coarse-
resolution models such as large eddy simulation (LES) continues in
various areas of science and engineering."”” In recent years, there has
been substantial interest in applications of deep learning for data-
driven modeling of turbulent flows,” ' including for developing data-
driven SGS parameterization (DDP) models.**’ In many of these
studies, the goal is to learn the relationship between the filtered varia-
bles and SGS terms in high-fidelity data (e.g., DNS data), and use this
DDP model in LES. A priori tests in some of these studies'”'*” have
shown that such a non-parametric approach can yield DDP models
that capture important physical processes (e.g., energy backscatter”**")
beyond the simple diffusion process that is represented in canonical
physics-based SGS models such as Smagorinsky and dynamic
Smagorinsky (DSMAG).”” > However, these studies have also
reported that a posteriori (i.e., online) LES tests, in which the DDP
model is coupled to a coarse-resolution Navier-Stokes solver, show
numerical instabilities or lead to physically unrealistic flows.'”'**>*°
As a remedy, often ad hoc post-processing steps of the DDP models'

outputs are introduced, e.g., to remove backscattering or to attenuate
the SGS feedback into the numerical solver. Usually, such post-
processing steps substantially take away the advantages gained from
using deep learning. As a result, numerical instabilities remain a major
obstacle to broadening the applications of LES with DDP models.

Another major concern with DDP models is their (in)ability to
accurately generalize beyond the flow they are trained for, particularly
to flows that have higher Reynolds numbers (Re). However, such
extrapolations are known to be challenging for neural networks.”"”
Some degree of generalization is essential for building robust and
trustworthy LES models with DDP. Furthermore, given that high-
fidelity data from often-expensive simulations (e.g., DNS) are needed
to train DDP models, some capability to extrapolate to higher Re
makes such DDP models much more practically useful.

In this paper, with a particular focus on the issues of stability and
generalization, we use a deep artificial neural network (ANN) to
develop a DDP model for stochastically forced Burgers turbulence.
The forced Burgers equation is”*

Ou  10(um) _ Ou (1)
a2 ox o
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where u is velocity, v = 1/Re, and F is a stochastic forcing (defined
later). The domain is periodic with length L. Despite being one-
dimensional, the presence of strongly nonlinear local regions in the
form of shocks, often multiple shocks [Fig. 1(a)], makes Burgers turbu-
lence a complex and challenging system, which has been used as the
test-bed in various SGS and reduced-order modeling studies.”* "’
F(x, t) is defined as™

3
oA ( (kx ) >

F= cos | 2n| —+ @, , 2

£~ /20kAL Lt @

where k, At, and A are the wavenumber, time step, and forcing ampli-
tude, respectively. @y and oy are real, random numbers. To develop
the LES model, we spatially filter Eq. (1) to obtain

Ou 10(uu) 0%u

with SGS term

10 —
H:fia(wfaa). (4)
Here, we use a box filter; explorations with Gaussian and sharp spec-
tral filters yield the same findings and conclusions. Overbars indicate
filtered (and coarse-grained to LES resolution) variables. Note that the
difference between F and F is negligible. Our aim is to train an ANN
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FIG. 1. A sample profile and statistics of the stochastically forced Burgers turbu-
lence (from DNS data at Re = Re,). (a) u showing three distinct shocks. (b) The
KE spectrum, showing the inertial range. (c) PSD, as a function of frequency ,
showing chaotic behavior.
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to learn IT as a function of # in the DNS data, and then use this DDP
model as a closure in Eq. (3).

We define a setup, referred to as “control” and indicated with
subscripts “c,” with the following parameters (identical to those used
by Dolaptchiev et al.”*) L =100, v = 0.02, and A = 1/2/100. ®; and
oy are drawn randomly from A(0,1) every 20At to update F. To
obtain the DNS data, which are treated as the “truth,” Eq. (1) is inte-
grated using a pseudo-spectral solver with 1024 Fourier modes and
time step At =0.01. (The second-order Adams-Bashforth and
Crank-Nicholson methods are used for time integration.) Figure 1
shows a sample profile of u(x), and the kinetic energy (KE) spectrum
and power spectral density (PSD) of the flow. To perform LES, Eq. (3)
with the DDP model of TI(#) is integrated using the same pseudo-
spectral solver but with 128 Fourier modes and time step 20At. At this
spatial resolution, the filtered velocity field accounts for ~ 81% of the
total KE of the flow (from DNS), conforming with the commonly
used ratio." Also, note that the spatial and temporal resolutions of the
LES solver are, respectively, 8 x and 20 lower than those of the DNS
solver, substantially reducing the computational cost.

