This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Graph-Based Namespaces and Load Sharing for
Efficient Information Dissemination

Mohammad Jahanian

Abstract— Graph-based namespaces are being increasingly
used to represent the organization of complex and ever-growing
information eco-systems and individual user roles. Timely and
accurate information dissemination requires an architecture
with appropriate naming frameworks, adaptable to chang-
ing roles, focused on content rather than network addresses.
Today’s complex information organization structures make such
dissemination very challenging. To address this, we propose
POISE, a name-based publish/subscribe architecture for efficient
topic-based and recipient-based content dissemination. POISE
proposes an information layer, improving on state-of-the-art
Information-Centric Networking solutions in two major ways:
1) support for complex graph-based namespaces, and 2) auto-
matic name-based load-splitting. POISE supports in-network
graph-based naming, leveraged in a dissemination protocol which
exploits information layer rendezvous points (RPs) that per-
form name expansions. For improved robustness and scalability,
POISE supports adaptive load-sharing via multiple RPs, each
managing a dynamically chosen subset of the namespace graph.
Excessive workload may cause one RP to turn into a ‘hot
spot”, impeding performance and reliability. To eliminate such
traffic concentration, we propose an automated load-splitting
mechanism, consisting of an enhanced, namespace graph par-
titioning complemented by a seamless, loss-less core migration
procedure. Due to the nature of our graph partitioning and its
complex objectives, off-the-shelf graph partitioning, e.g., METIS,
is inadequate. We propose a hybrid, iterative bi-partitioning
solution, consisting of an initial and a refinement phase. We
also implemented POISE on a DPDK-based platform. Using
the important application of emergency response, our exper-
imental results show that POISE outperforms state-of-the-art
solutions, demonstrating its effectiveness in timely delivery and
load-sharing.

Index Terms— Information-centric
subscribe systems, graph partitioning.

networking, publish/

I. INTRODUCTION
ITH large amounts of information generated, the rela-
tionships between content items are becoming more
and more complex. Similarly, even organizations and envi-
ronments involving people and entities, with their different
roles and interests, have rich inter-relationship structures that
go beyond simple hierarchical trees. This complexity can also
be seen in networked environments, such as IoT, datacen-
ter networks, containerized environments, and distributed file

Manuscript received July 25, 2020; revised March 18, 2021; accepted
June 2, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor V. Subramanian. This work was supported in part by the US Department
of Commerce, National Institute of Standards and Technology under Award
70NANBI17H188 and in part by the U.S. National Science Foundation under
Grant CNS-1818971. (Corresponding author: Mohammad Jahanian.)

Mohammad Jahanian and K. K. Ramakrishnan are with the Department
of Computer Science and Engineering, University of California, Riverside,
CA 92521 USA (e-mail: mjaha001@ucr.edu; kk@cs.ucr.edu).

Jiachen Chen is with WINLAB, Rutgers University, North Brunswick,
NJ 08902 USA (e-mail: jiachen@winlab.rutgers.edu).

Digital Object Identifier 10.1109/TNET.2021.3094839

, Jiachen Chen, and K. K. Ramakrishnan

, Fellow, IEEE, ACM

systems. Having a well-defined naming framework that is
flexible enough to accommodate the needs of these complex
structures is essential [1]. We have had to move from the
simple and traditional hierarchical structures to more complex
graph-based namespaces for organizing names. Example use
cases we consider are disaster management, smart building
with IoT, and resource, data management in clouds and
distributed file systems. In all these cases, having a framework
for efficient information dissemination, one that ensures all
relevant actors receive the required information in a timely
manner, is of importance and can be very helpful.

Publish/Subscribe (pub/sub) systems (e.g., [2], [3]) are
popular means of information dissemination today, and enable
one/many-to-many push-based notification systems. Support
for multicast in the network helps achieve efficient pub/sub
by greatly reducing network traffic and server/client overhead,
compared to server-based, poll-based pub/sub solutions [3].
Today, IP multicast is the prevalent multicast protocol, e.g.,
in IPTV [4], albeit not in the multi-domain case. Despite
its utility and efficiency, IP multicast has limitations which
make it less than ideal for pub/sub in more complex and
content-oriented pub/sub applications: it is tightly intertwined
with IP multicast group addresses, does not capture the
semantic relationships between groups (e.g., the fact that one
group publishes information that is in a subcategory of another
group), and is limited by its IP address (sub-)space size.
These shortcomings are problematic where there may be com-
plex content/actor inter-relations with frequent churn in those
relationships. This would put excessive burden on publishers
and subscribers if IP multicast is used [3]. To overcome
these challenges, we use a name-based multicast scheme for
pub/sub [3], [5], leveraging the concept of Information-Centric
Networking (ICN).

ICN [1], [6], [7] enables the network layer to understand
content names, and provide forwarding and dissemination
functionality independent of location, i.e., IP addresses.
This location-independent networking is very useful in a
majority of networked applications, since often, it is the
information that matters most to recipients rather than
which point of attachment in the network it originated
from [1]. Name-based pub/sub identifies a multicast group
by its name, with the namespace capturing the relationship
among those names [3]. There are two types of namespace
design for name-based pub/sub: topic-based and recipient-
based. In topic-based pub/sub (e.g., [3]), a subscriber
of a named topic, eg., ‘“/CaliforniaWildFires”,
is interested in receiving all the content published
at a finer granularity, i.e., what is under that topic
category, e.g., “/CaliforniaWildFires/WoolseyFire’.

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2593-4961
https://orcid.org/0000-0003-1849-5155

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

In recipient-based pub/sub [5], a subscriber of a named role,
e.g.,“/fireDepartment/fireTeaml”, must receive all mes-
sages published to a coarser granularity, i.e., sent to every other
role above that role when it comes to authority or responsibil-
ity, e.g., to “/fireDepartment”. Unifying these two types,
we support both topic-based and recipient-based pub/sub.

Namespace design is an integral part of ICN. State-of-
the-art ICN architectures, namely Named Data Networking
(NDN) [1], [6] supports strictly hierarchical namespaces,
implemented as prefix trees [8]. This hierarchical structure
falls short in efficiently modeling complex, multi-dimensional
namespaces [9], such as today’s increasingly complex infor-
mation organization structures, where a role (node) can have
many dimensions (parents), e.g., function, location, time, efc.
The dynamic nature of these structures in many scenarios,
makes these namespaces even more challenging to manage.
While it is possible to convert a graph to a strict hierarchy,
it will lead to huge amount of redundancy, thus making the
management and modification of the namespace extremely
costly and inefficient. A study on a Wikipedia dump in [9]
shows that converting a typical graph-structured namespace
with 106 categories (graph nodes) to its hierarchical equivalent,
would result in 6.07 x 10°* categories.

We propose POISE, designing dynamic graph-based
namespaces for in-network name-based pub/sub, with the
introduction of an information layer to manage it. Although
POISE supports both topic-based and recipient-based pub/sub,
our particular focus here is on recipient-based pub/sub.
Additionally, we propose a rendezvous point (RP)-based
pub/sub protocol, with the dissemination logic following the
graph-based namespaces, to deliver all relevant information to
their intended/required recipients (mainly first responders) in
a timely manner using push-based multicast. POISE handles
possible cycles in the graph through preventive DFS-based
cycle detection in the graph, as well as data plane nonce-based
loop detection [8]. We share the workload among multiple
RPs, where each RP is responsible for managing a subset
of the namespace graph and functions as the core of the
subscription trees associated with those names. Often in
many real-world scenarios, the workload-per-RP distribution is
non-uniform and difficult to predict. In an RP-based pub/sub,
this could cause an excessive load on one RP managing names
corresponding to those more intense workloads, thus making
it a “hot spot”; an example of this may be in a multi-player
online gaming environment, as in [10]. While it is practically
infeasible to optimally balance the load across the whole
network (due to the amount of frequent periodic communi-
cation needed which is especially difficult with large and/or
bandwidth-limited networks), we eliminate the traffic concen-
tration by automatically splitting a congested RP’s (i.e., hot
spot’s) workload: the RP partitions its namespace (sub-)graph
with the objective of finding two balanced segments while
minimizing inter-RP communication, decides which names to
relinquish, and triggers the migration of subscription tree cores
related to those names to a new RP or an existing under-loaded
RP. Our graph partitioning problem involves calculation of
weights for vertices and edges. However, due to the nature
of our partitioning formulation, these weights depend on the

IEEE/ACM TRANSACTIONS ON NETWORKING

cut itself; thus making our objective function a “complex”
one [11]. As a result, off-the-shelf graph partitioners such as
the popular tool METIS [12] (as well as its parallelized ver-
sion, ParMETIS [13]) fall short. To overcome this, we propose
a hybrid splitting procedure consisting of a heuristic (METIS)
and meta-heuristic guided search refinements (using Tabu
Search [14]). Our results show the effectiveness of our design.
While we consider a number of example use cases of POISE in
different environments, we primarily focus on the application
of POISE to information dissemination among first respon-
ders in disaster scenarios, an application that requires timely
information delivery.

The key contributions of this paper are the following:
1) A recipient-based pub/sub framework with automatic load
splitting for efficient information dissemination. 2) Support
for free-form (i.e., not limited to a particular structure such as
hierarchy) graph-based namespaces and an information layer
to capture rich information organization structures; our simula-
tion results show that this is more efficient than using state-of-
the-art hierarchical namespaces. 3) An automatic name-based
and workload-driven, novel hybrid graph partitioning proce-
dure and load splitting along with a seamless and lossless
core migration mechanism; our results show the effectiveness
and correctness of our core migration, and improved quality
and resulting network efficiency of our partitioning proce-
dure, compared to popular off-the-shelf graph partitioning
tools. We further demonstrate the benefit of using our Tabu
search-based refinement compared to an iterative implemen-
tation of METIS, as well as ParMETIS with Adaptive Repar-
titioning. 4) An implementation of a POISE RP including
its graph-related operations on a DPDK-based platform; our
micro-benchmarking shows that the overhead of graph-based
operations justifies using our RP-based solution rather than
name-expansion at every hop.

