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Abstract—Autonomous vehicle (AV) software systems are
emerging to enable rapidly developed self-driving function-
alities. Since such systems are responsible for safety-critical
decisions, it is necessary to secure them in face of cyber
attacks. Through an empirical study of representative AV
software systems Baidu Apollo and Autoware, we discover
a common overprivilege problem with the publish-subscribe
communication model widely adopted by AV systems: due to
the coarse-grained message design for the publish-subscribe
communication, some message fields are over-granted with
publish/subscribe permissions. To comply with the least-
privilege principle and reduce the attack surface resulting
from such problem, we argue that the publish/subscribe per-
missions should be defined and enforced at the granularity
of message fields instead of messages.

To systematically address such publish-subscribe over-
privilege problems, we present AVGuardian, a system that
includes (1) a static analysis tool that detects overprivilege
instances in AV software and generates the corresponding
access control policies at the message field granularity,
and (2) a low-overhead, module-transparent, runtime pub-
lish/subscribe permission policy enforcement mechanism to
perform online policy violation detection and prevention.
Using our detection tool, we are able to automatically detect
581 overprivilege instances in total in Baidu Apollo. To
demonstrate the severity, we further constructed several con-
crete exploits that can lead to vehicle collision and identity
theft for AV owners, which have been reported to Baidu
Apollo and confirmed as valid. For defense, we prototype
and evaluate the policy enforcement mechanism, and find
that it has very low overhead, does not affect original AV
decision logic, and also is resilient to message replay attacks.

1. Introduction

Autonomous driving holds the promise to improve
road safety and significantly improve transportation mo-
bility efficiency in our daily lives. Advanced autonomous
driving algorithms and software are gaining importance.
Autonomous vehicle (AV) systems are being developed
and deployed in real vehicles [15], [34], [43], [52] and
have demonstrated great promise towards full autonomous
driving in the near future. Despite this rapid development,
AV systems are facing a number of cybersecurity threats,
for example, attacks on automobile Electronic Control
Unit (ECU) [32], [59], [70], [75] and key sensing de-
vices for autonomous driving [27], [47], [79]. However, a

highly critical attack surface is still underexplored so far:
the AV software systems for making autonomous driving
decisions. Since these decisions have direct impact on
road safety, it is necessary to understand potential security
vulnerabilities in the design and implementations of AV
software systems, and proactively address them in the AV
system development stage.

We observe that AV software systems are usually com-
posed by a number of key self-driving modules, which in-
teract through a publish-subscribe communication model
to exchange computation states using different types of
messages defined by AV developers. Modules are granted
publish or subscribe permission to be a publisher or
subscriber for certain types of messages. To improve the
functionality and reliability of autonomous driving, these
modules are becoming feature rich and as a consequence
the messages also become increasingly complex. Based on
our empirical study on two popular AV software platforms
Baidu Apollo [14] and Autoware [17], we observed 60-80
types of publish-subscribe messages, each consisting of up
to dozens of fields. Despite the new functionality enabled
by the rich set of fields, this complex message structure
also introduces a new security problem to the publish-
subscribe messaging system in an AV system. Specifically,
in both Baidu Apollo and Autoware, we found a number of
code examples indicating a common overprivilege prob-
lem with this messaging model, stemming from a lack of
sufficient granularity when granting publish or subscribe
permissions of key messages to a module.

Through further in-depth study on both AV software
systems, we discover two common types of overprivi-
lege in its publish-subscribe messaging, when either: 1)
fields in a published message are not used in a particular
subscriber; 2) the values of certain fields in a published
message are directly copied from other messages sub-
scribed to by the publisher. We characterize these be-
haviors as subscriber- or publisher-side overprivilege in
AV systems, respectively, since the granted publish or
subscribe permission of a message to a module does not
follow the least-privilege principle at the message field
granularity. As shown later in §2.2, such overprivilege
patterns are found to generally appear across both the
old and the latest versions of both AV systems. We
have constructed several concrete exploits of such non-
compliance, which demonstrates that this problem indeed
exposes a new attack surface to AV systems and may
lead to vehicle collision and identity theft for AV owners
under a realistic threat model (detailed in §3) inspired
by existing automotive attack surface analysis. Therefore,



we argue that this publish-subscribe overprivilege problem
should be fully addressed for attack surface reduction to
ensure secure AV software system design. In particular, to
overcome this problem, the publish/subscribe permission
should be defined at a message field granularity. Subscribe
permission for a field should be granted to a subscriber
only when the subscriber uses that field for computation,
and publish permission should be granted to a publisher
only when the publisher modifies the state of that field
before publishing.

However, enabling such fine-grained permission con-
trol can be challenging in AV software systems, because
AV software development is a multidisciplinary task and
typically conducted by a large team of developers with
different domains of expertise. Moreover, some AV soft-
ware systems are built upon an open platform to encourage
open-source contribution of self-driving algorithms and
code. As a result, AV system designers may not have
complete knowledge about the exact usage of message
fields in an AV software module and tend to include
as many fields in each message as possible to simplify
software development. Even if an explicit message field-
level permission model and static access control policy
enforcement are enabled in AV software, we cannot fully
trust a module to comply with the enforcement at run
time, since a module can be compromised and the pre-
defined access control logic can be bypassed. Because the
runtime policy enforcement will be performed on every
published or subscribed message, the runtime enforcement
must incur little overhead. We propose a systematic
overprivilege detection and mitigation approach to address
these challenges for AV software.

To effectively detect and mitigate publish-subscribe
overprivilege in AV systems, we propose AVGuardian,
consisting of a static analysis tool that systematically de-
tects overprivilege instances in AV software and generates
the corresponding access control policies at the message
field granularity, and a runtime policy enforcement mech-
anism to perform online policy detection and prevention.
Our static analysis approach handles complex real-world
C++ source code, including virtual functions and asyn-
chronous programming models, to both achieve high
precision in overprivilege detection and prevent under-
granting publish/subscribe permissions. Our runtime pol-
icy enforcement can defend against publish-subscribe
overprivilege with a single module compromised, and
does not require any additional efforts from AV software
developers or changes to the AV software development
process. In addition, our design further includes a defense
mechanism against message relay attacks. As we observe
that several popular AV software systems [14], [17], [80]
are developed on top of the ROS middleware [40] (a layer
between the upper AV software modules and underlying
commodity OS), we instrument ROS to prototype the
policy enforcement component of AVGuardian so that it is
transparent to the upper AV software modules (i.e., with-
out requiring modification of existing AV software mod-
ules for them to be safeguarded by AVGuardian). Trace-
based performance evaluation in realistic setup shows that
the runtime policy enforcement incurs only 10-millisecond
increase of the end-to-end delay for AV’s control decision
making and does not affect original decision logic. Also, it
effectively detects message replay attacks with zero false

positives and zero false negatives in realistic exploitation
scenarios.

We have performed responsible disclosure to the Baidu
Apollo development team, and have received confirmation
that our attack findings are all valid under our threat
model, and the publish-subscribe overprivileged attack
is indeed a general security challenge in AV software
development. The team also commented that it is highly
beneficial to have a systematic and automated approach
to detect and prevent overprivilege problems, which is
exactly the research goal in this paper.

The contributions of this paper are as follows:
• We discover the overprivilege problem in publish-

subscribe messaging model for AV software sys-
tems, and perform the first characterization and
systematic study. To demonstrate the severity of
such problem, we construct three concrete attacks
by exploiting vulnerabilities resulting from over-
privilege problems in GNSS and LiDAR driver
modules. Video demos of the attacks are available
at https://sites.google.com/view/avguardian.

• We design and implement a data-flow analysis
tool to help AV developers perform static detec-
tion of publish-subscribe overprivilege problems
in AV software and generate fine-grained permis-
sion control policies at the message field level
to mitigate the security consequence from over-
privilege. Based on the groud-truths of overpriv-
ilege identified from runtime profiling and man-
ual inspection, we observe zero false positives in
overprivilege detection and less than 1.7% false
negative rate. Using this tool, we are able to
automatically detect 520 subscriber-side overpriv-
ilege instances and 61 publisher-side overprivilege
instances in Baidu Apollo.

