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Immunity

Longitudinal Multi-omics Analyses Identify Responses of
Megakaryocytes, Erythroid Cells, and Plasmablasts as

Hallmarks of Severe COVID-19
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Highlights
e SARS-CoV2 infection elicits dynamic changes of circulating
cells in the blood

e Severe COVID-19is characterized by increased metabolically
active plasmablasts

e Elevation of IFN-activated megakaryocytes and erythroid
cells in severe COVID-19

e Cell-type-specific expression signatures are associated with
a fatal COVID-19 outcome

Bernardes et al., 2020, Immunity 53, 1296-1314
December 15, 2020 © 2020 Elsevier Inc.
https://doi.org/10.1016/j.immuni.2020.11.017

Authors

Joana P. Bernardes, Neha Mishra,
Florian Tran, ..., Philip Rosenstiel, HCA
Lung Biological Network, the
Deutsche COVID-19 Omics

Initiative (DeCOl)

Correspondence
p.rosenstiel@mucosa.de

In Brief

Bernardes et al. explore COVID-19
disease trajectories by performing
longitudinal multi-omics analyses in
peripheral blood samples from
hospitalized patients. The analyses
identify increased numbers of
plasmablasts, interferon-activated
megakaryocytes, and erythroid cells as
hallmarks of severe disease and define
molecular signatures linked to a fatal
COVID-19 disease outcome.
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SUMMARY

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for
understanding skewed immune responses and defining predictors of outcome. Here, we performed a longi-
tudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk
DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood
samples harvested from up to 5 time points. Validation was performed in two independent cohorts of
COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyper-
active plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated
circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryo-
cyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study
demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an
entry point toward developing biomarkers and targeted treatments of patients with COVID-19.
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INTRODUCTION

COVID-19 shows a heterogeneous clinical course, ranging
from asymptomatic cases to overwhelming inflammatory re-
sponses leading to organ failure and death. Severe, and ulti-
mately fatal, COVID-19 is associated with a dysfunctional im-
mune response. Critically ill COVID-19 patients show higher
blood plasma amounts of numerous cytokines and chemo-
kines (Chen et al., 2020; Giamarellos-Bourboulis et al., 2020;
Huang et al., 2020; Ong et al., 2020) than do less severe cases.
Patients with severe COVID-19 exhibit an impaired type | inter-
feron (IFN) response with low IFN production and heteroge-
neous regulation of IFN-stimulated genes (Blanco-Melo et al.,
2020; Hadjadj et al., 2020). Peripheral blood of patients with
severe COVID-19 exhibits high frequencies of interleukin-6
(IL-6)-secreting CD14hCD16M monocytes as well as a
decrease of non-classical (CD14'°CD16M) monocytes (Hadjad]
et al., 2020; Schulte-Schrepping et al., 2020). Hyperinflamma-
tory COVID-19 is associated with the appearance of prolifer-
ating, type-l-IFN-activated CD14+HLA° suppressive mono-
cytes and emergency granulopoiesis with elevated pre-
neutrophil counts. T cell lymphopenia and exhaustion are sug-
gested as hallmarks of severe COVID-19 as well (Diao et al,,
2020; Giamarellos-Bourboulis et al., 2020; Guan et al., 2020;
Huang et al., 2020; Zheng et al., 2020). SARS-CoV-2 infection
can elicit specific T cell and B cell responses (Braun et al.,
2020; Grifoni et al., 2020; Long et al., 2020; Ni et al., 2020).
How these changes in immune cell populations and functions
are related to disease outcome lasting immunity are areas of
active investigation.

A significant disease burden is mounted by thrombotic com-
plications associated with COVID-19. Pulmonary embolism
and thrombosis are frequent clinical features of critically ill
COVID-19 cases (Deshpande, 2020), sometimes despite suffi-
cient anticoagulation. Alveolar capillary microthrombi are nine
times more prevalent in COVID-19 than in influenza autopsies
(Lax et al., 2020). Patients exhibit elevated D-dimer levels and
widespread thrombotic microvascular injury (De Voeght et al.,
2020; Rapkiewicz et al., 2020). Several studies suggest altered
platelet immune cell interactions (Leppkes et al., 2020, Manne
et al., 2020) and the presence of megakaryocytes (MKs) in
affected lungs (Meyerholz and McCray, 2020).

Longitudinal analyses on the dynamics of circulating immune
cells in COVID-19 so far have mostly investigated one informa-
tion layer (e.g., fluorescence-activated cell sorting [FACS]) at a
time. Here, we aimed to provide a comprehensive, longitudinal
view of cellular features by using an integrated multi-omics
approach. We analyzed up to five peripheral blood samples
from hospitalized COVID-19 patients throughout their disease
course by single-cell RNA sequencing (scRNA-seq), transcrip-
tome and DNA methylome profiling, multi-color flow cytometry,
as well as multiplex cytokine ELISA. In addition to complex
changes of immune cells, our study linked circulating MKs and
responses of erythroid cells to COVID-19 clinical outcome.

RESULTS

Study Design

We applied a multi-omics approach using up to 5 longitudinal pe-
ripheral blood samples of 13 hospitalized COVID-19 patients and
1 additional recovery control from 2 University hospitals in Ger-
many (Cologne and Kiel). We employed parallel scRNA-seq (10x
Genomics), single-cell B cell receptor (BCR) profiling, bulk
mRNA sequencing (RNA-seq), BCR amplicon sequencing, and
multicolor flow cytometry. Array-based DNA methylation profiling
and multiplex cytokine ELISA analysis was performed in a subset
of seven patients (Figure 1A). All patients were recruited at admis-
sion and samples were taken at days 0, 2, 7, 10, 13 and/or at
discharge. Three patients were diagnosed with Acute Respiratory
Distress Syndrome (ARDS), two of which had a fatal disease
course. Five patients received remdesivir after inclusion into this
study. Patient demographics and clinical characteristics are
described in Table S1. Fourteen age- and gender-matched
healthy controls were processed in parallel. To describe the heter-
ogenous disease trajectories over time, we used a modified WHO
ordinal scale (WHO, 2020), which also considers several inflam-
matory markers (serum c-reactive protein [CRP], serum IL-6,
and ferritin) (Table S2). The score was used to classify patients
along their disease course (Figures 1B and 1C).

scRNA-seq Analysis Identifies Cellular Changes along
the COVID-19 Disease Trajectory

We first analyzed scRNA-seq data from 358,930 cells with
10,900 cells on average per sample (Figure 2A). Up to four
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longitudinal samples were analyzed per patient. Uniform Mani-
fold Approximation And Projection (UMAP) was used to visualize
the structure of cellular populations (Figures 2B-2E). Graph-
based clustering identified 37 distinct cell clusters in the dataset
(Figure S1A). Cell type classification was performed on the basis
of signature genes of each cluster and confirmed by using refer-
ence transcriptomes (Aran et al., 2019; Wilk et al., 2020; Zheng
etal., 2017) (Figures 2B, 2C, S1B, and S1C). Cells from individual
patients were dispersed evenly in the UMAP representation, with
the exception of a higher degree of interindividual heterogeneity
in the monocytic subpopulations (Figure 2D, 2E, and S2).
Enumeration across time points revealed changes of several
cell types including monocytes, proliferative lymphocytes, and
natural killer (NK) cells (Figures 2E, 2F, and S1D). We observed
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tients. Prominently, MK proportions
were elevated throughout the course of
the disease (Figure 2F). To define poten-
tial cell populations, which might be
directly infected by SARS-CoV-2, we specifically interrogated
ACE2 mRNA amounts in the dataset, which were below detec-
tion limit (<7 reads) in all cell populations (data not shown).

A correlation analysis of relative cell proportions with clinical
activity parameters and multiplex serum ELISA revealed that
PB proportions were correlated with serum amounts of e.g., tu-
mor necrosis factor (TNF), IL-10, and IL-21, a factor critically
involved in B cell differentiation to PBs via STAT3 and BLIMP-1
(also known as PRDM1) (Ozaki et al., 2004). Increased bone
marrow precursor cells were associated with increased amounts
of IL-33, a Th2 cytokine involved in regulating hematopoietic
stem cell regeneration (Kim et al., 2014), and elevated MKs
were linked to heightened inflammatory parameters, e.g., serum
CRP, IL-6, and IFN-a. (Figure 2G).



Immunity

feX YoTeX Yo}
Longitudinal sampling

scRNA-seq
PBMC

. ¢
.

Correlation with clinical parameters

OL;yles

Nulocytes

TYthroid ey
T cells
T cells
rsors

Gra
E
< [Nk
ProLym,
C Ph

cells
PB
Precy,
Mk

-|cpg
Dc
*|B cells

Merged object

nlg

Disease trajectory comparison

Cell population identification

Gene 1
Gene 2
Gene 3
Gened
Gene 5

Cell type specific signatures

358,930 cells

¢? CellPress

Cell type

© Monocytes

@ Granulocytes

@ Erythroid cells

® NK cells

© Proliferative Lymphocytes (ProLymph)
©CD4' T cells

@®CD8' T cells

@ Dendritic cells (DC)

OB cells

@ Plasmablasts (PB)

O Precursors (HSC, MEP, CMP, GMP)
® Megakaryocytes (MK)

Pseudotime

0 @ Healthy

1@ Incremental

2 @ Critical

3 @ Complicated

4 @ Moderate/earlyconvalescence

" 5@ Late convalescence
6 O Recovery/pre-discharge
7 © Long-term follow-up

0000000000|\0),

CD14.
MALAT1
RSRP1

DDX17:
MTRNR2L12 © 0021

n.s.

Fs

a
J23
£

.

.

p=0.0005

n.s.

n.s.

° ° °
. . .

N
S

20,

I
@
>
0000000000

% Monocytes
% NK cells
@

"
.
% Granulocytes

% Erythroid cells

° .
s edeee L4

-
4o
-
o-oleo
oo
oo o0
.

2
32
5
:

I
-7
=33
z
@ RESD5
© 0000000000
s

p=0.005
ns. ns. p=0.014

o 30

o

40 .

“ f?t |

20 ’

% ProLymph
.

% CD8* T cells
% DC

4
)
1
®eccco0
e
.
% CD4" T cells
oo

3
83

N

..

0.0

. _ p=00002 _ p=0030 .
_ p=0.003 ) ) ns. ) 08 ns. ) ) .

o
=}
2
&
e@cecoe

06 9
LILRAG
SERPINF1
ccDeso

CD79A
IS4A1

04

*—o
% MK
o

% B cells
.
.
% PB
% Precursors

0.2

¢
%o
oo

ooie
oo ¢oo
ole

o}

I

53
@:c:000:0:"

@
3
z
3
XYY

RP11-620J15.
KIAAD12!

