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ABSTRACT
In 360◦ video interactive streaming, it is critical to minimize the
end-to-end frame delay. It is also important to predict the user’s
field of video (FoV) and allocate more bits in regions within the
predicted FoV. Towards both goals, we propose a low-delay FoV-
adaptive coding and delivery system that is robust to bandwidth
variations and FoV prediction errors. Each frame is coded only in
the predicted FoV (PF), a border surrounding the predicted FoV
(PF+), and a rotating intra (RI) region. To maximize the coding effi-
ciency, the PF and PF+ regions are coded with temporal and spatial
prediction, while the RI region is coded with spatial prediction only.
The RI region enables periodic refreshment of the entire frame and
provides robustness to both FoV prediction errors and frame losses.
The total bit budget is adapted both at the segment level based on
the predicted average bandwidth for the segment and at the frame
level based on the sender buffer status, to ensure timely delivery.
The system further adapts the sizes and coding rates of different
regions for each video segment to maximize the average rendered
video quality under the total bit budget. To enable such adaptation,
we propose novel ways to model the quality-rate (Q-R) relations
of coded regions that take into account of potentially misaligned
coded regions in successive frames due to FoV dynamics. We exam-
ine the performance of the proposed system and three benchmark
systems, under real-world bandwidth traces and FoV traces, and
demonstrate that the proposed system can significantly improve the
rendered video quality over the benchmark systems. Furthermore,
the proposed system can achieve very low end-to-end frame delay
while maintaining a low frame freeze probability and providing
smooth video playback.
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1 INTRODUCTION
Virtual Reality (VR) and Augmented Reality (AR) technologies have
become popular in recent years. Encoding and transmitting the
omni-directional or 360◦ video is critical and challenging for those
applications. The 360◦ video requires much higher bandwidth than
the traditional planar video. A premium quality 360◦ video with
120 frames per second (fps) and 24K resolution can easily consume
bandwidth in the range of Gigabits-per-second [18]. On the other
hand, at any given time, a user only watches a small portion of
the 360◦ scope within her Field-of-View (FoV). An effective way to
reduce the bandwidth requirement of 360◦ video is through FoV-
adaptive streaming, which codes and delivers the predicted FoV
region at higher quality, and discards or codes at lower quality the
remaining regions. Such strategy has been quite extensively stud-
ied for video-on-demand [4, 5, 15, 17, 18] and live video streaming
applications[1, 7, 13, 19]. Interactive applications, such as conferenc-
ing, gaming, and remote collaboration, can also benefit from 360◦
video by creating an immersive environment for participants to
interact with each other [20][23][11]. However, realtime coding and
streaming of 360◦ video with extremely low latency, required for
interactive applications, has not been sufficiently addressed. This
work focuses on developing low-latency and FoV-adaptive coding
and streaming strategies for interactive 360◦ video streaming. We
assume the sender and the receiver are connected by a network
path with dynamically varying throughput without short-latency
guarantee. The sender is either the video source, or a proxy server
relaying the source video. The receiver is either the end user device
that directly renders the video, or a local edge server that renders
the video and transmit to the end user [8].

Motion-compensated temporal prediction is critically important
in video coding to maximize the video quality under the limited
bandwidth and has been adopted successfully for planar video
coding. For on-demand and live streaming of the 360◦ video, a video
is typically divided into temporal segments (1 second or longer)
and each segment is further divided into many small spatial tiles. In
FoV adaptive streaming, the FoV distribution in each new segment
is predicted, and only tiles that are likely to be viewed are delivered
for each video segment. In this case, all the frames in a tile video
are coded and temporal predictive coding can be readily applied,
except the first frame, which is coded as an intra-frame.

For interactive streaming, to minimize the latency, the video
should be coded and delivered at the frame level. This enables
the sender to predict the FoV for each new frame and only code
the regions covering the predicted FoV. On the one hand, this can
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improve the FoV prediction accuracy and reduce the coded-but-
not-viewed area. On the other hand, applying temporal predictive
coding in such a scenario faces several unique challenges. The first
challenge is that the coded regions in each frame depend on the
predicted FoV and may not be aligned in successive frames. Such
misalignment causes prolonged time lapse for temporal prediction
for some tiles and leads to reduced coding efficiency. Properly taking
into account of such reduced coding efficiency issues is important
for accurate rate control, essential for minimizing the latency. The
second challenge is how to periodically update all the regions in a
frame to limit error propagation due to frame losses and the quality
degradation in un-coded regions, which in turn affects temporal
prediction accuracy. Commonly used periodic intra-frame design
will cause periodic bit rate spikes and hence increase the latency.
Without using temporal prediction (i.e. using only intra-coding for
all the frames, as in some prior work [20][16]), it is much easier to
perform FoV adaptive coding and rate control, but it would lead to
significantly lower quality under the same network throughput.

In this paper, we develop a novel low-latency FoV-adaptive cod-
ing and streaming solution for interactive 360◦ video. To maximize
the quality-rate efficiency, we adopt motion-compensated temporal
predictive coding, and address the challenges brought by temporal
prediction in frame-wise FoV-adaptive coding. The salient features
of our proposed solution include:

(1) To meet the low latency requirement, realtime coding and
streaming are conducted at the granularity of frames, instead
of segments for video-on-demand and live streaming.

(2) The video source predicts the FoV of the receiver for a new
frame and codes only a region covering the predicted FoV
(denoted PF) plus a surrounding border (denoted PF+), with
the border size adapted to the anticipated FoV prediction
errors. Both regions will be coded using temporal prediction
but at different rates. 1

(3) To reduce the frame size burstiness (essential for minimizing
delay) while maintaining the robustness against FoV predic-
tion errors and frame losses, we also code a small rolling
region using intra-coding (denoted RI) for each frame, en-
abling gradual refreshment of the entire 360◦ scope after a
certain period. See Figure 1.