The schematic of LES with DDP is shown in Fig. 2(a). Next we
present the details of the ANN and the training data/procedure. We
use a multilayer perceptron ANN"' to develop the DDP model. This
ANN is unidirectional (information only passes in one direction from
input to output) and is fully connected between the layers. The ANN
is trained, i.e., all learnable parameters of the network (weights and

(" (a) (x, t + 20At) o
ou 10uu 021 S
o aam Vel re v
o &
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v e
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FIG. 2. (a) The schematic of the LES with DDP model. With normalized u(x, t) as
input, the trained ANN predicts IT, which is then de-normalized and used in Eq. (3)
to compute u(x, t + 20At), and the cycle continues. (b) The pre-conditioning step
to augment the training data by adding random shifts in x to produce spatially
diverse samples from a relatively small DNS dataset.
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biases, collectively represented by 0) are computed, by minimizing the
mean square-error MSE = > ||ANN (ii;; 0) — I1;|5/M. Here, M
is the number of training samples, || - ||, is the L, norm, & and IT are
calculated from DNS data, and - indicates pre-conditioned (aug-
mented) training data (discussed shortly). The best network architec-
ture, found based on extensive trial and error using MSE, consists of
an input layer, six hidden layers with 250 nodes each, and a linear out-
put layer. On all but the final layer, the swish activation function™ is
used. Overall, the ANN has 394 640 trainable parameters.

Our first attempts to train the DDP model with M = O(10°)
resulted in inaccurate IT terms in a priori tests and unstable LES with
DDP in a posteriori tests. Further analysis showed that the problem is
due to the fact that the SGS dynamics and thus the IT terms in Burgers
turbulence are highly localized around the shocks,” which as
explained below, leads to overfitting, i.e., poor generalization of ANN
(at the same Re) beyond the training set. Shocks are persistent and can
remain fairly stationary for many time steps, which can lead to small
or near-zero I1 terms in some regions of the domain that do not expe-
rience shocks throughout the training set. The ANN trained on such a
dataset will predict IT ~ 0 in those regions no matter what the input-
ted u is during (a priori or a posteriori) tests. Note that by design, the
flow during training could be very different, in terms of the location of
shocks and their evolution, from the flow during testing. (Though the
training and testing sets have the same Re, the latter is chosen from an
independent DNS run or from a time window far from the time win-
dow of the training set.) Of course, this overfitting problem can be
resolved by using a much larger training set that contains a sufficient
number of samples of shocks waves occurring in all regions; however,
such large training sets are often unavailable. Here, we propose a sim-
ple strategy, based on pre-conditioning the training samples, to over-
come this problem without the need for a larger dataset.

As shown in Fig. 2(b), a random shift #, drawn from the uniform
distribution 2/(0, L), is added to x for each input-output pair (u, IT)

i(x,t) = a(x—n,t) and M (x, t) = O(x — 1, t). (5)

The periodicity in x is used when x — # < 0. It should be noted that
this type of artificially enhancing the richness of information inside
the training set is commonly used in the machine learning community
and is called data augmentation.”” For example, in processing of natu-
ral images, data augmentation generally involves artificially enhancing
the training set by rotating, mirroring, or cropping images. Here, we
have exploited the periodicity of x to introduce a physically meaningful
augmentation, which allows us to enrich the information of the local-
ized flow and SGS terms around shock waves in the training set with-
out the need for a longer DNS dataset. Finallz, as is common practice
in machine learning, the input # and output IT samples are separately
normalized (through removing the mean and dividing by the standard
deviation). ~

The pre-conditioned input-output pairs (i, IT) are used to train
the ANN. As shown next, the DDP model with an ANN trained using
augmented data leads to accurate IT terms in a priori tests and stable
and accurate LES models in a posteriori tests without the need for any
post-processing of the trained ANN or its output [with the exception
of de-normalizing the predicted IT; see Fig. 2(a)]. We have used
M = 5 x 10° samples for training and another (independent) 5 x 10*
samples for validation from a DNS run at Re=Re,. For testing, we
have used data from the same run but 5 x 10*At separated from the

LETTER scitation.org/journal/phf

training/validation sets as well as data from two other independent
DNS runs at Re = Re...

