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Name Space Analysis: Verification of Named Data
Network Data Planes

Mohammad Jahanian

Abstract— Named Data Networking (NDN) has many forward-
ing behaviors, strategies, and protocols to enable the benefits of
Information-Centric Networking. This additional functionality
introduces complexity, motivating the need for a tool to help
reason about and verify that basic properties of an NDN data
plane are guaranteed. This paper proposes Name Space Analysis
(NSA), a network verification framework to model and analyze
NDN data planes. NSA can take as input one or more snapshots,
each representing a state of the data plane. It then provides
the verification result against specified properties. NSA builds
on the theory of Header Space Analysis, and extends it in a
number of ways, e.g., supporting variable-sized headers with
flexible formats, introduction of name space functions, allowing
for name-based properties such as content reachability and name
leakage-freedom, and multi-snapshot verification such as equiv-
alence checks. These important additions reflect the behavior
and requirements of NDN, requiring modeling and verification
foundations fundamentally different from those of traditional
host-centric networks. As a case study, we show how NSA can
detect name space conflicts in NDN, which can be often hard
to catch. Leveraging the learning from this study, we outline
a conflict detection and resolution protocol and a name space
registry to avoid such conflicts. We have implemented NSA and
identified a number of optimizations to enhance the efficiency of
verification. Results from our evaluations, using snapshots from
various synthetic test cases and the real-world NDN testbed, show
how NSA is effective, in finding errors, has good performance,
and is scalable.

Index Terms—Named data networks, network verification.

I. INTRODUCTION

AMED Data Networking (NDN) [1], [2] provides
Na content-aware network layer where information is
accessed over the network without necessarily focusing on
its location or the underlying mechanisms used to retrieve
that information. To enable this location-independence, NDN
supports name-based forwarding, and in-network caching,
thereby improving performance and availability. NDN routers
primarily rely on a Forwarding Information Base (FIB), Con-
tent Store (CS) and Pending Interest Table (PIT) with reverse
path forwarding to deliver Data associated with an Interest [2].

The flexible structure of NDN supports a wide variety of
network functions and applications. On top of basic PIT,
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CS, and FIB checks, additional packet processing such as
forwarding hint processing [3], rate-based forwarding [4], and
hyperbolic forwarding [5] have been adopted and incorporated
into the standard NDN Forwarding Daemon (NFD) [6]. Addi-
tionally, a number of useful extensions to the core NDN packet
processing have been proposed in the literature to potentially
be part of any NDN network, such as path switching [7],
Interest anonymization [8], [9], name resolution [10], cache-
aware forwarding [11], efc. While these network functions,
whether deployed in separate middleboxes or softwarized into
a basic ICN router, make NDN powerful, they may make
the network’s data (forwarding) plane, more complex. As a
result, it is very useful to ensure that the data plane, i.e.,
the forwarding and processing rules for packets, is correct.
To tackle this, an automated framework to model and verify
NDN network data planes would be highly desirable.

Network verification [12]-[21] is an active research area,
useful in analyzing large, complicated networks in order to
ensure a network is free of bugs and corner-case errors,
investigating essential properties such as reachability and
loop-freedom. Data plane verification focuses on analyzing
a particular (e.g., the current) forwarding state, i.e., data
plane, of the network. These tools normally rely on a formal
foundation that covers a large space of possibilities. They can
be automated and applied to network snapshots, representing
the data plane. While these tools have focused on IP networks
and are powerful in verifying host-centric properties, they
can be extended and integrated for use in an ICN-based
environment such as NDN.

We propose Name Space Analysis (NSA), a framework
for modeling and verification of NDN data planes. NSA is
based on the theory of Header Space Analysis (HSA) [13].
HSA uses a geometric view of packet headers, where each
packet header is generally modeled as a point in a space and
network functions transform that point to another one within
that space. Additionally, the ability to analyze a “space” rather
than a “single point”, makes this an efficient analysis approach.
This flexibility and efficiency make it a good formalism for
integration in the analysis of NDN. We add another geometric
space in NSA, namely the name space, and a new function,
name space function, that transforms a point in the header
space domain to a (collection of) point(s) in the name space
domain. We extend HSA by enabling flexible atoms and
variable-size wildcards to model headers (to support NDN-
specific packet formats [22]), and adding name spaces as an
essential part of the analysis. Analyzing name spaces in NDN
is necessary and very useful as they are key to accessing
content. We propose NDN-specific properties that can be

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:34:51 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2593-4961
https://orcid.org/0000-0003-1849-5155

JAHANIAN AND RAMAKRISHNAN: NAME SPACE ANALYSIS: VERIFICATION OF NAMED DATA NETWORK DATA PLANES 849

checked by NSA; e.g., in NDN we are interested in verify-
ing host-to-content reachability, rather than the host-to-host
reachability requirement expected of traditional host-centric
IP networks. NSA has a number of verification applications
(to prove key properties), namely content reachability test,
name-based loop detection, and name leakage detection. We
additionally support verification applications that go across
multiple snapshots to analyze changes between multiple states
(e.g., consistent producer mobility check) and report on their
equivalence. The complex structure of names in NDN may
cause issues, e.g., interfering prefix announcements by two
non-coordinated data producers, which can potentially lead to
blackholes. We call this name space conflicts and show how
NSA can identify them (§VIII-A). The importance of having
a name management method in NDN has been identified
in [23], [24]. Using the concepts of NSA, we propose a
name registration method that can catch and resolve such
conflicts in the data plane (§VIII-B). We implemented NSA
[25], including all the essential components of our design:
name atoms, set operations, transfer functions, state space
generation, and verification applications. We also identified a
number of optimizations, and evaluating our implementation
on synthetic snapshots and real-world NDN testbed snapshots
shows that NSA is effective, efficient and scalable (§VII).
Overall, the contributions of this paper are: 1) a framework
for verification of NDN data planes, focusing on the nature of
NDN, rather than the previous tools for host-centric architec-
tures; 2) modeling name spaces and name space functions,
as they are the main assets required to access content in
NDN; 3) specifying essential NDN-specific properties and
approaches to analyze them (content reachability test, name-
based loop detection, name (space) leakage detection, and
cross-snapshot equivalence checks); 4) studying the practical
issue of name space conflicts in NDN and guidelines for a
conflict detection and resolution engine; 5) an implementation
of NSA [25] with its optimizations; and 6) demonstrating
NSA’s applicability to the real-world NDN testbed [26].

II. BACKGROUND AND RELATED WORK
A. Overview of Header Space Analysis

Header Space Analysis (HSA) [13] is a network data plane
verification tool used to model nodes and verify essential
properties. A network node is any packet processor that
performs in-network processing on a packet on its path. The
most important primitives in HSA are Header Space, Network
Transfer Function, and Topology Transfer Function.

Based on a geometric model, a Header Space H is an
L-dimensional space of packet headers, with L being the
upper bound on header length, in bits. One header is one
point in this L-dimensional space, consisting of 0’s and 1’s.
A special wildcard bit ‘x’ can be used to form a header
space that constrains only certain bits. HSA defines primitive
set operations (union, intersection, efc.) to manipulate header
spaces.

Using these operations and conditionals, we can define
Transfer Functions. A Network Transfer Function 7" models
the packet processing done by a network node. Function

T(h,p) takes as input a header space and incoming port, and
produces a new (h',p’) pair denoting what header space will
be produced as output, and which port it has to go out of.

The Topology Transfer Function I' models link behavior.
Assuming the link is up and working, this function basically
relays the header, unchanged, from the output port of one node
to the input port of the next node, assuming the two ports are
connected by this link. Using a long-lived snapshot, we can
model a topology of fixed, wired links, while a sequence of
short-lived snapshots may be used to capture the effects of a
mobile, wireless environment.