(4) We model the quality-rate (Q-R) relations of coded regions
in a way that takes into account the spatially and tempo-
rally varying time lapse in temporal prediction due to FoV
dynamics (see Figure 2). We further model the decay of the
rendering quality of non-coded regions upon FoV prediction
errors as a function of the time lapse since these regions are
last coded.

(5) To maximize the rendered video quality, we periodically
adapt the sizes and the allocated bits of different coding re-
gions, guided by the developed Q-Rmodels and the predicted
network bandwidth and FoV prediction accuracy.

1Note that if one remote site in a two- or multi-party conference has multiple partici-
pants, we can take the union of the FoVs of all the participants as the ground truth
“FoV” of this site, and predict the future FoV union. Typically all the users tend to focus
on the same region (e.g. the speaker of the remote site), and the union may be only
slightly larger than the single user’s FoV. Occasionally, the users’ FoVs may diverge
significantly; In this case, we have to code a very large region, making FoV adaptive
coding less efficient.

Figure 1: Different regions in a frame using the ERP format.
Dark grey: PF tiles, coded at the rate 𝑅𝑒 . Light grey: PF+ and
RI tiles, coded at the rate 𝑅𝑏 . Green: user’s FoV, which may
fall in PF, PF+, RI, and un-coded tiles.

(6) Tominimize the transmission latency and avoid self-congestion,
we design push-based frame delivery with short sender and
receiver buffers. We further adjust the frame-level bit budget
in realtime and control source buffer overflow to maximize
the frame delivery rate before the display deadline.

We evaluate the performance of the proposed system using real-
world bandwidth traces and FoV traces, in core metrics including
the rendered quality, the frame delay, and the freezing probability.
We further compare the proposed systemwith three benchmark sys-
tems. Our trace-driven simulations demonstrate that the proposed
system can achieve significantly higher rendered quality than all
benchmark systems using either intra- or inter-coding, and lower
delay than the traditional inter-coding (using periodic I-frames)
benchmark. Our simulation results further reveal that the gain from
region size adaptation in the proposed system is limited, and hence
can be foregone in practice, for reduced complexity.

In Section 2, we present the proposed video coding framework,
formulate the expected rendered quality taking into account the
FoV hit rates in different regions and the frame delivery rate, and
describe our approach for joint optimization of region size and rate
allocation. In Section 3, we present the streaming system design,
including our approach for bandwidth prediction and FoV predic-
tion, adaption of region size and rate allocation at the segment
level, and furthermore adjustment of the bit budget at the frame
level. Section 4 presents the setup of the trace-driven simulations
and compares the performance of the proposed system with the
benchmark systems. Section 5 summarizes the main takeaways
from our studies.

2 LOW DELAY, FOV-ADAPTIVE 360◦ VIDEO
CODING USING SPATIAL AND TEMPORAL
PREDICTION

2.1 The Proposed Video Coding Scheme
To achieve low-latency interactive streaming, we propose a novel
FoV-adaptive coding structure. We represent each 360◦ video frame
using the Equirectangular projection (ERP) format. Instead of the
traditional group of pictures (GOP) structure that inserts intra
frames periodically, we only encode the first frame of the entire
360◦ scope as an intra frame. For each subsequent frame, we predict
the FoV for that frame, and code only the predicted FoV region pro-
jected onto the ERP (to be denoted "PF") and a small border outside
the predicted FoV (called "PF+"). The PF+ is coded in case the actual

Poster Session C3: Multimedia Transport and Delivery 
& Multimedia Analysis and Description

MM '20, October 12–16, 2020, Seattle, WA, USA 

3697



Figure 2: Illustration of the variable time lapses between the
coded tiles. The square region covered by a solid-line border
in each frame indicates the coded region covering PF and
PF+. Different tiles in the coded region in the current frame
have different time lapses to the latest framewhen their cor-
responding tiles were coded.

FoV is slightly off from the PF. Both the PF and PF+ regions are
coded using temporal predictive coding (aka inter-coding) based
on the previously decoded reference frame. The PF will be coded
using a high rate, while the PF+ will be coded using a lower rate. To
prevent some areas from never getting refreshed, we also code and
transmit a rotating intra region (RI) using only spatial prediction
(aka intra-coding). The RI region will be rolled in successive frames
from top to bottom and left to right in the ERP. The RI is introduced
to ensure that all pixels in the ERP will be refreshed using intra-
coding after a certain period. For example, if an RI includes only a
1/72 of the ERP frame, the entire frame would be refreshed after
every 72 frames. Such periodic refreshment provides robustness
both to FoV prediction errors as well as to frame losses due to trans-
mission packet losses. The RI region will be coded using a lower
rate, since it has a low likelihood to be viewed. Figure 1 illustrates
the video coding frame structure. Note that the first frame should
be encoded using a high quantization level to reduce the total rate,
and hence initial buffering time.

To enable different regions be coded using different methods
and at different rates, we divide an entire ERP frame into multiple
non-overlapping tiles, each covering a small rectangular region on
the ERP. All the tiles that intersect with the PF region will be coded
at 𝑅𝑒 , and all the remaining tiles that intersect with the PF+ region
will be coded at 𝑅𝑏 . As shown in Figure 1, a FoV or a predicted FoV
on the 360◦ sphere does not correspond to a rectangular region
in the ERP frame. In general, the number of tiles needed to cover
a PF could differ from frame to frame. Similarly, the number of
tiles for the PF+ region would also differ. We set the RI to be a
rectangular region in the ERP, consisting of an integer number of
tiles. To simplify rate allocation, we code the RI region using the
same rate 𝑅𝑏 as the PF+ region. Because RI region is intra-coded,
it would have lower quality than the inter-coded PF+ region, even
though they are allocated the same average rate. Note that for some
frames, some or all the tiles in the RI may fall within the PF or PF+
region, and in that case, those tiles are coded in the intra-mode,
so as to stop decoding error propagation due to potential frame
losses after the intra refreshment period. In the decoder, which is
also part of the encoder to derive the reference frame for temporal
prediction, only coded tiles (those in the PF, PF+, and RI region)
will be updated based on the received bits for this frame. Other
tiles will stay the same as the previously decoded frame. Although
more sophisticated error concealment methods may be adopted for
enhancing these regions, we choose to use this simple approach.

