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ABSTRACT

An improved description for nonlinear plasma wakefields with phase velocities near the speed of light is presented and compared against
fully kinetic particle-in-cell simulations. These wakefields are excited by intense particle beams or lasers pushing plasma electrons radially
outward, creating an ion bubble surrounded by a sheath of electrons characterized by the source term § = — i (p —J/c), where p and J,
are the charge and axial current densities, respectively. Previously, the sheath source term was described phenomenologically with a positive-
definite function, resulting in a positive definite wake potential. In reality, the wake potential is negative at the rear of the ion column which
is important for self-injection and accurate beam loading models. To account for this, we introduce a multi-sheath model in which the source
term, S, of the plasma wake can be negative in regions outside the ion bubble. Using this model, we obtain a new expression for the wake
potential and a modified differential equation for the bubble radius. Numerical results obtained from these equations are validated against
particle-in-cell simulations for unloaded and loaded wakes. The new model provides accurate predictions of the shape and duration of trail-
ing bunch current profiles that flatten plasma wakefields. It is also used to design a trailing bunch for a desired longitudinally varying loaded
wakefield. We present beam loading results for laser wakefields and discuss how the model can be improved for laser drivers in future work.

Finally, we discuss differences between the predictions of the multi- and single-sheath models for beam loading.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051282

I. INTRODUCTION

Research in plasma-based acceleration (PBA) driven by an
intense laser pulse' or a relativistic particle beam” has been motivated
by the capability to accelerate beams with gradients in excess of a
GeV/ecm over cm or larger length scales.” '* These wakefields can
be excited by the space force of a particle beam (plasma wakefield
acceleration—PWFA) or the radiation pressure of a laser (laser wake-
field acceleration—LWFA). Such PBA based compact accelerator
stages could be the building blocks of next generation x-ray free-elec-
tron-lasers (XFELs) or linear colliders.

In PBA, a critical process is beam loading where a witness or
trailing beam of particles is located at an appropriate phase of the
wake where it is accelerated and focused. As it is accelerated, it absorbs
energy from the wake and can distort, i.e,, load, it. Developing an accu-
rate beam loading theory is important in order to accurately under-
stand and control the energy spread and emittance of the witness
beam. In some cases, this needs to be understood even as the beam
phase slips inside the wakefield. The witness beam can be externally or

self-injected. Self-injection has advantages as it leads to synchronized
injection which can be difficult to achieve for external injection due to
the short periods and wavelengths of the plasma wakefields; how-
ever, self-injection may not produce the beam parameters required
for a linear collider. Recently, there have been many self-injection
schemes proposed to generate high quality electron beams with low
energy spread ¢, and normalized emittance ¢,. The most promising
ideas typically involve decreasing the phase velocity y, of the
plasma wake using either a plasma density down ramp'” * through
the accordion effect’’ or an evolving driver.”” ** In each of these
instances, plasma electrons are injected at the very rear of the first
bucket of the wake where they can then be accelerated over long
periods of time.

In order to characterize how the injected beams alter the wake-
field, a theoretical model for the wakefield that is accurate in the rear
of the region is required. If the model is accurate enough, it can also be
used to design experiments and simulations capable of generating
injected beams that can flatten a wakefield or provide the necessary
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slope in the acceleration gradient to compensate for an initial energy
chirp after some acceleration distance.

In the linear regime, the necessary beam loading theory has
existed for over thirty years.”” However, in the nonlinear regime, the
theory is significantly more complicated. In nonlinear wakefields, the
plasma electrons are expelled by the space-charge force of a particle
beam (PWFA) or radiation pressure of a laser pulse (LWFA) leaving
behind a column of ions. These electrons, which are initially blown-
out, are attracted back to the axis due to the space-charge force from
the ions, forming a plasma sheath covering a nearly spherical ion
channel radius r,(£). This structure can be seen in Fig. 1(a), where the
electron density from a PWFA simulation using the particle-in-cell
(PIC) code osmris™ is plotted. A non-evolving driver with a peak nor-
malized charge per unit length Ay = 47r, 0r>>ar nprdr = 6, energy
7, = 20000, spot size kpa, = (.245, duration kpaz = 1, and centroid
kp/jc = (0 was used, where kP = a)p/c is the plasma wavenumber,