We examine the performance of the LES with DDP in a posteri-
ori (online) tests to assess both accuracy (of the SGS modeling) and
stability of the hybrid model. Given that the numerical solution of Eq.
(3) blows up without any SGS modeling (i.e., with IT=0), we use a
conventional SGS scheme, DSMAG, " as the baseline. Figures 3(a) and
3(b) show the spectrum and the probability density function (PDF) of
the IT terms predicted by DDP and DSMAG compared against those
of the filtered DNS (FDNS), which is treated as the truth. Both panels
show that the statistics of IT predicted by DDP closely follow those of
the truth at any k and even at the tails of the PDF. Furthermore, both

1 1 1 Il
-5 -2.5 0 25 5
u/o

FIG. 3. Statistics of the resolved flow u and SGS term IT calculated using results
from a posteriori tests at Re= Re.. The training and testing data are both at
Re = Re.. (a) Spectrum of IT, denoted as IT(k). The spectrum for FDNS agrees
with those reported in previous studies of Burgers turbulence.” (b) PDF of IT. (c)
Spectrum of KE. The curl up in KE around the maximum resolved k of LES is a
common feature of spectral LES solvers applied to Burgers turbulence.”***“® In
(a)~(c), each curve is produced using 3 x 10° sequential samples that are 20At
apart. (d) PDF of t computed using a kernel estimator.” Inset panels in (d) show
the zoomed-in left and right tails. Shading shows uncertainty as =1 standard devia-
tion obtained from bootstrappin% three independent LES or DNS runs that are com-
bined (each providing 3 x 10° samples as before). In (b) and (d), o is the
variable's standard deviation.
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panels show that DDP outperforms DSMAG in modeling the statistics
of the SGS term (II). The better performance of DDP is clearly seen at
high and low k in (a) and beyond *1 standard deviation in (b). Note
that the difference between the IT's PDFs from FDNS and DSMAG
(DDP) is (is not) statistically significant at 95% confidence level based
on both Kolmogorov-Smirnov, KS, and Kullback-Leibler divergence,
KL, tests.””

To examine the statistics of the resolved flow, Figs. 3(c) and 3(d)
show the spectrum of KE and the PDF of #. Both LES with DDP and
LES with DSMAG capture the KE spectrum up to near the maximum
resolved k (= 64) although DDP does slightly better and agrees with
the FDNS' KE spectrum up to k ~ 60 while DSMAG does so up to
k ~ 50. Furthermore, as shown in panel (d), LES with DDP outper-
forms LES with DSMAG in capturing the PDF's tails, which corre-
spond to shocks. Note that the differences between the PDFs of DDP,
FDNS, and DSMAG are not statistically significant (at 95% confidence
level) based on the KS or KL test, but that is because such tests mainly
assess similarities in the bulk rather than the tails of the PDFs. A closer
visual inspection shows that the difference between the tails of the
PDFs from FDNS and DDP (DSMAG) is within (outside) the uncer-
tainty range, indicating that DDP (DSMAG) accurately captures (does
not capture) the statistics of the rare events.

So far we have discussed the results with LES resolution of 128
Fourier modes, which as mentioned before, conforms with the com-
monly used criterion for LES resolution based on the KE of the filtered
flow. With the lower resolution of 96 modes, the DDP model still leads
to a stable LES that outperforms LES with DSMAG. Further lowering
the resolution to 64 modes leads to an unstable DDP. While LES with
DSMAG is stable (due to the purely diffusive nature of this SGS
model), the accuracy is poor. At this resolution, the u# field only
accounts for ~ 40% of the total KE, and LES (with any SGS model) is
not expected to be used at such low resolutions.

In summary, the DDP model that uses an ANN trained with aug-
mented data (from Re = Re,) leads to a stable LES model (with reason-
ably high enough resolution) in a posteriori tests (at Re = Re,) that is
more accurate than LES with DSMAG. Next, we examine whether a
DDP model trained with augmented data from a given Re can be used
for LES of a flow that has higher Re.

Figure 4 shows the statistics of the resolved flow and of IT calcu-
lated using results from a posteriori tests at Re = Re,. but with a DDP
model that uses an ANN trained on data from Re = Re./10 (see the
dashed blue lines). It is clear that this DDP model does not generalize
as the spectrum and PDF of IT and the spectrum of KE all deviate
from those of the FDNS. The results are not surprising as it is known
that data-driven models often have difficulty with generalization to a
different (especially more complex) system. For example, using a
multi-scale Lorenz 96 system, we”’ showed that ANN- and recurrent
neural network-based data-driven SGS models do not accurately gen-
eralize when the system is forced to become more chaotic. However,
we also showed that transfer learning (TL)* provides an effective way
for addressing this challenge, at least for a simple chaotic toy model.
Below, we show the effectiveness of TL in making DDP generalizable
to higher Re in a turbulent flow.

Figure 5 shows the schematic of TL applied to the ANN of a
DDP model. In general, the weights of an ANN are randomly initial-
ized and then they are updated through training on M samples from a
given data distribution (here, data from a flow with Re = Re,/10).

scitation.org/journal/phf
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FIG. 4. Statistics of the resolved flow and SGS term calculated using results from
a posteriori tests at Re = Re, but with DDP models mainly trained on data from
Re = Re/10. Each curve is produced using 3 x 10° sequential samples that are
20At apart. The DDP model without transfer learning (TL) uses the ANN trained on
M =5 x 10° samples from DNS at Re = Re;/10. The DDP model with TL uses
the same ANN but after its last two layers are re-trained with 5 x 10* samples from
DNS at Re = Re, (Fig. 5). (a) Spectrum of IT. (b) PDF of IT. (c) Spectrum of KE.