2.2 Quality-Rate Models
To perform joint optimization of the region size and rate alloca-
tion, we need to model the expected quality-rate (Q-R) relations for
different regions that consider the temporal variation of the FoV
location. We first introduce the quality metric we use, and then
describe the “ideal” Q-R models derived from video coding experi-
ments that do not consider the prolonged temporal prediction time
lapse for some tiles due to the changes in FoV. Next we describe
how to consider the rate increase due to such time lapses. Finally
we show how to model the quality decay of tiles that are not coded.
2.2.1 Objective quality metric. Due to the lack of well-accepted
subjective quality metrics for 360◦ video, we will assume the percep-
tual quality is proportional to the weighted-to-spherically-uniform
peak-signal-to-noise ratio (WS-PSNR),

WS-PSNR = 10 log10
MAXI2

WS-MSE , (1)

WS-MSE =
1∑

𝑖, 𝑗 𝑤 (𝑖, 𝑗)
∑
𝑖, 𝑗

[𝐼 (𝑖, 𝑗) − 𝐾 (𝑖, 𝑗)]2𝑤 (𝑖, 𝑗), (2)

where 𝑖, 𝑗 ∈ projected FoV, 𝑤 (𝑖, 𝑗) = cos(( 𝑖
𝑚 − 1

2 )𝜋), 𝐼 (𝑖, 𝑗) and
𝐾 (𝑖, 𝑗) are the pixel value of the encoded and raw sequence at the
coordinate (𝑖, 𝑗) on the ERP frame. This is a 360◦ video objective
metric recommended by JVET [3]. The geometrical distortion of
ERP is taken into account by assigning different weights to different
pixel locations in the ERP. Given the actual FoV, we calculate WS-
MSE only over the project FoV pixels on the ERP, where these pixels
can be in either PF, PF+, RI, or remaining region. This will give us
the actual rendered quality.
2.2.2 “Ideal” Quality-rate Models For Different Coded Regions. To
derive the “ideal” Q-R models, we perform video coding exper-
iments on several JVET 360◦ video testing sequences using the
HEVC reference software (HM) [9] under JVET common test con-
dition (CTC). The PF and PF+ tiles are coded using the low-delay-P
mode, while the RI tiles are coded using the intra mode. We assume
the FoV location is fixed throughout the entire sequence, so that
every tile in the PF or PF+ region is updated in each frame. To
generate empirical quality-rate curves, we code the video using
different quantization parameters (QP), and determine the corre-
sponding WS-PSNR and the total rate over the PF, PF+, and RI
region separately. More details about the coding experiments can
be found in [14].

To circumvent the variability of the relation between the spheri-
cal area to be covered and the actual number of tiles, which depends
on the actual location of the FoV, we define the bit rate in terms of
the total bits needed to cover a unit area on the sphere. Therefore
the normalized bit rate has a unit of bits/degree2. For PF and PF+,
we first derive the Q-R curves for selected FoV locations and then
use weighted average of these FoV curves to derive the average Q-R
curves. The Q-R curve for the RI is obtained by averaging results
from all possible RI locations. The Q-R curves for the PF+ and RI are
further evaluated for different PF+ and RI sizes. The resulting Q-R
curves for two sequences with very different characteristics are
shown in Figure 3. Note that the Q-R functions for the PF+ region
depends on the PF+ border width: the coding efficiency is higher
for a wider border due to the fact that fewer pixels in the coded PF+
tiles are wasted in such a case. On the other hand, the Q-R function
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Figure 3: Q-R models: (a)-(d) are for “Trolley”, (e)-(h) are for “Chairlift”. (a)(e): WS-PSNR vs. normalized rate for the PF region
for six different viewing directions and the averaged WS-PSNR vs. normalized rate relation. (b)(f): WS-PSNR vs. normalized
rate for the PF+ region when the PF+ region size is 10◦. (c)(g) are the averaged WS-PSNR vs. normalized rate when PF+ region
sizes are 10◦, 20◦, 30◦, 40◦, 50◦, respectively; (d)(h) WS-PSNR vs. normalized rate curves for the RI region. This relation is
independent of the RI size.
for the RI region does not depend on the RI size because all the tiles
in a RI are considered equally useful.

As shown in Figure 3, each Q-R curve can be modeled quite well
by a logarithmic relation:

𝑄 (𝑅) = 𝑎 + 𝑏 log𝑅. (3)

We will use 𝑄𝑃𝐹 (𝑅), 𝑄𝑃𝐹+ (𝑅) and 𝑄𝐼 (𝑅) to denote the Q-R models
for the PF, PF+ and RI regions, respectively. We will use 𝑎𝑒 , 𝑏𝑒
to indicate the parameters for 𝑄𝑃𝐹 (𝑅), 𝑎𝑏 , 𝑏𝑏 for 𝑄𝑃𝐹+ (𝑅), and
𝑎𝐼 , 𝑏𝐼 for𝑄𝐼 (𝑅). These parameters are generally content-dependent.
Furthermore, 𝑎𝑏 , 𝑏𝑏 vary with the PF+ region size.
2.2.3 Rate-increase Factor. The Q-R models shown in Figure 3 are
obtained by assuming the FoV and consequently the PF and PF+
regions do not change. Because the actual FoV and hence the PF
and PF+ regions typically change in time, a tile in the PF or PF+
region in the current frame may not be coded in the previous frame.
In fact, the corresponding tile may not have been updated in several
frames. We define the coding time lapse, denoted by 𝜏 , as the frame
distance between the current frame and the frame that a tile is last
coded (See Figure 2). A larger 𝜏 will generally lead to less accurate
temporal prediction. To reach the same reconstruction quality, a
higher rate is likely needed thanwhen 𝜏 = 1. The rate-increase factor
𝜌 (𝜏) is defined as the ratio of the rate required for a given 𝜏 vs. the
rate when 𝜏 = 1. We have conducted video coding experiments
to measure this rate-increase factor and details can be found in
[14]. As shown in Figure 4(a), 𝜌 (𝜏) can be well fitted by a reverse
exponential decay function:

𝜌 (𝜏) = 1 + 𝑐 ∗ [1 − 𝑒−𝑑∗(𝜏−1) ] . (4)

Note that the rate-increase factor depends on the target quality
(which in turn depends on the QP). Hence the parameters 𝑐 and 𝑑
are generally content- and QP-dependent.

