
Tightrope Walking in Low-latency Live Streaming:
optimal joint adaptation of video rate and playback speed

Liyang Sun, Tongyu Zong, Siquan Wang, Yong Liu and Yao Wang
New York University
Brooklyn, NY, USA

{ls3817,tz1178,sw4112,yongliu,yw523}@nyu.edu

ABSTRACT
It is highly challenging to simultaneously achieve high-rate and
low-latency in live video streaming. Chunk-based streaming and
playback speed adaptation are two promising new trends to achieve
high user Quality-of-Experience (QoE). To thoroughly understand
their potentials, we develop a detailed chunk-level dynamic model
that characterizes how video rate and playback speed jointly control
the evolution of a live streaming session. Leveraging on the model,
we first study the optimal joint video rate-playback speed adapta-
tion as a non-linear optimal control problem. We further develop
model-free joint adaptation strategies using deep reinforcement
learning. Through extensive experiments, we demonstrate that our
proposed joint adaptation algorithms significantly outperform rate-
only adaptation algorithms and the recently proposed low-latency
video streaming algorithms that separately adapt video rate and
playback speed without joint optimization. In a wide-range of net-
work conditions, the model-based and model-free algorithms can
achieve close-to-optimal trade-offs tailored for users with different
QoE preferences.

CCS CONCEPTS
• Information systems→ Multimedia streaming; • Comput-
ing methodologies→ Reinforcement learning.
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1 INTRODUCTION
While the next generation network infrastructures, such as 5G net-
works, are designed for high-throughput and low-latency, the ap-
plication designs that can fully take advantage of the promised net-
work capability to deliver a high level of user Quality-of-Experience
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(QoE) are the exciting new research challenges. In the space of
multimedia streaming, the emerging content, such as ultra-high-
definition video and 360 degree/volumetric video, are truly high-
bandwidth. In the live streaming of such content, low-latency has
become one of the most critical requirements. A survey report from
WOWZA [3] covering 391 broadcasters around the world shows
low end-to-end latency has become the second most important
factor (preferred by 31% users) for live video streaming, with high
quality still leading (preferred by 35% users). However, compared
with cable broadcasters that can deliver live content with 5 seconds
latency on average [2], most Over the Top (OTT) live streaming
services are still lagging behind. The same WOWZA report [3] also
shows that about 40% of the OTT video distributors are stream-
ing with latency greater than 10 seconds, and only about 25% of
them can deliver sub-3 seconds latency. The main challenge for
low-latency live streaming over the Internet is to adapt to dynamic
network conditions with short video buffer. It has to achieve the right
balance among various QoE metrics, e.g., perceptual quality, playback
latency and streaming continuity, with small margin for error, which
is a tightrope-walking challenge.

There are two recent trends to address this challenge, namely
chunk-based streaming, e.g., CMAF [12] and HTTP 1.1 chunked
transfer encoding [42], and playback speed adaptation, e.g., [1, 44].
In chunk-based streaming, each video segment is further divided
into chunks, which can be encoded, transmitted and decoded in a
pipelined fashion. This not only reduces the encoding and decoding
delays, but also refines the data granularity for better streaming
control. Playback speed adaptation allows the client to playback
video at a speed faster or slower than the normal speed. It serves
as an important additional knob (on top of video rate adaptation)
to control playback latency in live streaming: when the playback
lags too far behind the live event, one can choose a faster playback
rate to catch up; when the latency is too short, the video buffer is
necessarily shallow, leading to the danger of buffer depletion/video
freeze, one may choose a slower playback speed to gradually bring
up the buffer to a safe level. Obviously, video rate adaptation directly
determines the perceptual quality, while playback speed adapta-
tion directly controls the playback latency. Less obviously, the two
knobs jointly control the video buffer evolution, which determines
the streaming continuity, video freeze and latency change. When
the buffer length is measured in video time, the playback speed is
simply the buffer outflow rate, while the inflow rate is inversely pro-
portional to the selected video rate. For the live streaming “tightrope
walking”, video rate and playback speed adaptations sit at the two
ends of its “balancing pole”, therefore have to be jointly adapted to
deliver a high-level of user QoE.
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In this paper, we present our work on optimal joint adaptation
of video rate and playback speed to maximize user QoE in low-
latency live streaming. We start with building a detailed chunk-
level live streaming dynamic model that characterizes how video
rate and playback speed jointly control the state evolution of the
live streaming session, including buffer length, playback latency,
video freeze, download idle time, etc. The developed model brings
forth important insights on how video rate adaptation and play-
back speed adaptation, individually and jointly, impact various user
QoE metrics. Leveraging on the dynamic model, we first develop a
model-based joint rate-speed adaptation solution based on a non-
linear optimal control technique, namely iterative Linear Quadratic
Regulator (iLQR). The quality of the model-based solution can be
degraded by the fine system dynamics not captured by the stream-
ing model and network condition prediction errors. Our second
effort resorts to model-free optimal control techniques, namely
Deep Reinforcement Learning (DRL). We train a Branching Dueling
Q-network (BDQ) model to generate rate adaptation and speed
adaptation policies from separate branching Q-networks so that
more playback speed control levels can be supported. Through ex-
tensive simulations driven by real network traces, we demonstrate
that the proposed joint adaptation algorithms significantly out-
perform rate-only adaptation and heuristic rate-speed adaptation
algorithms. In a wide-range of network conditions, the model-based
and model-free algorithms can dynamically adjust video rate and
playback speed to achieve the best trade-offs tailored for different
user QoE preferences. We make the following contributions:
• We develop a detailed chunk-level dynamic model for low-
latency live streaming system that characterizes the interplay
of rate adaptation and playback speed control, and their
impacts on various user QoE metrics.
• Based on the live streaming model, we study the joint adapta-
tion of video rate and playback speed as a nonlinear optimal
control problem. iLQR-type streaming algorithms are devel-
oped to generate real-time rate-speed control.
• We further develop a DRL-based joint adaptation algorithm
to support a wide range of speed control. We show that
the branching of BDQ can effectively explore the expanded
action space and find close-to-optimal adaptation policies.
• We conduct extensive experiments using real LTE band-
width traces. The results demonstrate the gain of our joint
adaptation algorithms over simple heuristics and rate-only
adaptation. We also show that the proposed algorithms can
be flexibly adjusted to satisfy diverse user QoE preferences.
• Finally, we discuss the pros and cons of model-based vs.
model-free joint adaptation algorithms for adoption in prac-
tical low-latency live streaming systems.

In the following parts of this paper, Sec. 2 reviews the related
work. Live streaming dynamic model is developed in Sec. 3. iLQR
and BDQ-based joint adaptation algorithms are derived in Sec. 4
and 5, respectively. Sec. 6 presents the performance evaluation
results. At last, Sec. 7 concludes the paper.

2 RELATED WORK
To deliver smooth and high quality video to the users, video rate
adaptation algorithms are widely employed in Video-on-Demand

(VoD) and live streaming systems. With the help of Dynamic Adap-
tive Streaming over HTTP (DASH) [29] and HTTP Live Stream-
ing (HLS) [26], different video rates can be selected over time
to adapt to dynamic network conditions. Rate-based adaptation
algorithms [19, 20, 23] choose the video rate based on the pre-
dicted bandwidth. However, user QoE is also affected by video rate
smoothness and video freezing. Therefore, some enhanced adap-
tation algorithms including FESTIVE [13] and PANDA [17] are
proposed in which buffer status is also considered to optimize the
QoE. In [37, 48], proportional-integral-derivative (PID) controller is
proposed to control video rate to maintain the video buffer around
a target level. BOLA is a Lyapunov optimization based algorithm
proposed in [30]. It has already been embedded in DASH.js player.
In addition, another buffer-based algorithm (BBA) [11] selects video
rate based on the receiving buffer occupancy so that the rebuffering
time can be reduced by 10− 20% without affecting the video quality
when compared with benchmarks. In [45], video rate is selected by
solving a QoE maximization problem with the predicted available
network bandwidth. To deal with the prediction error accumula-
tion at long prediction interval, model predictive control (MPC) is
utilized in which the optimal rate selections for several future steps
are generated, but only the first action is taken at the next step.
The system iterates video rate selection for each video segment. In
addition, deep reinforcement learning (DRL) approach is adopted
in [21, 28] to maximize the long-term accumulated QoE where the
optimal bitrate is generated by a RL agent based on the system
state. In [4], parameters are pre-computed for different network
conditions, and the system can adapt the parameters based on the
current network condition to improve the performance. Distributed
queuing theory is adopted in [6] to download video segments in
parallel from multiple servers.