II. BACKGROUND AND RELATED WORK

Information-Centric Networking (ICN) [1] enables access
to named objects, independent of their locations. In ICN,
contents and entities can be named through identifiers. Having
a network layer that recognizes these identifiers can help
deliver information without separately establishing an end-
to-end communication channel, support in-network content
caching, aggregate queries, and provide content-oriented secu-
rity. All these result in more efficiency, compared to traditional
host-centric networks, such as IP. Two notable ICN architec-
tures are NDN [6] and MobilityFirst (MF) [7]. While our
proposed information layer can work on top of any ICN or
IP architecture, we focus on ICN as it is more efficient for
our name-based pub/sub [15].

Publish/Subscribe (pub/sub) has become a widely used,
popular service over the Internet, in form of RSS feeds, online
social networks, efc. Most popular pub/sub solutions today are
server-based; where subscribers either poll a logically central-
ized server (via HTTP), or a long-lived connection for timely
delivery is maintained [16]. These approaches can be limited
in scalability. Broker-based solutions (e.g., ONYX [17]) use
an overlay network with distributed brokers, and avoid traffic

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

concentration. However, the dependency of these solutions
on XML data and assertions to decide forwarding paths,
couples the information structure with the network layer,
making the forwarding function complex. Having pub/sub in
the network can help with scalability, and has been proposed
for ICNs [2], [3], [18]. ICN with push-based publish/subscribe
service models [3] have been proposed. COPSS [3] enhances
the query/response model of NDN by allowing consumers
to issue a long-standing request, i.e., subscription, for all
content related to (subsets of) a name, whenever they are
published. It can outperform IP multicast, poll-based methods
and flooding-based broadcast [3], [19], in terms of aggregate
network load and latency. CNS [5] extends COPSS by intro-
ducing recipient-based pub/sub, that can help with information
dissemination. Our work moves a step further by relieving
the strict hierarchy restriction to enable complex free-form
graph-based namespaces.

Graph-based information organization has been gaining
attention and shown to be important because of its richness
and efficiency compared to the more traditional hierarchical
structures across multiple application domains. Wikipedia is a
very popular and notable example of an information organi-
zation system designed as a graph structure: each article can
belong to a number of categories, i.e., dimensions [20]. Graph
structures for information have been proposed and used in
many other contexts as well, e.g., databases [21]. cloud com-
puting [22], and file systems [23]. These works have primarily
focused on information organization for storage and indexing.
Our work focuses on in-network information organization for
name-based information dissemination, extending the current
hierarchical structure of NDN [6] to a graph-based one.

Graph partitioning is an important graph operation, and
has been an area of research for decades. Optimal graph
partitioning is considered to be NP-hard [24], so solu-
tions based on heuristics and approximations exist. A very
well-known partitioning method is multi-level partitioning [25]
(and its tool METIS [12]), which using heuristics, coarsens
the graph, does an initial partitioning, and then uncoarsens
it. METIS has been widely used for load splitting and bal-
ancing in various contexts [26], [27]. The parallel version
of METIS, ParMETIS [13], achieves speedups using message
passing interface (MPI)-based parallel processing. ParMETIS
also includes additional routines for adaptive re-partitioning,
to enable fast incremental updates to an already-existing
partitioning, in case of weight changes in the graph, rather
than complete re-partitioning from scratch. Some methods use
the streaming graph partitioning approach which is used to
process partitioning a piece of data on the fly, e.g., [28]. These
algorithms are very fast but their solution quality is lower. This
approach is most suitable for extremely large graphs (in the
order of trillion vertices). There are approaches using iterative
improvement methods for graph partitioning. These methods
typically provide high quality solutions. A bad choice of the
iterative method and its parameters can make the procedure
slow. Work in [29] proposes a graph partitioning algorithm
using Tabu search, and shows that it outperforms another
popular meta-heuristic method, Simulated Annealing [30],
regarding both solution quality and timeliness. Sometimes

| Incident X |

——
cA police | [Fire | [Inc.XFire | [Inc. XEMs |
e —

NJ Fire

| Geo-Location || First Response |

| Fire Fighting || Survival Search |

Driver 1 | [F. Fighter 1 | [F. Fighter2 |

Fig. 1. Graph-based namespace: incident command chain example.

the objective of partitioning is more than a simple sum of
weights, and can be a complex function of the cut itself. This
is characterized as the “chicken and egg problem” in [11],
as the objective function needed for partitioning decision must
be calculated after the partitioning is done; ours belongs to
this class. Approaches to solve this class of problems have
been proposed in works such as [31]-[33] for specific cases.
The work in [11] justifies the use of standard partitioning as
a good starting point, and then perturb it during the iterative
refinement procedures.

Multicast core migration aims at moving a core-based
multicast tree [34] from one core (RP) to another, for better
load balancing or failure resiliency. Traditional core migration
works reported in [35] focus on IP multicast, and primarily
focus on low-level migration criteria such as link or node
utilization, efc. We focus on criteria pertaining to name-level
workload in our work. Work in [10] shows the need for RP
migration in name-based multicast, but only uses a random
load splitting mechanism. We improve it by formulating the
workload splitting scheme through a rigorous workload-driven
graph partitioning algorithm along with a migration procedure
that is reliable and loss-less.

III. USE CASES OF POISE

POISE is applicable in a variety of different contexts, where
a pub/sub communication model is needed. Its biggest benefit
is in cases where the dissemination is done according to a
complex, multi-dimensional namespace, and timely delivery
of relevant information to all intended recipients is required
[36]. In this section, we illustrate how POISE can specifically
help with managing sample namespaces for several use cases.

A. Disaster Management

During disasters, a large amount of information is dissem-
inated, and it involves distributing it to many participants
such as incident commanders, first responders, volunteers and
civilians. ICN and name-based pub/sub have been shown to
be very suitable and beneficial for disaster scenarios [5], [37].
Furthermore, due to the complex nature of today’s com-
mand chains of first responders, a graph-based naming frame-
work (an example disaster management namespace is shown
in Fig. 1, with more detail in §1V-B), is needed to represent the
multiple reporting hierarchies. Furthermore, in an RP-based
framework for name-based pub/sub for disaster management,
overload and hot spots (as mentioned in §I) are highly
likely to occur. In a given disaster, particular roles (i.e.,
names) may receive much higher demands than other roles
(e.g., ‘firefighting’ roles in a wildfire incident). This motivates
our RP splitting and graph partitioning to eliminate traffic

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

| Temperature | IOutside Building| | City of LA |

[
[Room A | | Inside Temp | | Room B H Local Temp | | Outside Temp | | LA Temp |

[Humidity] [Inside Building |
T

Room A Temp

Temp Sensor S1

| S2 Humidity | | S1 Temperature I

Room B Temp

Temp Sensor S2
S2 Temperature

Fig. 2. Example namespace for IoT HVAC system.

concentration. Furthermore, a major problem often caused
by disasters (especially natural disasters), is that the network
and servers can experience excessive load and congestion,
making many services unavailable [5]. Our work addresses
this by creating an efficient information organization and load
sharing framework that dramatically reduces network load
during disasters. Works such as [38], [39] have been proposed
to leverage delay/disruption-tolerant routing with ICN in dis-
asters in case of complete or partial infrastructure failures.
These works, while orthogonal to ours, can be leveraged by
POISE. POISE’s information layer can run on top of such
delay-tolerant protocols in disconnected environments.

B. HVAC System: A Smart Building With loT

The use of Internet of Things (IoT) for building smart
cities, buildings and homes is becoming increasingly more
popular. The interactions between different elements in an
IoT environment, i.e., sensors, actuators, efc., can be complex.
Fig. 2 shows a small (partial) namespace for a HVAC (Heating,
Ventilation, and Air Conditioning) system in a building as
an example use case for POISE. Information can have mul-
tiple dimensions: type of information (e.g., temperature or
humidity), location of the information (e.g., inside the build-
ing or room A), etc. The naming schema used in current
name-based architectures for IoT (such as NDN RIOT [40])
use strictly hierarchical structures, which falls short in effi-
ciently capturing such complex multi-dimensional structures.
Using POISE’s graph-based namespace (such as in Fig. 2),
we can support a publish/subscribe (topic-based) capability
to support many-to-many delivery from sources (sensors) to
destinations (actuators). Sensors publish to names; a new
publication can be generated periodically, or if there is a
substantial update to report. All subscribers of that name and
all the names reachable from it will receive it. Different actua-
tors (e.g., heating or cooling) can choose different granularity
levels based on their settings, subscribing to “Temperature”
(to get every temperature reading from any source: its own
sensor, inside building, outside building, and externally from
city of LA news report), subscribing to “Room B” (to get
any information in Room B: temperature, humidity, etc.).
By subscribing to “Inside Temperature”, an actuator will
receive all temperature readings recorded in Room A or B,
whenever they are published.

C. Resource Management in Clouds

The use of virtualized container environments for cloud
services have become popular in the past decade. In large-scale

IEEE/ACM TRANSACTIONS ON NETWORKING

| Pod 1 || Ingress || Pod 3 || Database || Pod 2 |

Project A Project B

| Staging A || Development A || Prod. Blue B || Prod. Green B

Fig. 3. Example namespace for containerized platforms.

Campuses Courses
|UCLA| | chemistry | | physics | Prof. Alice | | Prof. Bob
1.Pdf 2.Pdf 3.pdf
UCLA chemistry | | UC course UCR physics

syllabus catalog syllabus

Fig. 4. Example namespace for distributed replica management.

systems, they can involve the interaction across many
users and resources, warranting a scalable data structure
and communication system of managing their orchestration.
Kubernetes [22], as a prominent example, defines namespaces
for resource orchestration. With POISE, we can have a gen-
eralized graph-based namespace (with nesting) that captures
all the different resources and components such as clusters,
projects, and libraries, while allowing a systematic push-based
pub/sub notification of changes to relevant users. Fig. 3 shows
a (partial) POISE namespace as an example for such environ-
ment. The edge directions denote the flow of information. For
example, upon any change in “Database”, an immediate noti-
fication will be sent to all subscribers of “Development A”
(as well as other ancestors of “Database”), which are mem-
bers of a team working on the development of “Project A”,
and using the “Database” cluster. This is especially helpful
at an enterprise-level with a large complex namespace. The
authorization and access can be captured with the directed
edges. Any publication made to a name can be generated by
any user that has the authorization to make changes (e.g.,
modification of data or code) to the resource(s) associated
with that name. The POISE namespace captures a flexible
integration of isolation and sharing; e.g., in Fig. 3, “Pod 17 is
hidden from anyone not associated with “Project A”, while
“Pod 3” is visible to members of both “Project A” and
“Project B”.