The time lapse of each tile is spatially and temporally variant and
depends on the FoV dynamics. To adapt the coding rates and the
region sizes at the beginning of each segment, we adjust the Q-R
functions derived in Section 2.2.2 for the PF and PF+ regions based
on the distribution of the 𝜏 in the previous segment. Specifically,

Figure 4: (a): The rate-increase factor as a function of the
coding time lapse. (b): The quality-decay factor. Results are
for “Chairlift”.

suppose the rate required to achieve a given quality 𝑄 is 𝑅(𝑄)
according the “ideal” Q-Rmodel for the PF or PF+ region, wemodify
the rate to

𝑅̃(𝑄) =
(∑

𝜏

𝑝 (𝜏)𝜌 (𝜏)
)
𝑅(𝑄), (5)

where 𝑝 (𝜏) denotes the probability of 𝜏 measured among all the
tiles in the PF or PF+ region.
2.2.4 Quality-decay factor. The actual FoV for a frame may fall
outside the PF, PF+ and RI regions for this frame. Pixels in such
un-coded tiles are not refreshed. The rendered quality of such a tile
is effectively the WS-PSNR between the current tile and when it is
last coded. Generally this quality depends on the time lapse since
this tile is last coded, 𝜏 , as well as the quality when it is last coded.
The quality-decay factor 𝜅 (𝜏) is defined as the ratio of the quality of
such a tile vs. the quality when it is last coded. We have conducted
video coding experiments to measure this quality-decay factor and
the details are described in [14]. As shown in Figure 4(b), 𝜅 (𝜏) can
be well fitted by a modified exponential decay model:

𝜅 (𝜏) = 𝑒−𝑔∗𝜏
ℎ

, (6)

where the parameters 𝑔 and ℎ are also content- and QP-dependent.

2.3 Optimizing rate allocation and region sizes
2.3.1 Expected video quality. With our coding scheme, the per-
ceived quality of a rendered pixel depends on whether this pixel is
coded in the PF, PF+, RI or is uncoded. We use 𝛼𝑃𝐹 to denote the
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hit rate of the predicted FoV region, which is the probability that a
rendered pixel will fall in the PF region that is not overlapping with
the RI. We can similarly define the probabilities that a rendered
pixel falls in the PF+ (not overlapped by RI) and the RI as 𝛼𝑃𝐹+
and 𝛼𝐼 , respectively. These hit rates depend on the adopted FoV
prediction algorithm and the time horizon of prediction. 𝛼𝑃𝐹+ and
𝛼𝑅𝐼 also depend on the sizes of the PF+ and RI.

If the FoV pixels fall in the PF, PF+, and RI regions, with probabil-
ities 𝛼𝑃𝐹 , 𝛼𝑃𝐹+, and 𝛼𝐼 , respectively, they will be decoded with qual-
ities𝑄𝑃𝐹 (𝑅𝑒 ),𝑄𝑃𝐹+ (𝑅𝑏 ) and𝑄𝐼 (𝑅𝑏 ), correspondingly. However, if
they fall outside these regions, they will be decoded with quality
𝜅 (𝜏)𝑄last, where 𝜏 is the time lapse since this tile is last coded, as
explained in Section 2.2.4. The time lapse 𝜏 is in general spatially
and temporally varying. The quality 𝑄last can in general be either
𝑄𝑃𝐹 (𝑅𝑒 ), 𝑄𝑃𝐹+ (𝑅𝑏 ) or 𝑄𝐼 (𝑅𝑏 ). However, because the chance that
a rendered pixel falls in the un-coded region is small, we choose to
use 𝜅min𝑄𝐼 (𝑅𝑏 ), with 𝜅min = 𝜅 (𝜏𝑚𝑎𝑥 ), as the worst-case estimate,
where 𝜏max is the intra-refresh period, inversely proportional to
the RI size. Thus the average rendering quality can be formulated
as
𝑄1 = 𝛼𝑃𝐹𝑄𝑃𝐹 +𝛼𝑃𝐹+𝑄𝑃𝐹++𝛼𝐼𝑄𝐼+(1−𝛼𝑃𝐹−𝛼𝑃𝐹+−𝛼𝐼 )𝜅min𝑄𝐼 . (7)
The quality𝑄1 is valid only if the packets containing bits for this

frame are delivered in time, with probability 𝛾 . We call 𝛾 the frame
delivery rate. If the frame is not delivered in time, with probability
1 − 𝛾 , and if the previous decoded frame is simply repeated, then a
worst case estimate of the average quality would be 𝑄2 = 𝜅min𝑄𝐼 .
Therefore, the overall average quality can be approximated as
𝑄 (𝑅𝑏 , 𝑅𝑒 ,𝐴𝑃𝐹+, 𝐴𝑅𝐼 ) = 𝛾𝑄1 + (1 − 𝛾)𝑄2

= 𝛾 (𝛼𝑃𝐹𝑄𝑃𝐹 (𝑅𝑒 ) + 𝛼𝑃𝐹+𝑄𝑃𝐹+ (𝑅𝑏 ) + 𝛼𝐼𝑄𝐼 (𝑅𝑏 ))
+ (1 − 𝛾 (𝛼𝑃𝐹 + 𝛼𝑃𝐹+ + 𝛼𝐼 ))𝜅min𝑄𝐼 (𝑅𝑏 ) .

