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Abstract

A new method is used to resolve a long-standing conjecture of Niho
concerning the crosscorrelation spectrum of a pair of maximum length
linear recursive sequences of length 22m − 1 with relative decimation
d = 2m+2 − 3, where m is even. The result indicates that there are
at most five distinct crosscorrelation values. Equivalently, the result
indicates that there are at most five distinct values in the Walsh spec-
trum of the power permutation f(x) = xd over a finite field of order
22m and at most five distinct nonzero weights in the cyclic code of
length 22m − 1 with two primitive nonzeros α and αd. The method
used to obtain this result proves constraints on the number of roots
that certain seventh degree polynomials can have on the unit circle of
a finite field. The method also works when m is odd, in which case the
associated crosscorrelation and Walsh spectra have at most six distinct
values.

1 Introduction

Binary maximum length linear recursive sequences, or m-sequences for short,
are widely employed in navigation, radar, and spread-spectrum communi-
cation systems because of their good autocorrelation and crosscorrelation
properties. In this paper Fq denotes a finite field of order q, and if F is a
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field, then F ∗ denotes the group of units of F . Let n and d be two positive
integers with gcd(2n − 1, d) = 1. It was already known to Niho [Nih72,
pp. 15–20] that the study of the value distribution of the crosscorrelation
function between two binary m-sequences of length 2n − 1 with decimation
d is equivalent to the study of the weight distribution of the cyclic codes of
length 2n−1 with two nonzeros α, αd, where α is a primitive element of F2n .
Furthermore, although Niho does not explicitly mention Walsh spectra in
his thesis, he writes his results on crosscorrelation in terms of the quantity
∆d whose formula [Nih72, p. 2] is immediately recognizable as that of the
Walsh transform of a Boolean function of the form x ↦→ TrF2n/F2

(xd).1 The
Walsh transform measures the nonlinearity of the component functions of
the power permutation x ↦→ xd over F2n , so it is of interest in measuring
the resistance to linear attacks on cryptographic systems employing this
permutation. For an explicit recognition that all three of these information-
theoretic questions constitute the same mathematical problem see [DFHR06,
p. 613], and for another equivalent problem in finite projective geometry see
[Gam86a, Gam86b]. The appendix of [Kat12] contains all proofs of the
equivalences, with the linking mathematical object being the Weil sum of a
binomial, which we describe next.

Definition 1.1 (Weil sum WF,d(a)). Let F be a finite field of characteristic
p and order pn, let Tr: F → Fp denote the absolute trace Tr(x) = x+ xp +

· · ·+xpn−1
, let ψF : F → C denote the canonical additive character ψF (x) =

exp(2πiTr(x)/p), and let d be a positive integer with gcd(d, pn − 1) = 1.
Then for each a ∈ F , we define the Weil sum

WF,d(a) =
∑︂
x∈F

ψF (x
d − ax),

with the binomial xd − ax as its argument.

From the values of the Weil sum WF,d(a), one can determine the follow-
ing.

• The crosscorrelation spectrum for a pair of m-sequences of length pn−1
with relative decimation d is given by the collection of valuesWF,d(a)−
1 as a runs through F ∗.

• The Walsh spectrum of the power permutation x ↦→ xd over F is given
by the collection of values WF,d(a) as a runs through F . One should

1Niho actually uses r where we use d.
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note that WF,d(0) = 0 invariably, so one can deduce the Walsh spec-
trum from the crosscorrelation spectrum, and vice versa. The Walsh
spectrum determines the nonlinearity NLF,d of the Boolean function
x ↦→ Tr(xd) via the relation NLF,d = (|F |−maxa∈F |WF,d(a)|)/2. The
nonlinearity assesses a Boolean function’s resistance against linear at-
tacks in cryptographic applications.

• When d ≡ 1 (mod p − 1) and d is not a power of p modulo pn − 1,
the cyclic code C of length pn − 1 with nonzeros at α (a primitive
element of F ) and αd has the zero word and 2(pn− 1) words of weight
(p− 1)pn−1 from the two simplex codes (one with nonzero α and one
with nonzero αd) that lie within C, and for each a ∈ F ∗, there are
pn− 1 additional words of weight (p− 1)pn−1− (p− 1)WF,d(a)/p in C.

One can also determine the autocorrelation and crosscorrelation spectrum
for a family of Gold sequences from the crosscorrelation spectrum of the pair
of m-sequences we just described; this works both for those particular classes
of m-sequences used in Gold’s original construction [Gol68] and, more gener-
ally, for his construction applied to any pair of m-sequences [Kat19, Section
7.3]. In applications it is of particular interest to find positive integers d that
lead to Walsh spectra or crosscorrelation spectra consisting of a few values
whose absolute values are small [Nih72, Hel76, Hel78, HK98, CCD00, HX01],
since Boolean functions with high nonlinearity are resistant to linear attack
and sequences pairs with low crosscorrelation are easily distinguishable. We
say that an exponent d is degenerate over F = Fpn when it is a power of p
modulo pn − 1; in this case Tr(xd) = Tr(x) and our power permutation is
linear and our decimated m-sequence is the same as the original. In this case
the crosscorrelation spectrum degenerates to the autocorrelation spectrum
of an m-sequence, which has the value pn − 1 at shift 0 and the value −1 at
all other shifts; the corresponding Walsh spectrum has a single instance of
pn and all other values equal to 0. The first author in [Hel76, Theorem 4.1]
showed that the crosscorrelation spectrum for two binary m-sequences of
length 2n− 1 with decimation d has at least three values if d is not degener-
ate. When n is even, say n = 2m, so that F = Fpn is the quadratic extension
of the field Fpm , we say that the exponent d is a Niho-type exponent over F if
it is degenerate over Fpm (i.e., a power of p modulo pm−1) but nondegener-
ate over F = Fpn (i.e., not a power of p modulo pn−1 = p2m−1). Research
has shown that exponents d of Niho-type over F are of great importance in
generating few-valued crosscorrelation spectra of m-sequences [Nih72] and
in constructing other interesting objects, such as (vectorial) bent functions
and permutations in cryptography [LZ19].
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If e ≡ pkd (mod pn−1) for some integer k, then the exponent e produces
the same crosscorrelation spectrum and the same Walsh spectrum as expo-
nent d; see [Tra70, Theorem 2.4], [Hel76, Theorem 3.1(d)], [CD96, Section
1], and [AKL15, Lemma 3.2]. Therefore, up to this equivalence one can write
a Niho exponent over F = Fpn = Fp2m as s(pm − 1) + 1 = s(

√︁
|F | − 1) + 1

with s > 1.2 The crosscorrelation spectrum of two binary m-sequences with
Niho-type decimations for the case s = 2 is relatively simple and was set-
tled by Niho in his doctoral thesis [Nih72, Theorem 3-6]. Niho also showed
that the crosscorrelation function for binary m-sequences takes at most six
values for s = 3 [Nih72, Theorem 3-9] when m is odd and takes at most
eight values for s = 4 [Nih72, Theorem 3-10]. Based on numerical results,
he further conjectured that the crosscorrelation can actually take at most
five values for s = 4 when m is even [Nih72, Conjecture 4-6(5)]. By 2006,
Dobbertin et al. had made significant progress in determining the cross-
correlation spectrum of binary m-sequences for Niho-type decimations with
s = 3 via Dickson polynomials and Kloosterman sums [DFHR06]; and re-
cently Xia et al. completely determined the value distribution for s = 3
with arbitrary m (even or odd) via a connection with the binary Zetterberg
codes [XLZH16, Theorem 2]. For Niho-type decimations with s > 4, the
crosscorrelation spectrum contains at most 2s distinct values (cf. Lemma
2.5). Numerical results for small integers s > 4 and small values of m (i.e.,
in small fields) show spectra with significantly fewer than 2s distinct values,
but with a tendency to include more values as m and s increase.