CD34
CYTL1
SMIM24-
TUBB1

CD4' T cells,
CD8' T cells
PF4.
HIST1H2AC
SDPR
MYL9
GNG11
SPARC
Céorf25

Average expression  Percent expressed

0255075
Ve

Seearman‘s Rho
0

1 0.5 -05 -1

Figure 2. Cellular Changes along COVID-19 Disease Trajectories

(A) Schematic workflow.

(B) Cell type UMAP representation of all merged samples. Twelve cell types were identified by cluster gene signatures. In total, 358,930 cells are depicted.
(C) Dot plot for cell-type-specific signature genes. Genes were selected on the basis of the expression amounts of the ten most characteristic genes. Color
discriminates genes with increased (red) or decreased (blue) expression, and point size represents the number of cells per group expressing the correspond-
ing gene.

(legend continued on next page)
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Whole-Blood Transcriptome Signatures Vary
Dynamically along COVID-19 Disease Trajectory

To delineate the transcriptional response to SARS-CoV-2 infec-
tion at higher temporal resolution and to instruct further cell type
selection from the single-cell dataset, we next analyzed whole-
blood transcriptomic data of the 13 hospitalized patients from
up to 5 time points along with the recovery control and compared
the signatures against 14 healthy controls (Figure 3A). Principal
component analysis showed a separation between healthy con-
trols and COVID-19 patients on the first principal component
(PC1) (Figure 3B). In total, 5,915 genes were differentially ex-
pressed between healthy controls and COVID-19 patients in a
pairwise comparison between controls and each of the disease
trajectory pseudotimes (Figures 3C and S3A). Most of the differ-
entially expressed genes (DEGs) were expressed at higher levels
in COVID-19 patients than in healthy controls (Figures 3C and
S3A). Notably, early changes comprised increase of immuno-
globulin transcripts (/IGHA1 and IGHG1) and lactoferrin (LTF),
whereas RORC mRNA levels, encoding for a Th17-specific tran-
scription factor (TF) and class Il HLA transcripts were decreased
throughout the disease course.

Next, we employed ImpulseDE2 to construct a model of intra-
individual variation of DEGs over time (Sander et al., 2017). Given
that two of three patients reaching pseudotime 2 were deceased
soon after reaching this time point and did not experience a
convalescent disease course, this category was excluded from
this analysis and was only used to contrast identified transcripts
post hoc. We identified 935 DEGs following impulse-like pro-
gression patterns across the disease trajectory (Figures 3D
and S3A). Genes involved in IL-1B and vasodilatory signaling
were highly expressed during the incremental trajectory (pseu-
dotime 1). A broad decrease in transcripts encoding ribosomal
structural proteins was present from the incremental to the late
convalescent state (pseudotimes 1, 3, and 4), which might reflect
a general suppression of the protein synthetic apparatus by type
IIFN (Jiang et al., 1997). Opposingly, there was a strong increase
in IFN-related transcripts during the peak of disease activity,
which was, however, suppressed in the critical disease category
(Figures 3D and S3B), confirming earlier reports (Blanco-Melo
et al,, 2020; Hadjadj et al., 2020). Transcripts involved in
myeloid-cell-mediated immunity and neutrophil degranulation
were modestly increased during pseudotimes 1, 3, and 4, but
were strongly increased in the critical pseudotime 2. Notably,
during late convalescence (pseudotimes 5 and 6) a strong signal
of erythroid cell differentiation (e.g., HBD, OPTN, and FIS1) was
detectable indicating a response to hypoxia (Ashrafi and
Schwarz, 2013).

Immunity

We used the gene set resource DoRothEA to infer transcrip-
tion factor (TF) activity by enriched regulon analysis. TFs in active
disease were related to inflammation and IFN signaling (e.g.,
IRF1 and STAT3) as well as hypoxic signaling (HIF1A) (Fig-
ure S3C). Supporting the IL-21-PB axis identified in the first
part of the single-cell analysis, PRDM1 (encoded by BLIMP-1)
was predicted as significantly active both at the critical as well
as at convalescent time points. A hypergeometric test of all
active TFs against the REACTOME database showed an enrich-
ment of “cell differentiation pathway” (q = 0.03) and “MK devel-
opment and platelet production” (g = 0.05). Using upstream
network topology of gene expression changes by using signed
and directed protein-protein interactions (Liu et al., 2019), we
could show that MAPK3 (also known as ERK1) and MAPK1
(also known as ERK2) had the highest centralities across all
pseudotimes (Figure S3D). We further constructed metabolic
models of each pseudotime by using the respective DEGs (Ge-
bauer et al., 2016) and found that the inflammatory disease
states were associated with higher numbers of predicted meta-
bolically active pathways than in convalescence and healthy in-
dividuals (Figure S3E). We also investigated the bulk RNA data-
set for presence of viral reads and did not detect relevant
amounts (>10) of viral reads in any sample. This finding was
also confirmed by negative routine real-time PCR (E gene and
S gene amplicon) (data not shown).

Longitudinal Co-expression Modules Identify Impaired
IFN Response in Critical Disease and Signatures of
Increased Thrombo- and Erythropoiesis

We next used all DEGs identified from the combination of pair-
wise and longitudinal analysis (6,317 genes) for weighted gene
co-expression network analysis (Langfelder and Horvath, 2008;
Lee et al., 2004). The analysis identified a total of 10 modules,
which we refer to as M1-M10, of co-expressed genes following
distinct expression patterns throughout the COVID-19 disease
phases (Figures 4A and S3F; Table S3). We calculated the eigen-
gene values, which represent a single expression profile for all
genes within a module, to assess the individual correlation be-
tween the modules and scRNA-seq-derived cellular composition
(Figure 4B) and clinical parameters (Figure 4C). Projecting the
expression of the hub genes of each module on the scRNA-
seq data revealed cell-type- and pseudotime-specific expres-
sion patterns (Figure S4). Gene set enrichment analysis revealed
biological processes and pathways enriched in each of the mod-
ules. Transcription factor binding site (TFBS) inference (Breuer
et al., 2013) was used to depict putatively involved TFs. M2 rep-
resented a signature of a type | IFN response and proliferative

(D) Sample of origin UMAP representation of all merged samples. Cells were colored by the sample. Samples nomenclature is based on patient ID (001-014) and
time points of sample collection day 1 (after admission TA), day 3 (TA2), day 8 (TB), day 11 (TB2), day 14 (TC), and day 20 (TE).

(E) Pseudotime UMAP representation of all merged samples, colored by pseudotime.

(F) Cell proportions grouped by pseudotime. Cell proportions depicted as points referring to percentages based on the total cell numbers of individual samples
and horizontal bars depicting the mean. Pseudotimes are represented by colors. p values are based on longitudinal linear mixed model for comparison among
COVID-19 pseudotimes and p values are based on Mann-Whitney test for comparisons between healthy and COVID-19 samples.

(G) Correlation heatmap between cell-specific proportions and clinical parameters included in routine tests and multiplex ELISA. *p < 0.05, **p < 0.01, and ***p <
0.001 in Spearman’s correlation. Color intensity corresponds to correlation coefficient.

Abbreviations are as follows: DC, dendritic cells; PB, PBs; MK, megakaryocytes; HSC, hematopoietic stem cell; MEP, megakaryocyte-erythroid progenitor cell;

CMP, common myeloid progenitor cell; GMP, granulocyte-monocyte progenitor.

See also Figure S1.

1300 Immunity 53, 1296-1314, December 15, 2020



Immunity

COVID-19 patients sampled longitudinally

Longitudinal analysis
v

DEGs

Differential expression analysis

Healthy controls sampled once E ? % ﬁ

Correlation with clinical parameters
Correlation with SC fraction

Coexpression analysis

Expression patterns

Gene set enrichment analysis

@012
.010 .010
@014 , 1.3010
40f ° o2
[ )
[ ]
010 012
® ° 9013 012
003 010
~ 20 001
8 hd o2 %7 _Hoos
8 004_001
] ® 009
3 001 005 © oo
N 011 @@ ®
s O 014 001 009
¥ 004 00 009. 006 Pseudotime
S 011 @ “oop Ho08 0 O Healthy
Q 008 @005 005 1005 1@ Incremental
HO%98 {lo0s Ho02 2 @ Critical
-201 9004 Ho10,, 005, 3 @ Complicated
o1 _on %% 4006 HOO1 1511 4 @ Moderate/earlyconvalescent
06 HO04 = 14 5 @ Late convalescent
HO13 6 O Recovery/pre-discharge
-4 Ho12 7 © Long-term follow-up
-60 -30 0 30
PC1 (20.35% variance)
1038 1225 1884 1987 1885 1884
° °
|1 ° ) @ MAOA —
|<;HG1¢= [CHAIN o L @ downregulated
1GHA2 & s . @ upregulated
4] IGHA’ IGHG1 TOP2/ - HTRA3 :
cocs IL1R ‘I‘NHBB p-value (adjusted)
DEF/
TOP2 JCHAIN 0p2APEFA O 10
BIRCS DEFA4 EFA O 1050
EFA3 IL1R2 =
LTF \TF IGHA1 uF () 107
C3AR IGHA2
IFIT1B
g Frequency
c
< 1
-8 HLA-DRB1 HLA-DMA HLA-DMA  HLA-DOA HLA-DRB1 HLA-DQB1 2
kel HLA-DQB1: HLA-DRB1 HLA-DRBS; HLA-DM HLA-DOA.
) HLA-DOA HLA-DM HLA-DQB 188 HLA-DMA HLADOAY 3
2 HaDM TR HLADPB1 HLA-DoA1 B HLA-D0B1 HLA-DOA 288 HiA-DQB 4
4 HLADQA14ME HLA-DOA HLA-DPB1 488 HLA-DRBS HLA-DRBS’
& HLA-DOATARE ILA-DOAT RORC- ° 5
HLADRES RORC RORC—‘ HADOA ®
‘ HLA-DRB5¢ ry A ° 6
HLA-DQB1 PDZK1IP1 ‘g
PR HLA-DRBS
° ) °
-4 ° ®
° ° [ ] ) [}
[ ]
[ ]
739 1437 944 1222 649 836
N 3 > 3 )
& & & © & &
S & oF S oF S5
Pseudotime

Figure 3. Dynamics of Whole-Blood Gene Expression in COVID-19

(A) Schematic workflow.
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activity (G2M transition) (Figure 4D) and was enriched in binding
sites for IRF1, STAT1, and STAT2 (Figure S3G). M4 was associ-
ated with the presence of MKs in the peripheral blood as well as
D-dimers and had two expression peaks, in the critical state
(pseudotime 2) and in the early convalescent state (pseudotime
4), respectively. M7 contained transcripts related to hemoglobin
biosynthesis and coincided with TFBS motifs for GATA-1 and
GATA-2, which are TFs related to erythroid cell differentiation
(Figure S3G). This biphasic pattern is likely related to hypoxia
during highly acute inflammation (first peak) and weaning off
supplemental oxygen during convalescence (second peak).
Altogether, analysis of temporal gene expression patterns in
whole blood of patients clearly depicted pathophysiological con-
sequences of a SARS-CoV-2 virus infection along an idealized
disease trajectory.