(8)

In (8), 𝐴𝑃𝐹 , 𝐴𝑃𝐹+ and 𝐴𝐼 denote the sizes of the PF, PF+ and RI
region, respectively, in terms of the square degree on the sphere.
Note that the hit rate 𝛼𝑃𝐹+ and the Q-R function 𝑄𝑃𝐹+ (𝑅) depends
on𝐴𝑃𝐹+, and the hit rate 𝛼𝑅𝐼 depends on𝐴𝐼 . Therefore, the average
quality in Equation (8) is a function of 𝐴𝑃𝐹+, 𝐴𝑅𝐼 , 𝑅𝑒 and 𝑅𝑏 , for
given FoV prediction accuracy, characterized by 𝛼𝑃𝐹 , and the frame
delivery rate 𝛾 .
2.3.2 Optimization Problem Formulation and Solution. Given the
target number of bits for a frame 𝐵𝑡 , the normalized rates 𝑅𝑏 and
𝑅𝑒 , and the areas 𝐴𝑃𝐹 , 𝐴𝑃𝐹+ and 𝐴𝐼 have to be chosen to satisfy:

𝜆𝑃𝐹𝐴𝑃𝐹𝑅𝑒 + (𝜆𝑃𝐹+𝐴𝑃𝐹+ +𝐴𝐼 )𝑅𝑏 ≤ 𝐵𝑡 , (9)
where 𝜆𝑃𝐹 and 𝜆𝑃𝐹+ indicate the average fractions of tiles in PF
and PF+, respectively, that are not covered by the RI region, both
equal to the ratio of the number of RI tiles (related to the RI size)
vs. the total number of tiles in the ERP.

Given the total rate target for a frame 𝐵𝑡 , our goal is to find
optimal rate allocation (𝑅𝑏 and 𝑅𝑒 ) and region sizes (𝐴𝑃𝐹+, 𝐴𝐼 ) to
maximize the quality in Eq. (8) subject to the rate constraint in
Eq. (9). In general, 𝛼𝑃𝐹+ and 𝛼𝐼 increase with 𝐴𝑃𝐹+ and 𝐴𝐼 , and
𝜅min also increases with 𝐴𝐼 . However, the rates 𝑅𝑒 and 𝑅𝑏 decrease
with 𝐴𝑃𝐹+ and 𝐴𝐼 due to the total bandwidth constraint.

For a given ERP frame size and tile size, and a fixed FoV size, we
only consider a limited set of feasible sizes for PF+ and RI. For each
region size combination, the only free variables of Eq. (8) are 𝑅𝑒 and
𝑅𝑏 . Using the bandwidth constraint in Eq. (9), we can write 𝑅𝑏 =

(𝐵𝑡 − 𝜆𝑃𝐹𝐴𝑃𝐹𝑅𝑒 )/(𝜆𝑃𝐹+𝐴𝑃𝐹+ + 𝐴𝐼 ). Then, the optimal 𝑅𝑒 can be
solved by setting 𝜕𝑄̄

𝜕𝑅𝑒
= 0. Using the logarithmic Q-R models shown

in Section 2.2.2, we can obtain the following analytical solution:

𝑅𝑒 =
𝑋

𝑋 + 𝑌
𝐵𝑡

𝜆𝑃𝐹𝐴𝑃𝐹
, 𝑅𝑏 =

𝑌

𝑋 + 𝑌
𝐵𝑡

𝜆𝑃𝐹+𝐴𝑃𝐹+ +𝐴𝐼
, (10)

where 𝑋 = 𝛾𝛼𝑃𝐹𝑏𝑒 , (11)
𝑌 = 𝛾𝛼𝑃𝐹+𝑏𝑏 + 𝛾𝛼𝐼𝑏𝐼 + 𝜅min𝑏𝐼 − 𝛾𝜅min𝑏𝐼 (𝛼𝑃𝐹 + 𝛼𝑃𝐹+ + 𝛼𝐼 ) . (12)

We exhaustively search among all possible region size combinations
(and their corresponding optimal rate allocation) to find the optimal
region size and rate allocation that maximizes 𝑄 .

3 LOW-DELAY RATE-ADAPTIVE STREAMING
3.1 Proposed streaming system overview
The proposed interactive video streaming system uses a server
push-based streaming solution to control the video encoding phase
(Figure 5). The system performs rate adaptation periodically at the
segment level (In our simulations, each segment is 1 second long and
contains 30 video frames). At the beginning of each new segment,
based on the FoV and bandwidth history feed-backed continuously
from the user, the server predicts the average bandwidth as well
as the hit rates for different regions for the new segment. The
server then performs optimization to determine the sizes of PF+
and RI, and the average rate 𝑅𝑏 and 𝑅𝑒 for all the frames in this
segment. Each video frame is then encoded sequentially in real time.
In our simulation we assume that the video frame rate is 30 Hz,
and coding each frame takes 1 frame interval (33 ms). Once each
frame is encoded, it will be appended to the sender buffer, shown as
Process 1 in Figure 5. To reduce the latency, once the sender buffer
exceeds a maximum buffer size, 𝐵𝐹max (which is set to 10 frames in
our simulation), the encoder will skip the newly captured frames,
until the sender buffer size is less than 𝐵𝐹max. If there are encoded
frames in the sender buffer, the server will send as many frames as
possible based on the predicted bandwidth to the client, shown as
Process 2 in Figure 5.

We assume the one-way transmission delay is 15 ms, which is
reasonable for transmission within a country like the US. Upon
receiving any new frame, the decoder will decode it with respect
to the current reference frame (the last decoded frame) and put the
decoded frames into the display buffer, shown as Process 3 in Figure
5. This newly decoded frame then becomes the updated reference
frame. Only tiles in the PF, PF+ and RI regions will be updated. Note
that we still decode a received frame even if it is late for display,
so that we could update the reference frame in the decoder buffer,
to avoid mismatch between encoder and decoder reference frames.
We assume that decoding each frame takes 1/3 of the frame interval
(11ms).