) _ Ame

2
o} " is the plasma frequency, and n,, is the drive beam density.

p -
In seminal papers by Lu et al,””* a nonlinear theory was introduced

to characterize the structure and fields generated by these kinds of
three-dimensional plasma wakes operating in the blowout regime.
Using a co-moving coordinate & = (¢t —z) and the quasi-static
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FIG. 1. (a) Electron density distribution of a plasma wake excited by an electron
drive beam with parameters Ay = 6, 7, = 20000, ko, = 1, koo, = 0.245, and
k,&. = 0. The maximum bubble radius is k,r, ~ 4.53. (b) The on-axis electric
field E, and wake potential . (c) Contour plot of the source term —(p — J,/c).
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approximation, it was shown that expressions for the electric and mag-
netic fields of the wake inside the ion column, as well as a differential
equation for the bubble trajectory r;,(&), could be determined for given
models for the sheath. Tzoufras et al.”*’ showed that in the nonlinear
regime beam loading arises through modifications to r;,(&) from the
electromagnetic forces of the witness beam.

All of the forces on a particle moving close to the speed of light
can be obtained from the normalized wake potential = ¢
(¢ — A,), where ¢ is the electric potential and A, is the vector poten-
tial in the Zz direction. In Refs. 27 and 28, it was shown that the wake
potential can be obtained from a two dimensional Poisson equation,

Ty =s= —%(p—m, 1)

where the integral of the source term over the transverse coordinates
in each £ slice vanishes.

For azimuthally symmetric beams or laser drivers, the solutions
to this equation for radii inside the ion column have the form
W =4 (1+ p)r; — r*, where f§ depends on integrals over transverse
gradients of i written in terms of S from r = oo to 0. It was shown in
Refs. 27 and 28 that for a source term comprised of two regions where
S = —1 inside the ion bubble (r < ;) and S > 0 in a finite width
plasma sheath outside the bubble (r, <r<r,+A), f

% — 1, where o = &, Using this expression for f3, a dif-

Ty
ferential equation for r, was then obtained [see Eq. (46) in Ref. 28]. It
was shown that these equations could explain many of the features
observed in particle-in-cell simulations.

However, this simple model for the plasma sheath and hence the
wake potential has its limitations. For example, a direct consequence
of using such a model is that f is positive definite for each & slice and
hence 1 is positive definite at all locations within the ion column.

In one dimension, wavelike analysis to the cold fluid equations
shows that solutions exist until wavebreaking occurs. This can be
physically interpreted as the limit where the plasma density compres-
sion approaches infinity, the electric field fully steepens (its slope
approaches infinity), two plasma sheets cross, and particle trapping of
a background electron occurs, i.e., a particle moves with the phase
velocity of the wave.”' In this case, the minimum wake potential
becomes —1 which is the threshold for particle trapping. Even in
multi-dimensions, the trapping condition for background electrons,

/ 2
U< -1 +%,” also requires that the wake potential

approaches —1. PIC simulations show empirically that the wake
potential is negative in the rear of the first bucket as shown in
Fig. 1(b). In this region of the wake, plasma sheath electrons can be

accelerated to large forward velocities 7, = (1 — ﬁﬁ)fl/ > 1 as they
return back to the ¢ axis due to the large accelerating fields E, (&) at
the rear of the wake. Near the axis, the wake potential iy must
approach —1 if v, approaches ¢ as can be seen from the constant of
motion equation, y — P,/mc =1+ l,b In fact, many self-injection
schemes'” ** rely on / approaching —1 at the rear of the wake in
order to satisfy the electron trapping condition, 7y, >y, > L.
Although the constant of motion is strictly valid for uniform plasmas
and nonevolving drivers, it is still a useful approximation for slowly
evolving wakes. Therefore, while the model used by Lu et al””* can
predict the bubble trajectory r, (&) and longitudinal electric field E, (&)
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in regions where the wake potential (&) is sufficiently positive, it will
not be accurate near the rear of the bubble where the wake potential
becomes negative.

As noted in Ref. 16, if the source term S is negative in some
region outside the bubble r > r;, then wake potential i/ can be nega-
tive inside the ion column. This is illustrated in Fig. 1(c) where three
distinct regions are evident from the contour plot of S. In addition to
the ion channel and plasma sheath regions included in the simple
single-sheath model employed in Refs. 28 and 27, it is clear that there
is a third region of finite width where S < 0 at the rear of the wake out-
side the bubble, r > r;,. This negative region is highly localized to the
rear of the bubble and drops off rapidly in terms of amplitude at ¢
where the bubble radii are larger.

