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Neutrino experiments study the least understood of the Standard Model particles by

observing their direct interactions with matter or searching for ultra-rare signals. The
study of neutrinos typically requires overcoming large backgrounds, elusive signals, and
small statistics. The introduction of state-of-the-art machine learning tools to solve anal-

ysis tasks has made major impacts to these challenges in neutrino experiments across the
board. Machine learning algorithms have become an integral tool of neutrino physics,

and their development is of great importance to the capabilities of next generation ex-

periments. An understanding of the roadblocks, both human and computational, and the
challenges that still exist in the application of these techniques is critical to their proper
and beneficial utilization for physics applications. This review presents the current sta-

tus of machine learning applications for neutrino physics in terms of the challenges and
opportunities that are at the intersection between these two fields.
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1. Introduction

The nature of neutrinos and their masses is one of the main science drivers of particle

physics today.1,2 Not only are neutrinos the least understood particle in the Stan-

dard Model, they may be linked to the explanation of the matter/antimatter asym-

metry in the Universe through the process of leptogenesis.3 Neutrinos exhibit unex-

pected oscillations between their mass states, a behavior which indicates that other

new physical phenomena beyond the Standard Model might be possible. Specifi-

cally, it raises the question about the mechanism through which they acquire the

non-zero mass required by oscillations as well as the possibility that neutrinos en-

gage in charge-parity (CP) violating processes, both linked directly to leptogenesis.

The answers to questions about the mass mechanism and CP violation can provide

a deeper understanding of the early Universe through the study of neutrinos.

In the aftermath of the solar neutrino problem,4 resolved by the discovery of

oscillations,5,6 a large number of experiments have set out to answer the remaining

questions of neutrino physics, taking advantage of the best particle detection tech-

nology available to them. The low cross-sections of neutrino interactions and the

background suppression required by many of these experiments makes the study

of neutrinos technically challenging and subject to statistical limitations. The op-

timization of signal and background separation, detection threshold, and physics

reconstruction, are all key factors in the technology design for a particular experi-

ment.

The software tools used for analysis and reconstruction of detector data are often

overlooked as key components of experimental technology. These tools are not only

used for analysis and final results, but also form an integral part of the conception

and design of new projects. Improvements in reconstruction and analysis technolo-

gies have enhanced our ability to extract information from data and translate it into

physics quantities. The study and development of reconstruction and analysis tools

is, thus, of critical importance to the capabilities of particle physics experiments.

The tools of machine learning, also broadly referred to as artificial intelligence, have

been at the center of analysis techniques for several decades.

Beyond appealing to the personal interest of the reader in machine learning, it

is clear from the abundance of applications of these tools, that a basic knowledge of

machine learning is central to the understanding of experimental data analysis in

neutrino physics today. In this manuscript, we review the algorithms, developments,

and evolution of machine learning tools for neutrino experiments with a focus on

deep learning. We discuss the obstacles that still challenge the standing of these

tools as trusted parts of the experimentalist’s arsenal. We first define some essential

language and formalism for this discussion and introduce the basic components of

machine learning algorithms and concepts of deep learning. The current status and

prospects in the field will be discussed in terms of the roadblocks, both human

and computational, and the challenges and opportunities that still exist in the

application of these techniques.
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2. Machine Learning and Deep Learning

The term machine learning is an umbrella term for all algorithms where inference

is used to perform a task and that have the ability to improve with experience,

though terms like deep learning are commonly used depending on the complexity

of these algorithms. Within the past decade, deep learning algorithms have gained

significant popularity in neutrino experiments and have enabled large improvements

in the performance and physics reach of the analyses where they are employed.

A common entry-point to the understanding of machine learning algorithms is

the description of an artificial neural network or ANN. ANNs are interconnected

series of elementary functions called neurons, somewhat analogous to the biolog-

ical system of the brain. Artificial neurons employ mathematical functions called

activation functions to produce an output, mimicking the action potential which de-

termines the production of electrical signals in brain cells. The connections between

artificial neurons, where the output of each one is passed as input to others, allow

the network to combine these simple units to perform the complex task of learn-

ing. Similarly, connecting a large number of artificial neurons results in interesting

macroscopic behavior, as discussed in the following sections.

In the mathematical representation, each neuron receives one or more inputs

which are individually weighted. The output is determined by the activation func-

tion, which is a nonlinear transformation of the inputs. In ANNs, neurons are placed

into connected layers, often as seen in Figure 1. The Multi-layer perceptron MLP

depicted in the figure is a type of ANN in which the neurons are organized into

“hidden layers” between the input and the output. In this type of network, also

called feedforward network, the outputs of each layer are fed to the next layer, and

so on. The number of hidden layers and their interconnected array of neurons allows

the network to perform complex tasks. For example, a network can be used to repro-

duce a mapping F of an input vector ~x to an output vector ~y. The input data used

by the network to learn F are a collection of “ground truth” examples for which

the input ~x and the exact output ~y = F (~x) are known or have been simulated.