The display checks whether there is any decoded frame in the
display buffer at an interval smaller than the frame interval (1/3
frame interval in our simulation), displays one frame after each
interval, shown as Process 4 in Figure 5. Checking the display buffer
at this higher frequency enables speeding up the playback when
several delayed frames arrive in a burst. When a frame arrives later
than the maximum display deadline (20 frames in our simulations),
we skip this frame, and display the latest frame that meets the
display deadline. The display repeats the last received frame until
a new frame arrives before its deadline, leading to a frame freeze.
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Note that the frame freeze can be caused by either the skipped
frame at the sender or the late frames at the receiver. With the
simulation set up described above, our trace-driven simulations
have shown that the end-to-end frame delay is very low, with mean
<100 ms, as detailed in Table 1 and 2.
3.2 Predicting FoV and bandwidth
3.2.1 Frame-Level FoV Prediction. FoV prediction is critical to the
performance of FoV-adaptive streaming. In the past, linear regres-
sion, weighted linear regression, and truncated linear prediction
[5, 17, 18] as well as neural network based methods [2, 6, 12] have
been proposed. Most of these methods can predict the short-term
FoV (within the future 1 second) well with an accuracy of more than
90% [17][12][6]. In our system, the prediction horizon equals the
total frame delay, which is on average less than 100 ms. Therefore,
simple regression methods are expected to work well. We adopt
the truncated linear prediction method [18], which only use the
last few past samples among a maximum number of past samples
that can be approximated well by a linear function to predict a
future sample. As shown in Figure 6, this method can generate
very accurate prediction except when the FoV suddenly changes.
Furthermore, the predicted trace has a very short time lag from the
actual trace after sudden changes.
3.2.2 Segment-Level Bandwidth Prediction. In the beginning of
each new segment, we predict the average sustainable throughput
from the sender to the receiver based on the measured throughput
in the past segments fedback by the receiver. In a prior work [10]
on rate adaptation for video calls, an online linear adaptive filter
called recursive least square (RLS) was found to achieve higher
prediction accuracy than exponentially weighted moving average.
Therefore, we adopt the RLS method in this work and use the
measured bandwidth in previous two segments for the prediction.
As shown in Figure 6, the prediction accuracy is very good with a
short time lag after a sudden change. We would like to note that the
proposed streaming system can easily adopt more accurate FoV and
bandwidth prediction methods to further improve the performance.
3.3 Adaptation of coding rates and region sizes
Based on the estimated bandwidth available for transmitting the
next segment and the current sending buffer size, we determine the
average target bit budget for this segment. Then we determine the
target average video rates in different regions and region sizes of
all frames in the next segment by maximizing the expected video
quality in Equation (8), using the method described in Section 2.3.2.
We use the average hit rates and frame delivery rate determined in
previous segment as the estimate for these variables for the next
segment. We also use the time lapse distribution 𝑝 (𝜏) computed
from the previous segment to update the Q-R models as described
in Section 2.2. The target rate of each frame inside a segment is
further adjusted, depending on the sending buffer status measured
at the time of encoding.
3.3.1 Assigning total bit budget considering sending buffer status.
Due to the error in the average bandwidth prediction and the actual
bandwidth fluctuation within a segment time, there could be occa-
sional packet backlogs. To avoid the backlogged bits accumulating
in the sender buffer over time, when encoding a new segment 𝑠 ,
we calculate the target bit budget by subtracting the bits 𝑞𝑠 re-
maining in the sender buffer before coding the segment from the

Figure 5: Illustration of the streaming system.
predicted total bits that can be sent for the segment 𝑏𝑠 . Then we ap-
ply a bandwidth utilization ratio 𝜂 to keep the probability to exceed
the network capacity low. The work in [10] showed that 𝜂 = 66%
can keep this probability lower than 5%. The final bit budget for
encoding segment 𝑠 is

𝑏𝑠 = 𝜂 (𝑏𝑠 − 𝑞𝑠 ). (13)
3.3.2 Frame-level Bit Budget Update. The bandwidth inside a seg-
ment can be unstable, especially over wireless connection time
varying. History based bandwidth prediction at the segment level
does not consider such variations. We adjust the bit budget for each
frame based on the remaining bit budget of that segment and the
current buffer occupation. Assuming that there are 𝑁 frames in
a segment, when coding frame 𝑛 (𝑛 = 0 for the first frame in the
segment), on average 𝑛

𝑁
𝑏𝑠 bits should have been used. However, it

is possible that the actual number of bits already generated 𝑆𝑛 could
be either smaller or larger than this estimation. To be conservative,
we set the remaining bit budget as

𝑏𝑠 (𝑛) = 𝑏𝑠 −𝑚𝑎𝑥
(
𝑆𝑛,

𝑛

𝑁
𝑏𝑠

)
. (14)

Then, we check the sender buffer occupation 𝐵𝐹 (𝑛); a rate higher
than that in (14) is preferred if the sender buffer is almost empty,
whereas a lower rate is more appropriate if the buffer is close to
the maximum buffer length 𝐵𝐹max. Therefore, if the sender buffer
is not full, the target bit rate for this frame is adjusted as

𝐵𝑡 (𝑛) =
𝑏𝑠 (𝑛)
𝑁 − 𝑛𝑎 exp(−𝑏 ∗ 𝐵𝐹 (𝑛)/𝐵𝐹max), (15)

where 𝑎 and 𝑏 are parameters that can be adjusted empirically. In
our simulations, we set 𝑎 = 1.20, 𝑏 = 1.00, and 𝐵𝐹max = 10 frames.
As noted before, if the buffer is full, this frame is skipped.