D. Data Replica Management in Distributed File Systems

Distributed file systems are widely used in cloud systems,
where each server in the datacenter hosts files belonging to
parts of the overall directory. Work in [41] shows the benefit
of using ICN for distributed file systems in a datacenter. A
graph-based namespace for the directory system can be more
efficient than just a hierarchical tree structure. Fig. 4 shows a
small example of such a namespace for a university system’s
distributed file system. A strictly hierarchical version of the
namespace graph would lead to a large number of duplicate
nodes; for example the file “1.pd£” would have at least three
name hierarchies, one for “/UC/Campuses/UCLA/1.pdf/”,
one for “/UC/Courses/chemistry/1.pdf”, and one for
“/UC/Faculty/Prof.Alice/1.pdf’. For scalability and
reliability, distributed file systems typically require replicas
of files in different data servers. For example, the Hadoop

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

> sus(m)E

ST(B3) ‘\1Migrale ST(B1)

-~
O
Migrate ST(B3) E

(partitioning) RP2 3 "

(a) Namespace

(b) Information dissemination architecture

Fig. 5. A schematic overview of the architecture of POISE.

Distributed File System (HDFS) [42] requires exactly 3 repli-
cas of a given file chunk (in default mode). As files can
be modified, consistency of data among replicas becomes an
issue. POISE can make the management of data replicas quite
convenient and efficient. For example, server D1 hosting all the
files under the courses category, will subscribe to “Courses”.
Server D2 hosting all the physics files, will subscribe to
“physics” (which is under “Courses”). Any modifications to
a file belonging to physics, e.g., file “3 .pd£” will be published
to the name “physics”, thus both D1 and D2 will receive the
notification, because the published update will be propagated
along the name paths in the namespace, and will apply the
changes to their stored replica files (or caches). This will
provide flexibility for replica management, enabling multiple
ways for different replicas’ sub-directories to overlap.

IV. ARCHITECTURE AND DESIGN

This section presents the overall architecture of POISE, its
naming and pub/sub design details. In the remainder of this
paper, we use the disaster management use case as an example
to explain the various aspects of POISE.

A. Overview of POISE

An overview of POISE’s architecture is shown schemati-
cally in Fig. 5. POISE’s namespace supports free-form graph
structures, as shown in Fig. 5(a), rather than being restricted
to the state-of-the-art hierarchical namespaces [43], [44]. This
enhancement is possible through decoupling of information
layer (which manages names and their relations in their natural
form, supporting complex graphs) and the service layer (which
manages the names used for name-based forwarding at every
ICN router), which are coupled together in current Named
Data Networks [6]. Each vertex in the graph in Fig. 5(a) is
a name, i.e., a role or attribute, and the edges show relations
among them. POISE’s information dissemination framework is
a name-based pub/sub [5] with the support of name-oriented
core-based multicast, with rendezvous points (RPs) being
the cores for groups; each name also identifies a multicast
group. In addition to being the core for the multicast tree
(similar to traditional PIM-SM [34], NDN COPSS [3], or MF
multicast [18]), POISE’s RPs operate at the information layer;
in other words, they are information-layer-enhanced RPs. As
shown in Fig. 5(a) and Fig. 5(b), the namespace is shared
among three RPs (i.e., RP1, RP2, and RP3), each RP man-
aging the sub-graph it is responsible for, and maintaining the

subscription trees associated with each of the names (groups)
it is hosting; e.g., RP1 is the core for the subscription tree (S7T)
for A1, A2, and A3. A name-to-RP mapping resolution service
resolves a name in the namespace to the RP it is hosting; e.g.,
the name C'1 would be mapped to RP3.

The subscription path is shown in Fig. 5(b) (in red); user U1
wants to subscribe to C'1 (which implicitly means subscribing
to all ancestors of C'1 in the namespace as well). U1 sends
this request as SUB(C1), without the need to know which
is the associated RP or where it resides. U1l’s first hop
router R1 performs the resolution and relays the request as
a unicast (U) message to the correct RP, i.e., RP3; thus, U1
joins ST(C1). The publication path is also shown (in green);
U2 wants to publish message m to all subscribers of name
A1l (which implicitly means publishing to subscribers of all
descendants of Al as well). U2’s first hop router relays this
publication as a unicast message to its corresponding RP,
namely RP1. Expanding Al to its descendants (i.e., name
expansion), it sends m as a multicast (M) downstream to
ST (A1) as well as ST(A2). Additionally, RP1 recognizes
that there is an edge leading from A1 towards a name outside
RP1. Thus, RP1 sends a unicast message for this name, B1 to
its RP, RP2. Note that RP1 only has visibility of namespace up
until B1 and not further. Performing a similar name expansion,
RP2 processes the received request by going through its
namespace, which leads to multicasting m downstream along
ST (B1) and ST (B2). Thus, users for both subscription and
publication scenarios need only send one packet, destined to
only one name; the network takes care of expanding the packet
to additional names, if needed. More details on the information
layer design and pub/sub dissemination are provided in [36].

Each RP’s workload has a correlation with the part of the
namespace it is managing. However, additionally, the load-
per-name distribution is likely to be non-uniform, and hard to
predict. To address this, another important feature of POISE,
automatic load splitting is performed to eliminate traffic
concentration. Consider the case when RP2 encounters a large
amount of workload exceeding its threshold, thus making it a
hot spot. Triggered by this, RP2 will perform a partitioning
procedure on its own sub-graph, to provide two balanced
segments, shown as Cut in Fig. 5(a). It thus decides to keep
B2 and B4, and relinquish B1 and B3 to another RP (e.g.,
RP4), which can be a regular ICN router configured to be
a new RP for this environment. As a result, the subscription
trees for B1 and B3 will be migrated to RP4, via a core
migration procedure. The name-to-RP mapping will then be
updated accordingly (§V).

B. Information Layer and Graph Namespace

POISE supports free-form graph namespaces with their
natural structure for in-network information-centric dissem-
ination, without the need to restrict them to any particular
data structure, such as a hierarchy or prefix tree as NDN [6],
or NDN-based solutions such as CNS [5] do. Using the dis-
aster management use case as example, let us consider Fig. 1,
a simple namespace of an incident management command
structure. As we can see, it does not follow a strict hierarchy,
but a graph.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
< R £
§8%
ST 2
EEE
£ss
§ys 3
SR S == (=] Graph-based| 2
U] ezt
s 5 F3 o z 3
QR = E
= 5 @
I3 g FFighter2 2
S5 B 3
L Z
Fig. 6. ICN layer design in POISE.

Support for graph namespaces in information dissemination
is made possible in POISE through a decoupling in the ICN
layer and the introduction of information layer, as shown
in Fig. 6. Only RPs (designated ICN routers that perform
name expansion) need to understand and maintain name rela-
tionships in the graph. This design choice brings a number
of significant benefits: it makes the ICN-layer namespace
simpler and smaller, leads to smaller FIB tables, and eliminates
redundant messages used for subscription and publication.
More details on the information layer and the comparison are
elaborated in [36].

C. Recipient-Based Pub/Sub

POISE enables recipient-based pub/sub [5], enhanced with
an information layer supporting graph-based namespaces. In
this name-based pub/sub, subscribing to a name means implic-
itly also subscribing to a set of names related to that specific
name, in accordance with the namespace. POISE’s pub/sub
logic follows the command chain graph-based namespace.
In the case of disaster management, first responders and
volunteers subscribe to (listen to) names, and civilians and
incident commanders publish to names. Given the namespace
in Fig. 1, subscribing to “F.Fighter2”, implicitly means
also subscribing to all of its ancestors, ie., “NJ FE1”,
“FireFighting”, “NJ Fire”, efc. Conversely, publishing to
“NJ Fire”, implicitly means also publishing to all of its
descendants, i.e., “NJ FE1”, “NJ FE2”, “F.Fighter2”, efc.
Expanding a name to all of its descendants on the publication
path according to the namespace graph, is performed by
the RPs, in a load-shared way. This design is beneficial
where dynamically-formed interacting groups and individuals
involved need to be notified with messages relevant to their
tasks in a timely manner, whenever they are published or
available, making sure maximum coverage and accuracy is
achieved. Details of this protocol exchange are in [36].

V. AUTOMATIC LOAD SPLITTING
A. Partitioning Namespace Graphs

POISE’s namespace graph partitioning aims at distributing
the load among RPs if traffic concentration overloads an RP.
Partitioning is performed locally on the congested RP, only on
the (sub-)namespace that it is hosting, dynamically. We mainly
use the monitoring of the recent queue size at RPs to measure
its load, and use the recent multicast and unicast workloads
(explained below) to label the graph for partitioning.

IEEE/ACM TRANSACTIONS ON NETWORKING

a+d+e a+b+c

(a) Before partitioning (b) Partitioning 1

(c) Partitioning 2

Fig. 7. Partitioning impacts multicast workload weight of names.

1) Problem Description and Solution Overview: We lever-
age graph partitioning algorithms to determine which part
of the namespace should reside at which RP for load split-
ting. We treat the namespace as a directed graph with
weights (labels) on vertices (i.e., names) and edges. The
initial (input) vertex weights represent messages sent to each
name explicitly from publishers (we call it incoming unicast
load). To determine the number of messages multicast from
a node (called multicast workload), we need to consider the
incoming unicast load from all of its ancestors. The weight
of the edges going out of a name are set to be the multicast
workload of that name. The total weight of the edges going
out of an RP to other RPs represents the total amount of
outgoing inter-RP communication (which we call outgoing
unicast load). We try to balance the sum of multicast workload
and outgoing unicast load, in the two partitioned segments and
seek to minimize the cut cost. A complexity here is that the
decision of the partitioning can alter the weights, i.e., “the
chicken and egg problem” [11], thus making the off-the-shelf
graph partitioners inadequate; we explain this with an example.