The process of learning occurs iteratively by first constructing output estimates

for given values of ~x using a set of initial weights for each component of the network.

Then, the difference between these estimates F ′ (~x) computed by the network and

the desired target are minimized by introducing changes to the weights of each

neuron. How the differences, or losses, are quantified and the choice of minimization

function vary by application. The iterations are repeated until the ability of the

network to approximate the function’s behavior no longer improves.

Note that while the task of the network is to reproduce the output of the target

function given the same set of inputs, it need not know or approximate the exact

form of the function to accomplish that task. For example, a network trained to

reproduce the invariant mass of an initial state does not need to know or learn decay

kinematics, but instead it learns to reproduce the same principles by training on final

state vectors with corresponding invariant mass values. Therefore, it is possible for
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Fig. 1. Left: The structure of a neuron, the building block of artificial neural networks. Each

neuron takes as input the values output from the previous layer. The values are combined in a
linear a combination, some bias is applied, and then a non-linear activation function is applied.

Right: A complete artificial neural network. Each neuron is connected to every neuron in the

previous layer and every neuron in the final layer.

these networks to perform complex tasks through the same simple learning process,

which with several computational innovations have become a powerful tool for a

variety of tasks.

Other common tasks performed by these algorithms on detector data tradition-

ally include regression and classification. Regression involves learning the mapping

between dependent and independent variables, where this is often a continuous map-

ping predicting quantities such as particle energy. Classification involves learning

the category associated with the data, which in common applications is used for

signal and background discrimination. Classification is done by normalizing scores

for each category to sum to unity using a softmax activation function. See 7 for

a description of many common activation functions used in neural networks. The

tasks performed by these algorithms are more complex and increasingly take on

more of the process of reconstruction and analysis of detector data.

2.1. Deep Learning

Deep learning algorithms is differentiated from machine learning by the complexity

of the algorithms used. Deeper network induce more non-linear operations such

that the mapping from results to the input variables is more challenging to track.

Deep learning algorithms have gained popularity in the last two decades due to

breakthroughs in their performance, largely enabled by the rapid development of

hardware such as graphics processing units (GPUs). The field of computer vision

has been the primary driver of the innovations, which are used to solve pattern

recognition tasks.8

Deep neural networks are sophisticated and more computationally expensive

techniques which are able to tackle problems of higher complexity than other ma-

chine learning tools. Increasing network depth by adding additional layers, for in-

stance, allows for the approximation of increasingly complicated functions.
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Fig. 2. The structure of a convolutional neural network. The convolution layers use image kernels

to extract features from the input. The pooling layers downsample the image. The final set of

features are connected to a fully connected, artificial neural network.

One of the most common deep learning algorithms employed for pattern recogni-

tion is the Convolutional Neural Network (CNN).9 CNNs are a class of MLP which

learn to extract features from an input in addition to training for the intended task.

These features are identified using the spatial relationship between neighboring re-

gions in the image. The key components of CNNs are kernels, or image filters,10

which are matrices that scan an input image and output an image with highlighted

features. A convolution layer consists of operating one or more kernels across an

input image.

In reality, the input to CNNs are tensors typically containing the pixel-by-pixel

RGB values of an image. The dimensions and content of the input tensors can be

altered for different applications but most developments in image recognition natu-

rally use the image-to-RGB tensor strategy. Because convolutions output the effect

of a kernel on the input tensor with translational invariance, they are especially use-

ful for image and pattern recognition, where the features of interest are topological

characteristics.

Figure 2 shows the basic structure of a CNN. As seen in the figure, the fully

connected layers of a CNN are notably similar to the basic MLP, whereas the initial

convolutional layers serve the purpose of feature extraction. The kernel values are

learned during the training process to extract features that are most useful for

the desired task. Convolution layers are often interlaced with pooling layers which

downsample the image to reduce the computations needed deeper in the network

and promote translational or rotational invariance. The final layers of the network

then perform the classification or regression task using the extracted features as

input.

The task of identifying signals and reconstructing physical characteristics of in-

teractions in particle detectors is often analogous to that of pattern recognition in

images. Thus, much of the recent development in applications in neutrino physics

involves usage or adaptations of deep learning networks developed for image recog-

nition. Within the past decade, deep learning algorithms have gained significant

popularity in neutrino experiments and have enabled drastic improvements in the
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Fig. 3. First demonstration of neural networks for neutrino physics. The network was trained to

separate charged current and neutral current neutrino interactions for the SNO experiment. The
table on the performance of the network with a classification matrix.

performance and sensitivity of the analyses where they have been employed. Deep

CNNs have now demonstrated state of the art performance on many tasks11 and

are one of the most common tools used in neutrino physics. The advantages and

motivation to use CNNs in neutrino experiments are largely applicable to other deep

neural networks used in neutrino experiment as well. Similarly, the advantages, and

the challenges discussed in the following section applies to CNNs.