Using the aforementioned building blocks, HSA provides
algorithms to check the following properties in a network con-
figuration: Reachability Analysis, Loop Detection, and Slice
Isolation. The analyses typically consist of an initial header
space injected to a (set of) network node(s). The higher the
coverage of these header spaces, the more thorough the search
will be. Usually for a full analysis, initial header spaces of all
wildcard bits are injected. Reachability analysis gives all the
headers that a node B receives, starting from an initial header
space injected at a node A. For loop detection, the history
of a header space is checked, to see whether or not (a part
of) it has visited a node more than once. Slice Isolation uses
header spaces flowing in and out of critical network nodes,
to ensure certain traffic stays within a private network slice,
e.g., a VLAN, and does not leak to another slice.

B. Network Verification and NDN Diagnostics

Network verification aims at analyzing large, complicated
networks in order to find corner case errors and investigate
essential properties. There have been efforts to build models
to describe and verify networks. For the purpose of building
verification frameworks, some works focus on analyzing con-
trol plane (to analyze all data planes caused by configurations)
and some on data plane (to analyze the current state of
the network). Computational feasibility and full verification
coverage are challenges of control plane verification [17], [27].
We focus on data plane verification in this paper. Some of
the more notable data plane verification tools are Anteater
[12], HSA [13], VeriFlow [16], and NetPlumber [14]. These
methods typically consist of snapshot-based static checking.
Anteater [12] models the data plane as a set of boolean
expressions and runs a SAT solver to verify invariants. HSA
[13] uses a geometric view of packet headers, not making
any presupposition about what each packet header element
represents, thus making it a flexible model for integration for
new network architectures. Some verification tools additionally
support real-time checking of network policies of Software-
Defined Networks (SDN) such as VeriFlow [16] and Net-
Plumber [14]. These methods leverage and rely on control
update messages issued by the centralized SDN controller for
fast, incremental checking of network data planes. Thus, they
can react to changes before those changes are applied to every
one of the associated routers. Our proposed model is a generic
one, with no assumption on how the network is managed.
However, if we have NDN integrated with SDN, real-time
verification using control update messages may be leveraged.
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Work in [17], [20] propose data plane equivalence checks.
While they focus on equivalence pertaining to host-centric
properties, NSA can check information-centric equivalence,
e.g., checking if the same subset of the content namespace of
a particular content provider is reachable in two (or multiple)
data plane snapshots. This is important since we may need to
have multiple snapshots each with the desired differences, and
compare them against each other, i.e., cross checks, where the
goal is not to conform to an external property, but rather to
compare against a complete, separate snapshot in time [20].

An important prerequisite of data plane verification is col-
lecting the current state of the data plane in the form of a
snapshot. Based on how the network is managed, different
methods can be used for this collection procedure. With
traditional non-SDN networks, methods such as SNMP [28],
NETCONF [29] or node-specific terminals [30], can be used to
collect FIBs and topology information. NDNconf [31] presents
an NDN-ized version of NETCONEF, to collect NDN-specific
FIBs. In addition to the capability of querying, NDNconf
allows for a push-based notification of changes in the network
state to management servers, which helps with real-time
collection of up-to-date snapshots. SDN-controlled networks
can support a more efficient snapshot collection by monitoring
the forwarding rule updates (insert, modification or deletion)
on the southbound interface [32]. Snapshot collection and
verification are two logically independent procedures. NSA
focuses on the verification component, while leveraging the
complementary support of these snapshot collection methods.

Our work presents an NDN-specific verification framework.
Diagnostic tools such as Ping [33] and Traceroute [34]-[37]
have been proposed and developed for NDN. While these
tools are very helpful for performance measurements and
small-scale connectivity checks, they are often limited in
high-coverage checks across the network in a scalable way,
and also use network resources. Thus, a formal approach
gives us a higher level of flexibility and coverage for property
checking [13].

III. OVERVIEW OF NSA

Fig. 1 shows the overall functionality provided by NSA,
what specific building blocks it proposes, and the ways in
which it extends and integrates HSA for NDN. HSA leverages
a number of functions, using header primitives to enable
verification. Each verification application analyzes a particular
network property. As Fig. 1 shows, NSA is designed to be
modular, so it can be extended to support additional verifica-
tion applications.

HSA is most suitable for analysis of protocols with headers
having fixed formats, e.g., IP packet headers, where (manda-
tory) fields have fixed sizes and positions, according to the
protocol version. Since this is not the case for NDN packets
[22], we develop NSA to support the modeling of NDN-style
flexible headers with variable fields. NSA introduces variable-
length wildcard elements to enable modeling NDN’s header
space. Also, we change HSA’s bit-based header space model-
ing to a flexible atom-based one. Atoms can be bytes (octets),
fields, or names. This allows us to reasonably model how NDN
packets are encoded, at the desired level of abstraction.
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Fig. 1. Overall framework of NSA.

While utilizing HSA network and topology functions, NSA
also proposes a Name Space Function, which enables trans-
forming a header space into a name space, which is an
essential part of a content-oriented network. Details of NSA
elements are provided in §IV. Using this function, a wide
variety of name-based network properties can be reasoned
about. Almost all of the HSA verification applications can
also be used to analyze NDN. However, there are additional
properties, specific to an ICN/NDN, that need to be addressed.
This necessitates a verification tool that takes NDN specifics
and intents into account. To this end, we introduce some
applications that use these additional properties in NSA,
namely Content Reachability Test, Name-based Loop Detec-
tion and Name Space Leakage Detection. These properties
focus on the specifics related to the NDN architecture, and how
consumers interact with named content. Additionally, NSA
supports Cross-Snapshot Equivalence Check, which takes as
input multiple snapshots (states of the data plane), and can
be used to check a variety of properties, e.g., consistent NDN
producer mobility. Details of NSA’s verification applications
are provided in §V.

NSA, just like HSA and other data plane verification
approaches, focuses on a snapshot, and models how the state
of packets change with regards to a given network state, but
not how the state of the network itself changes. In other words,
NSA reads and writes to state at a packet-level, as explained in
§V (Fig. 3(b)), and only reads from state at the network-level.
Thus, it focuses on a set of properties that are dependent on a
particular state of the network, and not on how other packets
may change it. The properties cover all packets and their paths
in the network state. However, this is still a huge improvement
in terms of coverage of analysis compared to existing solutions
[33]-[37], and allows for important classes of properties such
as reachability and loop-freedom [12], [13]. At any state of
the network (except for temporary transient states, perhaps),
each content must be correctly reachable from anywhere, and
packets must not loop. Modeling the transition of network
state from one data plane state to another will require control
plane verification approaches as well. It is feasible to analyze
a finite, limited number of data plane snapshots (e.g., NSA’s
cross-snapshot equivalence check), each representing a state of
the network, by successively running NSA on those snapshots.
An example of multi-snapshot verification is checking if the
network’s handling of producer mobility is correct (§V-D).
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Fig. 2. Overall procedure of NSA.

Overall NSA procedure. We outline the procedure in
outlined in Fig. 2. It consists of the following:

o The data plane information is fed to NSA as inputs con-
taining Topology (i.e., the links’ information), Node Rules
(such as FIB rules or PIT state at routers), and Name
Trees at nodes. All these elements, combined, constitute
the current state of the network, inserted as a snapshot,
collected through the methods described in §II. If the
snapshot does not capture the full global information and
is only a subset, NSA focuses its verification on that
particular subset.

o After parsing these inputs, NSA models the data plane,
called a Network Space, by generating the representative
Name Spaces, and Transfer and Transform Functions,
to model node operations, links, and mapping between
headers and names.

o Another important input for NSA are Header Injections,
which trigger the verification procedure. These “headers”
are symbolic packets which can contain logical elements
such as wildcards. For a full test, we typically inject all-
wildcard headers at all node faces in the network.

o Based on the header injections and the generated network
space, NSA’s Automatic Verification Engine generates the
Propagation Graph, which is basically the state space
of all packet transitions and paths. The topology and
network rules existing in the collected snapshot will
dictate these transitions (if we want to consider changes in
the network space, we will have to collect new snapshots
and process them separately).