• We design an efficient and module-transparent
policy enforcement solution to perform online de-
tection and prevention of violation of permission
control policies for publish-subscribe communi-
cation in ROS-based AV systems. We prototype
this solution in ROS and find that it incurs very
low overhead, i.e., only 8-millisecond increase in
end-to-end delay in Baidu Apollo, does not affect
original AV decision logic, and also is resilient to
message replay attacks.

2. Background & Motivation

This section introduces the background of AV software
systems and the publish-subscribe messaging model, and
presents our discovered overprivilege problems in this
messaging model on representative AV software systems.

2.1. AV Software System

The software architecture of existing AV systems falls
into two categories: model-based [14] and end-to-end [57].
Our study focuses on model-based systems since such
designs have already been adopted in many real-world AV
systems [15], [17]. The model-based design is most com-
mon amongst state-of-the-art AV systems [97]. Figure 1
shows a typical processing pipeline by a set of modules
in model-based AV systems to perform key self-driving
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Figure 1. Typical architecture of AV software systems (based on Baidu
Apollo): rectangles representing a ROS node/nodelet, arrows represent-
ing the ROS message flow through the publish-subscribe communication.

functionalities, including localization, routing, obstacle
perception and prediction, path planning, and control deci-
sion execution. AV software also contains driver modules
for peripheral sensor devices, such as GNSS, LiDAR,
radar, and cameras. Similar to the architecture of ECUs
and CAN bus in commodity automobiles, these modules
are instantiated as nodes (each in separate processes) that
run on a middleware such as ROS [40] and communicate
through a publish-subscribe message channel, acting like
a virtual CAN bus for AV systems. In such message
channels, the producer of a message is called a publisher
and the consumer is called a subscriber.

In the context of AV systems, the computation pipeline
of AV software is dictated by the publish-subscribe mes-
sage flow. Sensing input from peripheral devices is pro-
cessed, module-by-module, until a final control decision
is reached and executed on the physical actuators. Thus,
the messages sent between these modules are responsible
for mission-critical communication and directly influence
end-to-end self-driving decisions in AV systems. There-
fore, safeguarding the messaging channel in AV systems
is critical to ensure secure and safe autonomous driving.

2.2. Publish-Subscribe Overprivilege Problem

Due to the criticalness of these messages, the security
of this publish-subscribe message channel has already
attracted attention of the research community [44], [58],
[64], [92]. A state-of-the-art solution, SROS (Security
Enhancements for ROS) [44], [92], defines a message-
level publish-subscribe permission model and authenti-
cation mechanism to enhance the security of publish-
subscribe messaging in ROS. However, we find that such
message-level permission granting is actually not fine-
grained enough to satisfy the least-privilege principle [85].
Based on our investigation on the Baidu Apollo and
Autoware AV software system, we discover overprivilege
problems when messages are both published and sub-
scribed to.

1) Publisher-side overprivilege: In message pub-
lishers, the values of some fields in published
messages may be directly copied from messages
that module subscribes to. That is, the publisher
only copies these fields without changing, but
the granted publish permission allows both value
copying and changing, which thus grants more
than what is needed.

2) Subscriber-side overprivilege: In message sub-
scribers, certain fields in a message may be re-

Figure 2. Examples of publisher- and subscriber-side overprivileges.

Figure 3. Field definition of the Gps message in Baidu Apollo

ceived but not used in the subscribing module. In
other words, the subscriber is over granted with
the subscribe permission for these fields.

Figure 2 illustrates a real example of subscriber-side
overprivilege on the Gps message (defined in Figure 3)
and publisher-side overprivilege on tf message [48] at
the TFBroadcaster node of the GNSS driver module of
Apollo. First, the localization.linear velocity field in
subscribed Gps messages is never used in any code
path of TFBroadcaster node. Thus, this is a subscriber-
side overprivilege on Gps.localization.linear velocity
because read permission for this field is granted to TF-
Broadcaster but never used in it. Second, the state of the
transform field in published tf messages is always copied
from the localization field in subscribed Gps messages,
which is a publisher-side overprivilege on tf.transform
because TFBroadcaster does not need to change the value
of tf.transform.

Even though these two example overprivilege prob-
lems are subtle, we find that they can have severe security
and safety implications. As detailed in §8.1, an attacker
can cause an AV running Apollo to lose sight of a front
vehicle and crash into it by exploiting these over-granted
privileges. This attack is demonstrated in our attack demo
videos [16], and its validity has been confirmed by the
Baidu Apollo developer team.
General existence of publish-subscribe overprivilege
in ROS-based AV systems. Beside Apollo, we studied
another popular open-source AV system Autoware [17],
which is also built upon the ROS middleware. As shown
in Table 1, we are also able to discover many publisher
and subscriber-side overprivilege instances in key AV
modules such as Perception, Planning and Actuation [17].
These results concretely show that the publish-subscribe
overprivilege problem generally exists in ROS-based AV
systems today.

Considering the general existence of the publish-
subscribe overprivilege problem and its severity in AV
systems, it is thus highly necessary to develop solutions
to fully eliminate the problem early at the AV system
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Overprivileged node Type Affected topic Affected fields
waypoint follower’s twist gate [21] Pub /vehicle cmd ctrl cmd, steer cmd, accel cmd, brake cmd, gear, lamp cmd, emergency

AS [18] Pub /as/arbitrated speed commands speed
lidar tracker’s obj reproj [20] Sub /image obj tracked total num, real data, lifespan

autoware connector’s can odometry [19] Sub /vehicle status drivemode, steeringmode, gearshift, drivepedal, brakepedal, lamp, light
TABLE 1. SUMMARY OF OVERPRIVILEGED INSTANCES IN AUTOWARE. IN THE ”TYPE” COLUMN, ”PUB” MEANS PUBLISHER-SIDE

OVERPRIVILEGE AND ”SUB” MEANS SUBSCRIBER-SIDE OVERPRIVILEGE.

development stage. Thus, in this paper, we fulfill this very
need by being the first to develop a systematic solution.

3. Threat Model

In this work, we assume that the attacker can fully
compromise a single ROS module N in the victim AV
system, which enables the attacker to: 1) sniff contents of
arbitrary subscribed ROS-layer messages that N has been
authorized to subscribe; 2) modify or inject ROS-layer
messages that N has been authorized to publish; and 3)
bypass or invalidate defense mechanisms on N . Though
it is possible to compromise multiple modules, we believe
that it is harder for attackers and thus less realistic.

Assuming a single compromised ROS module might
be considered to be too strong as the threat model. How-
ever, we argue that it is reasonable for our work since
(1) this is a common threat model considered by previous
ROS security work [58], [64], [92], (2) our work aims at
developing defense solutions, so our contribution can be
even more valuable if we can proactively and systemat-
ically solve a problem with strong adversaries, and (3)
specifically for AV systems, such threat model can be
particularly realistic when N is a driver module for periph-
eral devices. Previous work has concretely demonstrated
that all types of peripheral devices of an automobile,
e.g., bluetooth and cellular, can be fully compromised
remotely through common software vulnerabilities such
as buffer overflow [27], [32], [47], [59], [70], [76]. By
inspecting the commit logs of Baidu Apollo’s open-source
software repository [14], various patches can be found
related to common implementation mistakes, such as out-
of-bound array indices, uninitialized variables, and wrong
definition of if-else conditions, in the driver modules of
LiDAR, GNSS, radar and CAN bus devices [3]–[12].
Thus, it is likely that similar software security problems
in traditional automobiles’ peripheral devices also exist
in the driver modules of AV’s peripheral devices, making
these driver modules vulnerable to remote compromises.
In particular, some AV software systems are encouraging
open contribution [54] or peripheral hardware integration
from third-party vendors [13], which is a common source
for vulnerable code in automobile systems [59]. As a
concrete attack scenario, one may exploit software vul-
nerability in GPS receivers’ OS [79] or GPS daemon [1]
to compromise a GPS receiver as the attack entry point,
and then gain remote control of Apollo’s GNSS driver
module by exploiting its memory bugs [3]–[7].