Fig. 7 shows a simple namespace graph at different stages.
Let us denote the incoming unicast load of each name (node)
as a, b, ¢, etc. Assuming no partitioning (i.e., whole namespace
in same RP), the multicast workload of each name is shown
in Fig. 7(a) (blue labels next to each name). E.g., name C
has to send out publications related to itself, A, and B to its
subscribers; thus making its multicast workload a+b+c. Edge
weights in Fig. 7, denoting the RP-to-RP communication on
that link, in case it gets cut, is shown in red and is underlined.

Considering the graph shown in Fig. 7(a), there may be
multiple ways to partition a graph. Two examples are depicted
in Fig. 7(b) and Fig. 7(c). As seen in the figures, the result
of multicast workload of name ¢ (and thus the total cost of
the resulting graph) differs in the two figures; it is a + b + ¢
in Fig. 7(b) and 2a + b 4+ ¢ in Fig. 7(c). The one extra
message C receives from A in Fig. 7(c) is due to the fact
that in this scenario, B relays what it has received from
A to C, not knowing that A is also a parent of C; while
in Fig. 7(b) the graph cut is in a way that it does not
cause such duplication. This shows that the graph’s multicast
workload weight values are a function of partitioning itself;
thus, a standard partitioning tool with fixed weights is not
sufficient to solve our partitioning problem. While such static
methods can provide a fast, scalable partitioning solution, they
do not achieve a sufficiently high-quality and come close to
optimality, as they do not take into account the weight changes
due to the cut. To address this, we propose the use of a
hybrid approach of heuristics (classic static graph partitioning)
followed by a refinement period. This refinement is an iterative
procedure that dynamically adapts to weight changes as it

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

progresses. One possible approach for it is to devise an
iterative approach with successive runs of METIS, where at
each iteration, the new weights based on the previous cut is fed
back to METIS. Thus, at each iteration the best partitioning
so far is returned as the solution of that iteration. A more
efficient variation of this approach is to use ParMETIS’s
adaptive re-partitioning routine [13] at each iteration, rather
than running METIS from scratch each time. While both these
approaches may improve upon the solution quality of METIS,
they are prone to getting stuck at local optima at an early
stage, and also in not exploring the best possible search paths.
To address this issue, we use Tabu search for the refinement
period in POISE, as it provides a more thorough, but guided
search as a meta-heuristic, to iteratively improve on the initial
result provided by METIS. While out algorithm supports k-
way partitioning, we focus on bi-partitioning in this paper
(refer to [36] for details.)

As described earlier, we pay special attention to the quality
of the partitioning solution, as a high-quality partition sig-
nificantly reduces the resulting network traffic overhead and
latency in POISE (demonstrated with results in §VI). Given
that: 1) our partitioning is only performed occasionally and
only upon RP overload (instead of all the time), 2) is run
locally (rather than coordinating across multiple RPs), 3) con-
cerns itself with balance among the two graph segments within
an RP (rather than across the whole network), and, 4) deals
with graph sizes of moderate sizes (in the order of hundreds or
thousands of vertices, rather than millions, for each separate
graph connected component, that is input to a partitioning
pipeline); we believe it is reasonable to favor partitioning
quality more over scalability. That said, we refrain from using
brute-force approaches and instead use the parameters of our
proposed algorithm in a way that produces high-quality results
with the least amount of processing overhead. Also, in cases
where the graph namespace consists of a number of separate
connected components, each connected component sub-graph
can be processed for partitioning independently and concur-
rently, thus enabling faster and more scalable computation in
POISE.

2) Theoretical Foundations: In this sub-section, we for-
mally define and mathematically represent the weighted
namespace graph for partitioning, and how weights are cal-
culated.

Multicast Workload (M W). An important part of our
weight calculation, is calculating MW (v;) for each vertex v,.
Its value contains the aggregation of the vertex’s ancestors’
incoming unicast loads, reaching vertex v; over all possible
paths. When traversing within an RP for propagation, e.g.,
using DFS traversal, only one path needs to be counted for
multicast. On the contrary, if traversing across graph cuts
(inter-RP), every path with a unique input-output pair of
vertices needs to be counted. The value of MW (v;) depends
upon the amount of load that v; experiences, caused by every
other vertex. Thus, we need to solve “how many times the
incoming unicast load from wv; is received at v;”, which we
call the duplication factor. We describe these in further detail.

Let us define a simple path as a path between two vertices
that does not include a cycle fully contained in one segment.

We then define P;; as all simple paths from v; to v;:

Pyj = {pi; vy - } M
where pfj is the k-th simple path from v; to v;, and is an
ordered tuple of vertices, formed as pfj = (vi,...,v5).

In a partitioned, i.e., cut graph, we define a Cut C' as the
multi-set of edges cut by partitioning:

C = {(vi, v) | part(vi) # part(v;)} @)

where part(v;) denotes which graph part (segment) the vertex
v; belongs to, after partitioning.

In order to avoid over-counting, we need to find how many
of p;;’s need to be counted. We define border portions of pfj
as the ordered tuple of (v;,,1, vm2) pairs, a subset of pf’j, where
(U1, Vm2) € C. We define Borders as:

Borders (pfj) = ((Um,h Um,2)7 ('Um,3; Um4)a s)
= {(Vm,vn) | (vm,vn) € pfj A (Um, vy) € C}
3)

Each border element (v,,,, vy,) consists of an exir point (v,y)
and an entry point (v,). We define entry points (E'P) as:

EP(Borders(pfj)
= ((vm2), (Vma), - --)

= {(Un) | J o, S.t.(’Um,Un) C pi‘cj A (UTYMUH) S C} 4)

The main part of a border tuple impacting the result, is the
entry point to the next sub-graph. We define two paths are
related by R if and only if they have border nodes with same
entry points (with same order):

pr1 Rpsz <= EP(Borders (pf})):EP(Borders (pff)) (5)

Relation R is an equivalence relation: it is reflexive
(p1 R p1), symmetric (p1 R po = p2 R p1) and transitive
(p1 R p2 Ap2 R p3 = p1 R p3). Thus, R divides P;; into
disjoint sets. All paths inside the same equivalence class are
similar paths and together, they carry the load from v; to
v; only once. Thus, the duplication factor n;; is defined as
the number of dissimilar paths from v; to v;, which is the
cardinality of the equivalence class:

nij = |Pi; /R (6)

Using the definition of duplication factor in Eq. 6, the mul-
ticast workload of a vertex u will be:

MW (u) =Y ng; IW (v) (7
veV

Outgoing Unicast Load (U W). Outgoing Unicast Load (or
unicast workload) of a name denotes the number of messages
that leave one RP, and enter the other RP, because of that
name. If a node vy has no edge towards the other RP, its UW
would be 0. Otherwise, it would be related to the number of

its outgoing effective edges for every IW (v;) it receives:

UW?" (vg,) = ng, x ee) x ITW (v;) (8)

where UW " (vy,) is the additional unicast load of vy that is
caused by incoming unicast load at v;. The number of effective

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

edges out of vy because of v; is the number of edges that carry
data from vy to the other RP, e.g., to a node v; in the other
RP. If v; has more than one edge coming to it from the other
RP, only one of them will be used, due to DFS’s single-visit
traversal. The total outgoing unicast load of v, would be:

UW(oe)= Y UW"(vg))
Vv, EV,v; £y

3) Algorithm: While we can design an algorithm that
strictly follows the formulas in §V-A2 for weight calculation,
we can design more efficient algorithms that consume less
memory. The mathematical representation of §V-A2 is used to
prove and cross-validate the algorithm, as an alternative way
of arriving at the final result. The calculation of these weights
are done through an iterative diffusion algorithm which fol-
lows the propagation logic described in §IV-C. Algorithm 1
calculates the two weight values of each vertex, namely MW
and UW (stored in maps ‘multicastLoad’ and ‘unicastLoad’
respectively) using propagation from each source vertex (that
has incoming unicast load ‘iLoad’) to any reachable ancestor
vertex, be it in the same or different sub-graph (part). Starting
from the vertex ‘nodeName’, the algorithm traverses the graph
and finds all the traversed vertices, using a modified DFS algo-
rithm. Final weights of any traversed vertex within the same
sub-graph as ‘nodeName’ will be incremented accordingly (by
‘iLoad’). For any traversed vertex ‘u’ that is not in the same
sub-graph as ‘nodeName’, i.e., pointing to another RP, the pro-
cedure is recursively called, starting propagation from ‘u’, with
‘iLoad’ in the other sub-graph. Any vertex ‘pu’ having a link
to another sub-graph will have its UW updated accordingly.
‘modifiedDFS’ (details omitted for brevity) performs traversal
across two connected sub-graphs G1 and G2 according to our
protocol. Its first and second input arguments represent the
current and original DFS roots (to prevent cycles).

Algorithm 1 Weight Calculation in the Graph

1: procedure CALCULATE(Node nodeName, int iLoad, Graph G, Graph GO, Graph
1, Map <Node, Boolean> done)
2: > multicastLoad < Node, int> and unicastLoad <Node, int> are maps that store
MW and UW values for each vertex (node)

3: if nodeName in GO then
4: thisG+—GO0, otherG+G1
5: else
6: thisG«—Gl, otherG«G0O
7. for all Node u in thisG.modifiedDFS(nodeName, nodeName) do
8: if u in thisG then
9: thisG.multicastLoad.put(u, thisG.multicastLoad.get(u)+iLoad)
%(1): . G.multicastLoad.put(u, G.multicastLoad.get(u)+iLoad)
: else
12: initialize Boolean todo«—TRUE, Node pu « *” > empty string
13: initialize Map <Node, Boolean> done?2 to all <v, FALSE>
14: for all pu in thisG.adj.keyset do
15: if u in thisG.adj.get(pu) AND
16: pu in thisG.modifiedDFS(nodeName,nodeName) then
17: if u NOT in thisG then
18: ul < pu
19: if done2.get(pu)=TRUE then
20: todo«—FALSE
21: if todo= TRUE AND pul # “” then
22: done2.put(pul, TRUE)
23: thisG. umcastLoad put(pul thisG.unicastLoad.get(pul)+iLoad)
24: G.unicastLoad.put(pul, G.unicastLoad.get(pul)+iLoad)
25: CALCULATE(u,iLoad, G, GO, G1, done2)

4) Graph Partitioning Procedure: To prepare the graph for
partitioning, the RP labels its local namespace sub-graph,
which mainly consists of calculating and assigning appropriate
weights explained earlier. The weights are calculated for each
solution instance, including an initial solution provided by

IEEE/ACM TRANSACTIONS ON NETWORKING

METIS [12]. We use Tabu search for iterative refinement of
our graph partitioning solutions [14], [29] (algorithm details
in [36]). Each solution (candidate) of the procedure provides a
cut, which partitions the RP’s namespace sub-graph into two
segments (assuming bi-partitioning).