3. Applications in Neutrino Experiments

Particle physics experiments, including neutrino experiments, are endeavours which

require the analysis of large data sets, sophisticated modeling, and statistics. In the

past two decades, both neutrino physics and machine learning have been experi-

encing a renaissance with the discovery of neutrino oscillations and the advent of

deep learning, respectively. In the 1990s the initial exploration of neural networks

in particle physics began.12 The SNO experiment was the first to explore the use of

neural networks in neutrino physics,13 using feedforward networks, a type of artifical

neural network to classify events based on hit pattern features, shown in Figure 3.

While it is true that these neural networks did not outperform other statistical

techniques at first, they demonstrated the capabilities of these techniques for event

classification in neutrino detector data. As expertise grew regarding the impact

of sample preparation and feature choices in network performance, not only did

machine learning techniques surpass traditional reconstruction, but they would grow

to be one of the most widely used analysis techniques in the field.

Machine learning has played a role in nearly every particle physics discovery

and measurement since. Common analysis frameworks designed for particle physics

have natively supported the use of these tools for almost two decades.14

The role of machine learning in physics analyses has only grown in scope, taking

advantage of several opportunities specific to our problem set which will be discussed

in the next section. These first applications are now commonplace in our field,

typically using tools like feedforward networks, MLPs, and more recently boosted



Machine Learning and Neutrinos 7

decision trees, to name a few. Most common applications start with input variables

which have been pre-extracted and selected by the analyzer. This continued as the

main strategy until the introduction of deep learning tools.

The tasks that deep learning algorithms have been applied to in the last decade

span the full extent of experimental analysis work flow, including design, hardware

triggers, energy estimation, reconstruction, and signal selection. Many applications

exist which have greatly simplified and improved the performance of experiments

and their physics reach when compared to the standard tools they have replaced.

The performance achieved by these tools is the prime motivation for their imple-

mentation to solve physics problems, despite the computational complications which

will be described later in this section.

Even more significant than the improvements themselves are the implications

of the usage of these tools in our experiments. The interplay between neutrino

physics and deep learning is rich in both challenges and opportunities for both

fields. The current status of the field is presented in this section, in the context

of these challenges and opportunities. Rather than providing an exhaustive list of

applications in a rapidly growing field, those that are notable are highlighted when

relevant to the item discussed.

Challenge 1 — Adaptability of the Methods

The most frequently used deep learning algorithms in neutrino experiments are those

developed or commonly used for image recognition. Given that some experimental

setups closely resemble or can be mapped into 2-dimensional images, this is a natural

starting point for many studies to apply the tools of image recognition.

However analogous, the problems solved for image or pattern recognition have

important differences with particle physics. Some adaptation is usually required for

the usage of these algorithms. Adaptation can be as simple as converting detector

data into image-like tensor inputs or as complicated as complete network redesign

for the new task. The trade-off between simple adaptation and those where the

inputs and network are more tuned to the particular task can be significant in

terms of performance improvement.

An example of a deep learning network used with different adaptations in neu-

trino experiments is the GoogLeNet15 CNN architecture. GoogLeNet was the first

creatively non-sequential implementation of convolutional layers in CNNs, which

brought significant accuracy and performance improvements with respect to its

competitors.16 Following the success of GoogLeNet, many neutrino experiments ex-

plored its utilization with minimal or no modifications as a starting point for their

own classification studies. Despite the differences between images and neutrino data,

out-of-the-box approaches yielded important successes over traditional methods.

A successful out-of-the-box application of GoogLeNet is the NEXT experiment

background rejection network.17 The NEXT detectors are cylindrical time projec-

tion chambers with photon detection and charge detection at each end, respectively.
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Fig. 4. Input data for the NEXT CNN classifier. Top: Example event in NEXT with 10 mm

voxelization. Bottom: Example event in NEXT with 2 mm voxelization. Columns are the xy, yz,

and xz views of the event. The distinguishing feature of the track projection that identifies these
as signal events is the presence of a larger energy deposition (bragg peak) at the end of each track.

This feature is mostly lost in the 10 mm voxelization.