In a live streaming system, latency is another important metric
affecting user QoE due to the “live” properties of the events. In [43],
buffer-based rate control algorithm with dynamic threshold is pro-
posed to reduce the rate fluctuation and guarantee smooth playback
for low-latency live video streaming. The study in [35] shows the
latency in live streaming system is tied to the segment duration
which can be of several seconds. To reduce the latency lower bound,
Common Media Application Format (CMAF) is proposed in [12]
where one video segment is divided into multiple chunks. With
HTTP 1.1 chunked transfer encoding [42], the delivery of a video
segment can be pipelined with encoding. An MPC type of video
rate adaptation algorithm was proposed in [34] for achieving low-
latency in live streaming. To control playback latency, heuristic [27]
and DRL [14, 40, 47] based algorithms are proposed to skip video
frames so that video latency can be reduced. However, skipping
frames might cause significant user QoE degradation. The content
harvest network architecture is proposed in [25] to achieve both
low latency and sustainable bandwidth for the first mile delivery of
live streaming. In [32], an online algorithm is proposed for delay-
aware fountain codes. To reduce the start-up delay, [8] proposes
to use WebSocket over HTTP/2 and server-push mechanism. Simi-
larly, server-push strategy is also utilized in [39], but with a shorter
segment duration. Short latency also leads to more accurate field
of view (FoV) prediction in 360 video streaming [33]. The overhead
of chunked streaming is studied in [7].
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To smoothly control playback latency, instead of skipping frames,
playback speed adaptation is proposed in [15, 31]. In the MMSys
2020 Grand Challenge [1], several systems utilize playback speed
adaptation to achieve low latency. The authors of [16] solve the
low-latency video rate adaptation problem using online convex op-
timization. The playback speed adaptation is adopted directly from
the default playback speed module in the dash.js player. As a result,
the video rate and playback speed adaptations are not jointly opti-
mized to maximize user’s QoE. Another heuristic low-latency video
rate adaptation algorithm is proposed in [10]. A sliding window
is utilized to measure the means and standard deviations of both
throughput and latency, which are used to drive video rate adapta-
tion. The default playback speed module of dash.js is modified to
avoid unnecessary video stalls. In [18], an MPC-based low-latency
video rate adaptation algorithm is proposed. With bandwidth pre-
dictions, the algorithm exhaustively searches among all possible
rate selection combinations in a look-ahead window to maximize
user QoE. However, such a brute-force search will suffer from space
explosion due to long look-ahead window and/or many video rate
levels. In the same work, a learning-based video rate adaptation
algorithm using Self Organizing Maps is also introduced. Similar
to [10, 16], the playback speed is adapted by a heuristic algorithm
independent of video rate adaptation. Indeed, in low-latency live
video streaming, video rate and playback speed adaptations are
tightly coupled. They jointly determine the evolution of the system
state and user QoE. Different from the previous studies, we study the
optimal joint adaptation of video rate and playback speed. Leveraging
on the insights obtained from our detailed live streaming model, we
develop both model-based and model-free optimal joint adaptation
algorithms. At each step, the video rate and playback speed are jointly
adapted by evaluating their joint influence on the system state and
user QoE. To address the computation challenge of joint adaptation,
we use model-based optimal control technique, namely iLQR, to sig-
nificantly reduce the computation cost of exhaustive MPC search
in [18, 45], and use action branching to develop our DRL-based
model-free joint adaptation algorithm.

3 LOW-LATENCY LIVE STREAMING
Generally, for the legacy live video streaming systems, several to
ten seconds video is buffered on users’ devices to cope with network
condition fluctuations. On the contrary, in order to deliver “live"
experience, low playback latency is desired. As a result, the amount
of video time that can be buffered is limited by the target playback
latency, leading to higher risk of video buffer underflow. Therefore,
in a low-latency live streaming system, the first design trade-off
is how to balance between low playback latency (short video buffer
length) and the robustness against bandwidth fluctuations.

3.1 Playback Speed Control
In the traditional live streaming, whenever a video freeze happens,
the playback latency keeps increasing until the playback resumes.
After several freezes, the latency might become too long for be-
ing “live". With the normal playback speed, the only way to catch
up with the live event is to skip frames/segments. Video skipping
leads to user QoE degradation. Totally missing critical moments in

a live event, such as a game-changing goal, is simply not accept-
able. Playback speed adaptation serves as a smoother alternative to
gradually reduce playback latency and catch up. It has been shown
through subjective user studies that playback speed changes within
10% (faster or slower) are not even noticeable by users [9, 46]. For
video-on-demand, users can choose different playback speeds for
different videos over a wider range (×0.25 to ×2) on popular plat-
forms, such as YouTube and iQIYI. It is impossible/meaningless to
fast-playback/slow-playback throughout a live streaming session.
As will be shown later, only sporadic playback speed adaptations
are sufficient to effectively control playback latency and improve
the overall user QoE in live streaming.

Video rate and playback speed are the two knobs to control video
buffer and have different user QoE implications. For example, if
fast playback is chosen (to reduce latency), video buffer will drain
faster, then lower video rate might have to be selected so that video
freeze can be avoided. But the delivered perceptual video quality
will suffer. Oppositely, if high video rate is selected, video buffer
inflow rate decreases, then slow playback speed is helpful to slow
down the buffer drain rate. However, as a negative consequence,
playback latency will increase. Therefore, video rate and playback
speed adaptations should be judiciously coordinated to achieve the
best trade-off tailored for different user QoE preferences.

3.2 Chunk-level Dynamic Model
To systematically study those trade-offs, we start with building a
detailed dynamic live streaming model to understand the interplay
between video rate and playback speed.

Figure 1: Comparison between segment-based and chunk-
based delivery in terms of video buffer and latency.

One efficient way to reduce the latency is chunk-based stream-
ing, which divides one video segment into multiple chunks and
allows them to be streamed in a decoupled way. For example, if a
video is streamed in segments (the left portion of Fig. 1), the down-
load of segment 𝑖 starts from time 𝑡𝑖−1 and ends at 𝑡𝑖 . During the
downloading, video buffer (the black curve) is drained out at time
𝑡 ′
𝑖
. Therefore, video freeze 𝑝𝑖 happens, leading to latency increase

(the orange curve). However, if chunk-based delivery is adopted
(the right portion of Fig. 1), the first and second chunk of segment
𝑖 are received at time 𝑡𝑖,1 and 𝑡𝑖,2, respectively. In this case, even
with the same initial buffer length 𝑏𝑖−1 and total download time as
the segment-based streaming, video freeze and latency increment
can be avoided with chunk-based streaming.

To formulate the system evolution of a chunk-based streaming
system, we assume one video segment is divided into 𝐽 chunks
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Table 1: Variables associated with segments

Notation Definition (for segment 𝑖)
Δ Video time in each segment (seconds)
𝐽 Number of chunks per segment (scalar)
𝑟𝑖 Video rate selected (Mbps)
𝑠𝑖 Playback speed while downloading segment (scalar)
𝑢𝑖=⟨𝑟𝑖 , 𝑠𝑖 ⟩ Joint rate-speed selection (vector)
𝒒 (𝑟𝑖 ) Perceptual video quality (scalar)

Table 2: Variables associated with chunks

Notation Definition (for chunk 𝑗 in segment 𝑖)
Δ𝑐 = Δ/𝐽 Video time in each chunk (seconds)
𝜏𝑖,𝑗 Chunk download duration (seconds)
𝑤𝑖,𝑗 Average download throughput (Mbps)
𝑟𝑡𝑡𝑖,𝑗 Round trip time (RTT, seconds)
𝑐𝑖,𝑗 Server-side coding completion time (seconds)
𝑡𝑖,𝑗 Client-side download completion time (seconds)
𝑧𝑖,𝑗 Idle time before downloading (seconds)
𝑏𝑖,𝑗 Buffer length after downloading (seconds)
𝑝𝑖,𝑗 Freeze time while downloading (seconds)
𝑙𝑖,𝑗 Playback latency (seconds)
𝑥𝑖,𝑗 System state ⟨𝑏𝑖,𝑗 , 𝑙𝑖,𝑗 , 𝑟𝑖 , 𝑠𝑖 ⟩ (vector)
𝑛𝑖,𝑗 Network condition ⟨𝑤𝑖,𝑗 , 𝑟𝑡𝑡𝑖,𝑗 ⟩ (vector)

and define the notations for segments and chunks in Table 1 and 2
respectively. Note that in chunk-based streaming system, even
though video data is delivered in chunks, the video rate control is
still operated at the segment level. The client sends out one request
(through HTTP in DASH) for each segment, the server sequentially
delivers chunks of the segment to the client immediately after the
first chunk is completely encoded. The download duration of video
chunk (𝑖, 𝑗) can be written as:

𝜏𝑖, 𝑗 =
𝑟𝑖Δ𝑐
𝑤𝑖, 𝑗

, 1 ≤ 𝑗 ≤ 𝐽 , (1)

in which 𝑟𝑖Δ𝑐 is the data size of a chunk at video rate 𝑟𝑖 1 and𝑤𝑖, 𝑗 is
the average download bandwidth. Let 𝑡𝑖, 𝑗 be the time when chunk
(𝑖, 𝑗) is completely downloaded. We have