In this paper, we shall look into the conjecture on crosscorrelation for
the Niho-type decimation with s = 4 and even m [Nih72, Conjecture 4-
6(5)], which is the final conjecture of Niho’s thesis and has remained an
open question for almost half a century. We state Niho’s conjecture in the
notation of this paper.

Conjecture 1.2 (Niho, 1972). Let F be a finite field of order 4m where m
is even, let d = 4(

√︁
|F | − 1) + 1, and let WF,d(a) be the Weil sum from

Definition 1.1. Then {WF,d(a) : a ∈ F ∗} contains at most five distinct
values.

In this paper we verify this conjecture. In fact, we prove the following.

Theorem 1.3. Let F be a finite field of order 4m, let d = 4(
√︁
|F |−1)+1, let

WF,d(a) be the Weil sum from Definition 1.1, and let W = {WF,d(a)/
√︁
|F | :

a ∈ F ∗}.
2To make gcd(d, pn−1) = 1, it is necessary and sufficient that s satisfy gcd(2s−1, pm+

1) = 1. For p = 2 and s = 2, this happens if and only if m is even. For p = 2 and s = 3,
this happens if and only if m ̸≡ 2 (mod 4). For p = 2 and s = 4, this happens for all m.
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(i). If m is even, then W ⊆ {−1, 0, 1, 2, 4}.

(ii). If m is odd and greater than 1, then W ⊆ {−1, 0, 1, 2, 3, 4}.

(iii). If F = F4, then d is degenerate over F and W = {0, 2}.

From this one can determine the possible values in the associated cross-
correlation and Walsh spectra, as well as the weights in the associated cyclic
code as described in the list after Definition 1.1. Notice that our theorem
works both when m is even and when m is odd, and shows that the cross-
correlation actually takes at most five values when m is even and at most
six values when m is odd.

This paper is organized as follows. Section 2 shows that Theorem 1.3 is
equivalent to a problem of counting how many zeros of certain polynomials
(called key polynomials) lie in particular subsets of finite fields (called unit
circles). Then Section 3 investigates a general symmetry property shared
by the key polynomials and shows that a certain transformation (called
the conjugate-reciprocal map) permutes the roots of polynomials with this
symmetry. Section 4 describes the action of the group generated by the
conjugate-reciprocal map, examines the orbits under this action, and cal-
culates certain sums of symmetric rational functions associated with these
orbits. Section 5 then focuses specifically on the key polynomials to give
constraints on how many zeros they may have on unit circles, and uses the
sums from Section 4 to complete the proof of Theorem 1.3. In the develop-
ment of our proof we shall formulate the problem in arbitrary characteristic
and add the restriction to characteristic 2 when needed.

2 An Equivalent Zero-Counting Problem

In this section, we show that proving Theorem 1.3 is equivalent to proving
a result (Theorem 2.6 below) about the number of roots of a family of
polynomials on the so-called unit circle of a finite field. To state the result,
we first need a few notational conventions and definitions. If F is a subfield of
E, we write [E : F ] to denote the degree of E over F , so that |E| = |F |[E:F ].
We consider all finite fields of a given characteristic p to lie in a unique
algebraic closure of Fp. For any finite field F , we write F for this algebraic
closure, so if F is of characteristic p, then F = Fp.

Definition 2.1 (Half field). Let F be a finite field that is an even degree
extension of its prime subfield Fp. Then the half field of F , denoted HF is
unique subfield of F with [F : HF ] = 2.
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That is, the half field HF is the unique subfield of F with cardinality√︁
|F |.

Definition 2.2 (Conjugation map). Let F be a finite field that is an even
degree extension of its prime subfield Fp. Then the conjugation map for F ,
denoted τF : F → F , is the map with τF (x) = x|HF | for every x ∈ F .

If τF is restricted to F , one obtains the unique generator of the Galois
group Gal(F/HF ), which is a cyclic group of order 2. Note that if E is an

extension of F , then τE = τ
[E:F ]
F .

Definition 2.3 (Conjugate-reciprocal map). Let F be a finite field that is an
even degree extension of its prime subfield Fp. Then the conjugate-reciprocal
map for F , denoted πF : F

∗ → F
∗
, is the map with πF (x) = x−|HF | for every

x ∈ F
∗
.

The name of πF comes from the fact that πF (x) = τF (1/x) = 1/τF (x)
for every x ∈ F

∗
. We note that π2F = τ2F . Therefore, if E is an odd degree

extension of F , then πE = π
[E:F ]
F , but if E is an even degree extension of F ,

then πE(x) = 1/π
[E:F ]
F (x) for every x ∈ F

∗
. In particular, if r ∈ F

∗
with

e = [F (r) : F ], then π2eF (r) = τ2eF (r) = τ2F (r)(r) = r. This shows that πF is

a permutation of F
∗
, and so we can write πkF for both positive and negative

integers k.

Definition 2.4 (Unit circle). Let F be a finite field that is an even degree
extension of its prime subfield Fp. Then the unit circle of F , denoted UF ,
is the set {u ∈ F : uτF (u) = 1}.

Note that UF is the cyclic group of order |HF | + 1 in F , and UF is in
fact a subgroup of the cyclic group F ∗ since |HF |+1 =

√︁
|F |+1 is a divisor

of |F | − 1. Equivalent definitions of UF include {u ∈ F
∗
: πF (u) = u},

{u ∈ F : uτF (u) = 1}, and {u ∈ F ∗ : πF (u) = u}. Note that if E is an odd
degree extension of F , then UF ⊆ UE . If E is an even degree extension of F ,
and these fields are of characteristic 2, then one can show that UF∩UE = {1}
because gcd(|HE |+ 1, |HF |+ 1) = 1.

The proof of the equivalence between Theorem 1.3 and a zero-counting
problem goes back to Niho’s thesis: see Theorem 3-5 and its proof in [Nih72].
A generalization of Niho’s result was stated in [Ros06, Theorem 2]; we now
state and prove a corrected3 version.

3When p = 3, n = 2, and d = 5, [Ros06, Theorem 2] asserts that C5(1) = 5 (WF9,5(1) =
6 in our notation) but a direct calculation shows that C5(1) = 2 (WF9,5(1) = 3 in our
notation).
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Lemma 2.5. Let F be a finite field that is an even degree extension of its
prime subfield, let s be a nonnegative integer, let d = s(

√︁
|F | − 1) + 1, let

WF,d(a) be the Weil sum from Definition 1.1, and for each a ∈ F let Z(a)
be the number of distinct zeros of x2s−1 − axs − τF (a)x

s−1 + 1 that lie on
UF . Then WF,d(a) = (Z(a)− 1)

√︁
|F | for each a ∈ F .