4 TRACE-DRIVEN SIMULATION RESULTS
4.1 Traces and Benchmarks
To evaluate the proposed coding and streaming system, we develop
a simulation system using real user FoV traces and wireless band-
width traces. We use the cellular link capacity traces as described in
[10]. We choose a particularly challenging trace with a 𝑠𝑡𝑑/𝑚𝑒𝑎𝑛
ratio of 0.673, shown in Figure 6. Furthermore, we scale up the
bandwidth dynamic range to 50 to 200 Mbps to match the video
rate range for the 8K testing video.

We evaluate the performance of the streaming system for two
JVET 360◦ video testing sequences “Trolley” and “Chairlift”. “Trol-
ley” is a stable 360◦ video shot by a fixed camera. “Chairlift” is
a dynamic 360◦ video shot by a moving camera. Both videos are
represented in ERP format with 8192×4096 spatial resolution (8K),
and 30 frames per second. “Trolley” uses 8 bits per color component
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Figure 6: Top: the entire bandwidth trace; Below: various performance indices over a short duration.

while “Chairlift” uses 10 bits. We have investigated the impact of
the tile size on the coding efficiency and found that a tile size of
256×256 pixels achieves the best trade-off between the coding effi-
ciency and granularity for region size adaptation for 8K video[14].
Coding results shown in Figure 3 and 4 are all obtained with this
tile size ,including the parameters for the “ideal” Q-R model, rate-
increase factor model, and quality-decay factor model. For practical
applications, we assume that such model parameters can be pre-
determined for a few video categories (e.g. stationary vs. moving
cameras, slow vs. fast object motion in the captured scene ) and
the category of the video can be determined in the beginning of
a streaming session. Instead of actually doing video encoding and
decoding, we use the “ideal” Q-R models and models for the rate-
increase and quality-decay factors to determine the rate and quality
of each tile (which may be coded as PF, PF+, RI or not coded). In our
simulation, we continuously update a record of the time lapse since
it is last coded for each tile in each video frame, and the quality
when it is last coded. To determine the actual number of bits to
inter-code a tile for a given target rate, we increase the target rate
by the rate-increase factor based the time lapse. To evaluate the
average WS-PSNR of the rendered video in a displayed frame, we
use the time lapse of each rendered tile and the quality when it is
last coded to determine the quality of this tile.

For the lack of real FoV traces for these two videos, we choose
two groups of representative traces from open source 360◦ video
FoV trace datasets [21, 22]. For “Trolley”, we use the traces collected
when users watched a video called “Weekly Idol-Dancing” shot by a
fixed camera [22]. For “Chairlift”, we use the traces collected when
users viewed for “GoPro VR-Tahiti Surf” shot by a moving camera
[21]. To eliminate the slight random jitters in these traces, the raw
FoV traces are smoothed using a Kalman filter, and the filtered
traces are used as the testing FoV traces. Because the duration of a
FoV trace is shorter than our bandwidth trace, we repeat the FoV
trace by concatenating the flipped FoV trace to itself repeatedly.
We run the simulation using 48 users’ FoV traces, and report the
average results.

We first compare our system to two intra-coding benchmarks.
Both use tile-based intra-coding. BM1 [20] codes and transmits a
vertical slice to cover the predicted FoV in each frame (the vertical
slice covers a 140 × 180◦ region when the user FoV size is 90 × 90◦).

BM2 only code the tiles in an extended PF region using intra-coding.
The extended region is equivalent to the union of the PF and PF+
regions in our proposed system, with a fixed PF+ size to cover a
50◦ border. For both benchmark systems, we use the Q-R models
derived for the RI region to determine the WS-PSNR of coded tiles
given the allocated bit budget per frame, and we further use the
proposed quality-decay model to determine the WS-PSNR of the
un-coded region in the FoV. We also compare our system to an
inter-coding benchmark (BM3). Rather than using rotating intra
regions, it codes the entire first frame in each segment as an intra
frame. The remaining frames are inter-coded in the same extended
PF region as in BM2 with the same rate. All benchmark systems use
the same approaches as the proposed system, for FoV prediction,
bandwidth prediction, and segment- and frame-level rate budget
assignment. For BM3, the target rate for the I-frame is set to 2.5
times of that for the P-frame, to reach a good trade-off between
the delay (caused by the increased rate of the I-frame) and quality
degradation of the I-frame.
4.2 Performance metrics
For each system and each video, we report the average render-
ing quality (average WS-PSNR over all rendered pixels) over all
displayed frames as well as the average frame delay, the freeze
frequency and duration, and the frame delivery rate. In addition to
the average WS-PSNR, we also evaluate the spatial and temporal
quality variation, as such variation can affect the perceptual quality.
The temporal quality discontinuity is the mean absolute difference
between the rendering qualities of every two adjacent frames. The
spatial quality discontinuity is the mean absolute difference between
the rendering qualities of a tile and each of its neighboring tiles in
the displayed FoV.
4.3 Evaluation results
In our simulation, we assume the PF size FoV covers a 90×90◦ region
on the sphere. The PF+ sizes FoV can choose from a candidate set of
{10◦, 20◦, 30◦, 40◦, 50◦}. The RI size can choose from {4, 8, 16, 32, 64}
tiles.

Figure 6 shows the region size and rate adaptation relative to the
FoV trace and bandwidth trace over a chosen time interval with sig-
nificant changes in FoV and bandwidth. It also shows the predicted
vs. true bandwidth and FoV traces, respectively, and the frame delay
traces. Note that because we predict the average bandwidth and
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adapt the region size and rate allocation per second, the plots for
these are constant within each second. We also present the average
hit rates of various coded regions and the frame delivery rate per
second. From this figure, we can see that frame-level FoV prediction
using the proposed truncated linear predictor is mostly very accu-
rate, except when there are sudden transitions of FoV. We can see
the PF+ and RI size remain small while FoV prediction is accurate.
When FoV prediction is less accurate, the PF+ and RI sizes increase.
Furthermore, frame delay increases when the predicted bandwidth
is higher than the actual bandwidth. When the bandwidth drops to
very low occasionally, the frame delivery rate drops, and a larger
RI size is used to shorten the refresh period of the RI region.
Metric BM1 BM2 BM2 Prop. Simp.
WS-PSNR in FoV (dB) 36.29 38.22 44.66 48.31 48.23
Temporal discontinuity (dB) 0.247 0.206 0.567 0.229 0.265
Spatial discontinuity (dB) 0.269 0.002 0.008 0.318 0.442
Average delay (ms) 92.64 92.64 107.01 95.03 94.80
Delay STD/Average 0.380 0.378 0.451 0.431 0.429
% of freeze frames (%) 0.260 0.260 0.588 0.296 0.287
Average freeze duration (ms) 22.65 22.27 43.01 31.19 30.47
Display interval average (ms) 33.43 33.43 33.47 33.43 33.43
Display interval STD (ms) 12.20 12.14 15.81 12.60 12.59
Average hit rate, PF (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 90.42 90.44
Average hit rate, PF+ (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 7.78 8.55
Average hit rate, RI (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 0.91 0.88
Average hit rate, total (%) 54.30 99.78 99.83 99.11 99.86