Whole-Blood DNA Methylation Profiling Reveals
Genome-Wide Hypomethylation in COVID-19

Associated with Gene Expression

Epigenetic changes have been shown to contribute to the path-
ophysiology of systemic inflammatory states (Lorente-Sorolla
et al., 2019). We thus investigated DNA methylation (DNAm) pat-
terns along the COVID-19 disease course following the workflow
depicted in Figure 4E in a subset of the same patients (n = 6) (Ta-
ble S1) and compared them with a cohort of six healthy age and
gender-matched controls. A pairwise comparison with healthy
controls and between pseudotimes identified between 46,071
and 69,733 differentially methylated CpG sites (Figures 4F, 4G,
and S5B). A preponderance of hypomethylated sites was pre-
sent at each time point compared with in healthy controls.
Cellular deconvolution analysis (Muller et al., 2019) identified
that major parts of the COVID-19-associated DNAm signatures
originated from granulocytes, B cells, NK cells, and monocytes
(Figure S5A). Using Locus Overlap Analysis for inferring differen-
tially methylated TF binding sites (Sheffield and Bock, 2016), we
observed a significant overrepresentation of binding sites of the
CCAAT Enhancer Binding Protein Beta (CEBPB) in hypomethy-
lated regions (Figure 4H), which has a critical role for emergency
granulopoiesis (Hirai et al., 2006) and B-lymphocyte-to-granulo-
cyte trans-differentiation, a process that has been proposed in
severe COVID-19 (Wilk et al., 2020).

We employed a hierarchical testing approach (Pan et al., 2018)
to identify interactions between transcriptome and DNAm signa-
tures in cis (Figure 4E). To that end, we screened all DEGs (com-
bined set) for differentially methylated positions (DMPs) within a
5 kb window up- and downstream of their respective transcrip-
tion start site. Of all 3,280 DMP-DEG pairs, 68.3% showed
increased expression with reduced methylation or decreased
expression with increased methylation, which is in line with pre-
vious studies (Hasler et al., 2012). We next investigated the rep-
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resentation of DMP-DEG pairs in the co-expression modules
M1-M10. Rank-based correlation analysis identified DMP-DEG
pairs in all modules, and there was a significant overrepresenta-
tion in M3 and M8 (Figures S5C and S5D). Gene ontology (GO)
term enrichment analysis of DMP-DEG pairs showed an enrich-
ment of innate-immunity-related terms in the DEGs with
increased expression (e.g., TNF and IL-6 signaling and Toll-like
receptor [TLR] pathway), and also identified gene sets related
to platelet function and metabolic processes (ATP metabolism
and autophagy) (Figure 41). DMP-DEG pair genes, which were
either increased in the inflammatory phase (pseudotimes 1-4)
or decreased in late convalescence (pseudotimes 5 and 6)
were mapped to scRNA-seq data, identifying larger cell-type-
specific clusters of DMP-DEG pairs for PBs, monocytes, and
MKs (Figures S5E and S5F).

Plasmablast and B Cell Changes across the COVID-19
Disease Trajectory
Given that our findings pointed to changes of the B cell compart-
ment along the disease trajectory of COVID-19, we next investi-
gated the B cell lineage in greater detail (Figure 5A). We first ex-
tracted 22,190 cells identified as part of the B cell lineage from
scRNA-seq data in cohort 1. UMAP embedding identified two
distinct large clusters reflecting bona fide B cells, which included
11,509 memory B cells, 3,993 naive B cells, 383 transitional
B cells, and 6,295 PBs (Figure 5B). PBs were largely expanded
during COVID-19 with highest levels in the hyperinflammatory
phase (Figure 5C). Multicolor flow cytometry confirmed high
amounts of circulating CD27hCD20~ cells in the fraction of
CD19+ cells, which dropped along the disease convalescence.
Likewise, the early relative decrease of naive (CD20*CD27-)
and memory B cell (CD20+CD27+) amounts normalized at later
time points (Figure 5D). We also identified a large fraction of
HLA-DR*CD138* double-positive PBs in the inflammatory phase
(pseudotimes 1-4). Whereas CD138+ cells were only abundant in
the active disease and not in the convalescence phase, 82%-
98% of all CD27hCD20- cells remained HLA-DR* (Figure S6F).
Of note, because PBs are notoriously sensitive to manipulation,
we recognized that the handling procedures for scRNA-seq, also
for cohort 2, diminished the amounts of intact PBs compared to
flow-cytometry data, whereas the longitudinal dynamics of
increased PB numbers was retained between the two methods.
We could distinguish a smaller cluster of PBs, which
expressed genes associated with neutrophils (e.g., ELANE,
MPO, and CAMP) (Figure 5E). Unlike in the previous study
(Wilk et al., 2020), we also found such cells in healthy subjects,
albeit at lower frequency (Figure 5C). Using monocle3 (Qiu
et al., 2017), we highlighted the cellular trajectory of transitional
B cells into naive and memory B cells, with a separate memory
B cell cluster being most likely CD45RB~ cells (Glass et al.,

(C) Log,-fold change (y axis) of DEGs between controls and each of the COVID-19 pseudotimes (x axis). Color discriminates genes with increased (red) or
decreased (blue) expression, and point size represents statistical significance (adjusted p value). The transparency of the points denotes the number of com-
parisons in which the genes is significantly differentially expressed. The numbers of genes with increased and decreased expression are written at the top and

bottom of the plot, respectively.

(D) Heatmap of top 500 longitudinal DEGs across COVID-19 pseudotimes (pseudotimes 1, 3, 4, 5, and 6). Gene expression in controls and pseudotime 2 are
shown for comparison on the left and right ends of the heatmap, respectively. The row-wise z-scores of the normalized counts are plotted in the heatmap. Genes

are hierarchically clustered by using their adjacency scores as distance.
See also Figure S2.
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2020) (Figure 5F). We could retrace the progression of PBs,
which did not cluster on the basis of immunoglobulin classes
but rather on the basis of disease state, with cells from hyperin-
flammatory phases being more distant from the root of the tra-
jectory (Figures S6A and S6B). Neutrophil-like PB cells were
not continuously linked to the PB trajectory (Figure 5F).

We next analyzed the BCR repertoire in the different B cell
compartments by using heavy-chain bulk- and scBCR-seq (Fig-
ures S6D, S6E, and S6G-S6P). In the bulk dataset, we identified
all together 596,882 unique BCR CDR3 heavy-chain sequences,
whereas for scBCR-seq we had information referring to 14,785
cells. Diversity analysis showed a heightened clonality, which
sharply increased at early time points and then gradually
decreased in the convalescent pseudotimes until normalization
in follow-up (Figures S6D and S6E). Bulk BCR identified an
expansion of IgA+ and IgG+ cells (Figures S5G and S5I) in both
memory B cells and PBs (Figures S5H and S5J). Increased
IGHA1 and IGHG1 expression was reached earlier in PBs than
in memory B cells. Expanded IgA* and IgG+ PBs were confirmed
in the scBCR-seq data (Figures S5K and S5N). Analysis of immu-
noglobulin heavy-chain variable region (IGHV) family subunits
(Figures S5L, S5M, S50, and S5P) showed a preponderance
of specific V regions in COVID-19 patients compared with in con-
trols, e.g., IGHV3-30 and IGHV3-23 were overrepresented in PBs
and neutrophil-like cells during disease. In summary, we
observed an increase in B cell clonality in COVID-19, and there
was an increase of memory B cells and PBs, dominated by the
IgA and IgG isotypes and a skewed use of the IGHV gene early
during the disease course.

We next analyzed the longitudinal gene expression patterns of
the 6,295 PBs (Figure 5G). The incremental inflammatory phase
of COVID-19 patients was characterized by transcripts related to
endoplasmic reticulum (ER) stress and protein folding (e.g.,
XBP1) and cell proliferation (e.g., PIM2 and S7100A4). Type |
IFN response genes (IFI27, IFI6, and IFITM1) were present in
the PBs until late in the disease (up to pseudotime 5), yet such
genes were absent from PBs in critically ill patients (pseudo-
time 2). Throughout disease, we also identified an increase in
SLC1A4 expression, a potential upstream regulator of metabolic
changes (Figure 5I). High IL-16 expression, which supports
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migration of CD4+ T cells and circulating blood dendritic cells
(DCs) into lymphoid organs during the initiation of a humoral im-
mune response (Kaser et al., 2000), was a feature of long-term
recovery PBs (Figure 5G). GO enrichment analysis identified
increased unfolded protein response and mitochondrial ATP
synthesis during active disease (Figure 5H). These findings
were also corroborated in an independent cohort (cohort 2) of
patients with mild and severe COVID-19 by using another
scRNA-seq technology (Schulte-Schrepping et al., 2020). The
2,263 PBs extracted from this dataset confirmed a strong in-
crease of PBs in severe versus mild COVID-19 (30% versus
8% of entire B cell lineage) as well as increased expression of
CD38, PIM2, IFI6, XBP1, and SLC1A4 and similarly enriched
GO terms (Fisher test, p = 1.80 x 10-5 for unfolded protein
response and p = 2.50 x 10-8 for mitochondrial ATP synthesis).

PBs can modulate immune responses by serving as a nutrient
sink (Vijay et al., 2020). Thus, we used constraint-based model-
ling to reconstruct the metabolic state of individual cells from
scRNA-seq data (Joshi et al., 2020; Pacheco and Sauter,
2018). PBs from inflammatory states displayed a high metabolic
activity, which was reduced only upon recovery, whereas mem-
ory and naive B cells displayed no significant differences in over-
all metabolic activity between disease states (Figure S7L).
Increased metabolic processes in PBs were oxidative phosphor-
ylation, glyoxylate and dicarboxylate metabolism, NAD synthe-
sis, and an increase of various amino acid metabolic pathways
(including glycine, serine, alanine, threonine, valine, leucine,
and isoleucine). Glycolysis was predicted to have a low activity
state in inflammatory disease phases, whereas it was highly
active at clinical recovery (pseudotime 6) (Figure 5J). Altogether,
the analysis identified the broad activation of PBs and suggested
a strong immunometabolic shift of the cells toward amino acid
metabolism, which might contribute to the immunopathology
seen in severe COVID-19.