We assume that the target AV software is from trusted
developers, and the underlying middleware (e.g., ROS)
has been safeguarded with state-of-the-art authentication
and access control mechanisms provided by Secure ROS
(SROS) [41], [45], [92]. We assume that the access control
policies, i.e., granted publish and subscribe permissions,
are correctly enforced in SROS. Since this work focuses
on the overprivilege problem described in §2.2, the secu-

rity of the policy enforcement in SROS is out of the scope
of this work.

Thus, after compromising module N , the attacker can
perform any action allowed by the granted publish and
subscribe permissions in SROS (introduced in §2). For
example, the attacker can abuse the over-granted write
permission of publish-overprivileged fields by publish-
ing malicious information in the overprivileged fields,
or abuse the over-granted read permission of subscribe-
overprivileged fields by passively sniffing sensitive infor-
mation from the overprivileged fields.

4. Problem Novelty and System Design

4.1. Overprivilege Problem Novelty

Previous work studies overprivilege at the coarser
topic granularity in the publish-subscribe communication
of distributed systems [55], [56], [90], [92] and identifies
the loosely-coupled communication paradigm as the main
cause of this overprivilege. We find that this topic-level
overprivilege rarely exists in Baidu Apollo and Auto-
ware. Instead, our work performs overprivilege detec-
tion and prevention at the message field granularity for
the publish-subscribe communication model. Also, com-
pared to previously-observed overprivilege problems in
smartphone and smart home systems [67]–[69], [74], the
publisher-subscribe overprivilege is novel in two aspects,
creating both new design challenges and new opportuni-
ties for a practical solution. First, previous overprivilege
problems occur in systems with regular user interactions
like smartphone and smart home systems, where it is
reasonable to rely on user judgment based on context to
block unnecessary permission granting [74], [83], [93].
However, in the AV context, this is no longer acceptable
since the whole design purpose is to enable autonomous
driving without human input. This different usage context
poses a new and more stringent design challenge for
detecting and mitigating overprivilege problems without
user in the loop. In §5 and §6, we detail how we address
this new challenge using static analysis techniques.

Second, different from previous work on overprivilege
in API accesses, the overprivilege here occurs when ac-
cessing message fields during the publish-subscribe com-
munication at the middleware (e.g., ROS [40]) of AV
systems, a layer between the upper AV software modules
and underlying commodity OS. This makes it possible
to mitigate overprivilege entirely in the messaging layer
through instrumentation of the ROS middleware without
requiring modification of existing AV software modules
(module transparency) to achieve policy-based defense.
In §6, we detail how we design and prototype such a
novel solution to enforce publish-subscribe permission
control at the message field level in the publish-subscribe
message channel of ROS-based software systems. Our
solution defends against our module-compromise threat
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Figure 4. AVGuardian overview showing our publish-subscribe overpriv-
ilege detection and mitigation workflow. ”Pub-Op” stands for publisher-
side overprivilege w.r.t. a message field, ”Sub-Op” stands for subscriber-
side overprivilege w.r.t. a message field.

model, while the code-level policy placement approaches
proposed by previous work [71], [84], [88], [95] cannot.

4.2. AVGuardian System Design

To address the overprivilege problem, we design a
novel system, AVGuardian, to provide fine-grained control
of publish-subscribe permissions in AV software systems
for reducing the publish-subscribe overprivilege attack
surface. Figure 4 summarizes the system design. AV-
Guardian takes the source code of AV modules, message
definitions, and message publish-subscribe specifications
(i.e., the messages each module registers to publish and
subscribe) as input and achieves fine-grained publish-
subscribe permission control in two major steps:

(1) Offline overprivilege detection: During AV soft-
ware development, AVGuardian performs static program
analysis to automatically examine each AV module’s
source code and detects publisher- and subscriber-side
overprivilege instances in the fields of the messages de-
fined by the module’s publish-subscribe messaging spec-
ification. Our static analysis tool is designed to handle
complex real-world code with common object-oriented
and asynchronous programming constructs in order to
achieve zero false positive (FP) and low false negative
(FN) in overprivilege detection.

(2) Online fine-grained access control: At runtime
once the software is deployed, for each detected publisher-
or subscriber-side overprivilege instance, a fine-grained
access control policy is generated and applied to the de-
tected overprivileged message fields by online monitoring
and policy enforcement. The access control is performed
at the ROS middleware-level publish-subscribe messaging
layer so it is module-transparent, meaning that no changes
to the existing AV modules are required for them to be
safeguarded by this access control.

In the detection phase, static data flow analyses capture
use/modification behaviors for each subscribed/published
message field along all possible control flows. In this
process, an FP happens if a message field that is truly
used/modified at runtime in the AV system is reported
as unused/unmodified by our static analysis. Our system
aims at achieving zero FP, because FPs will lead to
under-granting permissions in the follow-up online policy
enforcement and affect intended functionalities of AV
systems. Note that FPs of overprivilege detection mean
FNs in the dataflow analyses, i.e., some program flows in
which the message fields are used/modified through some

program flows are not captured by our analyses. Previous
static analyzer [91], through conservative analysis of all
possible control flows, provides soundness guarantee for
the absence of specified security problems in Android app,
i.e., zero FNs. Our static analysis design follows such
conservative analysis principle in order to provide zero
FNs in dataflow analysis, which translates to zero FPs in
the overprivilege detection.

On the other hand, an FN in overprivilege happens if
a message field that is detected as used or modified is
in fact not used or modified at runtime. FN in overpriv-
ilege means FP in the dataflow analyses, and since our
conservative static dataflow analyses may indeed over-
approximate the use or modification behavior of certain
message fields (a common problem for static analysis [77],
[78], our system may have FNs in overprivilege detection.
Note that even though having FNs limits the effectiveness
of attack surface detection, it won’t affect the correct
function of AV systems.

5. Overprivilege Detection Tool

Identifying both publisher- and subscriber-side over-
privilege instances at the message field granularity is a
prerequisite for policy generation and runtime enforce-
ment to mitigate overprivilege in AV software. We propose
systematic detection of overprivileged message fields on
the publisher and subscriber side using static analysis.
Specifically, we design a static analysis tool for tracking
data flow in a flow-sensitive, field-sensitive and inter-
procedural manner (§5.2). In principle, our tool is capable
of detecting publish-subscribe overprivilege in C++ code
of general ROS-based AV systems.

Besides the field/object-sensitivity requirement for
analyzing composite message structures, zero false posi-
tive is needed in the overprivilege detection to prevent re-
moving true read/write permissions required by legitimate
functionalities of an AV module. However, the extensive
use of virtual function and asynchronous event callback
in the complex C++ code base for AV systems [14],
[17] can cause under-approximation of program behaviors
and lead to false positives of our overprivilege detection.
In §5.3, we propose practical solutions to address these
challenges to meet above two design requirements.

5.1. Static Analysis Overview

Pre-processing: We perform static analysis on function-
level control flow graphs (CFGs) generated from LLVM
intermediate representation (IR) of an AV module’s source
code. Analysis sources and sinks are determined based on
the lifecycle and event callbacks of a module. We combine
CFGs of functions that can be invoked along some control
flow path from an analysis source to build an inter-
procedural CFG (ICFG) for inter-procedural analysis.
Subscriber-side overprivilege: The subscriber-side over-
privilege problem is formulated as follows: within a mod-
ule N , a field f in N ’s subscribed message Ms is over-
granted with read permission if Ms.f is never used for
computation in any possible control flow path within N .
We use inter-procedural, flow-, and field-sensitive define-
use analysis to detect such instances (§5.2).
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Figure 5. Lifecycle and event callbacks in an AV module

Publisher-side overprivilege: The publisher-side over-
privilege problem is formulated as follows: within a mod-
ule N , a field f in N ’s published message Mp is over-
granted with write/modify permission if Mp.f at publish-
ing is never modified in any possible control flow path
within N , but is directly copied from certain fields in
subscribed messages by N . We use inter-procedural, flow-
, and field-sensitive taint analysis to detect such instances
(§5.2).