𝑡𝑖,1 = max
(
𝑐𝑖,1, 𝑡𝑖−1,𝐽 +

𝑟𝑡𝑡𝑖,1
2

)
+ 𝜏𝑖,1 +

𝑟𝑡𝑡𝑖,1
2

,

𝑡𝑖, 𝑗 = max
(
𝑐𝑖, 𝑗 , 𝑡𝑖, 𝑗−1 −

𝑟𝑡𝑡𝑖, 𝑗

2

)
+ 𝜏𝑖, 𝑗 +

𝑟𝑡𝑡𝑖, 𝑗

2
, 2 ≤ 𝑗 ≤ 𝐽 ,

(2)

where 𝑐𝑖, 𝑗 is the server coding completion time for chunk (𝑖, 𝑗),
and the first term in both equations is the earliest time when a
chunk can be pushed out by the server. The max operation reflects
the fact that a chunk can be pushed by the server only after it is
completely encoded and the first chunk has to wait for the segment
download request from the client. Then all the following chunks can
be pushed out in a pipelined fashion without additional requests.
To simplify the notation, we define a new variable 𝑧𝑖, 𝑗 as

𝑧𝑖, 𝑗 ≜ 𝑡𝑖, 𝑗 − 𝑡𝑖, 𝑗−1 − 𝜏𝑖, 𝑗 , 1 ≤ 𝑗 ≤ 𝐽 , (3)

1Given a selected rate 𝑟𝑖 for segment 𝑖 , the actual size for each chunk within the
segment might be greater or less than 𝑟𝑖Δ𝑐 . In our implementation, we use the actual
coded chunk size to calculate the download duration.

with the chunk index wrap-around as (𝑖, 0) ≜ (𝑖 − 1, 𝐽 ), i.e. the
chunk before the first chunk of a segment is the last chunk of the
previous segment. 𝑧𝑖, 𝑗 is the potential idle time before the chunk
download starts, due to either the segment request for the first
chunk or the waiting for the server to complete the encoding.

Figure 2: Impact of Fast and Slow playback speed. The y-axis
represents buffer length or latency in time.

To achieve latency adaptation, the playback speed on the client
device can be increased or decreased. We define 𝑠𝑖 as the playback
speed while downloading all chunks in segment 𝑖 . With playback
speed 𝑠𝑖 , during the download, the buffer draining rate becomes 𝑠𝑖
times the normal rate of 1. Then, the video receiving buffer length
𝑏𝑖, 𝑗 after downloading chunk (𝑖, 𝑗) can be updated as:

𝑏𝑖, 𝑗 =max
(
𝑏𝑖, 𝑗−1 − 𝑠𝑖 (𝑡𝑖, 𝑗 − 𝑡𝑖, 𝑗−1), 0

)
+ Δ𝑐

=max
(
𝑏𝑖, 𝑗−1 −

𝑠𝑖𝑟𝑖Δ𝑐
𝑤𝑖, 𝑗

− 𝑠𝑖𝑧𝑖, 𝑗 , 0
)
+ Δ𝑐 ,

(4)

where the playback speed 𝑠𝑖 shows up in two terms, while video
rate 𝑟𝑖 shows up only once in a product form with 𝑠𝑖 in the second
term. This suggests that playback speed can be more effective than
video rate in controlling video buffer length. As will be shown next,
video buffer evolution directly determines video freeze and playback
latency. Therefore, playback speed is an important control knob for
low-latency live streaming system.

In Eq. (4), the first term equals to zero if the video buffer depletes
before chunk (𝑖, 𝑗) download completes, triggering video freeze.
The video freeze time can be calculated as:

𝑝𝑖, 𝑗 = max
( 𝑟𝑖Δ𝑐
𝑤𝑖, 𝑗

+ 𝑧𝑖, 𝑗 −
𝑏𝑖, 𝑗−1
𝑠𝑖

, 0
)
. (5)

After each video freeze, the playback latency will increase by
the amount of freeze time. Additionally, abnormal playback speed
(𝑠𝑖 ≠ 1) also directly changes the playback latency. Overall, the
video playback latency will be updated as:

𝑙𝑖, 𝑗 = 𝑙𝑖, 𝑗−1 − (𝑠𝑖 − 1)
(
𝑟𝑖Δ𝑐
𝑤𝑖, 𝑗

+ 𝑧𝑖, 𝑗
)
+ 𝑝𝑖, 𝑗 . (6)

Eq. (5) and (6) illustrate that latency can be reduced if video is
played faster than the normal playback speed. At the same time,
buffer is consumed faster, leading to higher risk of video freeze
(shown as the green dotted curve in Fig. 2). On the contrary, if slow
playback speed is chosen, video buffer is consumed slower and
latency would increase (shown as the red dotted curve in Fig. 2).
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The chunk-based system dynamic can be summarized as:

𝑥𝑖, 𝑗 = F (𝑥𝑖, 𝑗−1, 𝑢𝑖 , 𝑛𝑖, 𝑗 ) with 𝑖 ∈ [1, 𝐼 ], 𝑗 ∈ [1, 𝐽 ], (7)

where F (·) is the system dynamic function defined by Eq. (1), (2),
(4), (5) and (6). After taking action 𝑢𝑖 B ⟨𝑟𝑖 , 𝑠𝑖 ⟩ under network
condition 𝑛𝑖, 𝑗 B ⟨𝑤𝑖, 𝑗 , 𝑟𝑡𝑡𝑖, 𝑗 ⟩, the state evolves to 𝑥𝑖, 𝑗 which is
defined as ⟨𝑏𝑖, 𝑗 , 𝑙𝑖, 𝑗 , 𝑟𝑖 , 𝑠𝑖 ⟩. Note that state variables with index (𝑖, 0)
represent the state before downloading the first chunk of segment
𝑖 , i.e., the final state of the previous segment. For example, 𝑏𝑖,0 is
the buffer length before downloading chunk (𝑖, 1), i.e., the buffer
length after downloading the last chunk of segment (𝑖 − 1).

3.3 Quality of Experience Model
In addition to the traditional QoE metrics, such as higher video
rate, less video rate fluctuation, and less freeze, a latency-adapted
live streaming system further attempts to control real-time latency
through playback speed adaptation. So, the overall design goal can
be formulated as Joint Optimization of Video Rate and Playback
Speed:

max
{𝑟𝑖 ∈R,𝑠𝑖 ∈S}

𝐼∑
𝑖=1

𝑄𝑜𝐸𝑖 (8)

with 𝑄𝑜𝐸𝑖 = 𝛼1𝒒(𝑟𝑖 ) − 𝛼2 |𝒒(𝑟𝑖 ) − 𝒒(𝑟𝑖−1) |
− 𝛼3 |1 − 𝑠𝑖 | − 𝛼4 |𝑠𝑖 − 𝑠𝑖−1 |

− 𝛼5
𝐽∑
𝑗=1

𝑙𝑖, 𝑗 − 𝛼6
𝐽∑
𝑗=1

𝑝𝑖, 𝑗

subject to: streaming system state evolution dynamics (7),

in which R and S are the available video rates and playback speeds
respectively. We adopt a segment-based QoE model similar to the
QoEmodel ofMMSys 2020 low latency video streaming challenge [1,
10, 16, 18].𝑄𝑜𝐸𝑖 is the QoE of video segment 𝑖 consisting of 𝐽 chunks.
Each QoE metric is defined as the following:

a) The first two terms are video rate based. 𝒒(𝑟𝑖 ) is the percep-
tual quality that is normally modeled by a log function, e.g.
𝒒(𝑟𝑖 ) = 𝜂1 log(𝑟𝑖 ) +𝜂2 in which 𝜂1 and 𝜂2 are the coefficients
to be fitted. The second term is the penalty of rate fluctuation
between two adjacent segments.

b) The following two terms are related to playback speed. |1−𝑠𝑖 |
calculates the penalty of faster or slower playback which
affects QoE negatively. The fourth term is the penalty for
playback speed fluctuation. Note that this term was not in-
cluded in [1]. We introduce additional penalty for playback
speed fluctuation as it has negative impact on user QoE.

c) The last two terms are chunk-level metrics. The fifth term is
defined as the QoE degradation caused by playback latency
𝑙𝑖, 𝑗 . The last term represents the penalty of freeze time 𝑝𝑖, 𝑗
while downloading chunk (𝑖, 𝑗).

The detailed parameter and function settings are discussed in Sec. 6.1.
It is well understood that different users have different QoE prefer-
ences, and there is no one-size-fits-all QoE model. It is not the focus
of this paper to develop a universal QoE model for low-latency
live streaming. Our model-based and model-free joint adaptation
solutions to be introduced in the next two sections are designed to
work with arbitrary QoE model with arbitrary weight settings.