¢ NSA checks network-wide properties, such as loop-
freedom, content reachability, and name leakage-freedom,
by querying over the generated propagation graph. This
way, NSA provides the verification result and error report.

IV. NSA DESIGN
A. Modeling NDN Header Space

1) Atoms and Header Representation: The atoms of analy-
sis in HSA are bits, since some fields can be encoded as
single bits in IP. An NDN packet, on the other hand, is a
set of nested Type-Length-Value (TLV) codes represented as
octets [22]. Thus, the smallest possible atom in NSA is octets
(bytes). With byte-based atoms, NSA header representations
follow NDN’s TLV octet-based encoding. Other atoms could
be picked as well: e.g., if checking the correctness of TLV
encoding is not important in a particular analysis, atoms can
be NDN fields. With field atoms, NSA header representation
will be an XML-like structure. If only the name field needs

to be checked, atoms can be names. With name atoms, NSA
headers are represented as a combination of name components,
similar to NDN regular expressions [38]. Unlike HSA’s strict
use of bit atoms, NSA provides the flexibility of using byte,
field and name atoms for header representation. The correct
atom depends on the scope of verification and the desired level
of abstraction.

Unlike IP packet headers, NDN does not have a fixed header
with fixed fields at fixed positions. Interest and Data packets
have different types. Normally, an NDN Interest has only
headers; thus, we use the terms “packet” and “header” for
NDN interchangeably, throughout this paper.

NSA can model headers of any length; however, for the sake
of checking finiteness, an upper bound L (maximum header
length) has to be set. Still, headers of different lengths can
be processed together; variable-length wildcard atoms provide
the necessary padding to facilitate this.

2) Wildcard Expressions: In order to efficiently model and
process a header space rather than a single point, i.e., a single
header, we use special wildcard elements to represent atoms
that can take any possible value. Wildcard expressions are
supported by the set operation as we explain below.

Single-atom wildcard. Similar to the original HSA, albeit
using flexible atoms rather than only bits, we sometimes use a
wildcard of size one, denoted as “[?1”, and defined as [?] =
a; Uas U---Uay,, where a; is a possible value for an atom
and n is the number of possible values for an atom; e.g., with
byte atoms, we have n = 256.

Variable-length wildcard. Unlike IP headers, the NDN
header has a flexible format and there is no rule on how
much information should exist between two particular fields.
To efficiently incorporate this feature into NSA, we add a new
wildcard type: variable-length wildcard, denoted by “[*]1”,
which can be a wildcard of any size (zero or more atoms) up
to the size allowed for the maximum header length. Formally,

[*] =2gU [?]U[?][?]U... until length allowable by
L.

Note that the “[*]” wildcard is not currently part of the
NDN architecture [39]; we use it as part of NSA headers for
the model’s representation and verification efficiency, to be
used in a symbolic execution fashion, which we explain in
§V.

3) Set Operations: Set operations are important for manip-
ulating header spaces in order to model packet processing
through transfer functions. We use a similar algebra as HSA,
with the difference being that we use variable-length wildcards
and flexible atoms.

Union. This is the basic operation. For header spaces h;
and hs, header space h = hy U hsy contains all headers in hy
and hy. Result of union may or may not be simplifiable.

Intersection. For two headers to have a non-empty inter-
section, they should be of equal length and have the same
values (or wildcard element) at the same position. To convert
length, “[*]1” should be converted by an appropriate number
of “[?]’s”, as explained above. At the atom-level, we have
aNa = a, aN [?] = a. For two unequal atom values,
a1 Nas = [z]. Special atom “[z]” denotes an atom that has
zero possible values, i.e., null (empty). A header space h that
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has even one “[z]” is regarded as empty. Also, intersection
of any atom-string with an all-wildcard “[*]” header will be
the atom-string itself.

Complementation. Complement of non-wildcard atom a,
denoted as @, can take any values other than that of a.

Difference. Difference of two headers is defined as h =
hi — hy = hi N hsy. For example, with byte atoms, using these
set operators, we will have:

ab? —abc = ab? N (abc) = ab? N (abc Uabc Uabc U
abcUabcUabcUabe) = gUgUabcUgUgUZUY = abc

This basically means any three-byte string starting with
“/a/b” but not (i.e., minus) “/a/b/c”.

B. Modeling NDN Nodes

Packet processing in an NDN node uses Network Transfer
Functions, as T'(h, f) : T'(ho, fo) — {(h1, f1), (ha, f2),...}
where function 7" maps header hy coming to face fy, to all
headers hi, ho, etc., going out of faces f1, fo, etc. of the
node respectively. NSA’s transfer functions are at the level of
a face, rather than being port-level as in HSA. Domain and
range of NSA transfer functions are of the same type (both
Interest or both Data headers). Transitioning from Interest to
Data is not a part of NSA verification as it requires changing
the state of the data plane. Depending on the functionality
being modeled, function 7" may or may not change hg, and
may or may not depend on the incoming face fo. Any NDN
packet processing, including an NDN forwarding behavior, can
be modeled using (a set of) transfer functions.

For example, the transfer function for forwarding an Interest
as a result of the Longest Prefix Matching (LPM) on the FIB,
assuming there are two entries with indexes (prefixes) n; and
no in the FIB, can be written as:

Tl.fwd(h,f)
U(h, f'), if FIBM (name(h),n,),Vf" € SF(n1)
= s U(h, f'*), if FIBM (name(h),n2),Vf]"* € SF(n2)
a, otherwise

where the FIB is a collection of (prefix, set of faces) pairs;
assuming the use of LPM, the FIB match function FIBM ()
returns true for at most one FIB entry; and depending on
forwarding strategy, i.e., best route, efc., the function SF()
(selected faces) will return the appropriate corresponding
outgoing faces.

In general, a typical Interest processing transfer function
can be modeled as T7(.) = T7.fwa(Tr.cs(Tr.prr(.))). What
elements we put into a transfer function depends on our
architecture and the purpose of the analysis. For example,
if we have the assumption of the CS and PIT being empty
upon the arrival of an Interest, then we can simply have
Ti(.) = Tr.5wal.). Additional functions can be added to
the pipeline as well; more generally, as T, (T,—1(...T1(.)))
where each T; is a specific function (step) in the pipeline.
These functions include those that modify the incoming header
space as well. More example transfer functions, e.g., a packet
anonymizer transfer function, are provided in [40].

Generally, a condition on a header is modeled as a header
space (which may or may not have wildcard expressions)
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and the result depends on the output of a logic operation on
the incoming header and the condition. This depends on the
process and the condition and may in some cases be tricky.
E.g., for LPM checking, for a header to be forwarded out of a
face, the FIB entry index corresponding to that face has to be
a prefix of the header’s name (non-empty intersection) in the
Interest, and a longer FIB index must not be a prefix of that
header (empty intersection). For example, consider an NDN
node with FIB consisting of two rules “/a — f1” and “/a/b
— 2”. Given an all-wildcard input header, Interest headers
coming out of face f1 are those whose names start with “/a/”
(i.e., “/a/%”) and not with “/a/b” (i.e., “/a/b/*").

C. Modeling Name Spaces

We add the notion of name spaces as a key component of
our analysis approach. Name spaces show relations between
content names, in a content repository and across the network.
They are an important part of NDN, and NSA factors them
carefully in its analysis. As far as NSA is concerned, a name
space is any structure representable by a graph. We assume
a special case of that, namely NDN-style hierarchically struc-
tured tries (prefix trees).