5.2. Dataflow Analysis Framework

AV module lifecycle: As illustrated in Figure 5, imple-
mentation of an AV module typically follows a predefined
life cycle and usually includes multiple event callbacks for
performing message subscription or periodic task process-
ing (e.g., message publishing). In Apollo, when a module
is launched, it first enters Init phase and then transits
to Start phase, where key program states (e.g., publish-
subscribe messaging interface) are initialized, message
subscription event or periodic timer callbacks are regis-
tered and some “main” entry function is called to start
actual processing. When a module is stopped, it enters
the Stop phase to clear its program states and terminate.
Based on this observation, to ensure completeness, our
dataflow analysis captures all possible entry points of the
execution to form analysis sources: 1) Init and Start lifecy-
cle functions, and 2) event callback functions registered
in the Init or Start function. Analysis sinks are defined
using invocations of ROS’s message publishing API for
publisher-side overprivilege analysis or the end points of
an ICFG for subscriber-side overprivilege analysis.
Inter-procedural context sensitivity: Starting from one
of above entry points, an inter-procedural CFG (ICFG) is
generated by expanding from the CFG of that entry point
function in a recursive manner: for each callee function
invoked along some control flow path and containing ar-
guments associated to a subscribed/published message, its
CFG is generated and attached to the invocation point of
the caller’s CFG. Our analysis performs data flow tracking
on this ICFG and also jumps into the CFG of a callee
function to update the dataflow information of function
parameters and class variables when a function invocation
is met. The inter-procedural analysis can be computa-
tionally expensive without function summarization [94].
To ensure analysis efficiency, we perform summarization
of functions that invoke message variables based on the
caller-callee order. The current summary of a function
f consists of 3 parts: 1) a target message variable set
consisting of message variables that are defined in f or
passed into f , 2) variables defined in f and with a taint
source from the target message variable set, 3) def-use
statements for variables in 1) and 2). Once a function is
summarized, the subsequent analysis will directly read the
summary to update the summary of current caller function
when encountering it again.

Message taint tracking: To detect use/modification of
message fields along all possible control flows, we need
to start from each variable storing a subscribed message
instance and track the use/modification on the propagated
taints for each message field across all control flows
towards the program end points or where the message
publishing API is invoked. A modify or copy label is
assigned between the taint source and destination variable
as a binary indicator whether the taint source propagates
to the destination variable with modification or not. Cur-
rently, we determine which label to assigned based on the
different types of LLVM instructions. Subscribed message
instances may propagate across functions and class objects
in an AV module. For example, a subscribed message
instance may be copied into a member variable of a class
object that is accessed in later execution. Also, a message
instance can be passed by reference into a callee function
where its fields can be propagated or modified. Thus, to
support inter-procedural dataflow analysis, we summarize
tainting results of a callee function that can be invoked
along some control flow path and reuse this summary for
the taint analysis of the caller function.
Overprivilege detection: To detect a publisher-side over-
privilege, we trace the taint tracking results of each target
message variable: for all control flow paths from any entry
point to a sink (i.e., message publishing), if a field f of
the message variable Mp to be published contains only
taint source from some subscribed message field without
any modify label, Mp.f is a publish-overprivileged field.
To detect a subscriber-side overprivilege, def-use analysis
is performed on each target message variable as well as
its taint sources with copy label: along all control flow
paths from any entry point to any sink of an ICFG, take
the union of use statements on these variables to identify a
set of accessed fields (i.e., fields with true read permission)
and the other fields defined in a subscribed message are
subscriber-side overprivileged at the current module.

5.3. Key Analysis Challenges

Field and object sensitivity: Detecting message field
overprivilege requires tracking the data flow at field gran-
ularity. As shown in Figure 3, messages defined in the
publish-subscribe message model in AV systems usually
consist of many fields, some of which may be of com-
posite or recursive types. Also, a message variable can be
defined as a member in a class object. We support field
sensitivity with the standard technique of detecting field
access of a message variable based on getelementptr
LLVM instruction and expanding it with an offset ele-
ment inferred from the operands of getelementptr.
Depending on the levels of composition in a composite
typed field, the number of field-sensitive variables to
be tainted and analyzed can become very large before
primitive fields are hit. A configurable depth (3 by default)
is defined to limit the level of field-sensitive analysis on
a message variable. Also, we observe that some message
fields at certain levels are not semantically meaningful to
be differentiated further (e.g., the latitude and longitude
value for a GPS field in a localization message). For
recursive typed message fields (e.g., list, vector, map), a
configurable length is also defined to limit the iteration on
elements for analysis, which is a common practice in field-
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Figure 6. Order of event callbacks affects data flow tracking.

sensitive data flow analysis. This field-sensitive analysis
also applies to class objects containing message variables.
Virtual function handling: Inheritance with base and
derived classes in C++ are widely used in AV software
to provide extensible interfaces for supporting multiple
options of self-driving algorithms and vehicle models.
However, this poses class binding uncertainty to our
static analysis: at the LLVM IR level, calling a virtual
function occurs through an indirect call and the target
callee address is loaded through a variable determined
at run time. To guarantee zero false positive in over-
privilege detection, our analysis framework tracks data
flows in virtual function calls with over-approximation by
enumerating all possible derived classes. To identify all
possible implementation of a virtual function defined in
subclasses, we leverage LLVM’s devirtualization pass to
extract virtual table (vtable) entries and their index for
each virtual function. Specifically, we detect instructions
for loading a vtable pointer and determine which virtual
function is invoked by the subsequent indirect call based
on its type and accessed vtable index. Then data flow
analysis is performed in the implemented virtual function
of each possible subclass.
Asynchronous event callbacks handling: The process-
ing of asynchronous event callbacks and their ordering
depend on runtime events, while at static analysis they
are independent entry points. Assuming no or a specific
order, however, may cause under-approximation in data
flow tracking. As illustrated in Figure 6, assuming no or
different orders of callbacks may lead to different data
flow tracking results: if OnChassis callback is analyzed
before OnMobileye, use on speed mps field in the
subscribed Chassis message is captured and otherwise
missed. To avoid false positive in overprivilege detection,
we enumerate all possible ordering among event callbacks
in a module. To implement that, we define a synthetic
entry point function containing an infinite loop within
which all callback functions are added sequentially and
the invocation of each one is predicated on some random
condition. Figure 7 shows the resulted CFG for the syn-
thetic entry point function that handles 6 asynchronous
event callbacks, where arbitrary orders among callbacks
are already encoded. Therefore, our data flow tracking
need not take special handling on these event callbacks.

6. Overprivilege Mitigation

We leverage the uniqueness of the overprivilege prob-
lem identified in this paper to design a publish-subscribe
permission control system as an overprivilege mitigation

solution. It uses the overprivilege detection results for per-
mission control policy generation and requires no change
to the existing AV modules (module transparency). To
flexibly balance the trade-off between defense effective-
ness and messaging overhead to AV’s runtime perfor-
mance, it supports two modes: 1) attack detection only,
which runs independently of AV’s decision making pro-
cess and incurs zero overhead; 2) attack detection and
policy enforcement for attack recovery.