4 MODEL-BASED SOLUTION: ITERATIVE
LINEAR QUADRATIC REGULATOR

The QoE maximization problem defined in (8) is to maximize the
total reward for the entire live streaming session by jointly adapting
video rate and playback speed of all the segments. The rate-speed
choice ⟨𝑟𝑖 , 𝑠𝑖 ⟩ not only immediately determines the rendered qual-
ity and latency of segment 𝑖 , but also changes the state of the
live streaming session, in particular the client buffer length, for
the following segments to work with. Additionally, since the QoE
function consists of video rate and playback speed variations be-
tween the adjacent segments, the rate-speed cannot be optimized
for each segment marginally. In this section, we adopt a technique
from nonlinear optimal control, namely iterative Linear Quadratic
Regulator (iLQR) [38], for the joint optimization of video rate and
playback speed of all the segments. For presentation clarity, we
discuss iLQR-based live streaming at the segment-level, our actual
iLQR implementation is at the chunk-level with similar procedures.

4.1 Iterative Linear Quadratic Regulator
4.1.1 iLQR Prerequisite. In the classical iLQR framework, 1 the
control objective is to minimize some cost function, and 2 both
the cost function and system dynamic models are differentiable. To
satisfy prerequisite 1 , we reformulate the QoE maximization prob-
lem defined in (8) into a cost minimization problem with the cost of
segment 𝑖 as 𝑐𝑖 = −𝑄𝑜𝐸𝑖 . The prerequisite 2 is not strictly satisfied
by the live streaming system dynamic models defined in Sec. 3. For
example, in Eq. (4), after each video freeze, buffer length jumps
from zero to a chunk duration. Such jumps are not differentiable.
Similarly, the video freeze time in Eq. (5) and consequently, the
latency in Eq. (6) are not differentiable due to the max(·) function.
We approximate the system dynamic models and the cost functions
with differentiable functions. Due to the space limit, we skip the de-
tail here. Given the “oracle” of network condition {𝑛𝑖 , 𝑖 = 1, · · · , 𝐼 },
we can approximate the system dynamics and cost function as:

𝑥𝑖 ≈ 𝒇 (𝑥𝑖−1, 𝑢𝑖 ), 𝑐𝑖 ≈ 𝒄 (𝑥𝑖−1, 𝑢𝑖 ), (9)

in which both 𝒇 (·) and 𝒄 (·) are differentiable.

4.1.2 iLQR Perturbation Optimization. With the approximated sys-
tem evolution and control cost, starting from an initial control
sequenceU (0) = {𝑢 (0)

𝑖
, 𝑖 = 1, · · · , 𝐼 }, iLQR iteratively improves the

current control sequenceU (𝑚) by solving for the optimal control
perturbation 𝛿U (𝑚) within the neighborhood of the current system
state trajectory X (𝑚) = {𝑥 (𝑚)

𝑖
, 𝑖 = 1, · · · , 𝐼 }. Specifically, for step

𝑖 , the system dynamics 𝒇 (·) around state point 𝑥𝑖−1 after taking
control 𝑢𝑖 can be approximated using the 1st-order Taylor series
expansion:

𝒇 (𝑥𝑖−1,𝑢𝑖 ) ≈ 𝒇 (𝑥𝑖−1, 𝑢̂𝑖 ) + ∇𝑥𝑖−1,𝑢𝑖 𝒇 (𝑥𝑖−1, 𝑢̂𝑖 )
[
𝑥𝑖−1 − 𝑥𝑖−1
𝑢𝑖 − 𝑢̂𝑖

]
. (10)

If we define the state and control perturbations as 𝛿𝑥𝑖 ≜ 𝑥𝑖 − 𝑥𝑖
and 𝛿𝑢𝑖 ≜ 𝑢𝑖 − 𝑢𝑖 . It can be shown that:

𝛿𝑥𝑖 = 𝒇 (𝑥𝑖−1, 𝑢𝑖 ) − 𝒇 (𝑥𝑖−1, 𝑢𝑖 )

≈ ∇𝑥𝑖−1,𝑢𝑖𝒇 (𝑥𝑖−1, 𝑢𝑖 )
[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
= F𝑖

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
,

(11)
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where F𝑖 is the state transition matrix of the linearized system
around ⟨𝑥𝑖−1, 𝑢𝑖 ⟩. Using the 2nd-order Taylor series expansion, the
cost perturbation is approximated by:

𝛿𝑐𝑖 = 𝑐 (𝑥𝑖−1, 𝑢𝑖 ) − 𝑐 (𝑥𝑖−1, 𝑢𝑖 )

≈ ∇𝑥𝑖−1,𝑢𝑖𝑐 (𝑥𝑖−1, 𝑢𝑖 )
[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
+ 1
2

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]𝑇
∇2𝑥𝑖−1,𝑢𝑖𝑐 (𝑥𝑖−1, 𝑢𝑖 )

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
=c𝑖

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
+ 1
2

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]𝑇
C𝑖

[
𝛿𝑥𝑖−1
𝛿𝑢𝑖

]
,

(12)

where C𝑖 and c𝑖 are the quadratic control cost matrixes.
We can find that Eq. (11) and (12) are in linear and quadratic

forms in terms of 𝛿𝑥𝑖−1 and 𝛿𝑢𝑖 . Then, for the given state 𝑥𝑖−1 and
control 𝑢𝑖 , the optimal perturbation 𝛿𝑢𝑖 can be solved analytically
using Linear Quadratic Regular (LQR) [5] shown as Algorithm 1.
More specifically, the cost minimization problem can be solved ana-
lytically in two passes. The first pass is backward propagation, which
calculates the closed-form solution of the optimal perturbation 𝛿𝑢𝑖
in terms of the given state change 𝛿𝑥𝑖−1 by setting the derivative
of the quadratic cost term to be zero. It starts from the last step
𝑖 = 𝐼 , going backward until 𝑖 = 1. The actual optimal perturbations
⟨𝛿𝑢𝑖 , 𝛿𝑥𝑖 ⟩ are calculated in the forward pass. From line 2 to 7 in Al-
gorithm 1, Q𝑖 , q𝑖 ,K𝑖 , k𝑖 ,V𝑖 and v𝑖 are all intermediate variables. By
substituting the actual initial state 𝛿𝑥0 in the closed-form optimal
control strategy generated by backward propagation, the optimal
perturbation 𝛿𝑢∗1 can be solved. The next state change 𝛿𝑥1 can also
be derived based on 𝛿𝑥0 and 𝛿𝑢∗1 .

Algorithm 1 Linear Quadratic Regulator (LQR)

Input: X (0) ,U (0) : the initial state and control sequence; 𝐼 :
number of segments to be optimized; {𝑛𝑖 , 𝑖 ∈ [1, 𝐼 ]}: future
network condition.
Output: 𝛿U∗: the optimal control perturbation sequence.
Initialization: Set V𝐼 and v𝐼 to be zero matrix.

Backward Propagation
1: for each segment 𝑖 = 𝐼 : 1 do
2: Q𝑖 = C𝑖 + F𝑇𝑖 V𝑖F𝑖
3: q𝑖 = c𝑖 + F𝑇𝑖 V𝑖 f𝑖 + F

𝑇
𝑖
v𝑖

4: K𝑖 = −Q−1𝑢𝑖 ,𝑢𝑖Q𝑢𝑖 ,𝑥𝑖

5: k𝑖 = −Q−1𝑢𝑖 ,𝑢𝑖 q𝑢𝑖
6: V𝑖−1 = Q𝑥𝑖 ,𝑥𝑖 + Q𝑥𝑖 ,𝑢𝑖K𝑖 + K𝑇𝑖 Q𝑢𝑖 ,𝑥𝑖 + K𝑇𝑖 Q𝑢𝑖 ,𝑢𝑖K𝑖
7: v𝑖−1 = q𝑥𝑖 + Q𝑥𝑖 ,𝑢𝑖 k𝑖 + K𝑇𝑖 q𝑢𝑖 + K

𝑇
𝑖
Q𝑢𝑖 ,𝑢𝑖 k𝑖

8: end for

Forward Pass
9: for each segment 𝑖 = 1 : 𝐼 do
10: 𝛿𝑢𝑖 = K𝑖𝛿𝑥𝑖−1 + k𝑖
11: 𝛿𝑥𝑖 ← 𝒇 (𝑥𝑖−1, 𝑢𝑖 + 𝛿𝑢𝑖 , 𝑛𝑖 ) − 𝑥𝑖
12: end for
13: return 𝛿U∗

However, after each update, the state of the next step 𝑥𝑖 might
change, leading to further control and state changes of the following
steps. Therefore, the state and control should be updated iteratively

until convergence, as shown in Algorithm 2. Overall, through itera-
tively updating the state and improving control sequence, iLQR can
eventually converge to a fixed-point solution {⟨𝑥∗

𝑖
, 𝑢∗

𝑖
⟩, 𝑖 ∈ [1, 𝐼 ]}.

Algorithm 2 Iterative LQR (iLQR)

Input: X (0) ,U (0) : the initial state and control sequence; 𝐼 :
number of segments to be optimized; {𝑛𝑖 , 𝑖 ∈ [1, 𝐼 ]}: future
network condition; 𝜂: step size;𝑀 : total number of iterations.
Output: {𝑢∗

𝑖
, 𝑖 ∈ [1, 𝐼 ]}: rate and playback speed sequence.