The test in Fig. 4 showed that this ANN does not accurately work for
Re = Re.. The idea of TL is that we re-train this ANN (starting with its
current weights rather than random initializations) and update
the weights only in the deeper layers using a smaller number of samples
(e.g, My, = M/10) from the new data distribution (i.e., the flow with
Re = Re,). The underlying idea of TL is that in deep networks, the initial
layers learn high-level features, and only the deeper layers learn low-
level features that are specific to a particular data distribution.”” Thus,
for generalization, we only need to re-train the deeper layers, which can
be done using a small amount of data from the new distribution.

Figure 4 shows that the DDP model with TL (solid blue lines)
accurately generalizes to the flow with Re, as the spectrum and PDF of
IT and spectrum of KE closely match those of FDNS. In fact, the
accuracy of the DDP model with TL in Fig. 4 (which only uses
My =5 x 10* training samples from Re,) is comparable with the
accuracy of the DDP model in Fig. 3 (which uses M = 5 x 10° train-
ing samples from Re,.). Furthermore, Fig. 6 shows how gradually
increasing M7y improves the generalization capability of the DDP
model. Finally, a figure in the supplementary material further demon-
strates the effect of the number of re-trained layers (as well as Myy),
showing that at large enough My, re-training more than one layer
yields accurate generalization.

In conclusion, we have investigated ANN-based data-driven SGS
modeling of Burgers turbulence, with a particular focus on the stability
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FIG. 5. Schematic of transfer learning (TL) to develop an accurate DDP model for
Re = Re,. Without TL, the ANN in the DDP model is trained, starting with random
weights, on M = 5 x 10° samples from DNS at Re = Re/10. This DDP model
does not generalize to Re = Re, (dashed blue lines in Fig. 4). Then, TL is applied:
the weights in the first three layers (blue) of this ANN are fixed, and the last two
layers (red) are re-trained, starting with the previously computed weights, and using
only My, =5 x 10* samples from DNS at Re = Re,.. The DDP model with TL is
accurate and stable in a posteriori tests at Re = Re;; (solid blue lines in Fig. 4).

107" T
—FDNS - -No TL weeee My, = 500

Mrp = 5000 — M7y = 10000 == M7 = 50000

Mrr = 1000

My =5 x 10*

107 '
10° 10'
k

FIG. 6. Spectrum of I1 in a posteriori tests on Re =Re, as My, (the number of
training samples from Re, used in TL) is increased. My, =0 correspond to no TL
and the original ANN trained on M =5 x 10° samples from Re = Re;/10.
Adding M7, =500-5000 samples improves the generalization capability of the
DDP model to some degree. My = 10* (2% of M) leads to substantial improve-
ments although IT is underestimated at high k while overestimated at low k.
Increasing Mr, to 5 x 10* (10% of M) further improves the generalization capability
and IT that is just slightly underestimated.
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of a posteriori LES models and generalization to higher Re. We show
that developing a DDP model for Burgers turbulence is particularly chal-
lenging due to the presence of shocks, which localize the SGS term (IT),
resulting in ANNs that overfit in the absence of a large training set. The
overfitting ANNs lead to inaccurate/unstable DDP models. To overcome
this challenge, we introduce a pre-conditioning step in which, exploiting
periodicity, training samples are randomly shifted, thus enriching and
augmenting the training set. The DDP model trained on this augmented
dataset leads to stable and accurate a posteriori LES models. These results
suggest that similar data augmentation strategies that exploit symmetries,
invariances, and other physical properties (see Xie et al,” Pan and
Duraisamy,” and Formentin et al.”’ for more examples) should be con-
sidered in developing DDP models for more complex flows when large
training sets are unavailable, not only to improve accuracy but also to
improve the stability of a posteriori LES runs.

We have also found the DDP model not to generalize (ie.,
extrapolate) to a flow with 10x higher Re. However, we show, for the
first time to the best of our knowledge, the application of TL to making
a DDP model generalizable in a turbulent flow. Transfer learning ena-
bles the development of DDP models for high-Re flows with most of
the training data provided by high-fidelity simulations at lower Re,
which is highly appealing for practical purposes because the computa-
tional cost of simulating turbulent flows rapidly increases with Re.

In future work, the application of TL and data augmentation to
develop accurate, stable, generalizable DDP models for more complex
turbulent flows that are 2D and 3D will be investigated.

See the supplementary material for a figure showing the effects of
the number of re-trained layers and the number of samples used for
re-training on the generalization accuracy.
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