6.1. Access Control Policy Design

As shown in Figure 4, given the publisher- and
subscriber-side overprivilege instances detected by our
static analysis, AVGuardian generates corresponding ac-
cess control policies for each overprivilege instance dur-
ing AV software deployment and applies low-overhead,
module-transparent policy enforcement at runtime. Specif-
ically, policies for subscriber-side overprivilege are de-
fined based on the unused fields of a target subscriber,
while policies for publisher-side overprivilege are defined
based on the over-granted publisher, the fields that are
over-granted write permission, and the source that was
copied from. Violation of generated policies are detected
online as anomaly indicators and pre-configured recov-
ery strategies are performed. To highlight, our policy
enforcement based overprivilege mitigation approach has
the following key features:

• Online overprivilege policy violation detection and
prevention and resilient to message replay attacks

• Low performance overhead with acceptable delay
to common ROS operations (e.g., module launch,
publish-subscribe communication)

• Module transparency requiring no changes to ex-
isting AV modules or additional efforts in the AV
software development process for AV modules to
be safeguarded by our policy enforcement

• Flexible runtime policy reconfiguration by chang-
ing a module’s policy file without recompiling it

6.2. Policy Enforcement

Our threat model assumes an attacker can compromise
a single module to inject and run arbitrary code (i.e.,
code execution in other modules are legitimate and not
compromised). To ensure effective overprivilege mitiga-
tion, AVGuardian needs to enforce access control policies
on published messages before they reach to a compro-
mised subscriber, since an attacker once compromising
a module can arbitrarily bypass any access control logic
implemented on it. To achieve that, the policy enforcement
component is designed as a shim layer connecting the
publish-subscribe communication endpoints. Figure 8 is
a running example on how this shim layer mitigates
publisher- and subscriber-side overprivilege vulnerabiity
on module B that is compromised by an attacker.
Subscriber-side overprivilege prevention: AVGuardian
prevents subscriber-side overprivilege problems by proac-
tively enforcing subscriber-side access control policies at
publisher side (i.e., module A): given a message M to be
published, for each subscriber S of M , the publisher clears
or sets meaningless values to fields in M that are unused at
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Figure 7. CFG for the synthetic entry point function, each block contains the definition of a callback. Dataflow analysis can be directly applied to
these blocks.

Figure 8. Detection and prevention of overprivilege policy violation.
Assume module A publishes message M1, module B (compromised by
attacker) subscribes M1 (with an overprivileged field f1) and publishes
M2 (with an overprivileged field f2 copied from M1.f2), module C
subscribes M2, and B is controlled by an attacker. Step 1-3 represent
the message flow with policy enforcement on publisher- and subscriber-
side overprivilege, where sign(f2) is the signature generated by Module
A using M1.f2. Step 4 represents our proposed recovery strategy to
directly contact publish originator when policy violation is detected.

S. In this case, a module will receive no more information
than it actually uses when subscribing to messages from
other modules. Under this design, a message to be pub-
lished needs to follow access control policies defined on a
per-subscriber basis. Therefore, the performance overhead
becomes proportional to the number of subscribers.
Publisher-side overprivilege policy monitoring: Digi-
tal signatures are used to detect modification of values
in publish-overprivileged message fields. First, from the
static overprivilege detection, we can identify the orig-
inal publisher (i.e., A) whose published message (M1)
is copied from by the publish-overprivileged module (B)
to craft a published message (M2), denoted as a pub-
lish originator. Then, by leveraging the key management
feature of SROS [92], which has been integrated into
ROS, a publish originator signs the source (i.e., M1.f2) of
each overprivileged field before publishing a message. The
publish-overprivileged module (B), if not compromised,
will simply include an overprivileged field (M2.f2) with-
out modification along with its signature into its published
message. Finally, policy violations are checked at the
subscriber (C) through verifying the signature of each
overprivileged field to confirm that either the current value
of an overprivileged field is consistent with that published
by its publish originator or that a publish-overprivileged
module has modified it. Using this method, AVGuardian
can perform online detection if a publish-overprivileged
module abuses the over-granted write permission at the
message field granularity. If a policy violation is detected,
AVGuardian reports this anomaly and activates recovery
strategies pre-configured by AV developers.
Recovery strategies: When a publisher-side overprivilege

policy violation is detected, we propose a solution, shown
in Figure 8, that can recover the correct value of the
overprivileged message fields with best effort and thus
continue correct system operations. As shown, once the
violation is detected, the subscriber (i.e., C) starts to
subscribe M1 from the publish originator (A) to obtain
legitimate state for M2.f2 based on the latest M1.f2. Note
that due to the asynchronous communication nature in
publish-subscribe messaging, there is no guarantee that
a copy of M2.f2 retrieved using M1.f2 is consistent to
that from B. We make this design choice due to our ob-
servation that a module in AV software usually fetches the
latest message in a subscription queue for its processing
(e.g., Adapter::GetLatestObserved in Apollo).
Defense against replay attack: For publisher-side over-
privilege, even with the overprivileged message fields
signed by the publish originator, the attacker may still
exploit the vulnerability using message replay attack, i.e.,
saving a signed message with values of its interest from
the publish originator and replaying them later at a de-
sired attack time. To defend against such attack, in our
design we require a publish originator to sign the publish-
overprivileged field with the publishing timestamp. The
subscriber of a publish-overprivileged message maintains
a message expiration window based on the one-way delay
of an overprivileged field from its publish originator to its
subscriber. When receiving an overprivileged message, it
compares such window with the time difference between
the current time and the publishing timestamp signed with
the overprivileged field in the received message. Since
it is typical that different modules in a AV system run
in a single industrial PC [36], the modules share the
same clock source and thus are already synchronized. If
the time difference exceeds the expiration time window,
potential replay attacks may be ongoing and the suspicious
messages are discarded to prevent potentially malicious
consequences. Furthermore, the recovery strategies above
can be applied accordingly.

AV developers can configure the message expiration
window by profiling one-way delays from a publish
originator to subscribers for each publish-overprivileged
field. In our experiments, we choose 95-percentile of our
profiled delays as a threshold. While false negatives or
positives in replay attack detection may occur given the
variation of message transmission, queuing, and process-
ing delay, our empirical study in §7.3 using real-world
AV system traces shows that for realistic exploitation
scenarios, this mechanism can effectively detect replayed
messages with both zero false positive rate and zero false
negative rate.
Module transparency: We implement our policy en-
forcement mechanism in the ROS middleware, which sits
between the upper AV software modules and underly-
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ing commodity OS, by instrumenting the TopicManager
API [42] in the ros comm module. TopicManager is
a publish-subscribe communication protocol API in ROS
and invoked by each ROS node at runtime to manage
the connection among ROS nodes and forwarding of pub-
lished and subscribed messages (through the Publication
and Subscription component illustrated in Figure 8). We
extend it to support the common operations including mes-
sage field clearing, signing and verifying for our access
control policy enforcement. Overprivilege access control
policy files are read by the TopicManager during launch
of a ROS node. Given the input policies, the instrumented
TopicManager intercepts outgoing messages to be pub-
lished from its hosting ROS node and incoming messages
subscribed from other ROS node and apply a correspond-
ing input policy if the intercepted message contains certain
overprivileged fields. Therefore, the policy enforcement
requires no change to AV software or additional efforts
from AV developers.

7. Evaluation

AVGuardian’s overprivilege detection tool is imple-
mented based on LLVM. Its runtime policy enforcement
is prototyped through instrumentation of the ROS middle-
ware (ROS Indigo used by Baidu Apollo [29]). We choose
Apollo for our evaluation study because it is a popular
production-level AV software platform with rapid growth
of users and partners [15], [24], [28], [34], [35], [46],
[50], [51]. We perform runtime profiling of AV modules
in Apollo using real-world and fuzzed message traces
to evaluate false positives/negatives in our overprivilege
detection, and also micro-benchmarking and end-to-end
evaluation on performance overhead and resilience to
message replay of runtime policy enforcement.

7.1. Setup

We perform overprivilege detection in Baidu Apollo
5.0 code base (∼400K LOC). It consists of 20 modules
and 71 publish-subscribe message topics. As a part of the
offline analysis, our tool summarizes functions of a mod-
ule in Baidu Apollo in 30 minutes to 6 hours depending on
the code size. The function summary can be reused later
for overprivilege detection. After the summarization, the
overprivilege detection within an AV module completes
in up to 3 minutes. Note that this whole overprivilege
analysis is an offline task and thus does not affect the
runtime system performance. Also, the efficiency can be
further improved by analyzing functions in parallel [94].
Ground truth identification. In the evaluation of the
overprivilege detection results, we need to obtain the
ground-truth unused/unmodified message fields. To more
efficiently identify such ground-truth, we first use dynamic
testing on target modules to automatically identify mes-
sage fields that are used/modified, which can then be ex-
cluded from the ground-truth unused/unmodified message
fields. Specifically, we inject messages from 4 input traces
captured from Baidu’s test driving of level-4 autonomous
vehicles running Apollo in the real-world traffic [22]
and profile the runtime execution of a target module to
capture usage events on subscribed messages. To intercept
such events, we instrument the protobuf library [39] (as

the main API for defining publish-subscribe messages in
Apollo) to record the use of message fields at runtime,
which is thus the ground truth. To increase the code
coverage, we also generate more diverse input messages
by randomly fuzzing values of fields in different types of
input messages, using the 4 real-world message traces as
our seeds. In total, more than 10K different values for
each field are generated.