Initialization:𝑚 = 0
1: while {𝑢𝑖 } is not converged and𝑚 < 𝑀 do
2: 𝑥𝑖 = 𝑥

(𝑚)
𝑖

, 𝑢𝑖 = 𝑢
(𝑚)
𝑖

for all 𝑖 ∈ [1, 𝐼 ]
3: F𝑖 = ∇x𝑖−1,𝑢𝑖𝒇 (x̂𝑖−1, 𝑢𝑖 ).
4: c𝑖 = ∇x𝑖−1,𝑢𝑖𝑐 (x̂𝑖−1, 𝑢𝑖 ).
5: C𝑖 = ∇2x𝑖−1,𝑢𝑖𝑐 (x̂𝑖−1, 𝑢𝑖 ).
6: Conduct LQR Backward Propagation on state 𝛿x𝑖 and control

𝛿𝑢𝑖 for all 𝑖 ∈ [1, 𝐼 ].
7: Conduct LQR Forward Pass with dynamics x𝑖 = 𝒇 (x𝑖−1, 𝑢𝑖 )

and 𝑢𝑖 = 𝑢𝑖 + 𝜂 (K𝑖 (x𝑖−1 − x̂𝑖−1) + k𝑖 ) for all 𝑖 ∈ [1, 𝐼 ].
8: Check if 𝑢𝑖 for all 𝑖 ∈ [1, 𝐼 ] are converged.
9: 𝑚 =𝑚 + 1
10: end while
11: 𝑢∗

𝑖
= 𝑢
(𝑚)
𝑖

for all 𝑖 ∈ [1, 𝐼 ].
12: return {𝑢∗

𝑖
, 𝑖 ∈ [1, 𝐼 ]}

4.2 Practical iLQR Implementation
In order to apply iLQR to a practical streaming system, there are
still several missing parts to be filled in. 1 The “oracle” of future
network conditions is not available in practice. In particular, net-
work bandwidth and RTT prediction are necessary. In this paper, we
use harmonic mean of the past samples as the predicted value. 2
Illustrated by Algorithm 2, to jointly optimize the control sequence
for all the 𝐼 steps, the network condition of each step is required by
iLQR. However, the network prediction error will accumulate for a
long horizon. To cope with it, we adopt model predictive control
(MPC) in which, at step 𝑖 , the control sequence is optimized for a
future horizon [𝑖+1, 𝑖+𝐻 ] using iLQR. Only the control𝑢𝑖+1 of step
𝑖 +1 is applied, the system evolves from state 𝑥𝑖 to 𝑥𝑖+1. At step 𝑖 +1,
iLQR calculates a new control sequence for horizon [𝑖 + 2, 𝑖 +𝐻 + 1],
and 𝑢𝑖+2 is applied, so on and so forth. Through taking control in
this sliding-window fashion, error accumulation can be controlled.
We use horizon length of 10 in our experiments. 3 As described
in Sec. 4.1.1, both system dynamic and cost functions should be
differentiable. For example, we adopt high order sigmoid function
to approximate the max(·). In addition, the vanilla iLQR solves the
optimal control problem without considering upper/lower bounds
of control values. However, both video rate and speed control in
a practical system should be bounded. To solve this problem, we
introduce exponential barrier functions on the control values. 4
iLQR generates continuous-valued optimal control sequence. But
the actual controls are discrete-valued. Therefore, at each step, the
optimal video rate of the current step and the average speed of the
current and the next two steps are quantized to one of the available
video rates and playback speeds as the actual action. 5 iLQR gen-
erates control at the segment level, while the state evolution is at
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the chunk level as detailed in Section 3. We convert chunk-based
state variables to segment-based ones, then feed them into iLQR.

5 MODEL-FREE SOLUTION: DRL WITH
BRANCHING DUELING Q-NETWORK

The iLQR-based solution relies on accurate streaming systemmodel
and network condition prediction to obtain the control strategy.
Another popular model-free approach to optimal control is rein-
forcement learning (RL), where an RL agent is trained with sample
runs and reinforced by the obtained rewards to converge to the
optimal control policy. The RL agent does not need explicit system
dynamic model. Instead, it treats the system under control as a
black-box, and learns how to interact with it through “trial-and-
error" in the training phase to improve its control policy. Indeed,
RL, in particular Deep-RL (DRL), has found its applications in video
streaming recently [21, 28]. In our context, we would like to train
a DRL agent that learns how to simultaneously adjust video rate
and playback speed to maximize the user QoE in low-latency live
streaming. The immediate new challenge is the expanded action
space due to the added playback speed control. Given |R | available
video rates, and |S| possible playback speeds, the control action
for each segment is to choose one rate-speed tuple out of |R | × |S|
candidates. For 𝐼 consecutive segments, the number of possible joint
rate-speed control sequences ( |R| × |S|)𝐼 will be extremely large
when compared with |R |𝐼 possible control sequences in rate-only
adaptation. The conventional DRL algorithms, such as A3C used
in [21], cannot efficiently explore the action space when |R | and
|S| are reasonably large. In this paper, we adopt Branching Dueling
Q-network (BDQ) [36], a recently proposed DRL algorithm for large
action space, to learn joint rate-speed adaptation policy.

5.1 Overall Architecture and Feature Design
The overall architecture of the BDQ agent is illustrated in Fig. 3. It
takes ten features to represent the state of live streaming system.
The features are further encoded into shared representation to feed
into BDQmodel to simultaneously generate video rate and playback
speed adaptation polices.

5.1.1 System State Features. The BDQ agent directly takes past
system information as input. There is no explicit bandwidth predic-
tion involved. To represent the network dynamic pattern, chunk
size and download time are fed into the agent so that bandwidth can
be predicted implicitly. Buffer length, idle time and video freeze are
also used to show the past system evolution. To capture the tempo-
ral pattern from the feature sequences, LSTM is adopted. As QoE is
also affected by playback latency and fluctuation of video rate and
playback speed, the current latency, video rate and playback speed
of the last segment are also selected as features. In addition, the
indicator feature “player status” can help the agent to accumulate
buffer fast during the startup phase.

In total, there are 10 features to define the state of the live stream-
ing system. The first 5 features are temporal sequences of length 15
(corresponding to 15 chunks, each segment consists of 5 chunks), in-
cluding chunk size (𝑟𝑖Δ𝑐 , the data size of chunks), download time
(𝜏𝑖, 𝑗 , download duration of chunks), buffer length (𝑏𝑖, 𝑗 , the buffer
length after download each chunk), download idle time (𝑧𝑖, 𝑗 , the

time spent on waiting for the server to prepare the next chunk) and
video freeze (𝑝𝑖, 𝑗 , the duration of freeze during the downloading).
The other 5 features are scalars, including last video rate (𝑟𝑖−1, the
video rate of the previous chunk), latency (𝑙𝑖, 𝑗−1, the current play-
back latency), player status (if the player is in startup or normal
playback status) and last playback speed (𝑠𝑖−1, the previous play-
back speed). In addition, skip/repeat indicator is used to represent
whether “skip” or “repeat” is chosen in the previous action.

5.1.2 Shared representation. Shown in the middle part of Fig. 3, to
capture the state evolution of the system, the temporal sequence
features are fed into a two-layer bidirectional long short-term mem-
ory (LSTM) to mine the temporal patterns and all the other scalar
features are fed into a fully connected (FC) layer. The hidden state
of both the LSTM and the FC are flatten/concatenated and taken as
the input of the last FC layer. All the LSTM/FC layers are grouped
together and named as the shared representation which extracts
the hidden representation from the system state.

5.2 Policy Learning with Action Branching
Value-based reinforcement learning algorithms learn the optimal
policy through estimating the Q values, i.e., the expected long-
term reward 𝑄 (𝑆, 𝑎) for taking action 𝑎 under state 𝑆 . Then the
action policy can be obtained as 𝜋 (𝑆) = argmax𝑎 𝑄 (𝑆, 𝑎). In Deep
Q-Network (DQN), the Q function is approximated by a deep neural
network (Q-network) parameterized by 𝜃 . At the convergence, the
Q values should satisfy the Bellman equation [24]:

𝑄∗ (𝑆, 𝑎;𝜃 ) = 𝑟 + 𝛾 max
𝑎′

𝑄∗ (𝑆 ′, 𝑎′;𝜃 ), (13)

which states that the maximum total reward of the current state 𝑆
is the immediate reward 𝑟 after taking action 𝑎 plus the maximum
future reward starting from next state 𝑆 ′. To converge to𝑄∗ (𝑆, 𝑎;𝜃 ),
for a given sample transition from state 𝑆 to 𝑆 ′ after action 𝑎, the
parameter 𝜃 of the Q-network should be updated as:

𝜃 ′ = 𝜃 + 𝜂 (𝑦 −𝑄 (𝑆, 𝑎;𝜃 ))∇𝜃𝑄 (𝑆, 𝑎;𝜃 ), (14)

where 𝜂 is the step size and 𝑦 = 𝑟 + 𝛾 max
𝑎′

𝑄 (𝑆 ′, 𝑎′;𝜃 ) is the
target value. The vanilla DQN has the overestimate problem due to
the max function taken in the target value. Double DQN (DDQN)
solves the overestimate problem by using two Q-networks (with
parameters 𝜃 and 𝜃−) and the target value is

𝑦 = 𝑟 + 𝛾𝑄 (𝑆 ′, argmax
𝑎

𝑄 (𝑆 ′, 𝑎;𝜃 ), 𝜃−) . (15)

For each update, the action taken at 𝑆 ′ is based on the Q network
parameterized by 𝜃 , while the Q value is returned by the Q network
parameterized by 𝜃−. The parameter 𝜃− is updated to 𝜃 at certain
frequency (every 50 episodes in our experiments).