Initial solution: Tabu search typically starts with a random
initial solution and improves it. To get a better initial partition
[11], we try to use the result from the problem closest to ours —
the (static) multi-criteria graph partitioning where the weights
will not change according to the partition decisions. We use
METIS for this stage as it is a highly popular tool that has
been shown to be fast, while providing high quality solutions.

Objective Function: As mentioned, to reduce the search
space, we adopt a bi-partitioning approach, where the heavily
loaded RP’s namespace is partitioned to be split between two
RPs, i.e., the current RP and the new RP. The objective (fitness)
function we use to evaluate our partitioning solution, takes into
account the cost of both segments (sub-namespaces managed
by the two RPs) and provides a combined measurement of
‘minimizing the imbalance between the two RPs’, ‘minimizing
the maximum single segment load’, and ‘minimizing the
inter-RP communication’ (G and G5 are the two segments,
associated with the two RPs):

F(G1,G3) = a- |TC(Gy) — TC(Gs)|
+ 8- max(TC(G1), TC(G2)) +~ - (UC(Gy)
+UC(G2)) (10)

where «, (3, and y are optimization coefficients. Setting
higher coefficients for some of the terms would result in the
final solution being impacted more by those terms. However,
the coefficients can be adjusted. We set all of them to 1 in our
test cases, since these values appeared to provide reasonably
good benefit, in our experiments. The aim is to minimize
F'. Function UC(G};) (segment total unicast cost) is the sum
of cut edge weights initiated in G;, and M C(G;) (segment
total multicast cost) is the sum of all vertex weights in G;.
Furthermore, total load cost of a segment would be:

Stopping criterion: We allow both fixed and adaptive stop
criteria. If fixed, a parameter Max Iterations 1 is pre-defined,
and Tabu search stops when 7 is reached. Our adaptive stopping
criterion, on the other hand, starts with an Iferation Base b,
and any time the ‘so far found best solution’ is changed,
b gets added to the current iteration number and makes up
the new final iteration number. This ensures that our Tabu
search procedure stops only after running with b iterations
of no improvement. To prevent the Tabu procedure to keep
iterating indefinitely, with this adaptive stopping criterion, an
upper bound on the number of iterations is also specified.

B. Migrating Cores

Once the graph partitioning is done, the names in one
segment need to be migrated to another core. The RP selection
function is similar to that in IP multicast [35]. It may be
performed by a network manager or calculated by a Network
Coordinate function such as [45]. Once the RP is selected,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

.)

(a) Before (b) Init (c) After M1

(d) After M2

Fig. 8. Reliable RP splitting: RP1 relinquishing a name to RP2.

the process essentially migrates the names in the partitioned
subspace to the other RP. However, this has to be done
carefully because if a router discards the original subscriptions
before it receives all the publications that are in-flight (before
the original ‘pipe’ is drained), these publications will be lost.

To address this, we propose a 3-stage (make-before-break)
solution to ensure reliable delivery during migration, as shown
in Fig. 8. Before migration, we assume there is a multicast
tree rooted at RP1 (Fig. 8(a)). When RP1 decides to move
a name to RP2, in stage 1 (Fig. 8(b)), it notifies RP2 and
also subscribes to RP2 (creating new green line). Meanwhile,
it notifies the network that RP2 is now serving that name (rout-
ing update in IP, FIB propagation in NDN, or a GNRS update
in MobilityFirst). RP2 now becomes the RP for the name, and
routers with the new RP information will send publications to
RP2. However, reusing the original multicast tree, we continue
to make sure that the publications are delivered during the
transient phase. Routers may have not yet updated the name-
to-RP mapping, and there can be publications in-flight during
the mapping update. Thus, some publications to those names
will still reach RP1. We adopt the late-binding concept of
MobilityFirst: when an RP receives a publication that is not
served by itself. It hands the publication back to the network
to then be forwarded to the correct RP accordingly.

At stage 2 (the ‘make’ stage), RP1 sends out a special
marker packet (we call it M1) to all the nodes in the sub-
scription tree. M1 is treated just as a normal multicast packet.
To make sure that all the subscribers in the tree receive the
M1 marker packet, RP1 has to send that packet after it is sure
that the new mapping has propagated into the network and the
subscriptions based on the old mapping have joined the tree.
On receiving M1, routers subscribe towards the new RP and
mark the original ones as ‘stale’ if the original entry in the
subscription table is different from the new entry. Fig. 8(c)
shows the subscription after M1 is propagated to the network.
The green arrows are the new subscriptions and red arrows
are the ‘stale’ ones. While we mark the subscriptions as stale,
we do not delete them. When RP2 sends publications, it sends
them along all the subscription links, to ensure delivery. A
nonce can be used in the packets to eliminate redundant traffic
during this transient phase.

After all the nodes subscribe to the new RP, RP1 can send
a second marker packet (we call it M2) to start the third and
final stage (the ‘break’ stage). On receiving this marker packet,
the intermediate nodes clean up the ‘stale’ subscriptions (as
is shown in Fig. 8(d)). When a node has no downstream
subscriptions (e.g., RP1 in the Fig.), it will unsubscribe from
the upstream naturally. Since all the nodes have subscribed
to the new RP, the M2 marker packet acts as the last packet
in the pipe. Thus, we will not lose packets if we close the

TABLE I
SOLUTION QUALITY OF ALTERNATIVES AND GLOBAL OPTIMUM
\VerticesEdges| Optimum METIS POISE Solution itr Final itr
10 14 1,916 2,093 1,916 12 22
10 20 2,434 2,736 2,434 14 24
15 19 1,400 1,763 1,400 6 21
15 21 4,744 5,876 4,744 5 20
15 26 6,753 10,460 6,753 28 43
15 65 6,119 16,271 6,119 6 21
20 29 2,594 3,162 2,856 20 40
20 42 9,342 18,905 9,342 10 30
20 89 7,689 15,587 10,480 10 30
25 44 5,966 7,230 5,966 27 52

‘pipe’ (unsubscribe) after we receive M2. We also use this
mechanism to provide resiliency to RP failures [36].

VI. EVALUATION

To evaluate POISE, we compare it to a number of existing
and theoretical alternatives. In terms of overall architectures,
we compare POISE to NDN/CNS [5], a recipient-based
push-based pub/sub architecture for notification systems,
which is the closest architecture to ours. For namespaces,
we compare POISE’s graph-based naming with the most
advanced state-of-the-art ICN naming, which is NDN’s hier-
archical naming (as in CNS as well). For load-splitting,
we compare POISE to the most popular graph partitioning tool
METIS [12]. We use the same design principles of the
simulator in [5], while adding the functionality of our infor-
mation layer graph namespace design and splitting proce-
dures. Our simulator is open-sourced and available in [46].
For the partitioning component, we use the current imple-
mentation of METIS (and ParMETIS [13]), plus our refine-
ment and weight/objective calculation procedures. We also
describe our POISE RP implementation on DPDK, and
provide micro-benchmarking results to justify POISE.

A. Evaluating the Graph Partitioning Algorithm

In this section, we evaluate the quality of POISE’s graph
partitioning, i.e., the hybrid “METIS+Tabu” algorithm. To
compare the quality of solutions provided by METIS, and
METIS+Tabu (starting from METIS and then doing a Tabu
search) with the global optimum (using exhaustive search), we
use 10 relatively small graphs, randomly picked and labelled
with weights (taken from [47]), as described in Table I.
METIS+Tabu uses v iterations with Tabu tenure of /v for
a graph with v vertices. For finding the global optimum
(i.e., the optimal solution), we generated all possible solutions
using a brute-force (exhaustive search) approach. For the
METIS+Tabu (POISE) case, Table I also shows the Tabu
iteration at which the best solution was found (‘Solution
itr’) as well as the number of the last iteration (‘Final itr’).
For the cases in Table I, METIS+Tabu (the approach in
POISE) finds the optimal solution most of the time (e.g., in 8
out of the 10 cases considered). It also reaches the global
optimum within a reasonable number of iterations. Compar-
ing the complexity of the Tabu search and the brute-force
approaches, we see a significant benefit of using our Tabu
search approach. While the brute-force approach finds the
global optimum by checking 2"~ — 2 solutions (assuming

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

—#—Random ——METIS —s—Tabu === Iterative METIS ------ ParMETIS Adaptive Repart ——METIS+Tabu (POISE)

125 ¢ L

3
e

Objective Function (x 10k)
o
T W

o
A
|
—

|

H

H

i
i
]
H
]
H
]
H
1
H
H
H
H
H
1
H
H
H
H
|

allo

2l

gz

>
n

0 0 20 30 40 50\
of Iterations

S
3

20 30 40 50
of Iterations

Fig. 9. Effectiveness of different graph partitioning approaches.
bi-partitioning and filtering out of duplicate permutations and
no-cut solutions), Tabu search finds that solution or one
reasonably close to it by checking O(iv) candidate solutions,
which in our case is O(v?), since we set the number of
iterations ¢ to be O(v) and at each iteration, O(v) neighboring
solutions are visited and evaluated. Even though in Table I,
POISE found the exact global optimum for most of the cases,
this does not necessarily have be to the case for all input
graphs. In particular, for two graphs, namely G = (20,29)
and G = (20,89), POISE did not reach the global optimum.
For these two cases, increasing the Tabu iterations by a factor
of 10 did not improve the solution either. However, as Table I
shows, POISE’s meta-heuristic guided search-based partition-
ing does find the global optimum for a majority of times, and
reaches a near-optimal (at least nearer compared to METIS)
solution in all cases. Additionally, as the table also shows,
POISE consistently achieves better solutions, i.e., closer to
the optimum, compared to the state-of-the-art METIS, further
showing the benefit of POISE’s partitioning.