Proof. Let α be a primitive element of F , let q = |HF | =
√︁
|F |, and let

Y = {α0, α1, . . . , αq}. Then each element of F ∗ is uniquely represented as
hy for some h ∈ H∗

F and y ∈ Y , and hd = h for every h ∈ HF , so we
can write our Weil sum as WF,d(a) = 1 +

∑︁
y∈Y

∑︁
h∈H∗

F
ψF ((hy)

d − ahy) =

1−|Y |+
∑︁

y∈Y
∑︁

h∈HF
ψHF

(hTrF/HF
(yd−ay)) = q(N(a)−1), where N(a) is

the number of y ∈ Y with TrF/HF
(yd−ay) = 0. Now note that TrF/HF

(yd−
ay) = yd − ay + τF (y

d − ay) = yd − ay + yqd − τF (a)y
q. Since Y ⊆ F ∗ and

yqd = ys(q
2−q)+q = y−(s−1)(q−1)+1 for any y ∈ F ∗, our N(a) counts the

number of y ∈ Y with y−(s−1)(q−1)+1 − ay − τF (a)y
(q−1)+1 + ys(q−1)+1 = 0,

which (by dividing by ys(q−1)+1) is the same as the number of y ∈ Y with
y−(2s−1)(q−1) − ay−s(q−1) − τF (a)y

−(s−1)(q−1) + 1 = 0. The power function
y ↦→ y−(q−1) maps Y bijectively to UF , so N(a) counts the number of x ∈ UF

such that x2s−1 − axs − τF (a)x
s−1 + 1 = 0, i.e., N(a) = Z(a).

This lemma also shows that as a runs through F ∗, the number of poly-
nomials x2s−1 − axs − τF (a)x + 1 that have r distinct roots on UF is the
same as the number of times WF,d(a) assumes the value (r − 1)

√︁
|F |.

Now Lemma 2.5 shows that proving Theorem 1.3 is equivalent to proving
the following result.

Theorem 2.6. Let F be a finite field that is an extension of F4, let d =
4(
√︁

|F | − 1) + 1, and for each a ∈ F ∗ let gF,a(x) = x7 − ax4 − τF (a)x
3 + 1

and let Z(a) be the number of distinct roots of gF,a(x) that lie in UF . Let
Z = {Z(a) : a ∈ F ∗}.

(i). If [F : F4] is even, then Z ⊆ {0, 1, 2, 3, 5}.

(ii). If [F : F4] is odd and greater than 1, then Z ⊆ {0, 1, 2, 3, 4, 5}.

(iii). If F = F4, then d is degenerate over F and Z = {1, 3}.

We now see that our problem is tantamount to counting the zeros of
certain polynomials on unit circles, so we give a special name to these poly-
nomials.
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Definition 2.7 (Key polynomial). If F is a finite field of even degree over
its prime subfield Fp and a ∈ F , then the key polynomial for a over F ,
written gF,a(x), is the polynomial

gF,a(x) = x7 − ax4 − τF (a)x
3 + 1

in F [x].

3 Self-conjugate-reciprocal polynomials and their
roots

This section explores the properties of a class of polynomials that includes
the key polynomials gF,a(x) whose roots on the unit circle we must count to
prove Theorem 2.6.

Definition 3.1 (Reciprocal of a polynomial). If F is a field, and f(x) =
f0+f1x+ · · ·+fdxd ∈ F [x] with fd ̸= 0, then the reciprocal of f(x), written
f∗(x), is the polynomial xdf(1/x) = fd+fd−1x+ · · ·+f0xd. We decree that
the reciprocal of the zero polynomial is the zero polynomial.

We note that if either f(x) = 0 or f(x) has a nonzero constant coefficient,
then f∗∗(x) = f(x), but this is not true if both f(x) ̸= 0 and f(0) = 0. Also
note that if h(x) = f(x)g(x), then h∗(x) = f∗(x)g∗(x).

Definition 3.2 (Conjugate of a polynomial). If F is a finite field that
is an even degree extension of its prime subfield and f(x) ∈ F [x], then
the conjugate of f(x) over F , written f τF (x), is the polynomial τF (f0) +
τF (f1)x+ · · ·+ τF (fd)x

d.

We note that f τF τF (x) = f(x) for every f(x) ∈ F [x]. Also note that if
h(x) = f(x)g(x), then hτF (x) = f τF (x)gτF (x). If E is an extension of F
and f(x) ∈ F [x], then f τE (x) = f τF (x) if [E : F ] is odd, but f τE (x) = f(x)
if [E : F ] is even.

Definition 3.3 (Conjugate-reciprocal of a polynomial). If F is a finite field
that is an even degree extension of its prime subfield and f(x) ∈ F [x], then
the conjugate-reciprocal of f(x) over F , written f∗τF (x), is the conjugate
over F of the reciprocal of f(x).

We note that the reciprocal and conjugate operations commute, i.e.,
f∗τF (x) = f τF ∗(x) for every f(x) ∈ F [x]. If either f(x) = 0 or f(x) ∈ F [x]
has a nonzero constant coefficient, then f∗τF ∗τF (x) = f(x), but this is not
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true if both f(x) ̸= 0 and f(0) = 0. Also note that if h(x) = f(x)g(x), then
h∗τF (x) = f∗τF (x)g∗τF (x). If E is an extension of F and f(x) ∈ F [x], then
f∗τE (x) = f∗τF (x) if [E : F ] is odd, but f∗τE (x) = f∗(x) if [E : F ] is even.

Definition 3.4. If F is a finite field that is an even degree extension of its
prime subfield, a self-conjugate-reciprocal polynomial over F is a polynomial
f(x) ∈ F [x] that is its own conjugate-reciprocal over F , i.e., f(x) = f∗τF (x).

Note that 0 is self-conjugate-reciprocal, but any nonzero self-conjugate
reciprocal polynomial must have a nonzero constant coefficient. If E is an
odd degree extension of F , then any self-conjugate-reciprocal polynomial
over F is also a self-conjugate-reciprocal polynomial over E.

The key polynomials gF,a(x) of Definition 2.7, whose roots on UF we
must count to prove Theorem 2.6, are self-conjugate-reciprocal over F . The
rest of this section is dedicated to understanding the relation between the
conjugate-reciprocal operation on polynomials from Definition 3.3 and the
conjugate-reciprocal map πF from Definition 2.3.

Lemma 3.5. Let F be a finite field that is an even degree extension of its
prime subfield Fp, let f(x) be a nonzero polynomial in F [x], and let r ∈ F∗

p.
Then r is a root of f(x) if and only if πF (r) is a root of f∗τF (x).

Proof. Write f(x) =
∑︁d

j=0 fjx
j with fd ̸= 0. Note that πF (r) = 1/τF (r)

exists and is nonzero because r ̸= 0 and τF is an automorphism of Fp. Then
we have

f∗τF (πF (r)) =
d∑︂

k=0

τF (fd−k)πF (r)
k

=
d∑︂

j=0

τF (fj)πF (r)
d−j

=
d∑︂

j=0

τF (fj)τF (r)
j−d

= τF (r)
−dτF (f(r)),

from which we can see that πF (r) is a root of f∗τF (x) if and only if r is a
root of f(r).

We now sharpen the correspondence in Lemma 3.5 to show that multi-
plicities of roots are respected.
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Lemma 3.6. Let F be a finite field that is an even degree extension of its
prime field Fp. Let f(x) be a nonzero polynomial in F [x]. If r is a root of
f(x) in F∗

p with multiplicity m, then πF (r) is a root of f∗τF (x) in Fp with
multiplicity m.