Since dynamic testing cannot provide 100% code
coverage (a fundamental coverage limitation of dynamic
analysis [81], [86], [96], the message fields that are not
found to be used in the dynamic testing may still be
used/modified in the uncovered code portions. Thus, we
then manually inspect these remaining fields to deter-
mine the ground truth. In our evaluation, the dynamic
testing step helps automatically rule out 37.8% (355/939)
used/modified fields, which substantially reduce the man-
ual analysis efforts.

7.2. Accuracy of Overprivilege Detection

As shown in Table 2 and 3, comparing with the pro-
filing results, our overprivilege detection uncovers in total
525 unused fields for subscriber-side overprivilege, and 62
unmodified fields for publisher-side overprivilege. After
checking with the ground-truth ones we identified (de-
tailed in §7.1), we did not find any FPs, which is consistent
with our design goal and the corresponding conservative
data flow analysis design choices (detailed in §4.2). We
also break down the reduction of FPs due to analysis en-
hancements to address virtual function and asynchronous
callback issues. By tracking data flow in more control
flow paths, the virtual function enhancement reduces FNs
in message field use detection (or equivalently FPs in
subscriber-side overprivilege detection) by 3.87% and FNs
in message field modify detection (or equivalently FPs in
publisher-side overprivilege) by 8.82%. Combining with
the heuristic for event callback order enumeration, the FPs
of subscriber- and publisher-side overprivilege types are
reduced by 4.24% and 10.3%.

Our data-flow analysis may over-approximate
used/modified message fields due to conservative
resolution of virtual functions and asynchronous
event callbacks, leading to FPs in detecting message
field use/modification, or equivalently FNs of
overprivilege detection. For subscriber- and publisher-side
overprivilege, an FN is observed when static analysis
detects a field is used or modified, but no use or
modification are observed at run time. We observe 2 FNs
of subscriber-side overprivilege and 1 FN for publisher-
side overprivilege. The 2 observed FNs of subscriber-side
overprivilege are due to the use of a subscribed message
field that can only be triggered along certain code path,
which cannot be triggered due to the lack of runtime
environment. From code inspection, the FN of publisher-
side overprivilege is due to the definition of a published
message field through an arithmetic operation taking a
subscribed message field and a variable (indeed constant
value) loaded from a configuration file. Our conservative
analysis cannot determine the constant and mistakes this
field definition as a modification. Note that these FNs
cause no functional errors in policy enforcement (i.e., not
blocking true read/write permission). Such low FN rate
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(less than 1.7%) also demonstrates the effectiveness of
our overprivilege detection in attack surface reduction.

Feature Detected unused field # FP rate
none 543 4.24%

+ virtual function 522 0.38% (-3.87%)
+ callback ordering 541 3.88% (-0.37%)

+ both 520 0% (-4.24%)
TABLE 2. FP IN SUBSCRIBER-SIDE OVERPRIVILEGE DETECTION.

Feature Detected unmodified field # FP rate
none 68 10.3%

+ virtual function 62 1.61% (-8.82%)
+ callback ordering 67 8.96% (-1.7%)

+ both 61 0% (-10.3%)
TABLE 3. FP IN PUBLISHER-SIDE OVERPRIVILEGE DETECTION.

7.3. Effectiveness of Policy Enforcement

We evaluate the performance overhead due to run-
time policy enforcement in a recommended container
environment on a server (Intel Xeon CPU E5-4620v2
2.60GHz, 128GB RAM) using real-world traces provided
by Apollo [23]. Digital signature operations are imple-
mented using libgcrypt [33] and 1024-bit RSA keys.
Given that our container runs the same Apollo codebase
installable on real vehicles and that an industrial PC with
more powerful CPU configuration than that of our server
is recommended for running Apollo on real vehicles [36],
the following performance results (e.g., message latency)
should be better on real vehicles.
Overhead analysis: Our policy enforcement requires
field-wise operations on a message to be published to-
wards a target subscriber. Table 4 shows the overhead
of extra operations for enforcing a policy for publisher
or subscriber-side overprivilege. The launch time for dif-
ferent modules is similar, around 1.58 seconds without
policy enforcement and increases by 0.1% with enforce-
ment for loading a list of policies and its key to mem-
ory. In publish-subscribe communication, a publisher may
enforce subscriber-side overprivilege policies by clearing
unused fields of a message to each target subscriber,
and publisher-side policies by signing the source of an
overprivileged field. A target subscriber verifies a signa-
ture accordingly for a publisher-side policy. Note that the
batch digital signature generation can be accelerated using
specialized hardware [73], [87], [89].

Source of overhead Overhead (microsecond)
Policy parsing (100 policies) 487 ± 343

Key loading 105 ± 42
Per-field clearing 42 ± 25 (21%)
Per-field signing 1753 ± 578 (72%)

Per-field verifying 101 ± 44 (7%)
TABLE 4. BREAKDOWN OF PERFORMANCE OVERHEAD IN

AVGUARDIAN’S POLICY ENFORCEMENT.

End-to-end overhead: We evaluate the end-to-end perfor-
mance overhead of AV’s decision cycle shown in Figure 9.
The policies are generated based our overprivilege detec-
tion results on these modules. Policy enforcement happens
at message publishing in each of these modules: 1) each
needs to clear a few subscribe-overprivileged fields before
publishing to a target subscriber and 2) Localization and
Planning module as publish originators need to generate
signatures for two publish-overprivilege fields in ADC-
Trajectory and one in ControlCommand message.

We measure the end-to-end delay from when a Local-
izationEstimate message is to be published until a Con-
trolCommand message is published by Control module

Figure 9. End-to-end policy enforcement evaluation setup

to close current control cycle. This delay without policy
enforcement is on average 110 ± 3 milliseconds. With
enforcement of publisher and subscriber-side overprivi-
lege polices, this delay increases to 118± 9 milliseconds
and 138 milliseconds in the worst case. The numbers in
parentheses in Table 4 indicate the percentage each source
contributes to the overall overhead. We validate that this
7.3% overhead does not affect AV decision logic, since the
message sequence and order were confirmed unchanged
with and without our policy enforcement. Also, FPGA
accelerators available in production AVs (e.g., equipped
in Apollo Extension Unit [2]) and with increasing pro-
grammable support [37], [38] can be invoked by AV soft-
ware to significantly reduce the latency of digital signature
operations (e.g., 2x speedup [99]).
Defense effectiveness against message replay: To eval-
uate our replay attack defense mechanism, we use real-
world traces captured from Baidu Apollo’s testing on
local roads of Sunnyvale, California [23], and simulate
message replay attacks by replaying the most recent
publish-overprivileged field other than the up-to-date one,
assuming this always leads to an exploit. This scenario
puts the most stringent requirement to attack detection.
We aim to identify an expiration window value that fully
separates the replayed copy and the up-to-date copy based
on the time gap from when the overprivileged field is sent
by a publish originator to when it reaches a subscriber.
We profile this time gap with and without message replay
for different message topics containing publish-privileged
fields that are detected from our static analysis tool.

Profiling results show that our defense mechanism can
have false positives and false negative in this worst case,
but the AUC [66] for all topics (listed in Table 5) are
greater than 0.95, which is generally considered above
good performance [98] and implies that 95% of the time
our mechanism will give correct positive or negative de-
tection of message replay. Table 5 also lists the expiration
window to achieve 99% true positive (TP) or true negative
(TN) rate of replay detection and their corresponding FP
or FN rate in detecting replay. Results indicate that 1) the
expiration window is different for different message topics
to achieve 99% TP/TN rate in replay attack detection;
2) the FP/FN rate of replay attack detection when our
mechanism works 99% of the time is less than 6%.