Finding the global optimum through brute-force search is
not computationally feasible for large graphs, as the number
of candidate solutions to visit grows rapidly exponentially.
For larger graphs, we only need to do a comparative eval-
uation, showing that METIS+Tabu finds relatively better, and
in most cases, significantly better solutions, than alternative
approaches. To show this comparison, we use one of the graphs
available online in the repository in [47] (from its “AT&T
graphs” package). It is a directed graph with 50 vertices &
84 edges. The graph is unweighted, so we assign random
values between 0 and 100 to each vertex, to denote the
incoming unicast load for each name. Fig. 9 shows the
comparison across different alternatives, in terms of the quality
of solution (objective function) for this graph. The follow-
ing scenarios are used: Random (average of three randomly
generated solutions), METIS, Tabu (average of three runs
of Tabu-only starting from random initial solution), Iterative
METIS, ParMETIS with Adaptive Repartitioning (parallelized
on two processors, with the ‘coupling” of sub-graphs with
processors for the best performance [13]), and METIS+Tabu
(POISE). Note that the “Random” and “METIS” scenarios
are not iterative procedures therefore achieve a fixed solution
quality. We vary the number of iterations for the solutions that
support refinement (i.e., dynamic solutions), with a fixed stop
criterion, to show how quickly the search-based approaches
converge to a good quality solution.

Fig. 9 shows that METIS+Tabu outperforms the rest. Using
METIS as initial solution (METIS+Tabu) vs. starting from a
random initial point (Tabu) is very effective as the algorithm

IEEE/ACM TRANSACTIONS ON NETWORKING

80 ~#—Solution Tteration # —# of Iterations 12 2
70 Quality of Solution 10 "é
_60 z
250 *H@ t-
S 3
= 40 6 2
g =
230 4 2
520 g
0 0
10 20 30 40 50

Base

Fig. 10. Impact of base in adaptive stop criteria.

reaches its convergence point (for the range of iterations we
examined) much faster (with fewer iterations). The Tabu-only
method outperforms METIS, Iterative METIS, and ParMETIS
Adaptive Repart only after a relatively large (above 40)
number of iterations. The METIS+Tabu approach outperforms
METIS very early, after just 5 iterations. It also outperforms
Iterative METIS and ParMETIS Adaptive Repartitioning early,
before the 10" iteration. This shows that the Tabu search is
the preferred refinement approach. The random partitioning
solution is much worse than the other alternatives. Fig. 9
also shows the importance of choosing an appropriate stop
criterion. The number of iterations being too small precludes
reaching a good solution, and it being excessively large results
in waste of time and compute resources.

We also examine using an adaptive stop criterion. Fig. 10
shows the impact of the base parameter (§V-A) on the quality
of solution found by our graph partitioning (yellow line) in
terms of objective function (right-side y-axis). This shows
that the base parameter in an adaptive stop criterion needs
to be selected carefully as well; i.e., not too small or too
large. The jump between base values of 13 and 14 indicates
that a new solution is found with base of 14 that would
not have been found with smaller base values, showing an
example of how Tabu search escapes local optima. Fig. 10
also shows the resulting number of iterations (gray line) and
the iteration where the last improvement was found (red line),
for each base value, in terms of count/number (left-side y-
axis). The difference between these two last numbers shows
the number of wasted iterations for that setting of base value.
In this example, we see that with a base of higher than 15,
increasingly more and more iterations are wasted. Results on
more graphs are provided in [36], which further show the
improved quality of solution in POISE.

B. Overall Solution Evaluation

To evaluate the performance of POISE, we implemented
an event-driven, packet-level simulator. The simulator sup-
ports name-based pub/sub, exploring different alternatives
within that paradigm, using any type of multicast network
layer underneath. We can compare name-based multicast to
alternatives such as pull-based pub/sub, IP multicast-based
pub/sub, and broadcast-based pub/sub such as those exam-
ined in [3]. To evaluate the behavior, we needed a realistic
network environment with a number of forwarding routers
and end-points that are publishers and subscribers. For this,
the network topology we use to evaluate POISE and compare
with various alternatives is the Rocketfuel 1221 Telstra [48]
with some modification for a state-wide disaster scenario. Our
topology contains 46 core routers, with additional 231 routers

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

w
S
3
8
w
S

o Graph— 1 RP

o
3

I3
[y
[}
[

Hierarchical
(CNS)

Y
2

%]
=]

I
S

)
=)
Notification Latency (ms)
-
S

<

—_
f=}
—_
(=]

0 20 40 60 80 100120 140
Publication Time (s)

w

[

Notification Latency (s)
IS
Notification Latency (s)
s

RP Splitting

(=1

0 60 120 180 240 300 0 60 120
Publication Time (s)

Publication Time (s)

(a) Hierarchical & Graph - 1RP
Fig. 11.

placed at the edge each linking to 2 core routers closest
to them. We use the graph-based “Disaster Management”
category namespace from the Wikipedia database as our
namespace [49]. Exploring 6 levels below that category,
we obtain 489 categories and 732 relationships. If we seek
to extract a set of hierarchies based on the approach in [9],
we obtain 1,468 hierarchical names. We use the associated
pages and files from the Wikipedia database (8,577 items
total, 436 per category maximum, 17.49 on average per
category) as the publications. We duplicated each content
60 times (514,620 publications) and ordered their publication
randomly to load the network. While the namespace is static in
our experiments, the publication workloads are dynamic and
vary. Publications are generated using a Poisson distribution
(to model human behaviors such as calling for, or offering
to, help) with a monotonically increasing arrival rate over
time (to model the increasing nature of such publications,
as the disaster unfolds and more people become aware and
get involved). We experiment with two example publication
workloads: 1) moderate (average arrival rate varying from
1,500 pkt/s to 2,000 pkt/s) and 2) intense (arrival rate varying
from 1,500 pkt/s to 3,500 pkt/s). We create 6 subscribers for
each category (2,934 in total), distributed randomly on the
231 edge routers. Eventually we generate 20,022,480 delivery
events.

Experiments with moderate workload: We first consider
the notification latency, to deliver a publication to all recipi-
ents. This reflects the impact of queuing in the network that
arises from having to route through an RP, the selection of an
appropriate number of RPs at the correct point in the network
topology, adapting to the namespace and workload. We also
look at the total network traffic to understand scalability.

We compare the performance of POISE with a number of
alternatives. First, is the use of a strict hierarchical namespace
(as in NDN/CNS). To be liberal to the hierarchical alternative,
we avoid each subscriber having to subscribe to every name.
Therefore, when there are multiple hierarchical names for a
category, he subscribes to any one of the names. The publisher
publishes to all the hierarchical names of the category. We also
compare with having a single RP (no splitting), as well as a
simple random splitting of the RP to one of the nodes in the
network. The latter is used to demonstrate the need to use a
near-optimal splitting of the RPs and load balancing.

From the CDF of the notification latency in Fig. 12 (and the
average reported in Table II), due to the high workload on the

180 240 300

(b) Graph - Random Split

0.6
Zos
>
Q
504
3
=03
)
502
'Lg o1 RP Splitting
20.

0 60 120

180 240 300

Publication Time (s)

(c) POISE

Notification latency over time in different solutions (Note the difference in the scale of notification latency in POISE).

—POISE

—Graph - 1RP

—Graph - Random Split

—Hierarchical (CNS)

0.003

Notification Latency (s)

1
0.8
2, 0.6
a
Co4
02
0
0.03 03 3 30 300

Fig. 12. Notification latency CDF in different solutions.

11

TABLE 11
AVERAGE NOTIFICATION LATENCY & AGGREGATE NETWORK TRAFFIC
Solution Notification Latency (s) | Network Traffic (Gb)
POISE 0.018 492.39
Graph - IRP 2.741 483.08
Graph - Random Split 4.725 625.69
Hierarchical (CNS) 247742 866.27

RP caused by hierarchical names, the notification latency is
excessive. Having only 1 RP (graph-1RP) as well as random
splitting of RPs perform reasonably at lower loads (for rates
<1700 pkt/s) and are even better than using hierarchical names
at low loads. However, at higher workloads, random split and
hierarchical names perform poorly compared to POISE as well
as even having just one RP.

Fig. 11 shows the notification latency as the load grad-
ually increases, for all the solutions. With a random split,
Fig. 11(b)), the notification latency goes up very rapidly after
the split, because the entire system is overloaded by packets
sent back and forth between RPs. It is even worse than having
a single RP, with no splitting (blue line in Fig. 11(a)). This
shows the importance of a sensible partitioning algorithm. For
the same workload, the latency of POISE (with METIS+Tabu,
Fig. 11(c)) is dramatically better (by 2-orders of magnitude).
As the load goes up, RP partitioning is triggered. For a short
transient period, queuing causes a relatively small (compared
to other alternatives) increase in latency. But congestion is
immediately relieved by RP splitting and the latency drops
back down. The maximum transient latency is 400 ms with
POISE, compared to multiple seconds with other alternatives.