In this manuscript, we propose to use a multi-sheath model for
the source term S comprised of three regions to obtain a new expres-
sion for the wake potential /(¢). Using the proposed model for (&)
in conjunction with the nonlinear blowout theory presented by Lu
et al,””"* we will calculate the trajectory of the bubble radius r;(¢)
and electric field E,(¢) while using the constants of motion to con-
strain the variables. We find that numerical results obtained using the
proposed model agree well with PIC simulation results throughout the
entire ion column. We also compare the results for the multi-sheath
model to those from the single sheath model employed in Refs. 28 and
27. We also show the importance of using the multi-sheath model
when studying beam loading of nonlinear wakes from witness electron
beams. To accurately analyze beam loading in the nonlinear regime, it
is essential to have an accurate equation for r,(¢) and Y(r < 1p). In
the original work of Tzoufras et al,”””” beam loading was analyzed by
determining how 7,(¢) is modified by the electromagnetic forces of
the witness beam. To obtain analytical results, Tzoufras et al. applied
the large 7, limit to the differential equation for r,. We show that the
multi-sheath model provides better agreement and applies it to linear
collider and self-injection parameters. Current profiles of witness
beams that flatten the wakes are provided. We will show numerical
results obtained for the multi-sheath model for wakes excited by
intense lasers. For laser wakefield parameters considered here, where
matched spot sizes are used, we find that the theory does not work as
well as electrons are not completely blown out by the driver and the
sheath structures are more complicated. Last, a detailed discussion on
the differences between the results for the multi-sheath and single
sheath models is given.

Il. THE PLASMA WAKE POTENTIAL

The goal of this work is to obtain a more accurate expression for
the differential equation for ,(£) and the fields inside the ion column.
We begin by concentrating on the wake potential from which the
accelerating and focusing fields for a witness beam are derived. The
differential equation for r,(¢) can therefore be completely described if
the wake potential is known. As mentioned above, the simple sheath
model used in Refs. 27 and 28 cannot accurately describe 7, or the
wake potential unless k,r,(&) is sufficiently large. For such a simple
sheath model, the wake potential is positive definite; however, it is
known empirically from PIC simulations that the wake potential
approaches —1 at the rear of nonlinear multi-dimensional wakes. In
subsequent sections, we show that in order to get accurate predictions
for r, and beam loading it is essential that the potential approaches
—1.

ARTICLE scitation.org/journal/php

As noted above, it is straightforward to show that in order for
to be negative the source term must be negative for some r > 1,
beyond the sheath. We thus propose a phenomenological source term
S that extends the single-sheath model from Refs. 28 and 27 by intro-
ducing a second plasma sheath A, in which the source term is nega-
tive, i.e., S = n, < 0, outside the ion bubble r > r,. This is shown
schematically in Fig. 2(a). For comparison, we also show the simple
model utilized by Lu et al.”** While two sheaths are usually enough
to model the source term for wakes created by electron beams (PWFA
problems), the formalism can be extended to include an arbitrary
number of sheaths. This may be needed for accurate descriptions of
nonlinear wakes created by laser drivers which will be discussed later.
Therefore, we refer to the proposed model as the “multi-sheath model”
since it can employ two or more sheaths while we refer to a model
used by Lu et al”* as the “single-sheath model” since it employs
only one sheath.

As we will show in this section, this second sheath region A, is
needed to describe both the physics and mathematics of the plasma
wake features at the rear of the bubble. Once an expression for V is
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FIG. 2. ( Comgarlson of the proposed multi-sheath model profile (red) and single-
sheath model27 (blue). (b) The proposed model profile (red) and simulation profile
(green) for the transverse slice at k,& =9 (dashed black) from Fig. 1(c). (c)
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obtained using the proposed model for S, we can solve for the trajec-
tory of the bubble radius r;, Y, and accelerating field E,. We note that
others™"” have proposed different phenomenological sheath models
from the one presented here. These authors were motivated to obtain
accurate descriptions for the fields inside the sheath in order to study
self-injection and hosing. In Ref. 34, an exponentially decaying source
term was used for S with a separate decay coefficient for J,. For the
fields inside the ion cavity, such a model does not offer improvement
and it still provides a positive definite form for . Thus, they cannot
be used to study the trapping of test charges in static wakes.