Elevated Megakaryocyte Amounts as a Feature of the
Systemic Inflammatory Response to COVID-19

Systemic inflammatory responses are known to consume plate-
lets, which exert broad immune and inflammatory functions in
addition to their well-established hemostatic role (Semple

Figure 4. Co-expression Analysis of Differentially Expressed Genes and Integration with Changes in Methylation

(A) Group eigengene heatmap of co-expression modules constructed by using all pairwise and longitudinal DEGs. The average eigengene values of all samples
within each pseudotime are plotted. The number of genes is plotted as a bar plot (right).

(B) Correlation heatmap showing Spearman’s rank correlation coefficients between gene co-expression modules (rows) and cell-specific proportion from
scRNA-seq data (columns). “p < 0.05, ** p < 0.01, and *** p < 0.001 in Spearman’s correlation. Color intensity corresponds to correlation coefficient.

(C) Correlation heatmap showing Spearman’s rank correlation coefficients between gene co-expression modules (rows) and clinical parameters (columns). *p <
0.05, **p < 0.01, and ***p < 0.001 in Spearman’s correlation. Color intensity corresponds to correlation coefficient.

(D) Dot plot showing the gene set enrichment analysis (GSEA) of gene co-expression modules against GO (Biological Processes), Hallmark, and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) gene sets. Size of the dots is proportional to the normalized enrichment score (NES), and the color corresponds to the

false discovery rate (FDR). Selected top terms are visualized.

(E) Schematic workflow of the analysis performed on the whole-blood EPIC array data and its integration with bulk RNA-seq data.
(F) Number of significantly DMPs between controls and each of the COVID-19 pseudotimes. Colors discriminate hypermethylated (red) and hypomethylated

(blue) positions in COVID-19 samples compared with those from controls.

(G) DMP comparisons between top 30,000 DMPs at each pseudotime. Vertical bar plots indicate the number of specific DMPs (left) shared between time points
(right) indicated as connected dots (bottom). Only selected overlaps are visualized.
(H) Heatmap showing the significant enrichment, quantified by odds ratio, of TFBS in the DMPs identified at different COVID-19 pseudotimes. Selected top TFs

are visualized.

(I) Dot plot showing GO terms enriched in DMP-DEG pairs. Size of the dots is proportional to the gene ratio and the color corresponds to the p value of the

enrichment. Selected top terms are visualized.
See also Figures S2, S3, and S4 and Table S3.
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Figure 5. B Cell Compartment Analysis Identifies Plasmablast Changes across the COVID-19 Disease Trajectory

(A) Schematic workflow.

(B) B cell compartment subtypes represented as a UMAP. In total, 22,190 cells are depicted. Memory B cells (MB) (dark red), naive B cells (N) (red), transitional B

cells (trans) (orange), and plasmablasts (PB) (blue).

(legend continued on next page)
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etal.,2011; Yeaman, 2014). Pulmonary and cerebral embolism is
an important contributor to morbidity and mortality in COVID-19
(Liao et al., 2020). Given that we had observed a transient in-
crease of circulating MKs, the cellular source of platelets (Fig-
ure 2B), in the single-cell data and identified co-expression mod-
ules (M3 and M4) related to platelet counts and D-dimer levels,
we hypothesized that altered presence and function of MKs
might be a distinct feature of COVID-19. We thus performed
sub-clustering of 6,512 cells identified as MKs and their respec-
tive hematopoietic stem cell precursors (HSCs) and MK-
Erythroid precursors (MEPs) by using the k-nearest neighbor
method (Figures 6A and S7A). The cells clustered into 2 distinct
subgroups, 5,870 identified as bona fide MKs and another
smaller cluster containing all HSCs and MEPs (Figures 6B,
S7B, and S7C). The relatively low number of cell precursors
complicated the comparison between individual pseudotimes
(Figures S7TD-S7G). However, we could discern a significant in-
crease of HSCs and MEPs at the convalescence state in com-
parison with healthy controls (Figure S7J).

By focusing exclusively on MKs, we found there was a clear
separation between samples belonging to healthy controls and
patients with active COVID-19 (Figure 6C), particularly cells
from complicated disease phases form distinct subclusters
from cells of healthy and long-term recovery disease phases
(Figures 6D and 6E). Strong increase in PKM transcript amounts
(PKM2), encoding a pyruvate kinase that is involved in ATP for-
mation, interacts with HIF1A and promotes its activity, was
observed in critical patients (pseudotime 2). In this group, high
expression of FCER1G, encoding the common FcR y-chain
adaptor responsible for integrin (ITGA2-GP6)-mediated platelet
adhesion was also present (Figure 6E). GO enrichment analysis
identified broad terms related to immune responses, type | IFN
response, and platelet aggregation to be altered along the dis-
ease trajectory (Figure 6G).

Transiently decreased transcripts comprised of ODC1 (orni-
thine decarboxylase), the rate-limiting enzyme for polyamine syn-
thesis (Kanerva et al., 2008), and TGFB1 (Figure 6F). IFITM3, IFI27,
and IFITM2 had increased expression in the inflammatory pseu-
dotimes 1, 2, 3, and 4, indicating a lasting IFN response
throughout the disease trajectory in MKs. Furthermore, we vali-
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dated our findings in an independent cohort of mild and severe
COVID-19 (Schulte-Schrepping et al., 2020), which confirmed
not only higher numbers of MKs in severe patients (Figure 6H),
but also confirmed increased expression of IFITM3, PKM, ITGA2B
(also known as CD41), and IFITM2, and decreased expression of
ODC1 and TGFB1 in severely ill patients (Figure 6F, bottom).

Metabolic modeling identified an increased metabolic activity
of MKs along the disease trajectory compared with that in
healthy controls, albeit at a lower level than in PBs (Figure 6l).
Notable predicted processes were related to energy metabolism
(pyruvate metabolism, glycolysis, and reactive oxygen species
[ROS] detoxification) (Figures 6J and 6l). The metabolic model in-
ferred a pronounced increase of glycolytic flux toward lactate, an
induction of the methylglyoxal pathway (Kalapos, 2008) and a
decrease of spermidine-polyamine products known to inhibit
platelet aggregation (de la Pena et al., 2000).

Association of Co-expression Modules with Clinical
Outcome in a Cohort of Severely lll COVID-19 Patients
Lastly, we focused on the potential importance of the obtained
signatures in a clinical context in a longitudinal cohort of 40 me-
chanically ventilated, critically ill COVID-19 patients from Rad-
boud University Medical Center (UMC) in Nijmegen (cohort 3)
(Table S4).

Bulk RNA sequencing data in this cohort were obtained at two
time points early upon admission to the ICU. We used matched
sample pairs with similar increasing inflammatory activity
changes from survivors (n = 33) and non-survivors (n = 7) and
interrogated the change of expression amounts of module genes
(M1-M10, as defined in the German longitudinal cohort [cohort 1]
initially shown in Figure 4A) between the two time points (Fig-
ure 7A). The first sample was obtained in median 3 days after
ICU admission, the median period between the time points
was 2 days without systematic differences between surviving
and non-surviving patients. The second time point of non-survi-
vors varied between 4-35 days before death. Three modules
were significantly regulated in this longitudinal comparison. M2
transcripts related to failing type | IFN response were signifi-
cantly decreased in both survivors and non-survivors, corrobo-
rating the association of IFN dysregulation and severe disease

(C) B cell compartment pseudotimes represented as a UMAP.

(D) Flow-cytometry analysis of B cell subtypes. CD19* B cells were stained for CD20 and CD27. CD20~CD27"9" B cells classified as PB, CD20*CD27* cells as
MB, and CD20*CD27~ cells as N. Proportions of each cell type among CD19* B cells is relative to the disease onset, colored by corresponding pseudotime, and
connected by patient. (n = 7 individuals).

(E) PB-specific UMAP highlighted neutrophil-like cells (NL). Smaller UMAPs corresponding to expression of PB markers (CD27, CD38, and TNFRSF17) and
neutrophil-like markers (ELANE, MPO, and CAMP).

(F) Cell trajectory analysis of B cell compartment. Cell trajectory was calculated by using Monocle3. The analysis rooted on transitional B cells (purple) and
differentiated into 2 branches: B cells naive and memory branch (gray line, culminating in yellow) and an over imposed PB branch (black line, culminating in
orange).

(G) Dot plot for pseudotime signature genes in PBs. Genes selected on the basis of the increased expression of the ten most characteristic genes. Color dis-
criminates genes with increased (red) or decreased (blue) expression, and point size represents the number of cells per group expressing the correspond-
ing gene.

(H) GO enrichment analysis for genes with increased expression during disease trajectory. Dot size is proportional to the gene ratio and the color corresponds to
the p value of the enrichment. Selected top terms are visualized.

(I) Gene expression of genes of interest in B cell subtypes. Genes of interest selected on the basis of their high expression in PB or NL. For each gene, top violin
plot depicting B cell subtypes expression, center violin plot based on pseudotime, and bottom violin plot based on the expression of cohort 2 (healthy control
[white], mild disease [light gray], and severe disease [dark gray]).

(J) Metabolic pathways enriched in B cell compartment subtypes. Top 20 active metabolic pathways for context-specific metabolic networks reconstructed in
PBs are shown. For each B cell subtype, significant differences in metabolic activity were determined by using a Kruskal-Wallis test. Number of reaction counts
found per pathway is displayed as color intensity.

See also Figure S6L.
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Figure 6. Elevated Megakaryocyte Levels as a Feature of COVID-19
(A) Schematic workflow.
(B) MKs and their precursors as a UMAP. In total, 6,512 cells are depicted. MKs (green), HSCs (pink), and MEPs (yellow) are shown.
(C) MKs pseudotimes represented as a UMAP. In total, 5,870 cells are depicted.
(legend continued on next page)
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(Blanco-Melo et al., 2020; Hadjadj et al., 2020). M4, indicative of
MKs in the peripheral blood as well as elevated D-dimer levels
and M7 transcripts, associated with erythroid differentiation
and MKs, were significantly increased only in COVID-19 non-
survivors when comparing the change between sampling at
ICU admission and the follow-up time point 2 days later
(Figure 7B).

In a reverse approach, we asked which transcripts displayed
longitudinally different expression patterns between the two
time points in survivors versus non-survivors. We found that
whereas in survivors only 3 transcripts were regulated, 182 tran-
scripts were significantly different in non-survivors (Figure 7C).
Of these transcripts, 130 were contained in the previously
defined temporal co-expression modules from cohort 1 with a
significant enrichment of transcripts related to M2, M4, and
M7. Cell-type-specific expression patterns of these fatality-
associated transcripts (average expression value per cell type,
derived from scRNaseq cohort 1) showed that the signature for
M2 genes marked a broad array of cell types, such as mono-
cytes, granulocytes, NK cells, proliferative lymphocytes, and
CD8* T cells, M3 and M4 genes were mostly specific for mono-
cytes, with few highly expressed transcripts attributed to MKs. A
large proportion of M7 genes painted the erythroid lineage, a
separate cluster was expressed specifically in MKs, e.g.,
PBX1, TRIM58, and PDZK1IP1 (Figure 7D).