Next, we look at the total network traffic, summarized
in Table II. Splitting the RP in POISE results in slightly
higher traffic (~1%) due to the unicast between RPs, compared
to having only a single RP. Yet by doing so, we avoid the
significant latency impact of congestion. Random splitting of

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
COMPARISON OF METIS AND POISE’S PARTITIONING
Metric [METIS | POISE
Moderate workload
Average latency (s) 0.018171 0.018147
Aggregated traffic (Gb) 491.242 492.392
Max Load - 2RP (#msgs) 1,321,220 1,230,533
Load imbalance - 2RP (#msgs) 360,693 633
Inter-RP messages - 2RP (#msgs) 136,571 314,139
Objective - 2RP 1,818,484 | 1,545,305
Intense workload
First split time (s) 40.868
Second split time (s) 150.388 [174.252
Average latency in [0,170s] (s) 0.049686 | 0.020387

the RP performs much worse (and causing 27% more traffic
compared to sensible splitting). In fact, if one were to just
consider the relative increase in the amount of traffic because
of RP splitting (compared to having just one RP and not having
any RP splitting), then random splitting with 133.3 Gb of extra
traffic results in 14.3 times more than POISE (9.3 Gb) in terms
of extra traffic. Compared to the hierarchical solution, the
graph-based solution of POISE reduces the amount of network
traffic dramatically (by 75.9%) since we do not have to deal
with the extra names and publications.

To dig a little deeper into the impact of the partitioning
method used, we provide more detailed metrics in Table III
to compare the use of METIS and METIS+Tabu (POISE).
For the moderate input workload, using METIS+Tabu leads
to slightly (24us) improved average notification latency (per
delivery), while adding 0.002% total traffic. The reason for this
better latency is better balance, and thus less queuing delay,
even at the cost of slightly more traffic (just like a single RP
having the least total traffic in Table II). The load metrics (in
terms of # of messages) measure the RP load from the time
of the split until the end of simulation (i.e. during the time
the system has 2 RPs; labeled with ‘—2RP’). The table shows
the values for the three terms in Eq.10. For METIS+Tabu,
maximum RP load and load imbalance are significantly better,
while for METIS, the # inter-RP messages is lower (leading to
slightly less traffic). These combined, make METIS+Tabu’s
solution more balanced with a lower peak, as confirmed by
the ‘Objective’ (sum of the above three terms), validating the
effectiveness of our partitioning approach.

Experiments with intense workload: The benefit of
METIS+Tabu over METIS is even more significant when we
generate a higher intensity workload. The same publication
trace (for ~300s) was generated over a shorter duration
(~217s) by increasing the average inter-arrival rate. We also
increase the RP splitting threshold. Table III shows the time
at which the first and the second RP splits occur; the first
split is same for both (i.e., 40.868s) while the second split
occurs ~24s later with METIS+Tabu compared to METIS
(174s vs. 150s). The better balance with METIS—+Tabu helps
the single RP maintain the namespace for a longer time with
lower dissemination latency; the same RP is used for 21%
longer than the case of METIS. This is important, since the
splitting procedure introduces protocol overhead (§V-B), with
additional notification latency for a short period, as shown
in Fig. 11(c). Therefore, postponing splitting and reducing
its frequency during the lifetime of the overall system is

IEEE/ACM TRANSACTIONS ON NETWORKING

10000 5

RP1
2 1000 JRP2
X
S
o 100 4
=
2 \
& 10 4 ‘ il
1] W
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Time (s) Time (s)
(a) METIS (b) METIS+Tabu (POISE)
Fig. 13. RP queue sizes for intense workload.
12 12
10 1.0
203 |08
g 7
206 0.6
Q
204 04
o2 J 0.2 I {
0.0 0.0 satad

0 25 50 75 100 125 150 175 0
Publication Time (s)

(a) METIS

25 50 75 100 125 150 175
Publication Time (s)

(b) METIS+Tabu (POISE)

Fig. 14. Notification latency for intense workload.

beneficial. However, if the split is postponed for too long,
this latency would increase significantly, as seen in Table III.
For the period of [0,170s], the average notification latency
of METIS is more than twice the latency of METIS+Tabu.
Fig. 13 shows the instantaneous queue size of each RP in
the two cases, for the period of [0,175s]. Most importantly,
it shows the better balance between the two RPs in case of
POISE (METIS+Tabu, Fig. 13(b)) than METIS (Fig. 13(a)).
We also see that the size of the queue in RP2 for METIS
goes up above 3,000 during that period, much larger than
METIS+Tabu, which only goes up to 140 for the same time.
As the figure shows, RP1’s queue size is a little higher in
POISE than METIS. However, the queue grows much more
at RP2 in METIS than with POISE. This is the tradeoff
that POISE makes, producing a better balance between the
two RPs, thus helping prolong the need for splitting the
RPs. The latency per publication for the intense workload
is also shown in Fig. 14, indicating a much higher increase
for METIS (Fig. 14(a), seeing congestion after 150s) com-
pared to METIS+Tabu (POISE, Fig. 14(b), which stays low
throughout, until 175s).

C. Implementation

We implement POISE in C to demonstrate the feasibility
and efficiency of the protocol. To eliminate the performance
impact of handling kernel interrupts, we take advantage of
Data Plane Development Kit (DPDK) [50] poll-mode driver
so that our user-space program can receive/send data directly
from/to the NIC. We implement a routing table, a subscription
table and a neighbor table (similar to ARP tables) on every
forwarding engine to route packets to the RP and multicast
data to the subscribers (see Fig. 15). On the RPs, we also
add logic for expansion based on the graph-based namespace.
The graph is implemented using a hash table whose key is
the parent name and the value is a list of descendant names.
A breadth-first search (BFS) is performed for each packet
reaching the RP. To maximize throughput, we use lock-free
data structures [51] and use read-copy-update (RCU) [52] on

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAHANIAN et al.: GRAPH-BASED NAMESPACES AND LOAD SHARING

Routing Table
=» RP1 NAl
=»| RP2
ame Expansion Table Neighbor Table
@ orly) Next Hop Addr | Port/MAC
Name‘ Chidren Subscripti NA1 1/9B:29:48:0A:B4:A9 [P
Gl G2.G3 iption Table
G2 Name ‘ Next Hop Addr j NA2 2/8A:D7:34:8A:7TD:3E |
Gl NAI, NA2 NA3 1/CB:CB:84:2:6A:5E
G2 NA2, NA3 j
[
Fig. 15. Data structures and data flows in the POISE implementation.

Blue: upstream publication packet with destination=RP1; Red: downstream
publication with name=G?2; Green: publication with name=G1 expanded at
the RP (flow after subscription table omitted).

the data entries. To further reduce the latency for multiple hash
calculations, we adopt the technique of “chasing pointers”. For
example, in the routing table in Fig. 15, the value of name rRP1
is NA1l. When a data packet with destination=RP1 reaches the
forwarding engine, the forwarding engine has to perform a
hash lookup for RP1 in the routing table and another hash
lookup for NA1 in the neighbor table to determine the outgoing
interface and the MAC address to encapsulate the packet (the
blue flow in the figure). This involves 2 hash lookups. In our
implementation, instead of writing the value of NA1l in the
routing table, we have a pointer pointing to the neighbor table
entry of NA1l. When the data packet reaches the forwarding
engine, we only need to perform 1 lookup (in the routing
table) and follow the pointer to get the outgoing port and MAC
address. We thus save the second hash calculation and table
lookup. This technique reduces the overhead dramatically on
the RPs where multiple lookups have to be performed for the
name expansion table in BFS.

We perform micro-benchmarks on the implementation using
servers in the ORBIT testbed [53]. The machines use Intel
Xeon E5-2640 CPU @2.4GHz (20-cores, hyper-threading
turned off) with 256GB of memory, and a Mellanox MT27710
25 Gbps NIC that supports DPDK. We schedule our program
on cores 10-19 to prevent cross-NUMA node accesses. We
are able to forward ~15.3 million packets per second (Mpps)
when dealing with upstream packets (of 64 Bytes in size). For
downstream packets, we are able to achieve similar perfor-
mance when there is only a single next-hop downstream. When
there are additional next-hops downstream, the performance
drops dramatically (down to serving ~4.1Mpps incoming
packets for 2 next-hops, and ~3.2Mpps incoming packet for
3 next-hops). This is mainly due to the overhead of DPDK
copying packets or the use of multi-segment packets depending
on the replication solution we choose. In comparison, the over-
head for name expansion, which we observe on the RP module
is much higher. Performing the name expansion on a random
graph with 128 names, the processing rate only achieves
~0.8Mpps, even with only 1 next-hop. This demonstrates the
necessity of limiting the namespace expansion only to the
information layer (otherwise, every single forwarding engine
has to behave like the RP module and suffer the performance
penalty). Then, with the approach such as POISE, we can
have multiple RPs in the network to share the load, as needed,
dynamically.

13

VII. CONCLUSION

We proposed POISE, an architecture for recipient-based
pub/sub for disaster management, supporting free-form
graph-based namespaces and automatic load splitting to elim-
inate traffic concentration based on a novel hybrid graph par-
titioning algorithm. Our simulation and micro-benchmarking
results show that POISE is efficient and scalable, compared
to alternatives: its graph-based namespace outperforms the
state-of-the-art hierarchical namespace of NDN [6]; its over-
all network architecture extends the recipient-based pub/sub
framework of CNS [5]; its partitioning outperforms the popular
graph partitioner METIS/ParMETIS [12]; POISE’s RP-based
name expansion is expected to outperform expansion at every
router.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), 2009, pp. 1-12.

[2] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
information networking further: From PSIRP to PURSUIT,” in Proc.
Int. Conf. Broadband Commun., Netw. Syst., 2010, pp. 1-13.

[3] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“COPSS: An efficient content oriented publish/subscribe system,” in
Proc. ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst., Oct. 2011,
pp- 99-110.

[4] M. Yuksel et al., “Cross-layer failure restoration of IP multicast with
applications to IPTV,” Comput. Netw., vol. 55, no. 9, pp. 2329-2351,
Jun. 2011.

[5] J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakrishnan, “CNS:
Content-oriented notification service for managing disasters,” in Proc.
3rd ACM Conf. Inf.-Centric Netw., Sep. 2016, pp. 122-131.

[6] L. Zhang et al., “Named data networking,” SIGCOMM Comput. Com-
mun. Rev., vol. 44, no. 3, pp. 6673, Jul. 2014.

[7]1 A. Venkataramani, J. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,
and S. Banerjee, “MobilityFirst: A mobility-centric and trustworthy
internet architecture,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 74-80, Jul. 2014.

[8] A. Afanasyev et al., “NFD developer’s guide,” NDN, Shanghai, China,
Tech. Rep. NDN-0021, 2018.