Formally, a name space in NSA represents names and
their relations, and is a domain separate from the header
space domain. A name space function, transforms a point in
the header space domain to a name space domain, i.e., its
corresponding name(s). Name space function () is introduced
in NSA. It transforms a (set of) header space(s) (after parsing
it to the individual name parts) to a name space. In particular,
Q() performs the following two steps on an input header space
h: 1) extracts the (prefix) names associated with h, 2) provides
the reverse construction of the prefix tree from the list of
prefixes derived in step 1. This resulting prefix tree is the
name space, used in NSA verification applications. It is worth
mentioning that in this case, since the name space is generated
from an L-bound header space (via €2()), the height of the
name space will be at most L. This does not take away any
generality from our analysis: even though a name tree can be
potentially infinite, any name component that is beyond the
limit of an Interest size cannot be expressed and thus cannot
be reached. Thus, they are not visible to the outside world (in
other words, we cannot define a “reachability” requirement for
them), and can be safely omitted from our verification.

V. USING NSA FOR VERIFICATION

We present a number of verification applications of NSA.
Specifically, we look at the important applications of testing
content reachability, loop detection and name leakage detec-
tion. NSA provides significant benefits both for verification
results and its efficiency compared to simulation-based tests.

An important part of NSA’s formal verification approach
that facilitates automated checking is the generation and
analysis of the state space, or propagation graph. The graph
represents all possible paths any packet can take, rather than a
single trace that a simulation-based approach would support.
This provides the desired coverage we need for verification.
An example is shown in Fig. 3. Each node in this propagation
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(a) Topology and header spaces
Fig. 3.

(b) Propagation graph

Propagation graph example.

graph is a state, mainly consisting of a header and a face,
denoting the arrival/departure of the header to/from the face.
Depending on the specific application, there can be additional
state information, such as a visited nodes list, e.g., for loop
detection. We record as much information within a state (e.g.,
list of visited nodes) as needed, so that checks could be done
by looking at the state only, so that extra processing on the
graph would not be necessary (e.g., checking all ancestors
of a state by traversing paths). The initial states, i.e., parent-
less nodes in the graph, represent injections to the network.
For example, in Fig. 3, the propagation graph (Fig. 3(b))
implies that header hO is injected to face A0 of node A
(as shown in Fig. 3(b) as well). State transitions in the
propagation graph can be through network transfer functions
(i.e., processing packets within a node) represented by single
arrows in Fig. 3(b), or topology transfer functions (i.e., moving
over physical links) shown by double arrows.

While NSA can be used for both Interest and Data packets,
we focus on Interests in the remainder of this paper. As pointed
out in [6], Interest processing is more complicated than Data
processing: it has longer, more complicated pipelines, has
additional procedures such as forwarding strategy selection,
and its forwarding decisions are made through the result
(i.e., FIB) of complicated distributed algorithms (i.e., routing
protocols). All these motivate more careful attention.

A. Content Reachability Test

Reachability analysis in HSA, and other host-based verifica-
tion solutions, focuses on host (content provider) reachability.
We extend this to content (name space) reachability in NSA,
since this is a main concern in NDN. This analysis generates
name spaces that can reach content repositories, i.e., at pro-
ducers or content stores. To this end, we apply a name space
function on the header space received at a content repository:

CRa_p(h,f)
= U A—B paths{Q(Tn(F(Tn—l(' - F(Tl (ha f))))))}

where C'R denotes the content reachability function, its range
being all the content names, in form of name spaces, received
at content repository B, having injected h at face f of A,
and functions 7; and I'; being switch network and topology
transfer functions on the path, respectively. Function €2 is the

Q(hs) Compare
@ —
Fig. 4. Content reachability test.

name space function that transforms header spaces to name
spaces.

A big part of name space reachability analysis is comparing
the received name space request, i.e., NS’ = Q(hp) with
the hosted (actual) name space NS} hos at node B, where B is
a content provider (or a router equipped with a content store).
Ideally, we desire both name spaces, NS7? and NS to
be equal. Generally, there can be three cases possible when
comparing NS and N Shes:

1) If part of NS%" is not in N.S%°* (Case 1: unsolicited
names), it means B would receive Interests for names
the node does not have, i.e., those packets get black-
holed.

2) If part of N.S%°% is not in NS%¥ (Case 2: unreachable
names), part of B’s name space is untouched, i.e.,
requests for them would never be received. Cases 1 &
2 need not be disjoint.

3) If neither of the cases occur, verification is successful,
ie., NShs = NS (Case 3).

The process is exempllﬁed in Fig. 4, where header space
h4 injected at host A traverses nodes (e.g., routers) with
transfer functions T and T’ where the header space hp gets
transformed and compared with the content name space at B.
Node B can generally be any node in the network that has the
capability of storing and serving content, be it a content pub-
lisher or an ICN-capable router with content store. The pseudo
code is provided in [40] and has the following use cases:

o Content censorship-freedom. Censorship leads to con-
tent reachability errors; e.g., in Fig. 5, censoring node
R may drop all interests for “/democracy” [8]. This
would result in (all or part of) content provider P’s
name space to be unreachable. This is an undesired effect
that can easily be detected by NSA. While NSA cannot
definitively deduce that such a problem is caused by
content censorship, the lack of existence of such errors
would imply content censorship-freedom. Furthermore,
the effectiveness of a censorship countermeasure mecha-
nisms can be checked using NSA.

o Content neutrality. We define Content Neutrality as not
favoring a content provider over another (by not discrim-
inating), with regards to same prefixes that they serve.
An example of content neutrality violation is shown
in Fig. 6, where content provider P3’s served name
space “/news” is not reachable, even with the Interest
going through nodes with multicast forwarding strategies
enabled (which are supposed to send Interests towards the
direction of all potential content providers.) Here, router
R (which can be part of an ISP) is discriminating by
favoring P1 and P2, over P3, for Interests requesting
name “/news” (all three may be news organizations,
thus producers). With multicast forwarding strategy at

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 30,2021 at 22:34:51 UTC from IEEE Xplore. Restrictions apply.



854

Pserves

/democracy/* « »
- ‘/democracy’

/democracy/*
/—f
L
R drops “/democracy”

Fig. 5. Content censorship example.

P1, P2 and P3 all

serve “/news’

/news/* /news/*

R multicasts “/news” towards
P1 and P2, but not P3

Fig. 6. Content neutrality violation example.

every router for every prefix, NSA can check whether all
content providers receive Interests matching their entire
name space, for every ‘all-wildcard’ injection. While
NSA cannot detect if a reachability error is caused by
discriminatory neutrality violation or benign configura-
tion mistakes, an error-free data plane could be used to
show if content neutrality holds.

A number of other use cases of NSA’s content reachability
test, e.g., checking route computation outcome correctness,
and security infrastructure soundness are provided in [40].

B. Loop Detection

Loop freedom is an important property in networks. For
NDN in particular, looping Interests is a widely known issue,
which led to the addition of extra processes in the forwarding
pipelines, such as a Dead Nonce List [6]. While such reactive
measures detect looped Interests after they occur, looped
Interest would not be prevented and could potentially waste
a large amount of network resources. Also, it is very likely
that an Interest is looping because it is not satisfied; i.e., did
not reach its intended content provider(s) due to errors in
the forwarding state of the network. As a result, making a
local decision at an NDN router to discard or drop a looping
Interest does not solve the problem of unsatisfiability of certain
Interests. Thus, it would be highly desirable to detect all
potential loops in a data plane, before they occur, with a
holistic view of the network data plane.

NSA helps in identifying all Interests that might potentially
loop. NSA typically does this by injecting all-wildcard headers
and looking for possible loops. Thus, we can track every
possible Interest and find all potential loops by following FIB
rules established in a given data plane. We therefore achieve
a purely name-based loop detection, rather than a nonce-
based detection. NSA models the transition of all packets
within a single data plane snapshot, thus enabling a robust
loop detection algorithm (as does HSA [13]). As all FIB rules
causing the loops are contained in one single snapshot and it is
possible to analyze them with transitioning packets (headers),
NSA can catch all potential loops.