Proof. Since r is a root with multiplicity m, we can write

f(x) = (x− r)mg(x)

for some g(x) ∈ Fp[x] with r not a root of g(x). Now take the conjugate-
reciprocal of both sides over F to obtain

f∗τF (x) = (1− τF (r)x)
mg∗τF (x)

= (x− πF (r))
m(−τF (r))mg∗τF (x),

and since Lemma 3.5 shows that πF (r) is not a root of g∗τF (x), we see that
πF (r) is a root of f∗τF (x) of multiplicity m.

Now we apply our results to self-conjugate-reciprocal polynomials.

Proposition 3.7. Let F be a finite field that is an even degree extension of
its prime field Fp, and let f(x) be a nonzero self-conjugate-reciprocal poly-
nomial over F . If r ∈ Fp is a root of f(x) of multiplicity m, then r ̸= 0 and
πF (r) is also a root of f(x) of multiplicity m.

Proof. A nonzero self-conjugate-reciprocal polynomial must have a nonzero
constant coefficient, so r ̸= 0, and then we may apply Lemma 3.6.

Proposition 3.7 shows that the roots of a self-conjugate-reciprocal poly-
nomial over F can be organized into orbits under the action of the group
of transformations generated by πF , with each element in an orbit having
the same multiplicity. We study this group of transformations in the next
section.

4 Action of the Conjugate-Reciprocal Group

Throughout this section, we shall use Definitions 2.1–2.4 (for the half field,
conjugation map, conjugate-reciprocal map, and unit circle) from Section 2
along with their associated notations.

Definition 4.1 (Conjugate-reciprocal group). Let F be a finite field that
is an even degree extension of its prime subfield Fp. Then the conjugate-
reciprocal group for F , denoted ΠF , is the cyclic group of permutations of
F∗
p generated by the conjugate-reciprocal map πF from Definition 2.3.

10



We are interested in the orbits under ΠF of elements of F
∗
.

Definition 4.2 (Orbit of ΠF ). Let F be a finite field that is an even degree
extension of its prime subfield Fp and r ∈ F∗

p. Then we denote the orbit of

r under the action of the group ΠF on F∗
p by ΠF · r = {πkF (r) : k ∈ Z}.

Definition 4.3 (ΠF -Closed). If F is a finite field that is an even degree
extension of its prime subfield Fp and R ⊆ F∗

p, then we say that R is closed
under the action of ΠF (or simply ΠF -closed) to mean that ΠF · r ⊆ R for
every r ∈ R.

Equivalently, a ΠF -closed subset of F∗
p is a union of ΠF -orbits. In Sub-

section 4.1 we study the size of these orbits, then in Subsection 4.2 we study
certain symmetric rational functions evaluated on ΠF -closed sets, and in
Subsection 4.3 we compute the traces of those sums when our fields are of
characteristic 2.

4.1 Sizes of Orbits

Our first task is to try to understand the size of a ΠF -orbit.

Lemma 4.4. Let F be a finite field that is an even degree extension of its
prime subfield Fp, let r ∈ F∗

p, and let e = [F (r) : F ]. Then any s ∈ ΠF · r
has the property that F (s) = F (r). Furthermore,

(i). |ΠF · r| = e if and only if e is odd and r ∈ UF (r); and

(ii). |ΠF · r| = 2e otherwise.

Proof. First of all, note that if a ∈ F∗
p, then πF (a) = a−|HF | and π−1

F (a) =

a−|F (a)|/|HF | are also in F (a), since they are powers of a. This shows that if
s ∈ ΠF · r, say s = πjF (r), then r = π−j

F (s), so that s ∈ F (r) and r ∈ F (s),
and so F (r) = F (s).

Since π2eF (r) = τ2eF (r) = τ2F (r)(r) = r, we see that |ΠF · r| is a divisor

of 2e. Furthermore, we cannot have π2kF (r) = r when 0 < k < e, because
that would mean that τ2kF (r) = r, which would mean that τ2E(r) = r for the
kth degree extension E of F , which would place r in E so that e = [F (r) :
F ] ≤ [E : F ] = k < e. Also we cannot have πkF (r) = r when 0 < k < e,
for then τ2kF (r) = π2kF (r) = r, contradicting what we just said. Thus |ΠF · r|
is a divisor of 2e and is greater than or equal to e, so it is either e or 2e.
Furthermore, if e is even, then πeF (r) = r would violate the principle that
no positive even power of πF less than 2e fixes r. Thus we conclude that

11



|ΠF · r| = 2e when e is even. When e is odd, we note that the condition
πeF (r) = r is equivalent to πF (r)(r) = r, which is equivalent to r ∈ UF (r), so
|ΠF · r| = e if and only if r ∈ UF (r).

Note that Lemma 4.4 shows that you can determine where r lies by
looking at n = |ΠF · r|: if n is odd, then [F (r) : F ] = n and r ∈ UF (r); but
if n is even, then [F (r) : F ] = n/2, and if we also know that n ≡ 2 (mod 4)
then we can conclude that r ̸∈ UF (r).

4.2 Sums on ΠF -orbits over F∗
p

Now we prove some technical results that will be used in the next subsection.

Lemma 4.5. Let F be a finite field that is an even degree extension of its
prime subfield Fp. Let R be a finite ΠF -closed subset of F∗

p, and let

S =
∑︂

{u,v}⊆R
u̸=v

uv

(u− v)2
.

Then S ∈ HF .

Proof. We have

τF (S) =
∑︂

{u,v}⊆R
u̸=v

τF (u)τF (v)

(τF (u)− τF (v))2

=
∑︂

{u,v}⊆R
u̸=v

πF (u)
−1πF (v)

−1

(πF (u)−1 − πF (v)−1)2

=
∑︂

{u,v}⊆R
u̸=v

πF (u)πF (v)

(πF (u)− πF (v))2
,

and since R is closed under the action of ΠF , the map u ↦→ πF (u) is a
permutation of R, and thus {u, v} ↦→ {πF (u), πF (v)} is a permutation of
the unordered pairs in R, and so we may reparameterize the last sum by
dropping the maps πF to see that τF (S) = S, and hence S ∈ HF .

Lemma 4.6. Let F be a finite field that is an even degree extension of its
prime subfield Fp. Let Q,R be disjoint finite ΠF -closed subsets of F∗

p, and
let

S =
∑︂

(u,v)∈Q×R

uv

(u− v)2
.

12



Then S ∈ HF .

Proof.

τF (S) =
∑︂

(u,v)∈Q×R

τF (u)τF (v)

(τF (u)− τF (v))2

=
∑︂

(u,v)∈Q×R

πF (u)
−1πF (v)

−1

(πF (u)−1 − πF (v)−1)2

=
∑︂

(u,v)∈Q×R

πF (u)πF (v)

(πF (u)− πF (v))2
,

and note that (u, v) ↦→ (πF (u), πF (v)) is a permutation of Q×R since Q and
R are closed under the action of ΠF . So we may reparameterize the last sum
by dropping the maps πF to see that τF (S) = S, and hence S ∈ HF .

With the sums in Lemmata 4.5 and 4.6 known to be in the half field HF ,
the following subsection further examines their absolute traces in the case
of p = 2.

4.3 Sums on ΠF -orbits over F∗
2

We continue with a few more technical results. Lemmata 4.7 and 4.8 are
used to prove Proposition 4.9, which is the key to the proof of Theorem 2.6.