Meanwhile, we further find that for specific exploita-
tion scenarios, since the attacker usually needs messages
with specific values in the overprivileged fields to cause
meaningful damages at the vehicle control level, our relay
attack defense mechanism can actually achieve zero false
positive and false negative rates on two concrete exploita-
tion scenarios demonstrated in §8.1 and §8.2. We simulate
message replay attacks using the real-world traces pro-
vided by Apollo [23] by letting the malicious node capture
and replay messages with attack-desired values. For the
TF attack scenario, we examine old GPS messages with
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Overprivileged node Message topic 99% TP rate 99% TN rate AUC
Expiration window FP rate Expiration window FN rate

Control ControlCommand 111.2ms 1.2% 114.2ms 1.4% 0.999
GNSS TFBroadcaster tf 10.26ms 1.2% 10.85ms 1.9% 0.995
Velodyne compensator PointCloud 10.21ms 1.5% 10.5% 2.1% 0.99

Routing RoutingResponse 100ms 0% 100ms 0% 1
Monitor StaticInfo 100ms 0% 100ms 0% 1

Prediction PredictionObstacles 10.1ms 1.5% 10.62ms 1.8% 0.988
Planning ADCTrajectory 10.4ms 3.2% 10.95ms 3.5% 0.976

Localization LocalizationEstimate 9.2ms 5.5% 9.8ms 5.8% 0.956
RelativeMap MapMsg 10.3ms 3% 10.8ms 2.9% 0.977

TABLE 5. EXPIRATION WINDOWS AND ACCURACY FOR DETECTING REPLAY ATTACKS ON DIFFERENT PUBLISH-OVERPRIVILEGED TOPICS.

exploited fields set using values that can cause obstacles
to be relocated out of the AV’s current traffic lane and find
that only messages at least 4 seconds before can cause the
relocation. Given that the profiled one-way message delay
from the GNSS parser nodelet to the perception module
is less than 110 milliseconds, our message replay defense
mechanism can detect such attack without incurring any
false positives or negatives. For the PCL attack, since
PointCloud messages with zero height or width values
may only happen when the LiDAR sensor is broken, we
cannot observe any such messages in our real-world traces
and thus there are no replay attack opportunities.

8. Findings

Our tool detects 520 subscriber-side and 61 publisher-
side overprivilege instances in Baidu Apollo 5.0 code
base. We further identify 9 instances with important se-
curity or privacy implications (summarized in Table 6).
Based on our threat model (§3) that an attacker exploits
common code flaws to compromise the driver modules
of the peripheral devices in an AV system and then
leverage those with overprivilege vulnerability in its pub-
lished/subscribed messages to launch attacks, we narrow
down to the overprivileged nodes in Table 6 that are in the
driver modules of peripheral devices and susceptible to be
compromised based on the patches to the implementation
flaws (e.g., memory bugs) [3]–[9], [11], [12] in the commit
logs of Apollo’s repository [14].

We are able to construct two attacks that exploit
publish-overprivileged fields in the compromised driver
module for the GNSS or Velodyne’s LiDAR device and
cause obstacle relocation (TF attack in §8.1) or ob-
stacle removal (PCL attack in §8.2) in Apollo’s ob-
ject perception. Figure 10 shows these outcomes occur
in the simulated traffic scenes collected on local roads
of Sunnyvale, California [23] using Apollo’s simulator
SimControl, which results in AV’s collision to the ma-
nipulated obstacles. Video demos of simulated attacks
are at https://sites.google.com/view/avguardian. We also
construct a VIN stealing attack that exploits a subscribe-
overprivileged field in the GNSS driver module (assum-
ing it is compromised) to steal the Vehicle Identification
Number (VIN) of an AV and highlight potential identity
and privacy theft to AV owners (§8.3). We performed
responsible disclosure of our attacks to Apollo developer
team and received confirmation that our attacks are valid.

8.1. Obstacle Relocation Attack (TF Attack)

TF attack is launched by a compromised TFBroad-
caster (TransformBroadcaster) nodelet [49] in the GNSS

Figure 10. Comparison of attack outcomes in an identical traffic scenario:
obstacle relocation (TF attack) vs. obstacle remove (PCL attack)

Figure 11. Relocating obstacles in AV perception by exploiting publish-
overprvilege of /tf message on TFBroadcaster

driver module, which exploits a publish-overprivileged
field in a published /tf message. AVGuardian detects over-
granted write permission of tf.transform to TFBroadcaster
that copies values in localization field of subscribed Gps
messages to tf.transform for publishing.
Attack construction: We discover two sub-fields of
tf.transform, translation and rotation, are used for the
affine transformation y = Ax+ b to estimate the position
and size of a perceived obstacle in the physical world,
where A is constructed using rotation and b using transla-
tion. Specifically, translation consists of values for the x,
y, and z dimension: adding an offset to certain dimension
will relocate the estimated position by the same offset on
that dimension. Therefore, by manipulating the transla-
tion field in a /tf message to be published, an attacker
can cause the relocation of an obstacle moving ahead
on the same lane to be on another lane and at a farther
distance (illustrated in Figure 11). To worsen the attack
outcome, an attacker can further exploit the subscribe-
overprivileged field localization.linear velocity of the
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Overprivileged node Type Affected topic Affected fields AV security implication
TFBroadcaster Pub tf transform.translation Relocate perceived obstacles to cause collision (TF attack §8.1)
TFBroadcaster Pub tf transform.rotation Reduce the perceived size of obstacles

Velodyne’s compensator Pub PointCloud height, width Remove perceived obstacles to cause collision (PCL attack §8.2)
Pandora’s, RS-LiDAR’s, Pub PointCloud height, width Remove perceived obstacles to cause collision

LS-LiDAR’s motion compensator
Control Pub ControlCommand signal Manipulate the on/off state of signal light

TFBroadcaster Sub GPS pose.linear velocity Vehicle speed reconnaissance for launch TF attack (§8.1)
GNSS Sub Chassis license.vin AV owner’s identity theft (VIN stealing attack §8.3)

Perception, RelativeMap, Sub Chassis chassis gps AV’s location privacy leakage
3rd-party perception, Control

Prediction, Control Sub Planning debug.routing AV’s route privacy leakage
TABLE 6. SUMMARY OF OVERPRIVILEGED INSTANCES WITH SECURITY IMPLICATION. IN THE ”TYPE” COLUMN, ”PUB” MEANS

PUBLISHER-SIDE OVERPRIVILEGE AND ”SUB” MEANS SUBSCRIBER-SIDE OVERPRIVILEGE.

Gps message on TFBroadcaster (illustrated in Figure 2)
to perform reconnaissance on the speed of an attacked AV
and launch TF attacks when localization.linear velocity
is high. We demonstrate in SimControl with a real-world
sensor trace: an attacker-controlled TFBroadcaster abuses
the write-permission of tf.transform field by adding no
more than 15 to values on its x and y dimension in a series
(e.g., 5-second duration) of published /tf messages, which
results in the obstacle relocation outcome in Figure 10 and
causes a vehicle collision.
AVGuardian’s defense: To mitigate TF attacks, when
GPS topic is published from the parser nodelet in the
GNSS module, the policy enforcement component uses
the parser’s private key to sign localization.position and
localization.orientation field in a Gps message and ap-
pends the signatures to the published message. Before
forwarding a /tf message to a target subscriber, the policy
enforcement component verifies the signatures in the mes-
sage using the parser’s public key to detect any abuse of
the write permission on tf.transform field by TFBroad-
caster. If any signature verification fails, an anomaly is
flagged and recovery starts by requesting for a latest Gps
message from the GNSS parser.