Table 1: Trolley video (fixed camera).

Tables 1 and 2 compare the proposed system with the three
benchmark systems using average metrics over all the FoV traces,
for the two videos. Compared to the two benchmark systems using
intra-coding (BM1 and BM2), the proposed system is able to achieve
significantly higher average WS-PSNR (6-10dB higher) through the
use of FoV adaptive inter-coding. However it has slightly higher
spatial discontinuity, because it codes the PF and PF+ region using
different rates. The BM2 system has better quality than BM1 because
BM2 generally codes and transmits a smaller area surrounding the
predicted FoV than the BM1. BM1’s low quality is also in part
because it uses a fixed width vertical slice, which does not cover
the entire FoV when the FoV is towards the north or south pole,
leading to a low FoV hit rate. Because all the systems use the same
approach for bandwidth estimation and bit budget allocation, these
systems are similar in terms of average frame delay, and freeze
duration, and percentages of freeze frames. Most importantly, all
the systems have very low frame delays with mean < 100 ms and a
Metric BM1 BM2 BM3 Prop. Simp.
WS-PSNR in FoV (dB) 37.27 38.67 42.97 45.25 45.21
Temporal discontinuity (dB) 0.191 0.147 0.387 0.164 0.185
Spatial discontinuity (dB) 0.189 0.002 0.009 0.218 0.305
Average delay (ms) 92.64 92.64 109.25 98.41 98.07
Delay STD/Average 0.380 0.378 0.501 0.439 0.435
% of freeze frames (%) 0.260 0.260 0.667 0.382 0.367
Average freeze duration (ms) 22.65 22.27 57.33 45.77 44.24
Display interval average (ms) 33.43 33.43 33.47 33.42 33.42
Display interval STD (ms) 12.20 12.14 15.86 13.12 13.09
Average hit rate, PF (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 89.98 90.02
Average hit rate, PF+ (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 7.74 8.61
Average hit rate, RI (%) 𝑁 /𝐴 𝑁 /𝐴 𝑁 /𝐴 0.98 0.94
Average hit rate, total (%) 77.67 99.45 99.59 98.71 99.57

Table 2: Chairlift video (moving camera).

small variance. The freeze probabilities (< 0.5%) and freeze duration
(≈ 1 frame time) are also very low. The proposed system has slightly
higher delay and freeze because of the video rate variation within
each segment caused by the variable coding time lapses due to the
FoV dynamics. Recall that we predict the time lapse distribution
in the new segment based on the distribution in the past segment;
When the FoV suddenly changes from stationary to dynamic, such
prediction is not accurate, leading to the actual video rate higher
than allocated, causing extra delay and occasionally freezing. The
benchmark systems do not experience such rate variation, because
they use intra-coding.

Compared to the benchmark inter-coding system (BM3), the
proposed system achieves higher quality and lower delay. The
higher average WS-PSNR (2-4dB higher) is because it codes the PF+
region at a lower rate than the PF region, and it codes a smaller
percentage of tiles using the intra-mode. BM3 suffers from a higher
frame delay and more frequent freezing because the periodic I-
frame has a target rate higher than the P-frame. We set the target
I-frame rate to be 2.5 times of the target P-frame rate, to avoid a
bigger rate spike, which would have further increased frame delay
and freezing. On the other hand, this made the I-frame quality to be
lower than the P-frame, leading to higher temporal discontinuity
than other methods.

Between the two videos, “Chairlift” has lower quality primarily
because of its fast moving content and hence lower Q-R efficiency
(see Figure 3). “Chairlift” also suffers from slightly higher delay and
freeze due to the more significant video rate variation caused by
the more dynamic FoV traces.

To evaluate the gain from adapting both the region sizes and rate
allocation in the proposed system, we also examine a simplified
version of the proposed system, where the region sizes are fixed
(PF+ is set to 50◦, while RI is 4 tiles). As shown in Table 1 and 2, the
performance degradation from using fixed sizes for the PF+ and RI
is quite small. Hence, this simplified system may be preferred for
practical implementation.
5 CONCLUDING REMARKS
This work focuses on overcoming the challenges in integrating tem-
poral predictive coding into low-latency, FoV-adaptive coding and
streaming of interactive 360◦ video. Through accurate quality-rate
modeling that explicitly considers the reduced coding efficiency
due to the prolonged temporal prediction time lapse, the system
can achieve accurate rate control at both the segment and frame lev-
els and optimize rate allocation to maximize the rendering quality.
By introducing rotating intra-regions, the system can periodically
stop both error propagation due to frame losses as well as quality
degradation in un-coded regions, without causing bit rate spikes
that increase frame delay. Together with push-based frame delivery
and target rate adaptation at both segment and frame levels, the
proposed system has been shown to be capable of reducing the
mean end-to-end delay to below 100ms under challenging band-
width traces. Compared to benchmark systems, the proposed sys-
tem improves the average WS-PSNR by 2 to 10 dB, which should
correspond to substantial improvement in the perceived quality.
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