Lemma 4.7. If F is a finite field that is an even degree extension of F2 and
r ∈ F∗

2, and

S =
∑︂

{u,v}⊆Π·r
u̸=v

uv

(u− v)2
,

then S belongs to HF and

TrHF /F2
(S) =

(︃
|ΠF · r| − 1

2

)︃
(mod 2).

Proof. Lemma 4.5 shows that S ∈ HF . Let n = |ΠF · r|. Write rj = πjF (r)
for every j ∈ Z/nZ, so that ΠF · r = {r0, r1, . . . , rn−1}. For any distinct
j, k ∈ Z/nZ, define

Sj,k =
rjrk

(rj − rk)2
.
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Then note that

Sj,k = − rj
rj − rk

+

(︃
rj

rj − rk

)︃2

and since our field is of characteristic 2, we have

Sj,k + S2
j,k + · · ·+ S

|HF |/2
j,k =

rj
rj − rk

+ τF

(︃
rj

rj − rk

)︃
=

rj
rj − rk

+
r−1
j+1

r−1
j+1 − r−1

k+1

=
rj

rj − rk
+

rk+1

rk+1 − rj+1
.

Then
S =

∑︂
{j,k}⊆Z/nZ

j ̸=k

Sj,k,

and so

TrHF /F2
(S) =

∑︂
{j,k}⊆Z/nZ

j ̸=k

(︃
rj

rj − rk
+

rk+1

rk+1 − rj+1

)︃
.

To help us compute this sum, we put an ordering 0 < 1 < . . . < n − 1 on
Z/nZ to obtain

TrHF /F2
(S) =

∑︂
0≤j<k<n

rj
rj − rk

+
∑︂

0≤j<k<n

rk+1

rk+1 − rj+1
.

Now the terms with j = 0 in the first sum are identical to the terms with
k = n − 1 in the second, and since our field is of characteristic 2, we can
drop them to obtain

TrHF /F2
(S) =

∑︂
1≤j<k<n

rj
rj − rk

+
∑︂

0≤j<k<n−1

rk+1

rk+1 − rj+1
,

and then we note that the pair (j+1, k+1) in the second sum runs through
the same set of values as (j, k) in the first, so we can reparameterize the
second sum and combine with the first to obtain

TrHF /F2
(S) =

∑︂
1≤j<k<n

(︃
rj

rj − rk
+

rk
rk − rj

)︃
,

in which every summand equals 1, and the number of summands is the
number of unordered pairs in {1, . . . , n− 1}.
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Lemma 4.8. If F is a finite field that is an even degree extension of F2 and
r, s ∈ F∗

2 belong to different ΠF -orbits, and

S =
∑︂

(u,v)∈ΠF ·r×ΠF ·s

uv

(u− v)2
,

then S belongs to HF and

TrHF /F2
(S) = |ΠF · r| |ΠF · s| (mod 2).

Proof. Lemma 4.6 shows that S ∈ HF . For any u ∈ ΠF · r and v ∈ ΠF · s
we define

Su,v =
uv

(u− v)2

Then note that

Su,v = − u

u− v
+

(︃
u

u− v

)︃2

and since our field is of characteristic 2, we have

Su,v + S2
u,v + · · ·+ S|HF |/2

u,v =
u

u− v
+ τF

(︃
u

u− v

)︃
=

u

u− v
+

τF (u)

τF (u)− τF (v)

=
u

u− v
+

πF (u)
−1

πF (u)−1 − πF (v)−1

=
u

u− v
+

πF (v)

πF (v)− πF (u)
.

Then
S =

∑︂
(u,v)∈ΠF ·r×ΠF ·s

Su,v,

and so

TrHF /F2
(S) =

∑︂
(u,v)∈ΠF ·r×ΠF ·s

u

u− v
+

∑︂
(u,v)∈ΠF ·r×ΠF ·s

πF (v)

πF (v)− πF (u)
,

and note that (u, v) ↦→ (πF (u), πF (v)) is a permutation of ΠF · r × ΠF · s
since ΠF · r and ΠF · s are closed under the action of ΠF . So we may
reparameterize the second sum by dropping the maps πF and combine with
the first sum to obtain

TrHF /F2
(S) =

∑︂
(u,v)∈ΠF ·r×ΠF ·s

(︃
u

u− v
+

v

v − u

)︃
,

which is a sum with |ΠF · r| |ΠF · s| terms, each equal to 1.
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Proposition 4.9. Let F be a finite field that is an even degree extension of
F2. Let R be the union of t distinct ΠF -orbits in F∗

2, and let

S =
∑︂

{u,v}⊆R
u̸=v

uv

(u− v)2
.

Then S belongs to HF and

TrHF /F2
(S) =

(︃
|R|+ 1

2

)︃
+ t (mod 2).

Proof. Lemma 4.5 shows that S ∈ HF . Let P be the partition of R into
ΠF -orbits: so P is a set of t distinct ΠF -orbits, and the union of these orbits
is R. Then

S =
∑︂
P∈P

∑︂
{u,v}⊆P

u̸=v

uv

(u− v)2
+

∑︂
{P,Q}⊆P
P ̸=Q

∑︂
(u,v)∈P×Q

uv

(u− v)2
.

If we apply TrHF /F2
to S, then Lemmata 4.7 and 4.8 give the values of traces

of the inner sums to yield

TrHF /F2
(S) =

∑︂
P∈P

(︃
|P | − 1

2

)︃
+

∑︂
{P,Q}⊆P
P ̸=Q

|P | |Q|

=
∑︂
P∈P

(︃
1− |P |+

(︃
|P |
2

)︃)︃
+

∑︂
{P,Q}⊆P
P ̸=Q

|P | |Q|

= t− |R|+
∑︂
P∈P

(︃
|P |
2

)︃
+

∑︂
{P,Q}⊆P
P ̸=Q

|P | |Q| ,

and the last two sums together simply count all pairs of distinct elements in
R, so we have

TrHF /F2
(S) = t+ |R|+

(︃
|R|
2

)︃
(mod 2).

5 The key polynomial

In Section 2 we saw that proving our main result (Theorem 1.3) is equivalent
to proving Theorem 2.6, which concerns the numbers of roots on the unit
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circle of the key polynomials (see Definition 2.7). Observe that every key
polynomial is a self-conjugate-reciprocal polynomial. In this section, we
prove constraints on the numbers of roots of the key polynomial gF,a(x) on
the unit circle UF . The situation differs somewhat depending on whether
or not the key polynomial is separable. In Subsection 5.1, we determine
precise conditions on a that make gF,a(x) inseparable, and count the roots
of gF,a(x) on UF in those cases. In Subsection 5.2, we prove constraints on
the number of roots of gF,a(x) on UF in the cases where gF,a(x) is separable.

5.1 Inseparable key polynomial

First of all, we want to understand when gF,a(x) is separable and when it is
not.

Lemma 5.1. Suppose that F is an extension of F4 and a ∈ F . Then the
key polynomial gF,a(x) is inseparable if and only if a ∈ UF . Furthermore, in
the case that gF,a(x) is inseparable, we have the following:

(1). If a = 1, then gF,a(x) = (x+ 1)5(x2 + x+ 1) has a root of multiplicity
5 at 1 and two simple roots at the primitive third roots of unity.

(a). If [F : F4] is even, then only the root at 1 lies on UF , and the other
two roots lie in F \ UF .