Photomultiplier tubes collect a light signal and silicon photomultipliers (SiPM) col-

lect an electroluminescence signal from drifted charges inside the detector.18 For

the training inputs to resemble 2D images of the particle tracks, the granularity of

the data from the SiPM readout is reduced to 3D voxels, of dimensions x,y (spa-

tial) and z (drift time), which are used as the RGB channels of the CNN input

tensor. The inputs for different voxel sizes are shown in Figure 4. Equal numbers of

simulated neutrino-less double beta decay signal and radioactive background events

are used for the training. This simple implementation was found to outperform

the traditional reconstruction by between a factor of 1.2 and 1.6 depending on the

reconstruction resolution.

The many differences between 2D images and detector data provide an oppor-

tunity to improve algorithm performance by making thoughtful modifications to

the original networks. In many cases, large improvements have been attained from

enhancing useful features of the data by making changes to the algorithms and the

structure of the inputs.

Such is the case for the Convolutional Visual Network,19 a CNN classifier de-

signed for application on NOvA data. The readout from the two orthogonal views of

the NOvA detectors is already very image-like and naturally depicts 2-dimensional

projections of energy depositions. However, the decoupled nature of the two views

makes a simple conversion to a single RGB tensor unideal because a conversion of

the xz and yz views into RGB channels of the same image tensor would result in

an unnatural overlap of unrelated features. Rather than artificially overlapping the
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POOLING
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INCEPTION OUTPUT

Fully Connected

Data

Fig. 5. Left: An example readout from the NOvA detector. The planes are arranged in alter-

nating orientations to give two orthogonal views of the event. Right: Siamese tower structure of

NOvA’s Convolutional Visual Network, based on GoogLeNet, for neutrino flavor classification.
The two towers independently operate on each view of the event. The features from each tower

are concatenated in the final layers of the network.

orthogonal views, the authors employed a Siamese network structure,20 allowing in-

dependence in the learning from each detector view to identify neutrino interaction

flavor. Figure 5 shows NOvA’s detection technology and the architecture used for

neutrino identification. This, among other modifications to a GoogLeNet-inspired

architecture produced large accuracy improvements, increasing the effective expo-

sure of the experiment by 30%. This network was the first to be used in a published

physics result,21 and it demonstrated the significance and impact of adapting both

the tool and the inputs to the detector technology.

In addition to detector technology and readout, the geometry of the detector is

also relevant to the adaptability challenge. In some cases, thoughtfully considering

modifications based on detector geometry can boost performance significantly. In

other cases, this consideration could be essential for applying the tools with any

success. Additionally, careful consideration in how to map detector readout to inputs

compatible with the network of choice should not me overlooked.

One notable application is the use of spherical CNNs for analysis of data from

the close-to-spherical Kamland-zen detector.22 This currently ongoing work incor-

porates a modification to best fit the detector geometry needs and has already

demonstrated improvements in early stages.23 Given the nearly spherical shape of

their detector, the authors of this work seek to correct a distortion created by the

projection of the detector readout into a 2D pattern as seen in Figure 6. They em-

ploy spherical CNNs for the task of signal-background classification. In a Spherical

CNN, the kernel covers the entire phase-space by scanning in Euler angle rather than

projecting the readout into 2D planes. Indeed, the use of spherical CNNs achieves
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Fig. 6. The Kamland-Zen experiment uses spherical convolutions for signal and background sep-

aration. The detector is nearly spherical so a traditional mapping to 2D would cause abnormal
distortions in the data.

background rejection of 71% compared to 61% for their original CNN.24

In some cases, other technologies already match the experimental needs sub-

stantially better than CNNs. This is the case for the networks used for analysis

of IceCube Neutrino Observatory data, whose detector spatial sparsity and non-

uniformity makes the data less than ideal for CNNs. Their deep learning applica-

tion uses Graphic Neural Networks (GNNs) as a way to mitigate the effect of these

features. This is because GNNs are capable of dealing both with irregular geome-

try and graphs of different sizes, a feature which is seen in many of their events.

GNNs are designed to classify graphs, where the graph nodes define some element

of the detector and the graph edges show some connection between elements.25

IceCube’s GNN separates neutrino-induced muons (their signal) from cosmic-ray

shower-induced muons (their background), and compared the efficiency of the net-

work to that of their standard reconstruction.26 This GNN was able to identify 6.3

times more signal events and provide a signal-to-noise rate 3 times larger. A com-

parison with a CNN, which gave similar results to the traditional reconstruction,

demonstrated that GNNs offer significant benefits in this application.

There are many examples of successfully overcoming this challenge of adapting

deep learning tools for neutrino data analysis. However, the approach taken for

each application will continue to encounter different obstacles and considerations

unique to the data and the tools chosen for analysis. Careful consideration of these

modifications continues to show substantial improvements to the direct application

of image recognition technologies.