[9] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and
K. K. Ramakrishnan, “Comparison of naming schema in ICN,” in Proc.
IEEE Int. Symp. Local Metrop. Area Netw. (LANMAN), Jun. 2016,
pp. 1-6.

[10] J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakrishnan,

“G-COPSS: A content centric communication infrastructure for gaming

applications,” in Proc. IEEE 32nd Int. Conf. Distrib. Comput. Syst.,

Jun. 2012, pp. 355-365.

A. Pmar and B. Hendrickson, “Partitioning for complex objectives,” in

Proc. 15th Int. Parallel Distrib. Process. Symp. (CDROM), Washington,

DC, USA, 2001, pp. 1-7.

G. Karypis. (2013). METIS—Serial graph partitioning and fill-reducing

matrix ordering, version 5.1.0. University of Minnesota, Minneapolis,

MN, USA. [Online]. Available: http://www.cs.umn.edu/~metis

G. Karypis and K. Schloegel. (2013). ParMETIS—Parallel Graph Par-

titioning and Fill-Reducing Matrix Ordering, Version 4.0. [Online].

Available: http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

[14] Wikipedia. (2018). Tabu Search. [Online]. Available:
https://en.wikipedia.org/wiki/Tabu_search

[15] J. Seedorf et al., “The benefit of information centric networking for

enabling communications in disaster scenarios,” in Proc. IEEE Globe-

com Workshops (GC Wkshps), Dec. 2015, pp. 1-7.

B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content

based routing with Elvind,” in Proc. AUUGK, 2000, pp. 1-11.

Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an internet-scale XML

dissemination service,” in Proc. 30th Int. Conf. Very Large Data Bases,

2004, pp. 612-623.

S. Mukherjee, F. Bronzino, S. Srinivasan, J. Chen, and D. Raychaudhuri,

“Achieving scalable push multicast services using global name resolu-

tion,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016,

pp. 1-6.

(11]

[12]

[13]

[16]

[17]

[18]

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

J. Chen, M. Jahanian, and K. K. Ramakrishnan, “Black ice! Using
information centric networks for timely vehicular safety information
dissemination,” in Proc. IEEE Int. Symp. Local Metrop. Area Netw.
(LANMAN), Jun. 2017, pp. 1-6.

(2019). Wikipedia: Outline of Knowledge. [Online].
https://en.wikipedia.org/wiki/Portal:Contents/Outlines

R. Angles and C. Gutierrez, “Querying RDF data from a graph database
perspective,” in Proc. Eur. Semantic Web Conf., 2005, pp. 346-360.
(2019). Kubernetes. [Online]. Available: https://kubernetes.io/

D. Di Sarli and F. Geraci, “GFS: A graph-based file system enhanced
with semantic features,” in Proc. Int. Conf. Inf. Syst. Data Mining
(ICISDM), 2017, pp. 51-55.

A. E. Feldmann and L. Foschini, “Balanced partitions of trees and
applications,” Algorithmica, vol. 71, no. 2, pp. 354-376, 2015.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, Aug. 1999.

A. Bhatele, S. Fourestier, H. Menon, L. V. Kale, and F. Pellegrini,
“Applying graph partitioning methods in measurement-based dynamic
load balancing,” Lawrence Livermore Nat. Lab., Livermore, CA, USA,
Tech. Rep. LLNL-TR-532851, 2012.

L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Goldilocks: Adaptive
resource provisioning in containerized data centers,” in Proc. IEEE 39th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 666—677.

I. Stanton and G. Kliot, “Streaming graph partitioning for large distrib-
uted graphs,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), 2012, pp. 1222-1230.

E. Rolland, H. Pirkul, and F. Glover, “Tabu search for graph partition-
ing,” Ann. Oper. Res., vol. 63, no. 2, pp. 209-232, Apr. 1996.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: An experimental evaluation; Part
1, graph partitioning,” Oper. Res., vol. 37, no. 6, pp. 865-892, Dec. 1989.
B. Ucar and C. Aykanat, “Encapsulating multiple communication-cost
metrics in partitioning sparse rectangular matrices for parallel matrix-
vector multiplies,” STAM J. Sci. Comput., vol. 25, no. 6, pp. 1837-1859,
Jan. 2004.

I. Moulitsas and G. Karypis, “Partitioning algorithms for simultaneously
balancing iterative and direct methods,” Dept. Comput. Sci., Minnesota
Univ. Minneapolis, Minneapolis, MN, USA, Tech. Rep. 04-014, 2004.
R. H. Bisseling and W. Meesen, “Communication balancing in parallel
sparse matrix-vector multiplication,” Electron. Trans. Numer. Anal.,
vol. 21, no. 1, pp. 47-65, 2005.

B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, Protocol
Independent Multicast—Sparse Mode (PIM-SM): Protocol Specification
(Revised), document RFC 4601, Aug. 2006.

Y.-D. Lin, N.-B. Hsu, and C.-J. Pan, “Extension of RP relocation to
PIM-SM multicast routing,” in Proc. IEEE Int. Conf. Commun. Conf.
Rec. (ICC), Jun. 2001, pp. 234-238.

M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based
namespaces and load sharing for efficient information dissemination
in disasters,” in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP),
Oct. 2019, pp. 1-12.

A. Tagami et al., “Name-based push/pull message dissemination for
disaster message board,” in Proc. IEEE Int. Symp. Local Metrop. Area
Netw. (LANMAN), Jun. 2016, pp. 1-6.

H. M. A. Islam, D. Lagutin, A. Lukyanenko, A. Gurtov, and
A. Yli-Jadski, “CIDOR: Content distribution and retrieval in disaster
networks for public protection,” in Proc. IEEE 13th Int. Conf. Wireless
Mobile Comput., Netw. Commun. (WiMob), Oct. 2017, pp. 324-333.
E. Monticelli, B. M. Schubert, M. Arumaithurai, X. Fu, and
K. K. Ramakrishnan, “An information centric approach for communi-
cations in disaster situations,” in Proc. IEEE 20th Int. Workshop Local
Metrop. Area Netw. (LANMAN), May 2014, pp. 1-6.

C. Giindogan, P. Kietzmann, T. C. Schmidt, and M. Wihlisch,
“Information-centric networking for the industrial Internet of Things,”
in Wireless Networks and Industrial IoT. Cham, Switzerland: Springer,
2021, pp. 171-189.

M. Zhu et al., “CCDN: Content-centric data center networks,”
IEEE/ACM Trans. Netw., vol. 24, no. 6, pp. 3537-3550, Dec. 2016.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol. (MSST), May 2010, pp. 1-10.

S. Shannigrahi, C. Fan, and C. Partridge, “What’s in a name?: Naming
big science data in named data networking,” in Proc. 7th ACM Conf.
Inf.-Centric Netw., Sep. 2020, pp. 12-23.

Available:

[44]

[45]

[40]
[471

[48]

[49]

[50]

[51]

[52]

[53]

IEEE/ACM TRANSACTIONS ON NETWORKING

M. Jahanian and K. K. Ramakrishnan, “Name space analysis: Verifi-
cation of named data network data planes,” IEEE/ACM Trans. Netw.,
vol. 29, no. 2, pp. 848-861, Apr. 2021.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 4, pp. 15-26, Aug. 2004.

Poise Simulator. Accessed: Mar. 18, 2021. [Online]. Available: https://
github.com/SAIDProtocol/NetworkSimulator

GDdata. Graph Drawing. Accessed: May 21, 2018. [Online]. Available:
http://www.graphdrawing.org/data.html

R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in Proc. 2nd ACM SIGCOMM
Workshop Internet Measurment (IMW), 2002, pp. 231-236.

Wikipedia. Category: Disaster Management. Accessed: May 21, 2018.
[Online]. Available: https://en.wikipedia.org/wiki/Category:Disaster_
management

Data Plane Development Kit. Accessed: Jun. 25, 2020. [Online]. Avail-
able: https://www.dpdk.org/

24. Hash Library—Data Plane Development Kit 20.08.0-RC2
Documentation. Accessed: Jun. 25, 2020. [Online]. Available:
https://doc.dpdk.org/

guides/prog_guide/hash_lib.html

6. RCU Library—Data Plane Development Kit 20.08.0-RC2 Docu-
mentation. Accessed: Jun. 25, 2020. [Online]. Available: https://doc.
dpdk.org/guides/prog_guide/rcu_lib.html

D. Raychaudhuri et al., “Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols,” in Proc. IEEE
Wireless Commun. Netw. Conf., vol. 3, Mar. 2005, pp. 1664-1669.

Mohammad Jahanian received the B.S. degree
from the University of Tehran in 2012 and the M.S.
degree from the Sharif University of Technology
in 2014. He is currently pursuing the Ph.D. degree
with the University of California, Riverside. His
current research interests include information-centric
networks, formal verification, and distributed
systems.

Jiachen Chen received the B.E. and ML.E. degrees in
software engineering from Fudan University, China,
in 2007 and 2010, respectively, and the Ph.D. degree
in computer science from the University of Got-
tingen in 2015. He is currently a Post-Doctoral
Associate with the WINLAB, Rutgers University.
His research interests include information-centric
networks (ICN), the Internet of Things (IoT), cloud
computing, and network management.

K. K. Ramakrishnan (Fellow, IEEE) received the
M.Tech. degree from the Indian Institute of Science
in 1978 and the M.S. and Ph.D. degrees in computer
science from the University of Maryland, College
Park, USA, in 1981 and 1983, respectively. He is
currently a Professor of computer science and engi-
neering with the University of California, Riverside.
Previously, he was a Distinguished Member of
Technical Staff with AT&T Labs-Research. Prior to
1994, he was a Technical Director and a Consult-
ing Engineer in networking with Digital Equipment

Corporatlon From 2000 to 2002, he was a Founder and the Vice President
with TeraOptic Networks, Inc. He has published over 300 papers and has
185 patents issued in his name. He is an ACM Fellow and an AT&T Fellow,
recognized for his fundamental contributions on communication networks,
including his work on congestion control, traffic management, and VPN
services.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:30:32 UTC from IEEE Xplore. Restrictions apply.