(b). If [F : F4] is odd, then all three roots lie on UF .

(2). If a ∈ UF \ {1}, then gF,a(x) = (x4 + 1/a)(x3 + a) has a root of mul-
tiplicity 4 at a−1/4 and three simple roots that are the cube roots of a.
The quadruple root always lies on UF .

(a). If [F : F4] is even, then precisely one of the three simple roots lies
on UF , and the other two simple roots lie in F \UF . Therefore, a
total of two roots of gF,a(x) lie on UF .

(b). If [F : F4] is odd, then we have the following:

(i). If a is one of the (
√︁

|F | − 2)/3 elements that are cubes of
elements on UF (and not equal to 1), then all four roots of
gF,a(x) lie on UF .

(ii). Otherwise, a is one of the 2(
√︁

|F | + 1)/3 elements on UF

that are not cubes of elements on UF . In this case, only the
quadruple root lies on UF and the three simple roots lie in
UE \ UF where E is the extension of F with [E : F ] = 3.

17



Proof. Let g(x) = gF,a(x), and note that if a = 0, then g is clearly separable,
so we may assume a ̸= 0 henceforth. It is straightforward to compute that
gcd(g, g′) = gcd(ax4+1, x6+ τF (a)x

2) = gcd(ax4+1, (τF (a)− 1/a)x2), and
this is not 1 if and only if τF (a) = 1/a, which is equivalent to saying a ∈ UF .
Furthermore, when this occurs, we see that gcd(g, g′) = ax4 + 1 and then
we note that g(x) = (x4 + 1/a)(x3 + a).

Proof of part (1): First let us examine the case when a = 1. Then
gF,1(x) = (x4 + 1)(x3 + 1) = (x + 1)5(x2 + x + 1), which has a root of
multiplicity 5 at 1, which is on UF , and two simple roots at the primitive
third roots of unity. Note that UF4 = F∗

4 is the set of third roots of unity,
so all the roots lie in F . If [F : F4] is even, then UF ∩ UF4 = {1}, so UF

does not contain the primitive third roots of unity, and so gF,1(x) has the
quintuple root 1 on UF , but no other roots on UF . If [F : F4] is odd, then
|UF | =

√︁
|F |+ 1 is divisible by 3, and so all third roots of unity lie on UF ,

so all three roots of gF,1(x) lie on UF .
Proof of part (2): From now on we suppose that a ∈ UF \{1}. Recall that

g(x) = (x4+1/a)(x3+a), and one can compute that gcd(x4+1/a, x3+a) =
gcd(ax+1/a, x3+ a) = gcd(x+1/a2, 1/a6+ a), which is not 1 if and only if
a7 = 1, which we claim cannot happen. For |UF | =

√︁
|F |+1, which cannot

be divisible by 7 because
√︁

|F | is a power of 2 (hence congruent to 1, 2, or
4 modulo 7), so UF cannot have primitive seventh roots of unity, and we
have excluded a = 1 at this point. So the two factors in our factorization
g(x) = (x4 + 1/a)(x3 + a) do not share common roots. The (x4 + 1/a) =
(x+a−1/4)4 factor has a root of multiplicity 4 at a−1/4, which is on UF since
u ↦→ u−1/4 is a permutation of UF . The (x3 + a) factor has three simple
roots at the cube roots of a.

If [F : F4] is even, then we see that 3 ∤ |UF |, and therefore u ↦→ u3 is a
permutation of UF . Thus every element of UF has a unique cube root on
UF , and so precisely one of the three simple roots of g(x) lies on UF , which,
along with the root of multiplicity 4, means we have two distinct roots of
g(x) on UF . Since F∗

4 ⊆ F ∗, the other two cube roots of a lie in F \ UF .
If [F : F4] is odd, then UF4 ⊆ UF , and so the third roots of unity lie on

UF . Thus if a is the cube of an element on UF , then the other two cube
roots of a will also lie on UF . So all or none of the simple roots of g(x) lie
on UF . Since |UF | is divisible by 3, one-third of the

√︁
|F | + 1 elements of

UF are cubes of elements on UF , and therefore (
√︁
|F |−2)/3 of the elements

of UF \ {1} are cubes of elements on UF . When a is one of these, all four
roots of g(x) lie on UF . Otherwise a is one of the 2(

√︁
|F | + 1)/3 elements

of UF that is not a cube of an element on UF , and only the quadruple root
at a−1/4 lies on UF , and we claim that none of the three simple roots lies
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in F . In fact, all three simple roots must lie in the same ΠF -orbit of size
3, since otherwise at least one root would need to be in a singleton orbit,
which would place it on UF , contradicting our assumption that a is not the
cube of an element of UF . By Lemma 4.4, this means that all three simple
roots lie on UE where E is the extension of F with [E : F ] = 3.

5.2 Separable key polynomial

Now we investigate how many roots a separable key polynomial can have
on the unit circle.

Lemma 5.2. Let F be a finite field that is an even degree extension of F2,
and let a ∈ F . Suppose that the key polynomial gF,a(x) from Definition 2.7
is separable and R is its set of seven distinct roots in F∗

2. Let

S =
∑︂

{u,v}⊆R
u̸=v

uv

(u− v)2
.

Then S = 0.

Proof. Since gF,a(x) is self-conjugate-reciprocal, the set R of roots of gF,a(x)
is closed under the action of ΠF . Consider the following polynomials in
F2[x1, . . . , x7]:

b(x) =
∏︂

1≤i<j≤7

(xi − xj),

and
c(x) = b(x)2

∑︂
1≤i<j≤7

xixj
(xi − xj)2

.

Write R = {r1, . . . , r7} so that

S =
c(r1, . . . , r7)

b(r1, . . . , r7)2
.

Note that b(x1, . . . , x7) and c(x1, . . . , x7) are homogeneous symmetric poly-
nomials. Every term in b(x1, . . . , x7) has total degree 21, and every term in
c(x1, . . . , x7) has total degree 42. For 0 ≤ k ≤ 7, we let σk = σk(x1, . . . , x7)
be the elementary symmetric polynomial of degree k. Then we can write

c(x1, . . . , xn) =
∑︂

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σe77 ,
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where we use N to denote the set {0, 1, 2, . . .} of nonnegative integers, and
where each λ(e1,...,e7) ∈ F2. We have used a computer program to find these
λ(e1,...,e7) values. There are 218 indices (e1, . . . , e7) such that λ(e1,...,e7) is
nonzero (i.e., is equal to 1). These indices (e1, . . . , e7) for nonvanishing
λ(e1,...,e7) are listed on Tables 1–4 in lexicographical order, which allows one
easily to see that every nonzero λ(e1,...,e7) has a positive value for at least one
of e1, e2, e5, or e6. Since gF,a(x) has no terms of degree 6, 5, 2 or 1, we know
that σk(r1, . . . , r7) = 0 when k ∈ {1, 2, 5, 6}. This means that every term
λ(e1,...,e7)σ

e1
1 · · ·σe77 always vanishes when evaluated at (r1, . . . , r7), either

because the coefficient λ(e1,...,e7) is zero, or else because one of the accompa-
nying symmetric polynomials evaluates to zero. Thus c(r1, . . . , r7) = 0, and
so S = 0.

We now examine the consequences of this calculation.