In addition, others™ have proposed using a specific functional
form for E, (&) to address the field divergence and describe the plasma
forces in unloaded plasma wakes. While this can provide improve-
ments, it does not provide an explanation for why this scaling is neces-
sary. Therefore, it is not predictive and cannot be used to study beam
loading. On the other hand, in the multi-sheath model, the plasma
forces determine the bubble trajectory 7,(¢) from which the electric
field E,[ry(&)] is calculated. The multi-sheath model thus structurally
addresses the field divergence through the plasma source term without
constraining the functional form of the electric field. Therefore, beam
loading with arbitrary current profiles can be self-consistently
described by the force equation as a modification to r,(£) and
E,[r(&)]. This cannot be done with the model from Ref. 36.

Henceforth, we will employ normalized units, where charge is
normalized to electron charge e, mass to electron mass m, velocity to c,
charge density to en,, current density to en,, length to ¢/w,, time to
w, !, electric fields to mcw, /e, and potentials to mc?/e. We will also
assume that the wake is excited by a bi-Gaussian electron bunch with
a density profile n, ~ e "/27)¢=<"/2%) and a spot size o, much
smaller than the blowout radius r,,. Following the convention used in
Refs. 28 and 27, we will use step functions to model the source term S
as illustrated in Fig. 2(a) with

—1 ifr<rn,
n ifr, <r <+ A,

S— 1 . b b 1 @)
ny, ifr,+ A <r<r,+A+A,,

0 otherwise.
In Fig. 2(b), we show how the multi-sheath model compares to

the actual source term profile at k,¢ = 9 obtained from the PIC simu-
lation in Fig. 1. In order to understand the physics represented in each

region, we write out the electron and ion source terms, S = —(p — J;)
= —Pion — Pe(1 — v;). Inside the bubble, r < r, (region I), p, =0
and p,,, = 1,50 S(r < r,) = —1 as shown in Fig. 1(a). Due to space-

charge separation from blowout, plasma electrons are attracted back
to the ¢ axis by the ion channel, thereby forming a plasma sheath
(region II) with a large negative density spike p, < —1 at the bubble
interface 7,(£). From the constant of motion for a plasma particle
2
9 —P, =1+, it can be shown that v, = %ﬁ%;xii;z.x’”
Therefore, the innermost sheath electrons at the top of bubble,
where P| ~ 0, propagate backwards v, < 0. Since (1 —v,) > 1 and
p. < —1 in this region, the innermost sheath is characterized by a
positive source term S = n; > 0 within a finite width region denoted
by A;. As these innermost sheath electrons return back to the axis
where the wake potential \/ can approach —1, they can propagate in
the forward direction at nearly the speed of light, i.e., v, ~ 1. In this

scitation.org/journal/php

region, the source term of the electrons is reduced by the factor
(I —v;) < 1. Despite this, the sheath width A; remains finite at the
rear of the wake because the electron density spike along the bubble
interface r,(&) is large enough to offset the ion term, ie,
—pe > g > L.

Near the back of the bubble, there exists a second plasma sheath
(region III) of width A, bordering the first in which the source term
S = n, < 0. In this region, the electron density is of the order of unity,
ie, p,= — 1, and plasma electrons are still propagating forward, i.e.,
v, > 0. Therefore, —p,(1 — v;) < 1, resulting in a negative source
term S < 0.

As can be seen in Fig. 2(c), the simulation profile of the second
sheath varies with the bubble radius r;,(¢) and &. For r,(£) close to the
maximum radius r,, =~ 4.53, the second sheath can generally be
neglected since n, =~ 0. However, the amplitude of #, rapidly increases
as 1,(&) decreases, which is observed for transverse slices located at
ky,&=9,9.25 in Fig. 1(c). In most simulations, peak 7, values of
~O(— ;) can be observed in the second sheath region at the very rear
of the wake where 7,(£) goes to zero. Despite the fact that n, is small,
the width A, usually extends over several plasma skin depths.
Therefore, the source term of the second sheath actually contributes
the most to the negative pseudopotentials observed at the rear of the
wake when integrating Eq. (1). In regions r > r, far from the blowout,
both A; and A, connect to the linear regime where electron perturba-
tion |dp,| < 1 is small and the electron velocities |v,| < 1 are non-
relativistic. In this limit, electrons oscillate at the plasma frequency ;.