Challenge 2 — Quantifying Bias and Uncertainties

One of the risks of applying machine learning is the possibility that the algorithms

will learn information from the training data beyond what is intended. The risks

associated with these techniques are neither new nor specific to the applications in

our field. Furthermore, these challenges are starting to receive more attention in the

broader community, industry applications, and government regulations around the

world.27–29
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The principal danger is that a dataset used for training contains information or

implies underlying structure which may incorrectly bias the results, yet is learned by

the network. This risk is true for all machine learning algorithms, but is particularly

noteworthy with algorithms which perform feature extraction, such as CNNs. While

feature extraction is the main advantage of these algorithms, special attention is

needed to mitigate this risk.

Given that the features are abstract, their association with the physical traits

of the data is largely unknown. In addition, the networks used for detector data

analysis are typically trained on simulated datasets of the events of interest. These

simulations carry models and assumptions of the detector performance, the par-

ticle interactions, and other physical processes. The challenge of quantifying and

mitigating biases is particularly important to guarantee robust physical conclusions

which are also model and generator independent.

Apart from deliberate simulation choices, any effects introduced or distributions

sculpted in the selection of the training data as well as any mismatch between simu-

lated and real events coming from detection performance, particle interactions, cali-

bration, or other effects have the possibility of propagating throughout the learning

process undetected or unquantified. While some existing applications have devised

tailored approaches at mitigating bias, standard and complete approaches to this

important challenge are yet to be achieved.

Minimizing known bias can be achieved through careful choices in the construc-

tion of input datasets. An example of this concept is the charge-only energy recon-

struction CNN used by EXO-200.30 This network is used to discriminate between

Single-Site, and Multi-Site events and is found to outperform traditional recon-

struction which had been used in previous publications.31 The network was initially

trained using a simulated 228Th source. When a systematic study was performed

with arbitrary resolution, disproportionately large improvements in resolution were

found for events in the 208Tl peak with respect to other classes of events. In order

to correct this, the network was instead trained on a calibration gamma ray source

data, which acts as a proxy for various backgrounds, in the center of the detec-

tor. The CNN is tested on numerous samples, including simulation as well as 60Co,
208Tl, 226Ra and 228Tl calibration sources at a range of source locations. Having

implemented this change to the training data, improved performance was found in

the relevant energy range.

It is also possible that biases exist but are unknown to the developer, for instance,

when an unintended artifact arises in the data. In contrast with the example above,

where training sample composition was kept flat across different backgrounds, other

characteristics might not be known to be skewed in unphysical ways. It is not

possible to correct or quantify bias which is not yet known, but techniques can be

designed to either minimize them or look for them in the data.

The application of Domain Adversarial Neural Networks by the MINERvA ex-

periment32 is a prime example of unknown bias reduction. Here, the network is

applied to the task of classification using a CNN, but a technique of bias reduc-



12 F. Psihas, M. Groh, C. Tunnell, K. Warburton

Fig. 7. The basic structure of a domain adversarial neural network.33 The feature extractor

(green) and label predictor (blue) function just as a CNN. However, the domain classifier (pink)

attempts to determine which of two domains the input is from. The gradient reversal layer dis-
courages the network from classifying events using features that are unique to one of the two

domains.

tion is employed. The network is trained on both simulation and data. The domain

network, whose purpose is to distinguish between the data domain and simulation

domain, is attached to the CNN. It is expected to find features that result from

errors or inconsistencies in the simulation. As shown in Figure 7, the interplay be-

tween the two components discourages the task of classification to learn from any

features that behave differently between the two domains.

Another difficulty arises in designing tests that can reveal hidden biases learned

by deep learning algorithms. Ideally, this would look at the performance of the

algorithm on data, but without a method of knowing the true nature of a data event,

this is impossible (if such a method existed, we wouldn’t need these algorithms in

the first place!). Instead, we must compare reconstructable quantities between data

and simulations and look for signs of bias between the two, but which biases to look

for is not obvious. In addition, many experiments begin creating reconstruction

algorithms before data taking has begun and others perform blind analyses where

the algorithms must be optimized and validated without comparison to data. While

methods exist for constructing systematic uncertainties that address possible biases

for many quantities, how to apply these methods to machine learning algorithms is

not clear.

One example of a technique that uses both real and simulated data to search

for bias is the muon-removed electron-added (MRE) technique used by the NOvA

experiment.34 Two samples are created by overlaying simulations on real data events

(MRE-on-data) and simulations on simulated events (MRE-on-simulation). For each

sample, an identified muon is removed from selected νµ charged current events,

leaving only the hadronic components of the interaction. The muon is substituted

by a simulated electron of equivalent momentum overlaid on the events. Effectively,
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a comparison of the network performance between the MRE-on-data and MRE-

on-simulation samples provides a measure of the bias-related effects introduced by

data-simulation discrepancies in the hadronic component. The resulting difference

in selection efficiency between the data overlay and the simulated overlay is less

than 0.5%.