Lastly, we quantified the differential regulation of TFs over time
in survivors versus non-survivors via a moderated t test using
limma (Ritchie et al., 2015). The analysis identified 16 TFs that
were differentially regulated in non-survivors only and 7 TFs in
survivors (Figure 7E). Pathway analysis (REACTOME) revealed
significant enrichment of the terms “MK development and
platelet production” (p = 0.0001) and “TRAF6-mediated induc-
tion of pro-inflammatory cytokines” (p = 0.001) in the non-survi-
vor TFs.

DISCUSSION

The clinically heterogeneous disease presentation renders indi-
vidual molecular dynamics of the hematopoietic and immune
cell compartments system in response to COVID-19 an impor-
tant topic with regard to understanding the pivot points of the
disease. Our longitudinal analysis provided a chronological
rank order to changes observed in prior cross-sectional studies.
We observed an early and lasting depletion of NK cells and lym-
phopenia of the CD4+ T cell compartment. Our data corrobo-

Immunity

rated a sustained increase and shift of the monocytic compart-
ment (Schulte-Schrepping et al.,, 2020; Wilk et al., 2020).
Interestingly, we found in our DNAm data that hypomethylated
positions were highly enriched in cis of transcripts with increased
expression related to positive regulation of TNF secretion, IL-1
release, and innate immune signaling. Vice versa, transcripts
with decreased expression comprised T cell receptor signaling
and negative regulation of ATP metabolism, indicating a poten-
tial long-term regulation of the immunological misfiring (Lee
et al., 2020; Lucas et al., 2020) by epigenetic processes. We
observed a transient increase of PBs and a relative decrease
of memory and naive B cells, which coincides with inflammatory
severity and normalizes with convalescence (De Biasi et al.,
2020; Kuri-Cervantes et al., 2020; Stephens and McElrath,
2020; Mathew et al., 2020). Similar to other studies, the changes
were not correlated with levels, but preceded the appearance of
SARS-CoV-2-recognizing I1gG antibodies (Kuri-Cervantes et al.,
2020; Woodruff et al., 2020). The expression of CD138 on a large
fraction of PBs during the disease supports the theory that these
cells are non-specifically mobilized from the bone marrow or
other tissues. Of note, we found that the COVID-19 PBs were
predicted to be highly metabolically active in a systems biology
modeling approach (Joshi et al., 2020). The observed changes
suggest a role of PBs as a nutrient sink, which was already
observed in extrafollicular PBs as a hallmark of a systemic in-
flammatory response in severe malaria (Vijay et al., 2020). The
predicted lower energy availability at the peak of COVID-19
might indicate excessive shuttling of glucose into antibody
glycosylation, which might contribute to metabolic exhaustion
of the cells (Corcoran and Nutt, 2016; Lam et al., 2016) and/or
altered glycosylation patterns of antibodies, which were linked
to severe COVID-19 (Hoepel et al., 2020; Larsen et al., 2020).
Our longitudinal approach identified two other cellular features
induced by COVID-19, which were unrecognized in previous
studies. First, we found a significant increase of MKs, which car-
ried a strong type | IFN signature. The change was associated
with two longitudinal co-expression modules from the bulk
RNA sequencing data (M3 and M4). Both modules were posi-
tively correlated with serum levels of D-dimers, suggesting a
link to the inflammation-induced pro-coagulative state as a
potentially fatal complication in COVID-19 patients. One of the
top transcripts with increased expression in MKs was IFITM3,
which confers antiviral activity in MKs and platelets (Campbell
et al., 2019). Metabolic modeling suggested that in the hyperin-
flammatory states, a shift toward higher rates of pyruvate

(D) MKs across COVID-19 disease trajectory. For each UMAP, pseudotime-specific cells were highlighted by color.

(E) Dot plot for disease trajectory signature genes in MKs. Genes selected on the basis of the expression amount of the ten most characteristic genes. Color dis-
criminates genes with increased (red) or decreased (blue) expression, and point size represents the number of cells per group expressing the corresponding gene.
(F) Expression of genes of interest in MKs. Top violin plot based on pseudotime and bottom violin plot based on cohort 2 by disease classification; healthy control
(white), mild disease (light gray), and severe disease (dark gray).

(G) GO enrichment analysis for genes with increased expression during disease trajectory. Dot size is proportional to gene ratio and the color corresponds to the p
value of the enrichment. Selected top terms are visualized.

(H) Cohort 2 MK proportions grouped by disease severity. Healthy control (white), mild disease (light gray) and severe disease (dark gray) were depicted. AIC and
p value are based on linear mixed model.

(I) Metabolic pathways enriched in MKs. Top differentially active metabolic pathways for context-specific metabolic networks reconstructed are shown. Sig-
nificant differences in metabolic activity were determined by using a Kruskal-Wallis test. Number of reaction counts per pathway are displayed as color intensity.
(J) Pyruvate metabolism in MKs. Number of pyruvate metabolic pathway active reactions by pseudotime were depicted. p value based on Kruskal-Wallis test.
Number of models per pseudotime were denoted as n above each column.

See also Figure S6L.
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metabolism and glycolysis occurs, which sensitizes platelets to-
ward activation and aggregation (Nayak et al., 2019).

Although thrombopenia has been observed as a clinical corre-
late of critical COVID-19 (metanalysis in Lippi et al., 2020), it is
unlikely that direct infection of MKs as seen in Dengue fever is
responsible for this alteration. We found no evidence of either
ACE?2 expression in MKs or any virus-associated reads in the
cell population (data not shown). The observed increase of circu-
lating precursors including MEPs argues for an influence of
COVID-19, which could not only represent a bystander response
to increased platelet consumption but might rather reflect
inflammation-induced emergency megakaryopoiesis (Haas
et al., 2015). We did not observe a direct correlation of MK levels
with neither platelet counts nor D-Dimers, which might be limited
by the small number of scRNaseq datasets. A continuous pres-
ence of type | IFN signals, as seen in our dataset, might addition-
ally increase of the aggregation potential of platelets (Leppkes
etal., 2020; Middleton et al., 2020). In line with this, the MK-asso-
ciated module M4 is strongly correlated with D-Dimer levels in
the larger bulk dataset from cohort 1.

The second cellular feature was primarily observed in the
bulk RNA-seq data and was related to the co-expression
module M7. We saw a biphasic upregulation of a transcript
group that comprises canonical components of erythropoi-
esis, which are most likely related to the presence of reticulo-
cytes. GATA-1 TF binding motifs linked to hypoxia-induced
stress erythropoiesis (Zhang et al., 2012) were significantly en-
riched in the module. We thus reasoned that this feature re-
flects a canonical response to hypoxia because it is present
in critically ill patients and at a later stage when patients are
weaned of supplemental oxygen. Post-hypoxia polycythaemia
and the presence of different erythroid progenitors in the cir-
culation has been studied as a response mechanism of the
bone marrow to acute hypoxic insults and critical illness for
decades (Loeffler et al., 1984; Peschle et al., 1977). Mobiliza-
tion of erythroid progenitor cells and their presence in the cir-
culation has been linked to augmented immune responses
(Serebrovskaya et al., 2011). Although we did not directly pro-
file erythrocytes in the scRNA-seq data because of red blood
cell lysis and size and feature filtering steps in the data pro-
cessing, we found evidence for the increased presence of
committed erythroid-progenitor-like cells in the scRNA-seq
data in two of our patients at the stage of oxygen-weaning.
From the gene content and the number of cells identified, it
is unlikely that these cells represented reticulocytes. Together,
the results indicate a profound reaction of the erythroid line-
age to COVID-19 at different phases of the disease. These

Immunity

features of the computed disease trajectory were linked to
clinical outcome in a larger retrospective cohort of 40 me-
chanically ventilated COVID-19 patients. We could show that
two modules from cohort 1, M4 (related to MK numbers in
cohort 1) and M7 (indicative of erythropoiesis in cohort 1),
were significantly correlated with a fatal outcome in the inde-
pendent cohort. Decrease in expression of the M2 module
(associated with hypomorphic type | IFN in cohort 1) in a
broad array of cell types including monocytes, NK cells,
CD8* T cells, and PBs was present in both survivors and
non-survivors, corroborating the observation of failing type |
IFN in severe COVID-19, but questioning its clear relation to
fatal outcome. Our results clearly suggest that regulatory
events in megakaryocytic and erythroid cells might act as
pivotal components of an unfavorable course of COVID-19,
which mandates further prospective exploration.

Limitations of Study

Limitations of our study are given by the relatively low sample
size of the initial two-center cohort (cohort 1), which we aimed
to compensate by two independent validation cohorts. The initial
findings, which point to functional alterations of cellular features,
mandate prospective validation and currently can only be inter-
preted in light of mechanistic findings in other systemic inflam-
matory disorders. We saw no evidence for a correlation of PB
numbers with delayed development of SARS-CoV-2-recog-
nizing antibodies, which is in line with another study (Kuri-Cer-
vantes et al., 2020). However, an interference of the broad PB
activation with other specific B cell reactions, such as affinity
maturation of neutralizing antibodies or memory formation, as
in severe malaria (Vijay et al., 2020) should not be excluded.
Metabolic hyperactivation of PBs will have to be confirmed by
other methods, yet from the comparison of the models between
subpopulations of the B cell lineage, the observed pattern in PBs
does not appear as a general immunometabolic consequence of
COVID-19. Likewise, the presence, altered function, and inferred
metabolic skewing of MKs and other hematopoietic precursors
(e.g., granulocytes-macrophage progenitors [GMPs]) has to be
confirmed in larger cohorts and by orthogonal methods (e.g.,
FACS and proliferation assays). Such studies should definitely
also take long-term consequences of microvascular complica-
tions (e.g., neurological deficits) into account. Our study further-
more suggests several cytokines (e.g., IL-10 and GDF-15 [Myhre
et al., 2020]) as markers of severe COVID-19 trajectories. Large
prospective, longitudinal biomarker trials are mandated to come
up with clinically actionable predictors of severe COVID-19
trajectories.

Figure 7. Clinical Significance of Co-expression Modules in a Longitudinal Cohort of Severe COVID-19 Patients

(A) Schematic workflow.

(B) Module eigengene comparisons between the two sampled time points in survivors and non-survivors for M2, M4 and M7. Error bars depict 1.5 of interquartile

distance and *p < 0.05 (Mann Whitney tests).