The parameters defined in Eq. (2), n;, n,, A}, and A,, are related
by the requirement that charge is conserved in each slice as derived in
Refs. 28 and 27,

J (p = J)rdr = 0. 3)

0
Integrating Eq. (3), we obtain

A A +A\° A

—14m <1+—‘) —1|+n (1+ s 2) —(1+=2) | =o.
T T T

(4)

We can rewrite Eq. (4) to solve for n; in terms of n,, oy, and o,
1-— 1y (G(% + 20(20(1 + 20(2) (5)

n = ,
! (1+o5) —1

where o; = %1 and o, = %2. If n, = 0, we can recover the expression

M= A= e from the single-sheath model.

1
140
We ne)((t calculate the wake potential ¥/(r, &). To do this, we first
need to determine the on-axis potential y/,(&) = (0, &). Once (&)
is known, the wake potential ¥/(r, &) = (&) 7% is defined every-
where inside the bubble. To obtain (&), we integrate Eq. (1) across
all three regions defined in Eq. (2),

bo= [ L[ 0=

o T
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2 2
where Y :%" is the contribution from the ion bubble, ¥y :%

{21+ n)In (1 4 ;) — m[(1 + o1)* — 1]} is the contribution from
the innermost plasma sheath of width A;, and Wy = %{an

(1+a +)" In (I+12) —m[(l+ou + ) — (1+u)} is

the contribution from the second plasma sheath of width A,.
Summing the expressions of all the three regions and simplifying

with Eq. (5), we obtain a final expression for the wake potential inside

the bubble [r < r,,(&)], similar to the one derived in Refs. 27 and 28,

2 2 2
b =@ - 2=y 2@

where

B =214+n)In(1+o)—1

[2%)
2m,(1 In(1 ) 8
+2ny(1 40y + o) n( +1+a1) (8)

Equations (7) and (8) contain the key differences between the
present work and that in Refs. 27 and 28. Naturally, these differences
also effect the bubble trajectory r, since the plasma forces depend on
Y. Thus, it is worth comparing and discussing the differences between
B and . First, if n, is set to zero, then it is trivial to see that ' reduces

_ (1404)* In (1+404)*
tof= (14oy)°—1

ny in terms of o;) which is only a function of «;, and we recover the
on-axis wake potential, , = (1 + f8)r} /4. Furthermore, it is impor-
tant to note that 78 — 0 as r, — 0 and therefore the minimum y at
rear of the bubble is 0 for the single-sheath model.

On the other hand, f' is a function of four parameters
B (ny,ny,01,0,) where each of these parameters is unknown func-
tions of . The goal is to use a combination of physics constraints and
phenomenological arguments to reduce f8’ to be a known function of
rp. First, we use the conservation of charge constraint, Eq. (5), which
gives ny (ny, o1, ) to eliminate 1, from f8'. Next, we will use empirical
observations regarding ¥, (r, = 0) and phenomenological arguments
for the dependence of n,, A}, and A, to obtain an expression for /3/ in
terms of ;.

We assume that the sheath widths are finite as r, approaches 0
and can thus we written as A;(r,) = Ajoc1(13), Az(rp) = Agoca(1p),
and n, = nyh(ry), where ¢, ¢,, and h are the functions of r, that
approach 1 as r, — 0. We next take the limit of y(r,) as r, — 0 to
obtain a relationship between the empirical value of ,,,
= hm,b*)() l//[rb(é)], and A107 Azo, and Ny,

— 1 (using the conservation of charge to express

n(&)—0 4
T2 Al T’Z
= i 1 Lh(14+4=) =2
rb(lél)llo (14m) 2 n( * ”b) 4

A,
+ + A+ AL (1+ )}
nz(rh 1 2) n o+ A
n A
= ?(Alo -+ Azo)z 11'1 (1 + A—?z) (9)

It is straightforward to show that the first term in the limit vanishes
since lim,, ,orfIn(14+A;/r,) =0 and the amplitude of the
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innermost plasma sheath remains finite
— 1120 (AZy+2A20A10+2A . .
= w due to charge conservation with the second

nyp = my(rp = 0)

sheath from Eq. (5). Rearranging the terms in Eq. (9) to solve for #,,
we obtain
2 min
Ny = l’i AN (10)
(AIO + Azo) 11'1 (1 —+ A—fz)

where V,,;, is the minimum value of the on-axis potential .
Empirically, it is known that /,,;, is negative, from which it follows
from Eq. (10) that #n,y must also be negative, which had been argued
above when we motivated the need for the multi-sheath model.
Additionally, from Eq. (5), it also follows that 1, must be positive if
150 is negative.