The loops detected can be potentially infinite or finite. Sup-
pose node A appears twice in a single path in the propagation
graph, visiting two header spaces h and h’ (in that order);
if b’ C h, then this would be a potential infinite loop. An
example is shown in Fig. 7, where NSA first detects a loop
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Header: hO = “/*”

o
- N Face: DO
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(b) Propagation graph

/pl‘efiX FIB rule for “/prefix” and

—>

its output face direction

(a) Topology, injection, and FIB rules

Fig. 7. Loop detection example.

(as node A appears twice in one particular path), and second,
it determines the loop to be infinite, checking the header spaces
h and h' associated with the visits, where headers with name
“/a/b/«” return back to node A. Having h'Nh = & implies a
certainly finite, thus non-hazardous, loop which NSA ignores.
By adding the history of each state to NSA, i.e., the sequence
of headers and faces, NSA can easily detect infinite loops by
checking whether a particular header space (subset) has been
visited by a node twice or not.

C. Name (Space) Leakage Detection

What if a consumer issuing an Interest for a particular name,
wishes (parts of) the name, e.g., his ID or a particular content
name, to not be visible in the network except for certain
authorized nodes, e.g., those in his home network? This can
be a desirable property for a variety of reasons. Works such
as [9] have identified the need for Interest name privacy.

In NSA, inspired by HSA’s slice isolation check, we can
check whether or not any confidential name leaves a particular
set of nodes authorized for read-access. Let us call this set of
nodes as a zone. A zone can be a particular router, a local
network, a service provider network, efc.

Let us consider the example in Fig. 8: Consumer C' issues
Interests with header hg, which results in headers hy, ho
and hg leaving the authorized zone of routers, denoted as
Z1. We define all the headers going out of Z1 as hyy =
h1 U ho U hg. NSA allows us to define and apply access
control rules on names in a number of ways, and check name
constraints on h,,; accordingly, e.g., the following examples:

o Headers of particular form, e.g., containing a particular
name component, should not appear in any packets leav-
ing or entering zone Z1. Then we should have h,,; N
hprohivitea = &, where the left-hand side of the equation
denotes the intersection of all headers leaving Z1 with all
prohibited headers. Prohibited headers can be built using
NSA’s atoms and algebra, as described in §IV. The “@”
on the right-hand side means that we do not want any
header in the result of the intersection to leave Z1.

o Packets associated with name space N.Sj should not leave
Z1; then we should have Q(hout) N NSy = @. This
way of defining a rule is more efficient for a larger set
of prefix-suffix name relations representing a portion of
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g

Fig. 8. Name leakage detection example.
a name space graph: instead of checking many prefixes
one by one, we can check once against name space IN.Sp
comprising all those prefixes.

D. Cross-Snapshot Equivalence Check

The applications above focused on checking properties
within a single snapshot of the data plane, ie., a single
state. However, in many cases we may wish to check prop-
erties across multiple snapshots. An important class of multi-
snapshot checks is to do a comparison between two (or more)
separate snapshots of the network. NSA enables a Cross-
snapshot Equivalence Check. A pair of snapshots may be fed
as inputs and we can check the equivalence between the two
with a custom notion of equivalence. The two snapshots can
represent two versions of a data plane, or different states of the
same data planes at two different points in time (collected at
certain intervals or triggered by certain events). In particular,
our goal is to check how the point of attachment of a producer
affects its content reachability. Ideally, we want it to have
no effect. While single-snapshot analysis checks a snapshot
against an external property as a reference (e.g., content reach-
ability), cross-snapshot analysis checks a snapshot against
another snapshot, i.e., the reference snapshot, and makes sure
the two are equivalent. This can be defined as sl =gp s2,
where s1 and s2 are the two comparable snapshots and EP
is the case-specific equivalence property, i.e., the notion of
equivalence we want to check, by comparing the snapshots
provided. We explain this by way of an example.

Example use case: Producer Mobility Correctness.
Mobility is a major feature of NDN. However, especially when
it comes to producer mobility, handling it in a correct way (i.e.,
making sure the producer’s content reachability properties stay
the same after the mobility and network re-convergence) can
be quite challenging [41]. We can use NSA’s Cross-snapshot
Equivalence Check to check this correctness property.

Let us consider two snapshots sl and s2 of an NDN
network, where s1 and s2 are identical in every way except
that the network point of attachment of producer P is different
in the two snapshots, as depicted in Fig. 9. In other words, state
s1 is collected before P’s move and s2 is collected after P
has moved. The state in the network (i.e., FIBs in the routers)
has been re-populated and routing convergence, according to
the protocol, has been partially or completely achieved.

Now Let us assume that we want to make sure that P’s
name space reachability in s2 is exactly equal to that in sl.
That would be our desired equivalence property. To check
this, we use the Content Reachability function as described
in §V-A. We produce CR:! , and CR$% L, which provide
all names reached at P (from any starting node ) in s1 and s2
respectively. If the ranges of CRS! , and CR$? ,, are equal,

€Tr—

(a) Initial state (s1)

(b) Intermediate (s1.5)

(c) Final state (s2)

Fig. 9. Data plane state changes due to producer mobility (P serves “/a”,
green arrows: FIB entries for “/a”).

then we say sl and s2 are “equivalent in regard to reachability
of P’s name space”. Thus, the mobility of producer P is
handled correctly with respect to this property. In other words,

EP : Range(CR:!

z— P

) = Range(CR;%. p)

where FP defines the equivalence property for this case.
This would mean that s1 and s2 are in the same equivalence
class with respect to property E'P (it is trivial to see that the
specified E'P is an equivalence relation). Differences between
the ranges of CR:! , and CR:? , indicate incorrectness
and will be reported as errors. Examining the non-overlapping
parts of CR! ,, and CR$? . the network manager can infer
as to which forwarding rules are causing the error. Having said
that, deducing the root cause of what aspect of the mobility
handling protocol is causing the error may be difficult in more
complex scenarios (i.e., those which involve many mobility
events), since NSA does not explicitly determine the root
cause.

Fig. 9 shows a simple mobility example, where producer P,
which serves name prefix “/a” moves from its initial point
of attachment R2 (initial snapshot, s1, Fig. 9(a)) to R3 (finals
snapshot, s2, Fig. 9(c)). For simplicity, we consider a naive
routing-based mobility handling solution that re-populates all
FIBs with an updated announcement after the new attachment.
An intermediate state (s1.5, Fig. 9(b)) shows the state after
P’s move but before full re-convergence of the network (R3
has been notified of the update, but R1 and R2 have not yet
been notified). Using the mobility equivalence property E P
defined above, we will have sl =gp s2, but s1 =/gpsl.5
since the range of CRZ!  , and CR{5, do not match; in
other words, interests for “/a” from C that reach P in sl,
do not do so in s1.5. Similarly, s1.5 =/gps2. This example
shows that during the transition, the network is temporarily
incorrect. The property needs to ultimately hold for the initial
and final snapshots. Also, a fast mobility solution, creates
erroneous intermediate snapshots that are fewer and last for
shorter durations.

Furthermore, checking two different intermediate snapshots
of two different mobility solutions can be helpful. E.g., sup-
pose R2 in Fig. 9(b) has received an ‘invalidation’ signal from
P once it moves. NSA gives us the full header space leaving
R2 in the two cases: ‘without invalidation message’ vs. ‘with
invalidation message’ (as two intermediate snapshots). The
smaller size of the latter shows that fewer interests will be
blackholed by using the invalidation message.

While the toy example above only deals with one mobility
event and only 3 snapshots, it can easily be generalized to
more complex checks. Since the goal is putting different
snapshots in their respective equivalence classes, many
possible snapshots may be checked through NSA’s equivalence
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checks. Also, multiple producer mobility events can be
supported, e.g., if multiple producers re-attach in s2. This
is possible in NSA’s snapshot-based data plane verification
approach, since the impact of all the mobility events can be
captured in a single snapshot.