Lemma 5.3. Let F be a finite field that is an even degree extension of F2

and let a ∈ F . Suppose that the key polynomial gF,a(x) from Definition 2.7
is separable and R is its set of seven distinct roots in F∗

2. Then R is a union
of an even number of ΠF -orbits.

Proof. The key polynomial is self-conjugate-reciprocal, so R is a union of
ΠF -orbits by Proposition 3.7. Let t be the number of ΠF -orbits in this
union, and since gF,a(x) is separable, the sum of the cardinalities of those
orbits is |R| = 7. We let S be as defined in Lemma 5.2, which tells us
that S = 0. Therefore TrHF /F2

(S) = 0, but Proposition 4.9 shows that

TrHF /F2
(S) =

(︁|R|+1
2

)︁
+ t (mod 2), so t must be even.

Proposition 5.4. Let F be a finite field of order q that is an even degree
extension of F2 and let a ∈ F . Suppose that the key polynomial gF,a(x) from
Definition 2.7 is separable. Then gF,a(x) does not have precisely four, six,
or seven roots on UF . Furthermore,

(i). If gF,a(x) has zero roots on UF , then the seven roots of gF,a(x) must
be in two ΠF -orbits (either of sizes two and five or else of sizes three
and four). So gF,a(x) either has two roots in F \UF and five roots on
UFq5

\F or else it has four roots in Fq2 \F and three roots on UFq3
\F .

(ii). If gF,a(x) has one root on UF , then the six remaining roots must either
be in one ΠF -orbit of size six (which yields six roots in Fq3 \(UFq3

∪F ))
or else they must be in three ΠF -orbits each of size two (which yields
six roots in F \ UF ).
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(iii). If gF,a(x) has two roots on UF , then the five remaining roots must
be in two ΠF -orbits of sizes two and three (which yields two roots in
F \ UF and three roots on UFq3

\ F ).

(iv). If gF,a(x) has three roots on UF , then the four remaining roots must
be in one ΠF -orbit of size four (yielding four roots in Fq2 \ F ).

(v). If gF,a(x) has five roots on UF , then the two remaining roots must be
in one ΠF -orbit of size two (yielding two roots in F \ UF ).

Proof. From Lemma 5.3, we know that the seven distinct roots of gF,a(x)
are organized into an even number of ΠF -orbits. Recall that the roots that
lie on UF are precisely those in singleton orbits.

• So there cannot be seven roots on UF , as this would mean that R
contains seven ΠF -orbits.

• Nor can there be six roots on UF , as this would force the seventh to
be alone in its own orbit, making it a seventh a root on UF .

• Nor can there be four roots on UF , as this would mean we have four
singleton orbits, and the remaining three roots would need to be or-
ganized into an even number of orbits. This means two orbits, so one
of these remaining orbits would be of size one and thus place a fifth
root on UF .

The rest of the statements in this theorem are simple consequences of the
fact that we must organize the seven distinct roots of gF,a(x) into an even
number of ΠF -orbits, and the facts about the sizes of those orbits from
Lemma 4.4.

5.3 Conclusion

We combine the results of Lemma 5.1 and Proposition 5.4 to prove all the
claims in Theorem 2.6 except those in the case where F = F4. If F = F4,
then our exponent d = 5 is degenerate (a power of 2 modulo |F | − 1), in
which case it is well known (see [Kat12, Theorem 1.1]) that {WF,d(a) : a ∈
F ∗} = {0, 4} = {0, 2

√︁
|F |}, and so Lemma 2.5 shows that the set of counts

of distinct roots on UF of key polynomials gF,a(x) with a ∈ F ∗ must be
{1, 3}. Recall from Section 2 that Theorem 1.3 is equivalent to Theorem 2.6
by Lemma 2.5.
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6 Appendix

Recall that in Subsection 5.2 we define the following polynomials in the ring
F2[x1, . . . , x7]:

b(x) =
∏︂

1≤i<j≤7

(xi − xj)

and
c(x) = b(x)2

∑︂
1≤i<j≤7

xixj
(xi − xj)2

,

and since c(x) is a symmetric polynomial, we let σk(x1, . . . , x7) denote the
elementary symmetric polynomial of degree k and write

c(x1, . . . , xn) =
∑︂

(e1,...,e7)∈N7

e1+2e2+...+7e7=42

λ(e1,...,e7)σ
e1
1 σ

e2
2 · · ·σe77 ,

where each λe1,...,e7 ∈ F2. The indices (e1, . . . , e7) such that λ(e1,...,e7) = 1 are
listed here on Tables 1–4 in lexicographical order, showing that (e5, e6) ̸=
(0, 0) in the first 23 rows, and (e1, e2) ̸= (0, 0) subsequently. Thus every
nonzero λ(e1,...,e7) has a positive value for at least one of e1, e2, e5, or e6.

Table 1: Nonvanishing Terms of c(x1, . . . , x7)

(e1, . . . , e7) such (e1, . . . , e7) such
Term that λ(e1,...,e7) = 1 Term that λ(e1,...,e7) = 1
No. e1 e2 e3 e4 e5 e6 e7 No. e1 e2 e3 e4 e5 e6 e7
1 0 0 0 0 2 3 2 17 0 0 4 0 1 3 1
2 0 0 0 0 3 1 3 18 0 0 4 2 2 2 0
3 0 0 0 0 6 2 0 19 0 0 4 2 3 0 1
4 0 0 0 0 7 0 1 20 0 0 4 3 0 3 0
5 0 0 0 1 4 3 0 21 0 0 4 3 1 1 1
6 0 0 0 1 5 1 1 22 0 0 5 0 3 2 0
7 0 0 1 0 1 1 4 23 0 0 5 1 1 3 0
8 0 0 1 0 5 0 2 24 0 1 0 0 0 2 4
9 0 0 1 1 3 1 2 25 0 1 0 0 1 0 5
10 0 0 2 0 2 2 2 26 0 1 0 1 2 2 2
11 0 0 2 0 3 0 3 27 0 1 0 1 3 0 3
12 0 0 2 1 0 3 2 28 0 1 1 0 5 2 0
13 0 0 2 1 1 1 3 29 0 1 1 1 1 0 4
14 0 0 3 0 3 3 0 30 0 1 1 2 3 0 2
15 0 0 3 2 1 1 2 31 0 1 2 0 2 4 0
16 0 0 4 0 0 5 0 32 0 1 2 0 3 2 1
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Table 2: Nonvanishing Terms of c(x1, . . . , x7)