(C) Volcano plot depicting log,-fold changes and FDR-adjusted p values between the two sampled time points in non-survivors. Genes are color-coded by the
corresponding co-expression modules. Darker colors represent significantly DEGs.

(D) Heatmap showing the average expression of DEGs identified in non-survivors in different cell-types of cohort 1 (from scRNA-seq data). The average
expression in severe stages of the disease (pseudotimes 1, 2, and 3) is shown. Row-wise z-scores of the average gene counts are plotted in the heatmap and

hierarchically clustered for each module separately.

(E) Volcano plot depicting the differential TF activity over time in non-survivors (right) versus survivors (left) versus the —log10 transformed p value. Significant TFs

(p < 0.1) are marked in red.
See also Table S4.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Philip
Rosenstiel, p.rosenstiel@mucosa.de

Material Availability
This study did not generate unique reagents.

Data and Code Availability
The bulk RNA-seq and BCR-seq data generated during this study is available in GEO database (GSE161777).

The lllumina EPIC Array data generated during this study is available in GEO database (GSE161678).

The raw scRNA-seq data and scBCR-seq data generated during this study is available in EGA (Accession number to be confirmed).

The processed scRNA-seq and scBCR-seq data generated during this study is available in FastGenomics (https://beta.
fastgenomics.org/p/565003).

Additional processed data is available at GitHub (https://github.com/Systems-Immunology-IKMB/COVIDOMICS).

Additional Supplemental ltems are available from Mendeley Data at https://doi.org/10.17632/7686ww5233.2.

The custom codes used in this study are available in https://github.com/Systems-Immunology-IKMB/COVIDOMICs. Please note
that there is a diverse set of codes depending on the OMICs layer in question: bulk RNA-seq, Methylation, scRNaseq, BCR, Meta-
bolic modeling, TF enrichment and Data integration.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and specimen collection (cohort 1)

14 patients from two independent University hospitals (Cologne, Kiel) were recruited for the longitudinal multi-Omics study. Eligibility
criteria included age >18 years and admission to the respective hospitals (either normal ward or ICU) with a positive SARS-CoV-2
nasopharyngeal swab by RT-PCR. Sex, age and additional demographic information, as well as patient comorbidities can be found in
Table S1. This study did not particularly focused on impact of sex on patient outcome due to the limit number of individuals; larger
cohorts have been used to study the influence of sex upon SARS-CoV-2 infection. Five patients were co-enrolled in an ongoing clin-
ical trial (remdesivir) at UKSH. Enrolment for longitudinal molecular phenotyping occurred between 1st April 2020 and 6th May 2020
(seven patients at the University Medical Center Schleswig-Holstein, Campus Kiel (UKSH) and seven patients at the University Hos-
pital Cologne (UKK), with the last sample taken on 20th May 2020). One patient with a mild disease course was recruited after his
recovery to serve as an additional recovery control. The patients consented to the sampling of biomaterials, analytic processing
of the biomaterials and genetic analysis, the study was approved by the independent ethical review board of Kiel University (ref
no°: D 466/20) and Cologne (identifier: 20-1295). Eight healthy donors were included as controls at a single time point in the frame-
work of the DZHK study (ethics vote ref no°: D 441/16). While the patients were in inpatient health care, the sampling scheme was day
0 (at admission), day 2, day 7, day 10, and day 13. At each sampling day, blood was collected in PAXgene tubes, CPT tubes, EDTA
and serum tubes (except from day 104: no CPT tubes were taken). Clinical parameters were retrieved from the electronic patients
record systems or from written discharge letters from transferred patients by the COVID-19 clinical consultants (T.B., J.R.) and clin-
ical research fellows (F.T. and P.K.).

To describe the heterogenous disease trajectories over time, a modified WHO ordinal scale (WHO, 2020), which also considers the
behavior of several inflammatory markers (serum CRP, serum IL-6 and ferritin) was used (Table S2) to classify patients along their
disease course (Figures 1B and 1C) enabling the interrogation of molecular states associated with transition between phases
(e.g., complicated to early convalescent). Phases were defined as pseudotimes in accordance with WHO and the LEOSS register
(https://leoss.net) to depict the longitudinal course of the disease: incremental (pseudotime 1, where clinical symptoms and inflam-
matory markers were increasing, ICU or non-ICU), critical (pseudotime 2, ICU, mechanically ventilated with signs of ARDS), compli-
cated (pseudotime 3, state with severe signs of a systemic inflammatory response, ICU, high-flow oxygen, intubation readiness),
moderate or early convalescent (pseudotime 4, supplemental oxygen, significant signs of systemic inflammation), late convalescent
(pseudotime 5, intermittent supplemental oxygen, minor signs of inflammation), recovery/pre-discharge (pseudotime 6, no supple-
mental oxygen, absent inflammation markers) and long-term follow-up (pseudotime 7, at least two weeks after hospital discharge)
(Table S2). Note that pseudotimes 2 and 3 do not directly reflect the chronological order, but can also represent peak levels, i.e., a
given patient might have gone from 1 to 3 without intubation/mechanical ventilation.

Validation cohorts
For validation of cellular findings from our prospective cohorts, data from two independent cohorts were analyzed:

The scRNA-seq data from 18 patients admitted to the University Hospital Bonn (Schulte-Schrepping et al., 2020) (cohort 2), and RNA-
seq data from 40 SARS-CoV-2-positive patients admitted to the Intensive Care Unit of the Radboud university medical center in Nijme-
gen (cohort 3). Age, sex, and patient outcome information included in Table S4. COVID-19 was diagnosed by a positive SARS-CoV-2
RT-PCR test in nasopharyngeal and throat swabs and/or by typical chest CT scan findings. Within cohort 3, seven patients deceased.
Blood was collected in PAXgene tubes. The frozen tubes were shipped to Bonn University for mMRNA sequencing. Sampling in cohort 3
was carried out in accordance with the applicable rules concerning the review of research ethics committees and informed consent in
the Netherlands. All patients or legal representatives were informed about the study details and could decline to participate.

METHOD DETAILS

ELISA

Serum cytokines were analyzed using a “Human Magnetic Luminex assay” (Bio-techne, Minneapolis, Minnesota, US) with 22 ana-
lytes: APRIL, BAFF, CCL2, CCL3, CD40L, CD138, CXCL9, CXCL10, IL-18, IL-2, IL-4 IL-6, IL-10, IL-12, IL-13, IL-17, IL-18, IL-21, IL-
33, IFN-a, IFN-v, and TNF. Frozen patient serum samples were thawed and diluted before the experiment with an equal amount of
dilution buffer and the experiment was performed according to the manufacturer’s instructions. All samples were measured on a Life-
match Fluoroanalyzer (Tepnel Life Science PLC, Wythenshawe, UK) equipped with XPonent 3.1 Software (Luminex Corporation,
Austin, Texas, US). Serum TPO was quantified by ELISA using Human Thrombopoietin Quantikine ELISA Kit (R&D Systems, Minne-
apolis, Minnesota, US) according to manufacturer’s protocol.

Anti-SARS-CoV-2 specific antibodies
Anti-SARS-CoV-2-specific IgA and IgG was quantified using commercial ELISA kits (EUROIMMUN, Libeck, Germany).

PAXgene Blood RNA Isolation and TruSeq® messenger RNA (mMRNA) sequencing
Blood (2.5 mL) was taken from each patient into a PAXgene Blood RNA Tube, containing a patented RNA stabilizer reagent compo-
sition. RNA was automated isolated in QIAGEN’s QlAcube using the PAXgene Blood miRNA Kit from QIAGEN PreAnalytiX. RNA
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sequencing libraries were prepared according to the lllumina TruSeq® messenger (MRNA) sequencing protocol (TruSeq® RNA Seq
Library Prep Kit v2). The resulting libraries were sequenced on the NovaSeq 6000 (2 x 50 bp, S2 chemistry).

DNA isolation and methylation profiling

Blood (2.7 mL) was taken from each patient into an Ethylenediaminetetraacetic acid (EDTA) monovette (Sarstedt) to decelerate blood
coagulation. The monovette was centrifuged for 15 min at 3000 rpm and the buffy coat was frozen in micronic tubes at —80°C. DNA
was extracted using the QlAamp DNA Blood Mini Kit (QIAGEN) according to manufacturer’s protocol with a QIACube (QIAGEN). The
Infinium® MethylationEPIC BeadChip was used to measure the DNA methylation levels. The Infinium® MethylationEPIC BeadChip
targets the following regions: CpG islands, CpG sites, open chromatin, transcription factor binding sites, enhancer and mRNA pro-
moter regions. The EPIC arrays were processed according to lllumina recommendations.

Bulk BCR sequencing

Bulk BCR libraries were prepared starting from 100 ng of total RNA isolated from PAXGene tubes. Library construction protocol was
performed as previously described (Bashford-Rogers et al., 2019). In brief, primers for the constant (C) regions of the BCR were used
during cDNA synthesis. Product was then amplified via PCR using a multiplex primer set for the variable (V) regions using the Real-
Time PCR library amplification kit from KAPA Biosystems. Libraries were sequenced on lllumina MiSeq machine 2 x 300 bp.

Experimental virus mRNA detection

SARS-CoV-2-specific viral RNA from the RNA extracts from the PAXGene tubes was quantified by RT-PCR using the RealStar®
SARS-CoV-2 RT-PCR Kit RUO (altona diagnostics, Hamburg, Germany). The two amplicons were in the E gene and in the S glyco-
protein in Spike protein 2 gene.

Isolation of peripheral blood mononuclear cell (PBMC)

Blood (2 x 8 mL) was collected using venipuncture technique and processed within maximum 30 min. PBMCs were isolated using
the BD vacutainer® cell preparation tube (CPT) with sodium citrate according to the manufacturer’s protocol. Briefly, CPT tubes were
centrifuged at 1,650 x g for 20 min at room temperature. PBMCs were collected and washed two times with phosphate-buffered
saline (PBS) and then resuspended in PBS. Half of the suspension was washed and resuspended in flow cytometry washing buffer
(containing fetal bovine serum, EDTA and sodium azide in PBS) and prepared for flow cytometry within 3-5 h. The rest of the suspen-
sion was washed once in PBS and the pellet was resuspended in resuspension medium (Roswell Park Memorial Institute (RPMI) +
40% fetal bovine serum (FBS)), followed by freezing medium (30% DMSO in medium containing 40% FCS) according the 10 x Chro-
mium Demonstrated Protocol (Fresh Frozen Human Peripheral Blood Mononuclear Cells for Single-Cell ribonucleic acid (RNA)
Sequencing, Document CG00039 Rev D). PBMCs were stored at —80°C and thawed when needed also according to the 10 x Chro-
mium Demonstrated Protocol (Document CG00039 Rev D). To prevent batch effects, all samples from different time points from one
patient were thawed and sequenced together.