Consumer mobility can be checked for correctness in a
similar manner. Cross-snapshot equivalence check application
can be very useful to check the outcome (not the protocol
itself, per se) of mobility handling protocols on the data plane,
especially with regard to how they re-populate the network
FIB or re-direct requests. This may be complimentary to
other protocol verification methods used for specific mobility
handling protocols [41].

VI. COMPLEXITY ANALYSIS

First, we analyze the complexity of transfer function genera-
tion, which is an important step where NSA converts the NDN
FIB table to NSA transfer functions that capture those rules (as
described in §IV-B). We now look at its time complexity. For
a FIB table with e entries, the worst-case complexity of this
conversion would be O(e2D2?): for every entry e;, we need to
check all other entries to find its descendants, i.e., at finer gran-
ularity of e;. For each descendant of e;, which we represent as
e, there would be 244 corresponding NSA rules that need to
be generated, where d;; is the granularity distance between e;
and ;. For example, granularity distance of prefixes e; =*/a”
and e; =“/a/b/c” is 2, as e is a descendant of e; and has
two additional name components. As a result, corresponding to
e1, NSA would create rules for “/a/b/c/+”, “/a/b/T/*",
and “/a/b/c/*" for the network transfer functions (so the
outcome would be determined by the intersection of incoming
header to every rule). Also in the complexity formula, D and d
denote the maximum number of descendants, and granularity
distance in the given FIB table, respectively.

Next, we analyze the time complexity of the execution of
the verification procedures on prepared network space, starting
with content reachability (§V-A). Let us assume we have
an injection of a header at one consumer, that leads to one
content provider through a single path. Let us also define d,
L, R, and s as maximum network diameter (number of hops),
maximum header length, maximum number of node rules, and
maximum number of paths in a trie-based content provider
name space, respectively. The time complexity of the NSA
content reachability test will then be O(dLR?s). This analysis
is based on the linear fragmentation assumption in [13], which
says that typically very few rules in a node match an incoming
packet. On the other hand, the complexity of a simulation-
based test (as well as ping or traceroute) would be O(da” Rs),
where a is the maximum number of values an atom can take;
e.g., with byte-based atoms, a would be 256. NDN headers
have no specific upper bound; however, it is recommended
that a reasonable MTU (which can be thousands of bytes) be
conformed to by NDN applications [42]. This will make a”
very large. This way, the simulation approach will reach a very
large and exponentially growing complexity. This shows the
huge benefit of NSA for a content reachability analysis with
high coverage.
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Using the same similar method and the linear fragmen-
tation assumption, we can analyze other NSA applications
as well. NSA completes loop detection (§V-B), in particular
to check if a header injected at a node A returns to A,
in O(max(c,d) x LR?), where c is the length of the longest
cycle (loop, in terms of number of hops) in the network.
Loop detection only checks the forwarding rules, and not the
content available at nodes (hence the removal of s from the
complexity expression). NSA’s name leakage detection (§V-
C), in particular to check if an injected header at node A in
zone /1 will cause a name leakage at node B in zone Z2, has
the complexity of O(dLR? x P), where P is the maximum
number of prohibited names per zone. For multi-snapshot
checks (§V-D) with n snapshots, if the check’s complexity
within a snapshot is O( f), then the total worst-case complexity
is O(n%f), as every snapshot will have to be compared and
put in the right equivalence class.

VII. EVALUATION

We have implemented NSA, including its main components
and modules, in Java; the source code is available at [25]. We
start by evaluating the performance of NSA using synthetic
grid and ring topologies, and then apply it to the NDN testbed
topology for evaluating a network that is actively used [26].
All evaluations have been done on a machine with Ubuntu
14.04.6 LTS using Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20GHz dual-socket with 14 cores each with hyper-threading
enabled, and 252GB RAM. We do not utilize the whole
RAM capacity though; we set the maximum memory heap
size of our Java Virtual Machine (JVM) to 10GB only. For
each verification application, all wildcard headers, i.e., “/%”
is injected to all faces or nodes. While reporting our evaluation
results, we identify and present optimizations that further
improves NSA’s performance.

A. Synthetic Networks

To evaluate NSA’s content reachability analysis and loop
detection we use customized n x n grid topologies (to allow
many branches in the propagation graph), with n publishers in
each case, each serving one distinct prefix; these prefixes are
advertised and populated in every node’s FIB in the snapshot
being verified. Verification performance results for these grid
networks are presented in Fig. 10, in terms of execution times,
in milliseconds.

First, Fig. 10 shows the execution time of content reachabil-
ity on the grid networks. This verification, as explained in §V-
A, checks both unreachable and unsolicited names. Typically,
NSA injects all-wildcard headers into all faces, since some
node rules may depend on the incoming faces (‘All faces’
in Fig. 10. As seen in the Fig., the growth of execution time
for ‘All faces’ injection mode is linear with respect to the input
network size growth (note the input growth on x-axis is n?).
Since we are only dealing with FIB rules that do not depend
on the incoming face, we can limit our injection to ‘One face
per node’ injection only. This would not change the outcome
of the verification results. Fig. 10 shows that this optimization
significantly improves the performance of NSA, which is due
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to the fact that its fewer number of injections leads to smaller
propagation graph.

For the full reachability check, we need to go through a
separate propagation graph fragment, built and checked for
each injection, to check both unsolicited and unreachable
names. If our goal is to only check unsolicited names (and not
unreachable names), we can make all injections at once into
a single propagation graph fragment, aggregating the headers
(Fig. 12). This way, we preserve all reached header spaces,
but not their exact paths from origin in the visited list. Fig. 10
also shows the significant performance enhancement of this
optimization, compared to full reachability analysis, if our goal
is only to detect unsolicited names.

The use of wildcards is an important benefit of NSA (and
HSA), compared to simulation-based methods (which have
to generate all possible packets within a range), as shown
asymptotically in §VI. We show the empirical results for the
use of wildcards in Table I. Each simulation scenario (‘Sim’)
is a typical simulation-based content reachability analysis
(using the aggregation optimization with the sole purpose
of detecting misdirected packets) that injects Interests with
L name components, each being a single alphabetical letter.
Using diagnostic tests through ICN/NDN ping and traceroute
tools has the same theoretical complexity as the simulation-
based approach, with the additional disadvantage of using too
much network resources (as every test packet injected will
have to actually traverse the network). Table I shows the
large benefit, in terms of performance and scalability, of NSA
compared to these simulation-based verifications.

To demonstrate NSA’s performance and scalability,
we examine its utility with larger test cases, with n x n grids.
The results are shown in Fig. 11. Each node’s FIB is populated
with entries (rules) for all prefixes, with random outgoing
faces. We only show the results for the reachability test
with aggregation optimizations, with all-wildcard injections at

all nodes, one face per node. Fig. 11 shows the execution
times (shown in seconds in log scale) when increasing the
grid dimensions. The largest case (100x100) has a total
of 100x100x100x1=1 million rules in the network, which
is similar with the largest test case considered in HSA’s
performance evaluation [13]. Thus, NSA’s performance is in
the same order of that of HSA, even though NSA adds the sig-
nificant feature of checking name-based (information-centric)
reachability. Further, note that our grid topology yields much
higher number of paths compared to HSA’s simpler backbone
topology [13]. The growth rates in Fig. 11 is reasonable: note
that along the x-axis, each scenario exponentially increases
the number of paths, where an n x n grid has O(n!) paths
between two nodes, leading to much higher length and number
of paths in the propagation graph. Next, we pick a 10x10 grid
(with 10 providers), and gradually increase the per-provider
number of prefixes. The largest case (e.g., “1000”) leads to
a total of 10x10x10x1000=1 million rules in the whole
network. Again, the performance and scalability of NSA with
these large test cases is reasonable (both compared to the
absolute values for HSA, and comparing the relative growth
in execution time). This is especially compelling, considering
the high complexity of these test cases and how they affect
the runtime, as explained in §VI.