(e1, . . . , e7) such (e1, . . . , e7) such
Term that λ(e1,...,e7) = 1 Term that λ(e1,...,e7) = 1
No. e1 e2 e3 e4 e5 e6 e7 No. e1 e2 e3 e4 e5 e6 e7
33 0 1 2 2 0 2 2 65 1 0 0 0 0 1 5
34 0 1 2 2 1 0 3 66 1 0 0 0 4 0 3
35 0 1 3 0 1 2 2 67 1 0 0 1 2 1 3
36 0 1 3 1 3 2 0 68 1 0 1 0 2 0 4
37 0 1 3 3 1 0 2 69 1 0 1 0 4 3 0
38 0 1 4 1 0 4 0 70 1 0 1 1 0 1 4
39 0 1 4 1 1 2 1 71 1 0 1 2 2 1 2
40 0 2 0 0 2 0 4 72 1 0 2 0 2 3 1
41 0 2 0 0 4 3 0 73 1 0 2 2 0 1 3
42 0 2 0 1 0 1 4 74 1 0 3 0 0 3 2
43 0 2 0 2 2 1 2 75 1 0 3 0 4 2 0
44 0 2 2 0 1 1 3 76 1 0 3 1 2 3 0
45 0 2 2 0 5 0 1 77 1 0 3 2 2 0 2
46 0 2 2 1 3 1 1 78 1 0 3 3 0 1 2
47 0 2 2 2 2 0 2 79 1 0 4 0 2 2 1
48 0 2 2 3 0 1 2 80 1 0 4 1 0 3 1
49 0 2 3 0 3 0 2 81 1 1 0 0 4 2 1
50 0 2 3 1 1 1 2 82 1 1 0 1 0 0 5
51 0 3 0 0 2 2 2 83 1 1 0 2 2 0 3
52 0 3 0 1 4 2 0 84 1 1 1 0 2 2 2
53 0 3 0 2 0 0 4 85 1 1 1 1 4 2 0
54 0 3 0 3 2 0 2 86 1 1 1 2 0 0 4
55 0 3 1 0 1 0 4 87 1 1 1 3 2 0 2
56 0 3 2 1 1 0 3 88 1 1 2 0 0 2 3
57 0 3 2 2 2 2 0 89 1 1 2 1 2 2 1
58 0 3 2 4 0 0 2 90 1 1 2 3 0 0 3
59 0 3 4 0 0 4 0 91 1 1 3 1 0 2 2
60 0 4 0 0 0 1 4 92 1 1 3 2 2 2 0
61 0 5 0 0 4 2 0 93 1 1 3 4 0 0 2
62 0 5 0 1 0 0 4 94 1 1 5 0 0 4 0
63 0 5 0 2 2 0 2 95 1 2 1 0 0 1 4
64 0 7 0 0 0 0 4 96 1 2 2 0 2 0 3
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Table 3: Nonvanishing Terms of c(x1, . . . , x7)

(e1, . . . , e7) such (e1, . . . , e7) such
Term that λ(e1,...,e7) = 1 Term that λ(e1,...,e7) = 1
No. e1 e2 e3 e4 e5 e6 e7 No. e1 e2 e3 e4 e5 e6 e7
97 1 2 2 1 0 1 3 129 2 2 1 0 1 0 4
98 1 3 0 0 0 0 5 130 2 2 1 0 3 3 0
99 1 3 1 0 4 2 0 131 2 2 1 2 1 1 2
100 1 3 1 1 0 0 4 132 2 2 2 0 1 3 1
101 1 3 1 2 2 0 2 133 2 2 2 2 3 0 1
102 1 5 1 0 0 0 4 134 2 2 2 3 0 3 0
103 2 0 0 0 0 2 4 135 2 2 2 3 1 1 1
104 2 0 0 0 1 0 5 136 2 2 2 4 0 0 2
105 2 0 0 0 2 5 0 137 2 2 3 0 3 2 0
106 2 0 0 0 3 3 1 138 2 2 3 1 1 3 0
107 2 0 0 2 0 3 2 139 2 2 4 0 0 4 0
108 2 0 0 2 1 1 3 140 2 3 0 0 3 2 1
109 2 0 1 1 3 3 0 141 2 3 0 2 1 0 3
110 2 0 1 3 1 1 2 142 2 3 0 3 2 2 0
111 2 0 2 1 0 5 0 143 2 3 0 5 0 0 2
112 2 0 2 1 1 3 1 144 2 3 1 0 1 2 2
113 2 0 2 2 0 2 2 145 2 3 1 1 3 2 0
114 2 0 2 2 1 0 3 146 2 3 1 3 1 0 2
115 2 0 3 0 1 2 2 147 2 3 2 1 1 2 1
116 2 1 0 1 2 4 0 148 2 4 0 0 1 1 3
117 2 1 0 1 3 2 1 149 2 4 0 0 4 2 0
118 2 1 0 3 0 2 2 150 2 4 0 0 5 0 1
119 2 1 0 3 1 0 3 151 2 4 0 1 3 1 1
120 2 1 1 2 3 2 0 152 2 4 0 3 0 1 2
121 2 1 1 4 1 0 2 153 2 4 1 0 3 0 2
122 2 1 3 0 1 4 0 154 2 4 1 1 1 1 2
123 2 2 0 0 3 0 3 155 2 5 0 1 1 0 3
124 2 2 0 1 0 3 2 156 2 6 0 0 0 0 4
125 2 2 0 1 1 1 3 157 3 0 0 1 2 3 1
126 2 2 0 2 0 0 4 158 3 0 0 3 0 1 3
127 2 2 0 2 2 3 0 159 3 0 1 0 2 2 2
128 2 2 0 4 0 1 2 160 3 0 1 2 0 0 4
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Table 4: Nonvanishing Terms of c(x1, . . . , x7)

(e1, . . . , e7) such (e1, . . . , e7) such
Term that λ(e1,...,e7) = 1 Term that λ(e1,...,e7) = 1
No. e1 e2 e3 e4 e5 e6 e7 No. e1 e2 e3 e4 e5 e6 e7
161 3 0 1 2 2 3 0 190 3 4 1 0 0 0 4
162 3 0 1 4 0 1 2 191 4 0 0 2 0 5 0
163 3 0 2 0 0 2 3 192 4 0 0 2 1 3 1
164 3 0 3 0 0 5 0 193 4 0 0 4 2 2 0
165 3 0 3 2 2 2 0 194 4 0 0 4 3 0 1
166 3 0 3 4 0 0 2 195 4 0 0 5 0 3 0
167 3 0 5 0 0 4 0 196 4 0 0 5 1 1 1
168 3 1 0 2 2 2 1 197 4 0 1 0 1 5 0
169 3 1 0 4 0 0 3 198 4 0 1 3 1 3 0
170 3 1 1 0 2 4 0 199 4 0 1 4 1 0 2
171 3 1 1 2 0 2 2 200 4 0 3 0 1 4 0
172 3 1 1 3 2 2 0 201 4 1 0 0 0 6 0
173 3 1 1 5 0 0 2 202 4 1 0 0 1 4 1
174 3 1 2 0 0 4 1 203 4 1 0 3 0 4 0
175 3 1 3 1 0 4 0 204 4 1 0 3 1 2 1
176 3 2 0 0 0 0 5 205 4 1 1 1 1 4 0
177 3 2 0 0 2 3 1 206 4 2 0 1 1 3 1
178 3 2 0 2 0 1 3 207 4 2 0 2 1 0 3
179 3 2 1 0 0 3 2 208 4 2 1 0 1 2 2
180 3 2 1 1 2 3 0 209 5 0 0 0 0 5 1
181 3 2 1 3 0 1 2 210 5 0 0 3 0 3 1
182 3 2 2 0 2 2 1 211 5 0 0 4 0 0 3
183 3 2 2 1 0 3 1 212 5 0 1 1 0 5 0
184 3 3 0 0 0 2 3 213 5 0 1 2 0 2 2
185 3 3 0 1 2 2 1 214 5 0 2 0 0 4 1
186 3 3 0 3 0 0 3 215 5 1 0 1 0 4 1
187 3 3 1 1 0 2 2 216 5 2 0 0 0 2 3
188 3 4 0 0 2 0 3 217 6 0 0 0 0 6 0
189 3 4 0 1 0 1 3 218 6 0 0 0 1 4 1
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