Flow cytometry

After preparation of freshly isolated PBMCs in flow cytometry buffer, PBMCs were stained with fluorescent labeled antibodies and
measured on a MACSQuant 16 flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). B cell subsets were stained using
antibodies against CD19 (clone REA675, Miltenyi), CD20 (clone REA780, Miltenyi), CD27 (clone M-T271, Biolegend, San Diego, Cal-
ifornia, US), CD138 (clone BB4/MI15, Biolegend), HLA-DR (clone REA332, Miltenyi), IgD (clone REA740, Miltenyi), IgM (clone MHM-
88, Biolegend), IgA (clone M24A, Merck Millipore), CD95 (clone DX2, Biolegend) as well as CD3 (clone OKT3, Biolegend) and CD14
(clone M5E2, Biolegend) for the dump channel. Definition of B cell populations: naive B cells: CD19*CD20"CD27"; memory B cells:
CD19*CD20*CD27"; Plasmablasts and plasma cells: CD19*CD20°CD27").

Immunohistochemistry staining

Tissue material was obtained in the autopsy procedure of the deceased patient 002 and from an age- and gender-matched patient
(control), who had suffered from pulmonary adenocarcinoma and died from bronchopneumonia. SARS-CoV-2-testing was negative
repeatedly in the control patient. Immunostaining was done on formalin-fixed and paraffin-embedded tissue sections with the Bond
Max Leica immunostainer using the Bond Polymer Refine Detection Kit. Antigen retrieval was carried out with the Leica ER1-Bond
Epitope Retrieval Solution 1 (IFITM3) or the Leica ER2-Bond Epitope Retrieval Solution 2 (TREML1)(all Leica Biosystems, Wetzlar,
Germany). Histological slides were then immunostained anti-IFITM3 and anti-TREML1 antibodies and counterstained with
hematoxylin.

Single-cell RNA sequencing (scRNA-seq)

Single-cell libraries were generated using the Chromium Next GEM Single Cell 5’ Library & Gel bead Kit v1.1 according to the man-
ufacturer’s user guide targeting 20,000 cells per sample. The libraries were sequenced on an lllumina NovaSeq 6000 (2 x 100 bp, S4
chemistry) to generate > 500 million reads per library. Additionally, the Chromium Single Cell V(D)J Enrichment Kit for human B cells
were applied together with the Chromium Single Cell 5 Library Construction Kit. Those resulting libraries were sequenced on an II-
lumina NovaSeq 6000 (2 x 150 bp, S4 chemistry) to generate > 50 million reads per library.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Bulk RNA-seq data analysis

An in-house RNA-seq pipeline was used to map and align the sequenced data (https://github.com/nf-core/rnaseq). Adapters and
low-quality bases from the RNA-seq reads were removed using Trim Galore (version 0.4.4), which is a wrapper tool for Cutadapt
and FastQC. Reads that were shorter than 35 bp after trimming were discarded. The filtered reads were mapped to the human
genome (GRCh38, gencode version 25) using STAR aligner (version 2.5.2b) (Dobin et al., 2013). featureCounts (version 1.5.2) was
used to estimate the expression counts of the genes. The expression counts were normalized across samples using the DESeq
normalization method.

Differential expression analysis

Differentially expressed genes between healthy controls and each of the COVID pseudotime samples were identified using the
Bioconductor package DESeq?2 (version 1.20.0). Genes with FDR adjusted p value of less than 0.05, log fold change greater
than 0.5 or less than —0.5 and average expression counts of more than 100 were regarded as differentially expressed (DEGs). Lon-
gitudinal differential expression analysis of the COVID samples was performed by applying the case-only analysis from the Bio-
conductor package ImpulseDE2 (version 1.4.0). Pseudotimes 1, 3, 4, 5, and 6 were used as single time points of a time-course
experiment and the patient IDs were regarded as batch effects in order to perform a paired analysis. To identify the transcripts
regulated longitudinally in survivors and non-survivors from the Nijmegen cohort, differentially expressed genes between in the
two selected time points were identified using DESeq2 for survivors and non-survivors separately. To perform a paired analysis,
patient ID was used as batch effect.

Co-expression analysis
Modules of co-expressed genes were identified using the WGCNA package for R (version 1.69). All differentially expressed genes
identified from the pairwise and longitudinal analysis (6,318 genes in total) were used to generate the gene co-expression modules.
First, pairwise gene correlations were calculated based on the log transformed normalized expression counts across all samples. A
signed adjacency matrix was constructed by applying a soft threshold function with a power of 14. The Topology Overlap Matrix
(TOM) constructed using the adjacency matrix was used to construct a gene tree by hierarchical clustering. Genes were then split
into modules based on the gene tree by using the function cutreeDynamic with the minimum module size set to 15. Modules that
were closely related were then merged using the function mergeCloseModules with parameter cutHeight set to 0.45.

To associate gene co-expression modules with clinical parameters and cell type fractions and to visualize the expression profile of
the genes in a module, the module eigengene values for the samples were calculated. Spearman’s rank correlation coefficients were
calculated between the module eigengenes and different clinical parameters and cell type fractions.

DNA methylation data analysis

DNA methylation data were analyzed using the Bioconductor package RnBeads (version 1.12.1). Sites that overlapped with SNPs
and had unreliable measurements were filtered resulting in the removal of 17,371 sites and 19,745 probes. 2,977 Context-specific
probes, 18,976 probes on the sex chromosomes, and 4 probes with missing values were also removed. In total 41,702 out of
866,895 probes were filtered. The signal intensity values were normalized using the dasen method. Differentially methylated positions
(DMPs) between healthy controls and each of the COVID-19 pseudotime samples as well as between sequential COVID-19 pseu-
dotime samples were identified using the automatically selected rank cutoff of RnBeads.

Functional enrichment analysis

Gene set enrichment analysis (GSEA) was conducted for the co-expression modules using GSEA desktop application (version 4.0.3).
Pre-ranked analyses against Hallmark, KEGG and GO (Biological Processes) genes sets were conducted for each of the modules by
ranking all genes by the module membership score. FDR of 0.05 was used as the significance threshold.

All gene ontology enrichment analyses were conducted using the Bioconductor package topGO (version 2.32.0), with all ex-
pressed genes as the universe set. In the topGO analysis, the Fisher.elim p value, calculated using the weight algorithm, of 0.05
was used as the significance threshold.

Transcription factor binding sites (TFBS) enriched in the promoter regions of the co-expression module genes were identified by
conducting enrichment analysis using the Bioconductor package LOLA (version 1.14.0). Promoter regions were defined as the region
between 1,500 bp upstream to 500 bp downstream of the transcription start site.

Predicted transcription factor binding sites (TFBS) enriched in DMPs were identified by conducting enrichment analysis using the
Bioconductor package LOLA (version 1.14.0).

DNA methylation-transcriptome integrated analysis

For the integrated analysis of gene expression with DNA methylation, we first identified DMPs located 5,000 bp upstream and down-
stream of the transcription start sites of DEGs. Spearman’s rank correlation coefficient between the normalized expression count of
each DEG and the methylation intensity (B values) of its corresponding DMPs were calculated. To test the statistical significance of
the correlations, we calculated the false discovery rate (FDR) using a permutation approach.
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Bulk BCR analysis

Sequencing reads were aligned to BCR gene reference and clonotypes were identified and grouped using the software MiXCR (Bo-
lotin et al., 2015). Relative proportions of IGH classes were calculated. Alpha diversity measures were calculated using the R pack-
ages vegan and tcR (versions 1.5-6 and 2.3.2).

Computational virus mRNA detection

To quantify the amount of virus present in the blood of COVID-19 patients, reads from whole blood RNA-seq data were first aligned to
the human reference genome (GRCh38) using STAR with default parameters. The reads that did not map to the human genome were
then aligned to the SARS-CoV-2 reference genome (NC_045512.2) using STAR with slightly relaxed parameters (-outFilterScoreMi-
nOverLread 0.2—outFilterMatchNminOverLread 0.2-outFilterMatchNmin O-outFilterMismatchNmax 4). The reads that aligned to the
SARS-CoV-2 genome with at least 40 consecutive matches were then aligned locally to the human genome using the Smith-
Waterman algorithm (Smith and Waterman, 1981) in order to filter any reads of human origin. The reads that aligned locally to the
human genome or were composed largely of homopolymers were filtered and the remaining reads were considered as viral reads.

Data analysis for ELISA
Standard curves and cytokine concentrations were calculated using linear regression in Microsoft Excel GraphPad Prism (Graphpad
Software Inc, San Diego, US).

Data analysis for Flow cytometry data
Analyses were performed using FlowJo v10 (FlowdJo LLC, Beckton Dickinson, Ashland, Oregon, US) and Graphpad Prism 8 (Graph-
Pad Software, San Diego, California USA).

scRNA-seq data quality control and data analysis

The sequences were processed using cell ranger v3.1.0 (10 x Genomics). Each sample was mapped to GRCh38 Homo sapiens
reference genome, in order to produce their respective count matrices. Raw feature-barcode matrixes were filtered using Seurat
package (version 3.1.5) in R environment (Butler et al., 2018; Stuart et al., 2019); low quality cells that were potentially disrupted
or doublets cells were removed from the analysis using number of features (number of reads mapping to gene between
[200;5000]) or percentage of mitochondria (lower than 25%) (Figure S1E). We used a broad threshold in order to encompass cells
from a variety of cell-types.