We also evaluated the performance of NSA’s loop detection
on the same grid networks, injecting all-wildcard headers.
Fig. 10 shows the results for both cases of °‘All faces’ and
‘One face per node’ injection. The complexities, growth rates
and optimization benefit of face selection in loop detection
are similar to those of full content reachability analysis. Also,
compared to NDN’s built-in loop detection mechanisms, NSA
can prevent all possible loops caused by forwarding rules,
without using network resources, and allowing for hints on
how to resolve the loop errors. We also provide results on
the name leakage application in [40] and demonstrate its
scalability with the increase in network size.
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TABLE II
EXECUTION TIME (MS) FOR NDN TESTBED VERIFICATION
Application Best-route | Multicast
Content Reachability Analysis 196 2,481
Content Reachability Analysis (w/ 75 342
header aggregation)
Loop Detection 190 2,416

f2
P2’s announcement

i : f0 ==
~~
“ ‘wnnouncement
fl

Fig. 13.  Name space conflict example (case I: only P1 is present; case II:
both P1 and P2 are present).

B. NDN Testbed

To evaluate NSA’s performance on an operational, practical
NDN, we considered the NDN testbed [26]. This is the largest
real-world NDN with publicly available forwarding state, with
relatively large forwarding tables (of the order of hundreds
of entries per node). We captured a snapshot of the testbed
on 2019/03/09 14:43:16 CST. We use the globally available
topology. Each node in the testbed provides its (near-)real-time
local status (FIBs, efc.) through a separate webpage. We col-
lected the full network status by crawling these individual local
status pages. Some nodes were offline or unresponsive and we
removed them from our analysis. We show in [40] that NSA’s
transfer function generation is reasonably efficient and scales
well with number of FIB rules.

We performed content reachability (both full and aggre-
gated) and loop detection on the snapshot (we did not perform
name leakage detection on it since the name leakage-freedom
is not one of the properties of the NDN testbed) using two
forwarding strategy modes (for all), namely the best-route
and multicast, and found several errors. In the best-route
mode, we found 450 content reachability errors, either caused
by forwarding state errors or physically unavailable/offline
nodes. For example, the name “/kr/re/kisti” is reach-
able only in 31% of injections. Also, 704 loop-freedom
violations were found; note that this is not the number of
loops (cycles) per se, but rather the total number of looped
Interests detected as a result of injections. For example, for the
prefix “/kr/re/kisti”, a loop was found between the two
nodes ‘TNO’ and ‘GOETTINGEN’. In the multicast mode,
we found hundreds of errors too. More details of the errors are
omitted here due to lack of space. The performance results of
our verifications (execution times in milliseconds) are shown
in Table II, showing its latency is reasonable.

From a practical standpoint, our experiments and results
show that it is feasible to have NSA integrated into the NDN
testbed (in one of its nodes), and periodically check for data
plane errors, and checking various states of the data plane.
Given that these checks only take seconds in total, including
transfer function generation and the analysis, it would be
quite reasonable to have new NDN snapshots (which can
be generated every few minutes or seconds) be verified.
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The network administrator can run NSA on one of the nodes
(a controller or any router) on the testbed, periodically collect
snapshots at that node (using methods such as NDNconf [31])
and provide continuous verification results of the network.
This would be very helpful for the users of the NDN testbed,
and for their research experiments.

VIII. CASE STUDY: NAME SPACE CONFLICT
DETECTION/RESOLUTION

As an important case study, in this section, we explain name
space conflicts, and how NSA can detect and help resolve it.

A. Name Space Conflicts

NSA can be used to investigate and catch a wide variety
of corner cases that may result in errors. In this section we
explore as an example, property violations caused by name
space conflicts across different content providers. In NDN,
different content providers, potentially with different subsets
of content in the name hierarchy, can use and announce the
same prefixes. This can be true especially when the names are
topic-based. No content provider has sole ownership or author-
ity to announce a certain prefix. While this allows for the
democratization of content and better efficiency, it can cause
conflicts that can lead to blackholed interests. We illustrate
this using an example. In addition to checking with NSA,
we also ran these scenarios in ndnSIM [43] and observed that
the blackhole effect in question indeed does occur.

Fig. 13 shows a simple network topology. Suppose in the
beginning, there exists only one producer P1 (case (I)), with
the name tree depicted in the Fig. 14(a) and creates a name
announcement for “/news/sports”. The announcement is
used to populate the router R’s FIB in accordance with
NDN policies. Announcing “/news/sports” implies that
P1 claims that it has ‘everything’ under “/news/sports”,
which is correct from the network layer’s perspective. In real-
ity, a producer may not have ‘everything’ under a particular
name prefix it announces, i.e., there may be a possible suffix
not covered in this announced ‘everything’ set. However,
since there is no other producer to ‘challenge’ P1’s claim,
P1’s announcement stating that requests for anything under
“/news/sports” will be available at P1 does not cause
any conflict.

Now let us assume the same network but with two producers
P1 and P2, as shown in Fig. 13 (case (II)), with P2’s name
tree shown in Fig. 14(b). The subset of P2’s name tree that is
interesting for this discussion is “/news/sports/xbox”.
Note that there is no malicious intent on P2’s part; evidently,
P1 does not recognize video games as ‘sport’; however P2
does (with the sport being ‘xbox’). P2, unaware of this
conflict, announces his prefix also at the coarsest granularity,
announcing “/news” (Scenario II-1 in Table III). Using
NSA’s content reachability test, we can show that this scenario
is erroneous: requests for “/news/sports/xbox/1” reach
P1instead of P2. P2 is this Interest’s (most) relevant provider.
Formally, header space of form “/news/sports/xbox/x*”
reaching R at f0, has a non-empty intersection with R’s
FIB rule at f1 (“/news/sports/«") rather than that of f2
(“/news/x*”), assuming a best-route forwarding strategy at R.
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TABLE III
NAME SPACE CONFLICT SCENARIOS FOR CASE II

P2 annc
/news

FIB at R Result
/news/sports — f1 fail
/news — 2

/news/sports — f1
/news/politics — f2
/news/economics — 2
/news/sports/xbox — 2
/news/sports/football — f1
/news/sports/basketball — f1
/news/sports/baseball — f1
/news — {2
/news/sports/football — f1
/news/sports/basketball — f1
/news/sports/baseball — f1
/news/politics — f2
/news/economics — 2
/news/sports/xbox — 2

Scenario | P1 annc
1I-1 /news/sports

11-2 /news/sports /news/politics
/news/economics

/news/sports/xbox

success

1I-3 /news/sports/football
/news/sports/basketball
/news/sports/baseball

/news success

11-4 /news/sports/football
/news/sports/basketball
/news/sports/baseball

/news/politics
/news/economics
/news/sports/xbox

success

nclws news

sports

politics economics ~ sports

football ~basketball ~baseball xbox

(a) P1’s name tree (b) P2’s name tree

Fig. 14. Name trees of the producers in Fig. 13.