Another data-based technique is to consider human-labeled datasets. While we

can’t know the true identity of a real data event, a trained physicist can often

identify with reasonable accuracy. Comparisons of error patterns between humans

and deep neural networks have shown differences between the two,35 which sug-

gests differences between the unknown biases from humans to neural networks.

This is nevertheless a useful technique to search for large, unexpected biases in the

outcome of the networks. The MicroBooNE experiment uses a liquid argon time

projection chamber (LArTPC) detector for neutrino interactions.36 They created a

human-labeled dataset for validating a semantic segmentation network, a technique

for classifying individual pixels in an image, trained on simulated neutrino inter-

actions.37 The disagreement between the performance of the network and humans

was less than 2% in the misclassification of pixels.

Finally, we consider uncertainties. Quantifying the uncertainties associated with

any measurement is an integral part of physics analyses. Traditional neural net-

works, by design, output a single value. In some cases, they output high confidence

scores on events that are well outside the phase space of samples they were trained

on. While the output may be sensible in this case, it should incur a large uncertainty.

Bayesian neural networks are designed to address this concern.38 They replace the

fixed value weights in the network with probability distribution functions, as shown

in Figure 8. The resulting output is, thus, also a probability distribution function

which can be interpreted as a most probable value with some uncertainty. This

potential approach at including uncertainties has recently gained attention in the

neutrino community39 with initial implementations currently being explored.

Challenge 3 — Network Interpretability

As machine learning models grow deeper, there is often a trade off between the per-

formance of the algorithm and our ability to interpret its results. Boosted decision

trees, for example, are low-level machine learning models. They can often inform the

user of the relative importance of each input into the model, but may not have the

accuracy that can be achieved with deeper models. CNNs on the other hand, have

achieved state of the art performance on many tasks, but the features extracted by

the convolutional layers are abstract and challenging to interpret. Some individual

kernels can be connected to specific tasks, such as edge detection. However, the

features resulting from multiple convolutions are difficult to connect to topological

characteristics or physical interpretations of the events.

This is particularly problematic in physics, where relating network features back

to the underlying physics problem is important and sometimes necessary for a com-
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�1

Fig. 8. A depiction of a bayesian neural network. The fixed value weights in an artificial neural

network are replaced by probability distribution functions. Thus, the output of each neuron is a
probability distribution function with some most probable value and an uncertainty.

plete understanding of the physical models. A better conceptual understanding of

the physical features used by the network could tell us much about the physical

processes which produced the features. In addition, the understanding could aid to

minimize or correct the inefficiencies in the performance of the algorithm.

A common method for interpreting the features extracted by the network is to

perform dimensionality reduction. The Daya Bay Reactor Neutrino Experiment is

designed to detect anti-neutrinos produced by two nearby nuclear reactors.40 They

employ a CNN to separate inverse beta decay (IBD) events, the signal of interest,

from noise within the detector.41 The features extracted by the network are trans-

formed into two dimensions suing t-Distributed Stochastic Neighbor Embedding42

(t-SNE). The t-SNE method uses a non-linear transformation to reduce the dimen-

sionality of data in a way that maintains the distance between points local to one

another. Figure 9 shows the result of this technique. Class separation in this two

dimension space, relates to topological information that the network has used to

distinguish the different classes.

Another method of dimensionality reduction is Principal Component Analysis43

(PCA). PCA is a linear change of basis where the new basis has vectors along the

dimensions of maximum variation in the data. Often only a few of the basis vectors

are needed to explain most the variation in the data. Critically, the new basis vectors

are orthogonal meaning each has a unique contribution to the variation in the data.

PCA is often performed on the input data to a network to reduce the number of

inputs needed to a smaller set of independent values which are most important to
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Fig. 9. The t-SNE produced from the Daya Bay CNN to separate IBD signal from background
noise. The t-SNE is a non-linear transformation used for dimensionality reduction. Visual separa-

tion in this space relates to separation in the high dimension feature space created by the network.

Each point is labeled by it’s true identity.

the task. PCA can also be performed on the network extracted features to reduce

the dimensionality for visualizations in a similar way to t-SNE.

In addition, some qualitative methods try to determine which features of the

input are most relevant to the output. This is particularly important for CNNs

doing image recognition where determining which topological features of the input

are most important to the network output. One method of doing this is to occlude

regions of the input image and determine how the various output scores change. This

technique is often called an occlusion test. Another technique is to use the network

itself to determine these valuable features. Salience maps44 determine the gradient

of the output score from the network with respect to each of the input pixels.

These maps can show where the network is ”looking” to construct it’s features.