For joint rate-speed adaptation, the total number of candidate
rate-speed tuples can be too large for a normal DQN model to
handle.We adopt Branching Dueling Q-network (BDQ) [36] to learn
video rate and playback speed adaptation policies using different
branches. The detailed architecture of BDQ is shown in Fig. 3. The
basic idea of BDQ is to train separate Q-networks to learn policies
along different action dimensions so that each Q-network only
needs to explore the action subspace along one dimension.

More specifically, given the hidden representation, a branching
architecture is utilized in BDQ to generate the multi-dimensional
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Figure 3: Architecture of BDQ for joint video rate (branch 1) and playback speed (branch 2) adaptation.

output. First of all, the state value 𝑉 (𝑆) is estimated by a common
state value estimator for all the branches. This approach is similar to
the dueling network architecture [41] so that a general state value
can be generated efficiently. With the help of the common state
value estimator, the advantage of actions of branches can also be
identified. Specifically, shown in the right part of Fig. 3, the shared
hidden representation is distributed among both the video rate and
playback speed control branches to generate the state-action based
advantage value 𝐴𝑑 (𝑆, 𝑎𝑑 ), 𝑑 = 1, 2. Eventually, we can obtain the
Q-value of dimension 𝑑 as:

𝑄𝑑 (𝑆, 𝑎𝑑 ) = 𝑉 (𝑆) + ©­«𝐴𝑑 (𝑆, 𝑎𝑑 ) −
1
𝑛

∑
𝑎′
𝑑
∈A𝑑

𝐴𝑑 (𝑠, 𝑎′𝑑 )
ª®¬ , (16)

where the size of the action space to be explored at each step is
|A𝑑 |. If one were to train one DQN for both branches together,
the action space size at each step would be |A1 | × |A2 |, which
significantly increases the complexity of DRL policy training.

According to [36, 41], the average reduction can lead to better
performance. With Q-value 𝑄𝑑 (𝑆, 𝑎𝑑 ) of each branch dimension,
the temporal difference target to update the BDQ model is:

𝑦 = 𝑟 + 𝛾 1
𝑁

∑
𝑑

𝑄𝑑

(
𝑆 ′, argmax

𝑎′
𝑑
∈A𝑑

𝑄𝑑 (𝑆 ′, 𝑎′𝑑 ;𝜃𝑑 ), 𝜃
−
𝑑

)
, (17)

where the number of action dimensions is 𝑁 = 2 in this paper. To
train the BDQ model, the state-action reward is defined as the QoE
of each video segment. With the trained 𝑄𝑑 networks, the video
rate selection and playback speed adaptation at the current state 𝑆
can be obtained as argmax𝑎𝑑 𝑄𝑑 (𝑆, 𝑎𝑑 ), 𝑑 = 1, 2 respectively.

6 EVALUATION
6.1 Experiment Configuration
6.1.1 Algorithm Implementation. We implement the proposed so-
lutions and several benchmarks as following:

Pensieve: Serves as a benchmark for DRL based rate-only adap-
tation. As the algorithm proposed in [21] was designed for video
on demand, its latency will be too long for live streaming if we
test it as-is. For a fair comparison, we retrain an A3C-based DRL
agent according to the settings in [21] with the same latency-
aware QoE model (8) used by our algorithms.
STALLION: A heuristic video rate and playback speed adap-
tation algorithm proposed in [10]. Playback speed is adapted

when latency is higher than the target latency, and video rate
is selected based on the predicted throughput, considering the
past buffer length and latency.
L2A-LL: A low-latency video rate adaptation algorithm based
on online convex optimization (OCO) proposed in [16]. The
playback speed is controlled by the default algorithm of dash.js.
The parameters are kept consistent with the original paper.
LOL: The video rate adaptation algorithm proposed in [18].
All possible video rate combinations in a look-ahead window
are exhaustively searched to maximize user QoE defined in (8).
Playback speed is calculated based on the current and future
buffer/latency heuristically. Compared with settings in [18], we
havemore video rate levels. Tomake the exhaustiveMPC search
run in real-time, we have to reduce the look-aheadwindow from
5 segments to 3 segments.
iLQR: The implementation of Algorithm 2 with horizon of
10 segments. Harmonic mean of history bandwidth is used to
predict bandwidth in future.
iLQR*: Serves as the optimal performance benchmark by using
“network oracle". Rate and speed adaptations are calculated
offline using Algorithm 2with the complete network bandwidth
trace. The other configuration is the same as iLQR.
BDQ: Our DRL agent described in Sec. 5. The numbers of the
video rates and playback speeds are 6 and 7, respectively.

To be compatible with our experiment configurations, e.g., seg-
ment duration, video rate levels, and playback speed range, we
re-implement STALLION, L2A-LL and LOL by maximally following
the original papers. All the algorithms are implemented in Python3.
To evaluate the real-time processing performance, iLQR and BDQ
are also implemented in a customized web based streaming plat-
form. The results show that 3.91 ms and 55.69 ms are consumed by
iLQR and BDQ, respectively, to generate each rate-speed action.

6.1.2 Rate and speed control. All the algorithms share the same
set of available video rates R = {0.3, 0.5, 1.0, 2.0, 3.0, 6.0} Mbps. For
playback speed control, the available speed set can have 3 choices
with S(3) = {0.9, 1.0, 1.1} for iLQR. However, if the playback speed
is bounded with ±10% of the normal playback speed, the latency
can only be changed by 1 second after displaying 10 seconds of
video. Small adjustment might lead to sluggish response to the fast
changing streaming environment, leading to QoE degradation. To
cope with this, we extend the playback speed range in BDQ so that
seven actions are supported, including five possible playback speeds:
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Algorithms # Rate
Adaptations

# Speed
Adaptations

Bandwidth Prediction

Pensieve 6 N/A N/A
STALLION 6 3 Sliding Window
L2A-LL 6 3 N/A
LOL 6 3 Harmonic Mean
iLQR 6 3 Harmonic Mean
BDQ 6 7 N/A
iLQR* 6 3 Ground-truth

Table 3: Algorithm Settings and Control Spaces.

{0.75, 0.9, 1.0, 1.1, 1.25} and two other actions: skip and repeat. “Skip”
will skip requesting several video segments (2 segments are used in
experiments) therefore latency can be reduced immediately; On the
contrary, “repeat” will replay the previous segments (1 segment is
used) to increase the buffer/latency to avoid video rebuffering. Both
“skip” and “repeat” will introduce additional QoE penalties which is
discussed in Sec. 6.1.3. The detailed rate/speed control levels and
bandwidth prediction of each algorithm are shown in Table 3.

6.1.3 QoE setting. We use three settings of QoE weights (the coef-
ficients 𝛼1 to 𝛼6 in the QoE model in (8): {1, 1, 2, 2, 0.25, 6}, {1.5,
1, 2, 2, 0.1, 6} and {1, 1, 2, 2, 0.1, 10} to represent “Low-latency
Preferred”, “High-rate Preferred” and “Freeze Sensitive” users, re-
spectively2. We retrain different Pensieve and BDQ models for
different QoE settings. For iLQR/iLQR*, we modify the correspond-
ing coefficients of cost terms. For STALLION, the target latency is
set to 1.5s for “Latency Preferred” users and 2s for “Rate Preferred”
and “Freeze Sensitive” users. The quality 𝒒(𝑟𝑖 ) is set as log(𝑟𝑖/R0)
where R0 is the lowest available rate (0.3 Mbps). The penalty of
each repeated/skipped segment is 3.
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Figure 4: Throughput Statistics of 120 LTE traces.

6.1.4 Simulation setting and network traces. In our system, each
segment contains one second of video and each chunk is 200 ms.
Each simulated live session is 300 seconds. The LTE throughput
dataset provided by [22] is utilized to simulate the network envi-
ronment. The average and variation of the 120 testing bandwidth
traces are illustrated by box plot in Fig. 4. The initial latency for
each streaming session is randomly chosen between 3s and 6s. For
each segment request, RTT is randomly chosen from 20 to 30 ms.
Note that to make fair comparison, for the experiments using the
same network trace, all the random values and initial state, e.g.
initial latency, are kept the same for all the algorithms.