Thus, “/news/sports/xbox/” will be a name reaching
P1 and not P2:

“/news/sports/xbox/” € Range(CRc—_ p1)
“/news/sports/xbox/” ¢ Range(CRc—_ p2)

This undesirable effect can be remedied by changes in the
prefix announcement. In particular, we can change the gran-
ularity of the prefix announced by P1 or P2, or both. While
NSA does not ‘directly’ resolve errors, the counterexamples
it provides can give us guidance on how certain bugs can be
resolved. For scenario II-1, comparing unsolicited names at
P1 with unreachable names at P2, e.g., observing that the
name “/news/sports/xbox” is part of N9V and also
NYE (as given by the algorithm in [40]) suggests that with
more fine-grained announcements, i.e., announcing names at
lower levels in the name tree, interests have a better chance of
reaching their most relevant producers. Table III shows three
examples of these alternative announcements (which we call
scenarios II-2, 1I-3 and II-4), making the NSA verification
of each example successful. However, we see their costs,
in terms of scalability and FIB size are different An important
takeaway from the results in Table III is the (possibly) inverse
relation between correctness (absence of name space conflicts)
and FIB size. We can say that finer granularity of prefix
announcements, leads to less conflict but larger FIB sizes. In
scenario II-2, P1 announces one prefix at a coarse granularity
of “/news/sports”, while P2 announces three prefixes
at different granularities, namely “/news/politics”,
“/news/economics” and “/news/sports/xbox”.
This will populate R with 4 prefixes, as shown in Table III.
Using NSA, we can see that an Interest of form
“/news/sports/xbox/*” reaching R at fact f0 will
leave R on face f2 (rather than f1), thus reaching its
intended producer, P2. Therefore, this makes the verification
successful. In scenario II-3, P1 announces three fine-
grained prefixes, namely “/news/sports/football”,
“/news/sports/basketball” and “/news/sports/
baseball” and P2 announces one coarse grained prefix,

namely “/news”. NSA in this scenario shows that
“/news/sports/xbox/*” goes out of face f2 since
it has an empty intersection with all of the forwarding rules
leading to f1 (towards P1). In scenario II-4, both P1 and
P2 announce prefixes at fine granularity. While R’s FIB size
in scenarios II-2 and II-3 are 4, that for scenario II-4 is 6. All
these three are correct, i.e., absent of name space conflicts.
This case study shows that achieving correctness has a cost.
It may be important to find the most efficient refinement to
the name space announcement so as to keep the FIB size
manageable. There is a need for an approach to detect and
perhaps resolve conflicts, before they happen. We provide
some guidelines for the design of such an approach next.

B. Name Space Registry Guidelines

The name space conflict observed in the case study in § VIII-
A may be quite common. While NSA is useful in finding
conflicts, an automatic approach, or protocol, for conflict
detection/resolution can be very beneficial in NDN. To prevent
content provider name space conflicts, a Name Registration
protocol may be such a solution. The idea of name registration
in NDN has been suggested in previous works, such as in [23],
mainly to prevent prefix hijacking. Our case study however
shows it is important for non-malicious Scenarios as well.

A name space registry can be implemented as a
distributed or centralized engine to be contacted by producers
whenever they want to announce a prefix. The producer sends
his requested announcement prefix and (a pointer to) his
content name tree. The response data from name registry
would be a signed packet containing the prefix announcement
permission result, ie., ‘granted’ or ‘denied’, plus possibly
new prefix announcements suggested by the name registry
that are conflict-free. The name registry’s decision is based on
an analysis of name spaces across different providers, which
are in its database, called a global name space (Fig. 15(a)).
The name registry may have another database of global
routable prefixes (Fig. 15(b)). Both databases are indexed by
Producer ID which can be a real ID or a locally generated
(but unique) ID. If permission is granted, the new prefix
announced will be added to the global routable prefix list, and
the producer’s name space will be added to the global name
space database. If the request is denied, the requester needs
to pick another high-level name for the prefix announcement
(just as in today’s IP network, domain names have to be tried
one after another, until one is available) or use suggestions
provided by the name registry. The suggestions for the prefix
announcement can be provided at different granularity levels
to help manage the growth of the FIBs. While we describe
it as a logically separate entity, the name registry can be
integrated with possible existing name resolvers, such as
NDNS [10]. An overview of the name registration procedure
is depicted in Fig. 16. Upon receiving a request for permission
to announce a prefix “/p” from a producer, the name registry
performs the following steps:

1) Examine the global routable prefixes list to find potential
conflicts. Two announcements can cause potential conflict
if one is the “prefix” of the other (i.e., their intersection
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Fig. 16. Name registration procedure.

is non-empty). An example for potential conflicts between
names is P2’s announcement “/news” that is a prefix of
P1’s announcement “/news/sports” in Scenario II-1 in
Table III. The name registry returns the indices, which are
producer IDs.

2) Retrieve every individual name space associated with
the previously found producer IDs. These are potentially
conflicting name spaces. 3) The name registry compares the
requester’s name space against any other potentially conflicting
name space. If a conflict is found, it will follow the steps out-
lined in step (4) onwards; otherwise follow step (6) onwards.
A conflict is found if starting from the root on any of the two
name spaces, the announcement prefix exists on any of the
other name spaces, but at least one descendant does not. For
example, in Scenario II-1 in Table III, “/news/sports” on
P2’s name space exists in P1’s as well, but it leads to the
name “xbox” that does not exist on P1’s name space. The
condition for announcement prefixes prl and pr2 (associated
with producers P1 and P2 respectively) to be conflict-free,
can be specified by the following assertion:

(prl is a prefix of pr2) /\(pr2 C NSpy)
— V non-wildcard sequence of name components X :
“/pT’2/X” - NSpl <~ “/pT’2/X” - NSPQ

4) Generate conflict-free announcement prefixes for the
requester. This can be done by checking finer granularities
on the name space; e.g., Scenario II-2 in Table III. A more
fine-grained prefix includes more detail about a category of
content items, and has a lower chance of conflicting with other
prefixes. Conflict-freedom of alternatives that are found can
be checked using the assertion in (3). Note that a conflict-
free alternative may not exist; in that case the requester has to
pick another, different, high-level name. Otherwise, some of
previous producer announcements need to change, which can
lead to much more complexity.
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5) Respond to the requester with a signed data stating
‘denied’; possibly together with prefix suggestions. Stop.

6) Send a signed response to the requester stating ‘granted’.

7) Add the requester’s announced prefix and name space to
the associated local databases at the name registry.

Our case study shows, that having a conflict detection and
resolution engine (name registry) in NDN is necessary to
prevent the occurrence of name space conflicts, and subsequent
blackholing of Interests. NSA can be used to analyze the
correctness of the outcome of such a mechanism. While we
outlined design guidelines and principles of such an engine,
space limitations preclude a detailed specification.

IX. LIMITATIONS

While NSA answers several important questions about the
network, it has its limitations. These limitations of NSA are
quite similar to those of other notable data plane verification
systems, such as HSA [13]. Regarding the discovery and
reporting of errors, while NSA can give us hints about the
details associated with errors, it cannot definitively assert why
such error occurred or how it can be resolved. Additional
external information, as well as refinement procedures, are
required to achieve this. NSA is not well-suited for network-
wide dynamic analysis that involves “churning” in the net-
work’s forwarding state. This is due to the fact that NSA
is of the class of data plane verification tools, “mainly”
optimized for static checking (i.e., checking a data plane with
regards to operations and properties that do not change the
state of the network). Having said that, it is still feasible to
check multiple states of the network, represented by multiple
snapshots, by successively running NSA on them. However,
this feature is limited for NSA and would only work if errors of
a dynamic-nature stay longer than the “sampling period”, i.e.,
the interval between collecting two snapshots. Nonetheless,
we believe NSA is a valuable tool for verifying key NDN-
specific data plane properties.

X. CONCLUSION

We proposed Name Space Analysis (NSA), a data plane ver-
ification framework for NDN, based on the theory of Header
Space Analysis. NSA (available at [25]) includes essential
NDN-specific verification applications of content reachabil-
ity test (to detect name space conflicts, content censorship-
freedom, efc.), name-based loop detection, and name leakage
detection. We also design a name registry method to detect
and resolve name space conflicts in the data plane. Applied
to the NDN testbed, we found a number of data plane errors
through NSA’s automatized verification. Our evaluation results
on various test cases show the effectiveness, efficiency, and
scalability of NSA.
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