8.2. Obstacle Removal Attack (PCL Attack)

PCL attack is launched by a compromised
compensator nodelet [30] in the Velodyne’s
LiDAR driver module, exploiting publish-
overprivileged fields in a published PointCloud
(/apollo/sensor/velodyne64/compensator/PointCloud2)
message. AVGuardian detects over-granted write
permission for metadata fields width, height of
PointCloud topic at the compensator. They are
copied from the same metadata fields of subscribed
/apollo/sensor/velodyne64/PointCloud2 messages.
Attack construction: PointCloud messages serve as
point cloud input to the LiDAR processing in the percep-
tion module for detecting surrounding obstacles. LiDAR-
based perception performs element-wise copy of the point
cloud contents in a PointCloud message to some buffer
based on its width and height dimension. By setting
either of the fields as 0, LiDAR’s point cloud contents are
zeroed out and no obstacles will be detected (illustrated
in Figure 12). We demonstrate in SimControl with a real-
world sensor trace: an attacker-controlled compensator
abuses the write-permission of height field by setting it as
0 in a series (e.g., 5-second duration) of published Point-
Cloud messages, which results in the obstacle removal
outcome in Figure 10 and causes a vehicle collision.
AVGuardian’s defense: To mitigate PCL attacks, when
/apollo/sensor/velodyne64/PointCloud2 messages are

Figure 12. Removing obstacles from AV’s perception view by exploiting
publish-overprvilege of PointCloud message on Velodyne compensator

published from the converter nodelet in Velodyne driver
module, the policy enforcement component uses the con-
verter’s private key to sign height and width field in
each message. Before forwarding a PointCloud message
to a target subscriber, the signatures in the message
are verified using converter’s public key and a latest
/apollo/sensor/velodyne64/PoitCloud2 message is re-
trieved from the converter if any verification fails.

8.3. VIN Stealing Attack

Chassis topic has a field license in Apollo 3.0/3.5
and alternatively vehicle id in Apollo 5.0 that contains
an AV’s Vehicle Identification Number (VIN) [25], [26].
AVGuardian detects that this field is set in each Chassis
message published by the Canbus module, but is unused
by any subscriber, including the GNSS driver module. An
attacker controlling the GNSS driver module can passively
sniff this subscribe-overprivileged field to steal the VIN of
an attacked AV and use it to uncover personal information
of the AV owner, including name, address, and even phone
number and email address [53]. Furthermore, attackers
can use a single stolen VIN to register dozens of stolen
vehicles for masking vehicle theft or filing insurance
claims on totaled vehicles, and even to make duplicate
keys for an attacked AV [31]. AVGuardian’s mitigation
approach in §6 prevents such attacks by enforcing a
subscribe-overprivilege policy at runtime to clear license
or vehicle id field of each published Chassis message.

8.4. Apollo Developer Feedback

We performed responsible disclosure to the Apollo de-
veloper team. They confirmed that our attack findings are
valid under our threat model. The overprivilege problem
is prevalent in Apollo: 69.4% (520/749) of subscribed
message fields are indeed unused by a subscriber and
30.1% (61/203) of message fields published by the dif-
ferent publishers are publisher-side overprivileged. The
Apollo team commented that this overprivilege is likely

12

/apollo/sensor/velodyne64/compensator/PointCloud2


due to the fact that they aim to encourage open-source
contribution to Apollo and thus provide a unified and
liberal message interface. They also commented that it
can be highly beneficial to have a systematic approach to
automatically uncover and prevent overprivilege problems,
which is exactly the research goal in this paper.

9. Limitation & Scope

False negatives from overprivilege detection: Our
current data flow analyses make conservative assumptions
on possible control flows at run time (e.g., does not
handle implicit flows) to minimize false negatives (FNs)
in detecting the use/modification of message fields (or
FPs in oveprivilege detection). Such over-approximation
may cause FPs in detecting message field use/modification
(or FNs in overprivilege detection). To mitigate defense
ineffectiveness due to FNs in overprivilege detection, auto-
generated access control policies can be inspected by AV
developers to determine which subset to be enforced at
runtime. We leave this as future work since (1) these cases
are not prevalent in real-world AV code bases, e.g., only 3
FNs (less than 1.7% FN rate) observed in our evaluation
(§7), and (2) though fewer FNs in overprivilege detection
are desired for defense effectiveness, their existence does
not block true read/write permissions in policy enforce-
ment and thus will not affect the functionality of a system.
Potential improvements of policy enforcement: AV-
Guardian’s policy violation detection on publisher-side
overprivilege requires signing each overprivileged fields.
To reduce the performance overhead proportional to the
number of overprivileged fields in a message, GPUs and
FPGA accelerators, already available in production AV
systems [2], [36], can be used to parallelize batch opera-
tions [73], [87], [89] and speed up a single operation [99],
respectively. Also, our defense against publisher-side over-
privilege through contacting the publish originator, is mo-
tivated by the observation that the latest state of a message
field is commonly consumed in the distributed processing
of an AV system. It only provides best-effort recovery of
the valid state of a publisher-side overprivileged field. To
protect against stronger adversary, larger-size RSA keys
(e.g., 2048-bit) can be directly configured and used in our
current policy enforcement.
Threat model scope: AVGuardian is primarily a defense
solution for attack surface reduction of AV systems. It
defends against attacks exploiting the overprivilege at
the publish-subscribe communication channel, since this
overprivilege attack surface is unnecessarily exposed and
can be minimized through runtime access control pol-
icy enforcement. As demonstrated by our vulnerability
analysis and exploits on two popular representative AV
software systems, this overprivilege attack surface is a
general issue for AV systems and may cause severe safety
and privacy consequences. AVGuardian does not han-
dle other attacks, such as spoofing of non-overprivileged
fields to the publish-subscribe communication channel at
publisher side. A publisher, even if not compromised,
must be granted write permission on those fields and
AVGuardian cannot differentiate valid or spoofed states
for them. Techniques to ensure computation integrity are
needed to defend against this threat. Also, we do not con-

sider scenarios that a compromised module maliciously
withholds messages to be published.

10. Related Work

Vehicle security: Attack surface analysis has been con-
ducted on in-vehicle network [59], [63], [75], vehicle
applications [65], perception sensors [82], and connected
vehicular communication [60]. Our work contributes to
this area in discovering overprivilege problems with the
publish-subscribe communication channel as a new attack
surface in AV systems and proposing a systematic ap-
proach to mitigate it. One major defense solution to exist-
ing in-vehicle attacks is intrusion detection of an attacker-
controlled ECU based on fingerprinting [61], [62]. We
propose a different mitigation solution to the overprivilege
problem through runtime policy enforcement to enable
fine-grained permission control on AV software systems.
Permission models & overprivilege mitigation: Previous
work uncovers and mitigates overprivilege problems in
smartphone [67], [68] and smart home systems [69], [74]
through static and dynamic analysis. Our overprivilege
problem differs from them since (1) previous overprivilege
problems happen in systems with regular user interactions
while human interaction may not exist in AV systems, and
(2) different from previous overprivilege in API accesses,
our overprivilege is in the access to message fields for the
publish-subscribe communication in AV systems. We de-
velop a novel system-level solution to achieve fine-grained
permission control on this communication channel.
Security policy enforcement: One major approach for
security policy enforcement is access control APIs for
developers [84]. Another is automated policy generation
through static detection of security violations [88] and
enforcement through OS-level authorization hook place-
ment [71], app-level repackaging [95] or code-level in-
strumentation [72] to run policy enforcement code. Dif-
ferent from previous work on the code-level enforcement,
AVGuardian enforces fine-grained access control policies
from the static overprivilege detection at the publish-
subscribe message channel under the module-compromise
threat model, where code-level policy placement and en-
forcement can be bypassed.

11. Conclusion

We design and implement AVGuardian that system-
atically detects message field level overprivilege for the
publish-subscribe communication in AV systems with zero
false positive and performs policy enforcement on over-
privileged fields at runtime with acceptable performance
overhead to mitigate their security damage. AVGuardian
discovers 581 overprivilege instances in Baidu Apollo,
some leading to concrete exploits causing vehicle collision
and AV owners’ identity theft that have been confirmed
valid by the Apollo developer team.
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