2The weights can be changed based on users’ preference to different terms. Our
solutions can work with any weight setting and any QoE function.

6.1.5 BDQ Model training. The bandwidth traces from [22] are
divided into training (150 traces) and testing (120 traces) datasets.
BDQ DRL Agent is trained for 50,000 episodes and 300 actions are
taken in each episode. To explore the state-action space comprehen-
sively, we use exponential decay function to control the exploration
ratio for the first 20,000 episodes. We also adopt double Q-network
approach to handle overestimate. Through trial and error, the DRL
agent is expected to “learn” the optimal control policies in the face
of uncertain future network conditions.
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Figure 5: Rate vs. latency for different QoE preferences.

6.2 Optimal Rate-Speed Adaptation with
Network Oracle

To gain insights about the trade-offs in live streaming mentioned in
Sec. 3.1, we conduct offline experiments using iLQR* for “Latency
Preferred” and “Rate Preferred” users. Fig. 5 illustrates the detailed
buffer/latency evolution and rate-speed control selection. As iLQR*
assumes the future network condition is known, for the period be-
tween 120 and 190 seconds when network bandwidth (gray curve) is
stable, fast playback is chosen for “latency-preferred” users (shown
in blue curves) so that latency is reduced from 4 seconds to below
2 seconds. When network becomes fluctuating again after 200 sec-
onds, by choosing slow playback, buffer is accumulated to increase
robustness against bandwidth variation. However, if high video
rate is preferred (shown in orange curves), rate selections are more
aggressive than “latency-preferred” users, as marked by the red
arrows. At the same time, the latency remains constant around the
initial latency for most of the session. This demonstrates that iLQR
can find the optimal rate-speed control sequence to strike the best
QoE trade-off customized for individual users, as long as bandwidth
prediction is accurate.

6.3 Effectiveness of More Speed Control Levels
To evaluate how much benefit can be gained from increasing speed
control levels, we compare BDQ with iLQR under the same net-
work environment with the same QoE weight setting (“Latency
Preferred”). Illustrated by the top part of Fig. 6, iLQR’s video rate
(shown in blue curves) is more stable than BDQ (shown in orange
curves). The bottom part of Fig. 6 shows both iLQR and BDQ choose
fast playback speeds to reduce the latency but in different fashions.
For iLQR, from the beginning to 50 second, fast playback is chosen
so that the latency can be reduced from the initial value of 5 seconds
to 2 seconds. On the other side, BDQ can achieve similar latency
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Table 4: QoE and performance metrics for “Latency Preferred” users (Fr: video freeze; Lat: average latency).

Scenario
(𝜇, 𝜎 , 𝑙0)

Pensieve STALLION L2A-LL LOL iLQR BDQ iLQR*

QoE Rate Lat QoE Rate Lat QoE Rate Lat QoE Rate Lat QoE Rate Lat QoE Rate Lat QoE Rate Lat

(1.2,0.3,5.0) -53 1.0 5.4 32 0.55 1.4 21 0.52 1.6 73 0.74 1.6 109 0.79 1.7 154 0.99 1.8 131 0.84 1.6

(1.6,0.5,4.4) -21 1.2 5.0 139 0.8 1.3 163 0.86 1.5 192 0.96 1.5 205 1.0 1.7 206 1.3 1.6 206 1.0 1.5

(2.3,0.6,4.5) 117 2.1 4.8 175 0.99 1.3 235 1.0 1.5 261 1.3 1.4 318 1.7 1.7 354 2.1 1.6 345 1.8 1.5

(2.6,0.8,5.9) 87 2.4 6.3 188 1.1 1.5 216 1.0 1.7 284 1.5 1.6 335 2.0 2.0 376 2.4 2.2 356 2.1 1.8

(3.0,1.0,5.6) 140 2.6 6.0 230 1.4 1.5 331 1.6 1.6 332 2.0 1.6 358 2.4 2.0 392 2.6 2.2 414 2.3 1.6

(3.6,1.0,5.9) 200 3.2 6.2 351 2.0 1.5 419 2.0 1.7 447 2.6 1.7 460 2.8 1.9 458 3.2 2.4 491 2.8 1.7

(6.1,1.4,4.9) 472 5.6 5.1 473 2.7 1.3 564 3.0 1.4 584 3.4 1.4 608 4.5 1.8 608 4.2 1.4 622 4.4 1.5

(6.4,1.5,3.4) 569 5.4 3.6 531 2.7 1.0 578 3.0 1.3 587 3.5 1.3 645 5.1 1.6 673 5.3 1.6 673 5.1 1.4

Overall 189 3.0 5.3 265 1.5 1.3 316 1.6 1.5 345 2.0 1.5 380 2.5 1.8 402 2.8 1.8 405 2.5 1.6
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Figure 6: Effect of Increasing Speed Control Ranges

reduction within 28 second by taking the “skip” action twice at
1 and 28 second, respectively. Both one “skip” action (skipping 2
segments) and 20 consecutive ×1.1 playbacks can reduce latency
by 2 seconds. Even though the “skip” action introduces more play-
back related penalty than fast playback action, BDQ still chooses
the “skip” action at the beginning of the live streaming session
so that the latency penalty for all the following segments can be
reduced. In other word, “skip” incurs one-time penalty to achieve
higher accumulated reward for the entire streaming session.

6.4 Algorithm Comparison
The detailed QoEmetrics comparisons for “Latency Preferred” users
under 8 network scenarios are shown in Table 4. Each scenario uses
a different bandwidth trace and a randomly chosen initial latency
𝑙0 between 3 and 6 seconds. The bandwidth trace is characterized
by the average 𝜇 and standard derivation 𝜎 . Overall, iLQR* with
future network oracle performs the best. It achieves the highest QoE
for 5 of 8 scenarios. BDQ, even without network oracle, can still
achieve the highest QoE for 5 scenarios (thanks to its unique skip
and repeat control) with 2 are tied for first place with iLQR*. For
iLQR, close-to-the-optimal performance can be achieved in most
cases. The performance gap between iLQR and iLQR* is mainly
due to the errors of harmonic mean based bandwidth prediction:
under-estimate leads to lower video rate; over-estimate leads to
higher freeze/latency.We expectmore accurate real-time bandwidth
estimation models can further improve the performance of iLQR.

Without playback speed adaptation, the performance of Pensieve
highly depends on the initial latency. If the initial latency is high,
it is impossible for Pensieve to reduce the latency to achieve high
QoE. On the other hand, if the initial latency is low, for the example
in scenario 7, the initial latency is 4.9s, which is long enough for the
low relative bandwidth variation (𝜎/𝜇 is small), Pensieve’s average
latency for the whole session is 5.1s, while all other rate-speed
adaptation algorithms can reduce the average latency to below 2s.
This demonstrates that speed-adaptation algorithms can work with
“bad” initial latency and adjust playback speed based on bandwidth
condition to balance various QoE metrics.

STALLION tunes the video rate control parameters based on the
past observations and presets a target latency for playback speed
adaptation. Even though the lowest latency is achieved by STAL-
LION in all eight scenarios, its overall QoE is far from the optimum.
For instance, STALLION always reduces the latency below the 1.5s
target latency and selects video rate conservatively, which leads
to lower QoE than the other algorithms with playback adaptation.
Through selecting video rate by solving an online convex optimiza-
tion (OCO) problem, L2A-LL achieves higher video rate and QoE
than STALLION. Since L2A-LL does not use user QoE as its objec-
tive function in OCO, the overall QoE of L2A-LL is still not high
enough. In LOL, video rate is selected more aggressively than STAL-
LION and L2A-LL by exhaustively searching through all video rate
combinations to maximize user QoE. It achieves higher QoE than
STALLION and L2A-LL. However, since LOL only optimizes video
rate marginally, its achieved QoE is still lower than our algorithms
that jointly optimize video rate and playback speed. The overall
QoE achieved by iLQR and BDQ are 10.1% and 16.5% higher than
LOL respectively.

While comparing BDQ and iLQR*, higher rate is chosen by BDQ;
on the contrary, iLQR* plans rate selection using future network or-
acle and avoids video freeze by selecting lower video rate. Detailed
speed selection is shown in Fig. 7. In some cases, iLQR* chooses
×0.9 playback speed to slowdown the buffer consumption with the
help of network “oracle”. However, for STALLION, L2A-LL, LOL
and iLQR, lower rate, instead of slow playback speed, might be cho-
sen to maintain the buffer length. When the initial latency is high,
all other algorithms except BDQ and Pensieve reduces latency by
displaying ×1.1 faster. With “skip” action, BDQ can reduce latency
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Figure 7: Distribution of playback speed.

more aggressively by skipping video segments. But if users are sen-
sitive to missing content, BDQ should adopt a different strategy to
reduce the latency by using a higher weight for the “skip” penalty.
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Figure 8: QoE metrics comparison over 120 LTE traces.