Equation (10) is important because it constrains the parameter
1y for the given value of Ajg, Ay, and ¥,,,;,. While PIC simulations
can be used to determine the exact value of V,,;, in the nonlinear
blowout regime, /,,,;, can be well approximated by —1 when the maxi-
mum bubble radius is sufficiently large, i.e., r,, = 3. Under these con-
ditions, sheath electrons that trace the bubble r,(&) travel near the
speed of light, v, ~ 1, with finite transverse momentum P, at the rear
of the wake.'””* From the constant of motion for a plasma particle

33 2 2728
y—P, =1+, it can be shown that 1 — v, = 71+I2’2<1++(dl/)+\1/)2_ o
|

0
thatv, — 1 wheny,,;,, — —1L.

Until this point, we have not specified n,(r), n2(rp), A1 (r5),
and A,(rp). In general, since the phenomenological model for S
employs simple step functions in each region, we will not be able to fit
these parameters exactly to empirical wake structures across all
regions. Instead, the goal is to use profiles for 7,, 1, Ay, and A, that
can reproduce the on-axis pseudopotential 1/, (&) and innermost elec-

tron trajectory 7,(&) for nonlinear plasma wakes. Once these quanti-
ties are determined, the wake potential y(r, &) = /(&) — % would be
correct everywhere inside the bubble r < r,(£), which is the region of
interest in the nonlinear blowout regime.

Following the single-sheath model,”** we use a profile for the
first plasma sheath width of A; = Ay + A, where Ajy ~ O(1) and
As = erp such that ¢; = 1+ erp,. This profile is consistent with the
physical picture described earlier in which A; remains finite near the
axis due to the large electron density spike |p,| > 1 along r,(&). It is
worth pointing out that the values of Ajy and e can be varied slightly
to adjust the length of the plasma wake. We use Ajp = 1 and € = 0.05
in most cases and explicitly assume they do not depend on ¢.

To model the S < 0 region outside the bubble, we use a Gaussian
profile n, = nape"/™ such that h = e~%/™ and a constant width
A, = Ay for simplicity, where r,, is the maximum value of r,. While
other profiles can be used to model this region, the Gaussian profile is
largely motivated by the observed behavior of 7, in PIC simulations
[see Fig. 2(c)] where it reaches a negative minimum when r, = 0 and
approaches 0 as r;, approaches the blowout radius r,,. We note that
super-Gaussians can be used, h = ¢~+/"n, where tuning f can improve
the accuracy. The value of 7y, is obtained using Eq. (10), where the
minimum wake potential 1/,,,;, also needs to be provided as input. For
nonlinear wakes in the blowout regime, ie., r,, =3, ,,;,, = —1 can
be used. For all cases presented in this paper, we use s=3 for the
Gaussian coefficient (= 2) and A,y = 3 for the second sheath so that
the n,o values calculated from Eq. (10) are in agreement with values
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observed in simulations that are typically ~O(— ;). However, the
results are largely insensitive to values of s and Azo ranging from 2
to 4.

We can now use ' (120, A1o, Aso, h(s,13,), c1(€, ) /13) (note that
¢, = 1) to obtain the trajectory of the bubble r, for a given r,,. In a
plasma wake, the bubble radius r, starting at 0 reaches a maximum
value of r,, and then returns to 0 at the rear. In the single-sheath
model, fi(r,) is single valued (symmetric) inside the bubble and the
sheath structure looks the same in the front and back half of the bub-
ble. On the other hand, in the multi-sheath model (and in real wakes),
the sheath structure looks different between the front and back half
(there is a single sheath in the front half). While it may be possible to
merge the two models, in what follows, we concentrate on examining
the back half of the bubble for both loaded and unloaded wakes start-
ing from the maximum blowout radius 7, = 1,,,.