Each filtered sample matrix was then merged into a single object containing 358,930 cells with overall reads mapping to 22,519
human genes. The merge object was normalized and scaled using LogNormalized() and ScaleData() functions respectively. Principal
component analysis was performed utilizing the top 2,000 variable genes. We identified the clusters using the standard k-nearest
neighbor method based on 80 dimensions with a 0.2 resolution. In total 37 clusters were displayed as a Uniform Manifold Approx-
imation and Projection (UMAP).

scRNA-seq signature genes

Cluster cell types were identified by their corresponding gene signatures using the Wilcoxon rank sum, with a cut-off based on genes
expressed in more than 25% of the cluster cells and exhibiting a 0.25-fold difference between clusters. Clusters of interest were iden-
tified based on marker genes (Figure S1C); In general, monocytes (CD14, ITGAM, S100A8 and A100A9), granulocytes (FCGR3B),
erythroid cells (HBA1, HBA2 and HBB), NK cells (GNLY, NCAM1), proliferative lymphocytes (MKI67 and TUBA1B), CD4* T cells
(CD3G, CD4 and CCR7), CD8" T cells (CD3G and CD8A), dendritic cells (PLD4, IL3RA and LILRA4), B cells (CD19), plasmablasts
(CD27,CD38 and MZB1), megakaryocytes (ITGA2B, TUBB1 and GP9) and cell precursors (CD34, ITGA4 and TUBA1A), such as, he-
matopoietic stem cells (HSCs), megakaryocyte-erythroid progenitor cells (MEPs), common myeloid progenitors (CMPs) and granu-
locytes-macrophage progenitors (GMPs). To confirm our findings, we used SingleR (version 1.0.6) Bioconductor package that as-
signs each individual cell to a known cell type based on transcriptome reference datasets (NovershternHematopoieticData and
BlueprintEncodeData reference datasets) (Aran et al., 2019). Cell type proportions were quantified per sample and grouped based
on pseudotimes. We compared cell type proportions of healthy controls against patients using a Mann-Whitney non-parametric test
and measured cell proportion changes between pseudotimes by comparing a linearlinear mixed model with pseudotime (proportion
of cell type~pseudotime +[1|patientlD]) and compared it against a reduce model without pseudotime (proportion of cell type +[1-
|patientID]) by the means of an ANOVA (Figure 2F). We found most cell types to be impacted by disease trajectory, with only prolif-
erative lymphocytes and cell precursors not having a significant difference between pseudotimes. Furthermore, we correlated cell
type proportion with the clinical parameters available for each sample using spearman correlation (Figure 2G).

Cell type specific analysis

The clusters identified as cell types of interest—B cell compartment, megakaryocytes, and cell precursors were pulled from the
merged object. Each cell type of interest was re-clustered and analyzed separately. B cell compartment and cell precursors were
re-clustered using 80 PCs, while megakaryocytes and their respective precursors (HSCs and MEPs) were re-cluster using 60
PCs. B cell compartment clusters were assigned based on expression of marker genes, with memory B cell expressing CD73/
NT5E, naive B cells expressing IGHD and CD185/CXCRS5, transitional B cells expressing CD9, plasmablasts expressing CD27

Immunity 53, 1296-1314.e1-e9, December 15, 2020 e7




¢? CellPress Immunity

and CD38) and neutrophil-like cell expressing ELANE, MPO and CAMP (Glass et al., 2020). We presented the B cell compartment as
a cell trajectory analysis using monocle3 (Qiu et al., 2017). Trajectories were calculated and the cells displayed based on monocle3
pseudotime approach rooted on the previously identified transitional B cells. Plasmablasts (with neutrophil-like cells included),
megakaryocytes and cell precursors signature genes for the individual disease groups were selected based on genes expressed
in more than 25% and 0.25-fold difference between pseudotimes. Differentially expressed genes between healthy controls and
each of the COVID pseudotimes was identified using MAST (Finak et al., 2015) and GO enrichment analysis was performed with
TopGO package for R (version 2.38.1) (Alexa et al., 2006) and GO terms of interest selected based on fisher classic test statistic
(p value < 0.05).

To validate our findings, we performed a parallel analysis from an independent cohort (cohort 2) of mild and severe COVID-19 pa-
tients using another scRNA-seq technology (Rhapsody BD) (Schulte-Schrepping et al., 2020). Similarly, we identified plasmablasts
and megakaryocytes, identified differences in cell proportions and tested if genes of interest were expressed differently based on
their disease classification (control, mild COVID-19 or severe COVID-19 patients).

single cell BCRseq (scBCR-seq) analysis

BCR sequences were processed using cellranger v3.0.1 vdj function. Relative proportions of IGH classes were calculated. Alpha di-
versity measures were calculated using the R packages vegan and tcR (versions 1.5-6 and 2.3.2). scBCR-seq information was
merged with B cell compartment containing both B cells and plasmablasts using barcode information. BCR information was merged
with scRNA-seq expression, thus, we were able to discern IG class information per cell type and displayed it in the form of a UMAP or
monocle3 cell trajectory.

Metabolic modeling

Blood metabolites originating from the Human Metabolome Database (HMDB) (Wishart et al., 2018); specifically, an advanced search
of blood metabolites from healthy adults was initially conducted in March 2019. In the same time period, a list of all human metab-
olites (Brunk et al., 2018) was downloaded from Virtual Metabolic Human (VMH) database (Noronha et al., 2019). The latter contains
the HMDB indices of the compounds, which enabled the merging of the two databases into one (Spring 2020). Compounds were
removed from the database (e.g., drug-related ones or without FooDB IDs [https://foodb.ca/]) and the metabolites nomenclature
was altered to be compatible with an adapted version of the model Recon 2.2 (Swainston et al., 2016). All values were transformed
to mM to correspond with mean values of the HMDB database (cut-off of values > 10~°). Water was set to 55,000 mM, and pH was set
to 7.4. All calculations were conducted with the R packages sybil (version 2.1.5) (Gelius-Dietrich et al., 2013) and sybilSBML (version
3.0.5) (Gelius-Dietrich et al., 2013) along with their dependencies.

Reconstruction of tissue-specific metabolic models from bulk sequencing data

For the reconstruction of metabolic models from bulk sequencing data we used a previously described two-step approach that first
discretizes gene expression based on differential gene expression analysis and subsequently reconstructs metabolic models based
on gene expression states (Gebauer et al., 2016; Yang et al., 2019). Differentially expressed genes between each pairwise set of
COVID pseudotimes were determined via the DESeq2 algorithm with pseudotime as the main independent variable. Wherever
possible, i.e., when models reached full rank, we included the donor identifier as a covariable to control for paired samples with
similar genetic background in the data. The significance cut-off used for optimizing independent filtering was adjusted to o = 0.05
before differentially expressed genes were extracted from the tests. For each gene, based on the directionality of changes in
gene expression activity between conditions and the significance of changes, we determined a binary activity (on or off) if a gene
had at least one case of significant change in activity (adjusted p value < 0.05) between any pair of conditions.

Subsequently, we used the binary gene activity as an input into the IMAT approach (Zur et al., 2010) on a generic metabolic model
of humans (Recon 2.2) (Swainston et al., 2016) constrained with the serum metabolic environment. In order to test method-inherent
uncertainties in the reconstructed context-specific metabolic network, the model reconstruction procedure was repeated fifty times
while leaving out gene activity data for 5% of the genes each time.

Reconstruction of cell-specific metabolic models from single-cell sequencing data

Reconstructions of cell-specific metabolic models were created by integrating single-cell transcriptomics with a human genome-
scale metabolic network (Swainston et al., 2016) conditioned with the serum metabolic environment. We employed a two-step
approach, in which StanDep (Joshi et al., 2020) first identifies a core reaction list across cell types. Second, the FASTCORE algorithm
(Pacheco and Sauter, 2018) in the COBRA Toolbox v.3.0 (Heirendt et al., 2019) then builds context-specific models defined by sets of
active core reactions in the extracted model. scRNA counts from patient, megakaryocytes, plasmablasts, memory B cells and naive
B cells were used as input for StanDep. Normalized counts were converted into TPM-values, and ENSEMBL gene names were map-
ped to Recon 2.2 (Cunningham et al., 2019; Swainston et al., 2016). For StanDep, expression data from identified core genes across
cell types were used to calculate enzyme type and expression within the model. Enzyme expressions were logo transformed and
counted as a binary matrix (rows representing enzymes and columns as bins) to identify the minimum and maximum enzyme expres-
sion values. A complete linkage metric for hierarchical clustering with Euclidean distance was used to cluster (number of clusters =
40) genes based on gene expression. Assembled core reaction matrices were defined and input into FASTCORE to reconstruct
context-specific metabolic models. Based on an updated version of Recon 2.2 simulated in the serum metabolic environment, a
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consistent model was generated using FASTCORE’s FASTcc algorithm in MATLAB. With this consistent model, the assembled core
reaction matrices, and additional optional core reactions, such as the biomass objective function from Recon 2.2, an input file was
generated for every cell-specific model comprising at least 30 core reactions. FASTCORE processed these input files, together with
the consistent Recon 2.2 model, and the default value 10~ for ¢ to generate a list of all required reactions for each cell-specific meta-
bolic model. With these lists, new metabolic models were curated and optimized for the biomass objective function and/or the viral
biomass objective function.

Identification of disease-specific metabolic pathways

Tissue- and cell-specific models were stratified by cell type (megakaryocytes, plasmablasts, memory B cells, and naive B cells) and
annotated with clinical metadata (COVID-19 pseudotime) according to donor and sampling time points. Reactions per pathway and
cell were counted for a total of 82 metabolic pathways that were identified in the models. For each of the four model types, pathways
were filtered out if reaction counts were zero across all models of that type. Differential pathway activity was determined for each
pathway by comparing reaction counts across all eight pseudotimes via Kruskal-Wallis test as implemented in the R-package
coin (parameters: two-sided test, unpaired, average-scores for ties, and without continuity correction). Resulting probability values
were corrected for multiple testing via the Benjamini and Hochberg method. Significantly differential active pathways across disease
states (pseudotimes) were determined via this method for all four model types separately with an FDR cut-off of <0.05. For the heat-
map representation of B cell subtypes, the top 20 pathways that were identified as significantly differential active in all three model
types were selected and clustered by the mean reaction counts of plasmablast models.

Transcription factor activity analysis

Putative transcription factor activity from RNA-seq data were assessed per pseudotime against healthy controls using the human
gene set resource DoRothEA v1, which provides a curated collection of transcription factor and target genes interactions (the reg-
ulon) from different sources (Garcia-Alonso et al., 2019). Only interactions with high, likely, and medium confidence (levels A, B, and
C) were considered. Regulons were statistically evaluated using the R package viper (v1.22.0; row-wise t tests) and regulons having
at least 15 expressed gene targets were considered (Alvarez et al., 2016). Identification of upstream regulatory signaling pathways
from downstream gene expression was performed on t-statistic values from viper against the Omnipath interaction database
(R package OmnipathR version 1.2.1) applying CARNIVAL (version 1.0.1 with IBM Cplex solver as network optimizer) (Liu et al.,
2019). For the resulting network, only edges with an inferred weight > 50 (on a scale from 1 to 100) were considered. The similarity
between the transcription factor activity of cohort 1 and cohort 3 was accessed using Pearson correlation. The significance of the
correlation was confirmed by a bootstrapping approach. We permuted gene names row wise 1,000 times and correlated each
time the inferred TF activity between the original and permuted gene expression. The resulting distribution of correlation values
was fitted to a skewed Gaussian normal distribution, finding a standard deviation of 0.08.The significance in the differential regulation
of transcription factors over time in the non-survivor versus the survivor groups of cohort 3 was quantified via a moderated t test using
limma (Ritchie et al., 2015), while accounting for patient correlation using a block design and limma’s duplicateCorrelation function.
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