We also conduct extensive experiments for “Latency Preferred”
users on all the 120 testing traces. A summary of performance
metrics is shown in Fig. 8. As expected, iLQR* outperforms all the
others. With enhanced speed control, BDQ can achieve similar QoE
as iLQR*, which is higher than iLQR. STALLION’s QoE is below
the average due to the limitation of the heuristic algorithm. By
taking advantage of the OCO, L2A-LL obtains better performance.
Exhaustive search helps LOL get an even higher QoE. However,
it’s not scalable with more video rate options. Pensieve performs
the worst due to the lack of speed adaptation. Meanwhile, different
algorithms balance QoE trade-offs in different ways. For example,
Fig. 8(b), 8(d) and 8(e) show that BDQ can achieve higher video
rate but incur higher latency and rate fluctuation. Oppositely, lower
latency and rate fluctuation are obtained by iLQR and iLQR* but
with lower video rate. The average speeds for all the algorithms

Table 5: Detailed QoE metrics comparison among different
QoE preferences for the 7th scenario in Table 4.

Preference Algorithms Rate Freeze Latency QoE

Latency
Preferred

Pensieve 5.58 0.17 5.07 472
STALLION 2.7 0.39 1.3 473
L2A-LL 2.98 0.22 1.45 564
LOL 3.42 0.22 1.43 584
iLQR 4.53 1.11 1.84 608
BDQ 4.2 0.41 1.36 608
iLQR* 4.42 0.59 1.5 622

Rate
Preferred

Pensieve 5.63 0.18 5.09 1141
STALLION 2.83 0.22 2.14 843
L2A-LL 2.98 0.22 1.45 972
LOL 4.78 0.22 1.93 1085
iLQR 5.57 0.19 4.8 1119
BDQ 5.66 0.34 5.35 1126
iLQR* 5.62 0.25 3.54 1155

Freeze
Sensitive

Pensieve 5.64 0.2 5.1 705
STALLION 2.83 0.22 2.14 534
L2A-LL 2.98 0.22 1.45 628
LOL 4.6 0.22 1.93 676
iLQR 5.47 0.59 3.52 711
BDQ 5.67 0.23 5.32 719
iLQR* 5.45 0.24 2.69 722

are similar. With future network information available, iLQR* can
avoid video freeze efficiently. STALLION, L2A-LL and LOL can
achieve low latency and low freeze by sacrificing video rate. Overall,
joint video rate and playback speed adaptation can improve QoE
dramatically.

6.5 Adapting to Diverse User QoE Preferences
Users have different preferences for different QoE metrics. Our
proposed algorithms can be flexibly tuned to satisfy diverse user
QoE preferences by adjusting the weights in the QoE model. We
compare all the algorithms under different QoE weight settings, in-
cluding “Latency Preferred”, “Rate Preferred” and “Freeze Sensitive”
discussed in Sec. 6.1.3. The numerical comparison among different
QoE preferences is shown in Table 5. For “Latency Preferred” users,
similar with the observation in Sec. 6.4, all the model-based (iLQR)
and model-free (BDQ) algorithms can achieve close-to-optimal QoE
(compared with iLQR*) with the help of joint rate-speed adaptation.
Without playback speed adjustment, Pensieve performs the worst.
The performance of STALLION, L2A-LL and LOL is worse than the
proposed algorithms due to their conservative rate selections and
separated video rate and playback speed adaptations. When rate
is preferred over latency, Pensieve’s performance is dramatically
improved to be similar to iLQR*. In the “Freeze Sensitive” case, in
which rate and latency are not as important as freeze, Pensieve’s
performance is very close to iLQR/BDQ by accumulating long buffer
to reduce the risk of freeze. When trained with the Freeze-sensitive
QoE, BDQ also learns a strategy similar to Pensieve that sacrifices
latency for low freeze and high video rate.

With different QoE weight settings, all of our proposed algo-
rithms can adjust their adaptation strategies correspondingly. For
example, when the latency is preferred, the average latency is re-
duced to around 1.5s. If rate is more important, the algorithms
stream with higher video rate and higher latency. With “Freeze
Sensitive” setting, the freeze time is reduced with slight sacrifice of
video rate and latency. However, Pensieve, STALLION and L2A-LL
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Figure 9: Metrics for different QoE preferences.

are limited by their designs and cannot flexibly trade-off among
these three important QoE metrics. LOL can explore the best video
rate selection for a look-ahead window. But without joint adapta-
tion with playback speed, the QoE performance is still lower than
iLQR/BDQ. Fig. 9 also demonstrates the capability of our proposed
algorithms to tailor their streaming strategies to user QoE prefer-
ences. By changing preference from low-latency to high-rate, all of
our proposed algorithms, including iLQR, BDQ and iLQR*, choose
to use longer latency so that buffer can be accumulated and higher
video rate can be delivered (all the arrows point from bottom left to
upper right in Fig. 9). In addition, video freeze can also be avoided
when latency/buffer is long (the heights of the star marks are lower
than the circle marks). While comparing BDQ with iLQR/iLQR*, we
again find BDQ is more aggressive by choosing higher video rate
in both cases. Especially when rate is preferred, BDQ chooses to de-
liver much higher video rate with longer latency than iLQR/iLQR*.
However, conservative rate selection is preferred by iLQR/iLQR*
even when rate is preferred. This is consistent with the observation
in the comparison between them in Sec. 6.4.

6.6 Model-based or Model-free Joint
Adaptation?

Having seen the performance of iLQR (including iLQR*) and BDQ,
there is no clear winner. They both solve the QoE maximization
problem defined in Sec. 3.3, following model-based and model-free
optimal control approaches respectively. Given the QoE model,
iLQR (as described in Algorithm 1 and 2) obtains the optimal adap-
tation strategy semi-analytically based on the live streaming system
model developed in Sec. 3 and network bandwidth prediction. On
the other hand, BDQ does not need the live streaming model, nor
explicit network bandwidth prediction. It learns the adaptation
policy through training deep Q networks using live streaming ses-
sion samples. The bandwidth prediction is implicitly done when
the bandwidth history is processed by the LSTM layer in our BDQ
architecture in Fig. 3. For adoption in practical streaming systems,
iLQR and BDQ have their own pros and cons.

(1) iLQR does not need any training, and iLQR based algorithms
can be quickly adjusted to work with new system dynamic

model and new user QoE preferences. On the other hand,
BDQ has to be trained with a large number of sample traces,
and it has to be retrained whenever the system dynamics or
user QoE preferences change.

(2) With an accurate system model and network bandwidth pre-
diction, iLQR obtains the optimal strategy for an individual
system in a specific network environment. The actual quality
of the obtained solution depends on the fidelity of the system
model and the accuracy of the predicted network bandwidth.
In our experiments, the performance gap between iLQR and
iLQR* is due to the error of harmonic mean based bandwidth
prediction.

(3) When trainedwith a large set of representative sample traces,
BDQ learns adaptation policies good for a class of systems
in a range of network environments. The learned policies
can generalize well to systems and environments similar to
the training samples. On the other hand, a general policy
optimized for multiple scenarios, when applied to an indi-
vidual scenario, cannot beat the policy optimized just for
that scenario, the so-called price of generalization. In our
experiments, BDQ with 7 speed control levels cannot always
beat iLQR* with only 3 speed control levels.

(4) iLQR exploits the domain knowledge of how live streaming
system works to explicitly calculate control solutions which
are understandable and debuggable. On the other hand, BDQ
treats live streaming system as a black box, and the solution
derived from Q networks cannot be intuitively interpreted
and logically debugged.

Based on the previous discussion, our general recommendation is
that if a live streaming system can be well modelled and network
bandwidth can be accurately estimated, iLQR is the natural choice
for joint rate-speed adaptation. On the other hand, for special live
streaming systems that are hard to be modelled, and/or network
environments for which accurate bandwidth predictions are not
possible, BDQ can be used to train adaptation policies with repre-
sentative sample traces in end-to-end fashion. Meanwhile, DRL is
an active research field. Low-latency live streaming can certainly
benefit from emerging DRL frameworks and techniques. In particu-
lar, we will explore model-based reinforcement learning to combine
the merits of model-based and model-free adaptation.

7 CONCLUSIONS
Low-latency live streaming requires joint adaptation of video rate
and playback speed to balance various QoE metrics. We developed
a detailed dynamic model to understand the interplay between rate
and speed adaptations.We further built model-based andmodel-free
joint rate-speed adaptation algorithms to maximize the aggregate
QoE. Through extensive simulations driven by real network traces,
we demonstrated that our proposed joint adaptation algorithms
significantly outperform rate-only adaptation algorithms and the
recently proposed low-latency video streaming algorithms that
separately adapt video rate and playback speed without joint opti-
mization. Our proposed algorithms can achieve close-to-optimal
performance in a wide-range of network conditions.
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