Interestingly, these sometimes show that CNNs do not look at the primary object

in an image, but instead at the surrounding context. If some objects are commonly
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found in the same context, then the context can be used as the primary discriminator

to classify that object.

Challenge 4 — Computational & System Constraints

As mentioned in section 2.1, the latest developments in deep learning are largely

driven by improvements in GPU technology where the many computations needed

for large networks can be done in parallel. Deep neural networks often perform

O
(
109

)
floating point operations. This is compounded by the amount of data col-

lected in particle physics experiments. Modern neutrino experiments record bil-

lions of events which require evaluation by various reconstruction and analysis algo-

rithms. Many experiments perform these evaluations on large-scale computing grids

on CPUs.

While neural networks have expanded the capabilities of many neutrino exper-

iments, this computing limitation provides a bottleneck to widespread use of very

deep neural networks. Here we consider three methods to alleviate this concern.

One potential solution is to expand the availability of GPUs. Small GPU clusters

used for training neural networks are becoming more common. However, these are

not enough to match the production needs of many experiments. Larger availability

of GPU clusters would enhance the ability of experiments to utilize large neural

network based algorithms.

Another possibility is to enhance the physics output from these algorithms. As

discussed throughout this manuscript, machine learning based methods often show

significant improvements over traditional methods. One way to improve performance

is to maximize the primary task algorithm, but the implementation of multi-task

algorithms could be a promising way to enhance the total physics output from an

individual algorithm. The Deep Underground Neutrino Experiment (DUNE) is a

future neutrino oscillation experiment currently in R&D stages45 for its LArTPC

detector. The DUNE experiment employs a CNN for identification of neutrino in-

teraction flavor in their detector,46 which achieves more than 85% efficiency of νe
charged-current events in the energy range of interest. In addition to flavor classifi-

cation, the algorithm also outputs the sign of the neutrino, the type of interaction,

and the amounts of each particle in the final state. In total, the network has seven

outputs at very little additional computational cost since each output uses the same

set of features extracted by the network.

Reducing the computational cost of the algorithms is another option which would

reduce the total computational need of experiments. Using smaller networks is one

option, but this comes at the cost of performance. Instead, considerations can be

given to the type of data acquired by experiments. LArTPC detectors, such as

those used by DUNE or the Short Baseline Neutrino program,47 have very low

occupancy, the fraction of active detector readout from an event. These events are

globally sparse, < 1% sparsity, but locally dense, in the region of the detector where

the event occurred. An example of an event recorded in a LArTPC is in Figure 10.
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Fig. 10. An example neutrino event simulated in a liquid argon time projection chamber. Shown

are energy deposits from charged particles traversing the detector medium. Less than 1% of the

detector is active in this event.

This means that typical CNNs will waste much computation time multiplying or

summing together zeros. It’s been shown that using submanifold sparse convolu-

tional networks48 can reduce the inference time of these networks by a factor of

30 and the memory cost by more than 300. These sparse convolutional networks

are designed for use with sparse data and only perform convolution operations in

regions with activity.

Finally, we consider the use of open datasets in algorithm development. Open

datasets are commonly used to benchmark algorithm performance in data science

applications.49 Despite increasing efforts from a handful of experiments to provide

such datasets for analysis,50 there are still many restrictions surrounding data-

sharing in the field. The lack of available data sets negatively impacts the ability of

researchers to develop and publish improved machine learning techniques specific

to particle physics applications and significantly hinders progress in developments

requiring real data, such as bias assessment. Open data sets would not only enable

these advancements to be developed further, but it would significantly encourage

beneficial multi-disciplinary collaboration which would surely improve the quality

of physics of our our experiments.

4. Opportunities going forward

The use of machine learning and currently deep learning algorithms for neutrino

experiment data analysis is on the rise. We have presented an overview of the

impacts of these techniques in the field through a description of the challenges and

opportunities associated with their usage.
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Opportunity 1 — Impact to Physics and Technology

The application of machine learning tools to neutrino physics is also relevant to the

process of experiment design and proposal, which brings about opportunities to fur-

ther impact the capabilities of future experiments. The next generation of neutrino

experiments will introduce needs and challenges beyond what the field has encoun-

tered. Massive detectors designed to measure neutrino oscillations will redefine the

challenges of data rates and data management and will continue to look for ways

to expand their physics program.51,52 Neutrino-less double beta decay experiments

at and beyond the ton-scale will require exceptional rejection of radioactive back-

grounds beyond what has ever been achieved. The emerging field of multi-messenger

astronomy will further encourage experiments to expand their sensitivity to signals

beyond their current reach.

Much like previous generations, this generation of experiments will only be pos-

sible by pushing technological frontiers. This presents opportunities for the field of

particle physics and machine learning, which could cement the synergy between the

two fields in mutually beneficial ways.

An interesting example of research and development (R&D) involving machine

learning is their application on the hardware trigger being developed for the DUNE

experiment. The large data rates expected on DUNE detectors currently constrain

the energy range available for analysis. Figure 11 shows a single DUNE data frame.

The majority of the electronics noise as well as radioactive backgrounds are safely

below the energies of the accelerator neutrinos DUNE is designed to study. How-

ever, there are also interesting signals on the MeV-scale energy range which could

potentially be studied such as supernova neutrinos, solar neutrinos,53 and neutrino-

less double beta decay.54 Unfortunately, it is possible that the currently available

hardware for data acquisition systems will require the elimination of much of the

low energy noise from DUNE’s data stream at the trigger level in order to maintain

manageable data rates. However, if the physics reach of DUNE could be extended

to study low energy signals, it could produce world leading measurements of solar

neutrino oscillations.

In order to enable a DUNE low energy program, data acquisition hardware will

need to sustain high rates at low down times. Research into the applications of deep

learning to hardware triggers and data acquisition for DUNE is ongoing to resolve

this issue. Hardware acceleration as well as well as optimal implementation of deep

learning algorithms on FPGAs and GPUs is being explored. This work is exploring

the possibility of online data analysis capable of process up to tens of terabits per

second, aided by the capabilities of CNNs to tackle high rate image processing.55

The capabilities of this trigger may well define whether low energy signals will

be available to explore on DUNE. Thus, the usage of machine learning algorithms

might significantly contribute to not just improving performance of existing anal-

yses, but expanding the physics program that is available to experiments. While

there is community consensus on some of the challenges machine learning will need
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Fig. 11. Left: A high energy atmospheric neutrino interaction in the DUNE LArTPC. Right: A
low energy supernova neutrino interaction in the DUNE LArTPC.

to address going forward, we are only starting to recognize that machine learning

development is an integral part of neutrino physics research.56 The continued active

pursuit of R&D involving machine learning applications might significantly change

the neutrino physics landscape in the coming decades.

Opportunity 2 — What Physics Can Contribute to Machine

Learning

The unique nature of the problem set and analysis strategies of neutrino physics

(and particle physics) experiments brings about the potential to contribute new

knowledge and applications to the field of computer science. Two aspects drive this

opportunity:

1. Quantitative results and careful statistical analysis. Statistical precision is one

of the hallmarks of particle physics experiments. Carefully quantifying results and

uncertainties becomes even more important as neutrino experiments move into the

precision era. As we develop tools and techniques to address the challenge of bias

assessment and uncertainty quantification for our needs, these developments will

surely inform the broader picture of secure, ethical, and responsible treatment of

machine learning beyond scientific applications.57,58

2. Customizable simulated datasets corresponding to real physical data. The

majority of industry applications of machine learning are developed, tested, and

applied in real-world datasets. Training usually employs labeled data of the same

type as that to which network will be applied. In contrast, neutrino experiments

usually construct and train most of their analysis infrastructure on simulated data

that resembles the expected data. The detail to which these simulations are tunable

is especially relevant to the study of machine learning algorithms. It provides the

opportunity to study their behavior under controlled modifications in the training

samples, which could greatly contribute to the challenge of explainability in and
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With Context

Fig. 12. One view of a neutral current event with a π0 decay in the NOvA detector. Left: Just

one of the particles produced by the decay. Right: The same particle with the context from the
rest of the event (grey) shown. The knowledge from the context, such as the particle separation

from the vertex, make it clear that this is a photon shower.

outside the field.

Opportunity 3 — Innovations

There are also opportunities in the area of overlap between the problem sets of

neutrino physics and machine learning. It is no surprise that we are starting to

develop machine learning inspired tools which can be applicable outside neutrino

physics.

For example, applications of machine learning to NOvA detector data have been

further explored, specifically targeting single particle identification within clusters

of particles. As shown in Figure 12, each cluster of energy depositions in an inter-

action needs to be further analyzed to identify its producer. In this case, knowledge

of the single particle cluster is useful, but there is much to be gained from pro-

viding some context to the classification network. In a recent publication,59 the

authors demonstrate a technique to add context information to a CNN input and

how to implement the Siamese concept to take advantage of “particle-only” as well

as “context view” of the inputs. This technique is the first to employ a Siamese

architecture for the addition of context. As such, it is a contribution to both fields.

In the neutrino physics application, it was found that adding context to the inputs

improved the identification efficiency of particles by up to 11%.

Opportunities for the synergy between neutrino physics and machine learning

are plentiful. The deeper appreciation for the complexity and overlap of each of

their problem sets may continue to give way to enhanced advances for both fields.
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