As noted above, much of the formalism in Refs. 27 and 28 is
independent of the choice for the sheath model. Following the same
procedure, the differential equation describing the trajectory of the
innermost plasma electron tracing the ion channel r;,(&) can be shown
to be

Aol o3t ()]

1, A9
W } an

where the current profile of the drive and/or trailing bunch is given by
£) = for>>0' nprdr. By expressing y(r, &) in the form shown in Eq.
(7), we can obtain a differential equation for the innermost particle tra-

jectory r,(&),

2 : 2
ilc;b + B/(rb)rh (iii_rfb) + C/(rb)rh = ﬁ, (12)

where the coefficients A’(r;,), B'(rp,), and C'(r}) are

1 f o1 dﬁ}
Alr) =1 -
(rp) +[+ et
3., 3 df ,d*p
4ﬁ+4bd +8”er’
!
4

A'(ry)

1
B(r,) ==
(o) =5+
1
(-5
This is identical to Eq. (46) in Ref. 28 except f§ is replaced by .
It is worth recalling that an underlying assumption of Eq. (12) is that
the r;, dependence in f§’ arises from A, ¢;, and c,.
Once r,(¢) is calculated by integrating Eq. (12) starting from
rm> the wake potential described by Eq. (7) can be used to obtain

the longitudinal electric field in the back half of the bubble
[r <r(S)],

Clry) == |1+

E(6) = (&) = D 2. (13)

scitation.org/journal/php

dE, &Pr, drp\?
Té—D(rb)rhW+F(rh) (75) ) (14)

where F'(r;) = D/(r,) 4+ 31, ’;f 1l

In Fig. 3(a), we plot the bubble radlus rp(&) numerically obtained
by integrating Eq. (12) and the sheath widths A;(r,) and A,(r},) on
top of the actual source term S from the simulation shown in Fig. 1
using Ajg =1, A; = er, = 0.05r,, and Ay = 3. The maximum
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FIG. 3.(a) Contour plot of source term S for a driver with Aq =6, 7
= 20000, kro, = 1, and k&, = 0. The maximum bubble radius is k,r, ~ 4.53.
The bubble radius r,, [Eq. (12)] is calculated using the multi-sheath model ' with
sheath widths A4 = Ag + A§ =1+40.05r, and Ay = Ay = 3 annotated in
black. We use nz = nype~ st/ where s =3 and Ny is calculated from Eq. (10)

using ¥,,., = —1. (b) ny [Eq. ( )] (black) and n, (red), (c) ¥, (black), ¥y (red),

,g Py (blue) from Eq. (6), and (d) v/ [Eq. (7)] (red) and simulation data (black) plotted
where D/(ry) =3+ 5+ rb dr - The slope of the electric field follows as a function of r,/r,,. The wake potential from the single-sheath model”” h (blue)
directly from Eq. (1% is obtained using Eq. (7) with nyy = 0 [Eq. (10)] and /,,;,, = 0.
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bubble radius is r,,, ~ 4.53. We also plot n;(rp) and n,(r;,), where the
150 parameter is calculated from Eq. (10) using ¥,,;, = —1 and n, is
calculated from Eq. (5). Excellent agreement is observed in the bubble
trajectory rp,(&) calculated using the multi-sheath model and simula-
tion results as seen in Fig. 3(a).

It can be seen in Fig. 3(a) that the model for A; captures the
most important regions of the innermost plasma sheath (S > 0) along
the bubble interface. While the constant width profile for A, suffi-
ciently characterizes the S < 0 region at the rear of the wake, it does
not precisely track the empirical second sheath width at the top of the
bubble. However, as shown in Fig. 3(b), the profile of n, (red) decays
exponentially to zero near r,, and, therefore, the exact profile of A, is
irrelevant in this region. Near the top of the bubble, #; (black) can also
be well-approximated by m because 1, approaches zero. When

1, goes to 0, n; remains finite because of the negative n, term in the
continuity equation [Eq. (5)], which is consistent with the physical pic-
ture described earlier and shown in Fig. 3(a). However, in the single-
sheath model, n; = np — 0 forr, — 0.

The limiting contributions from each of the three regions can
also be characterized by the respective wake potential terms defined in
Eq. (6) and plotted in Fig. 3(c). When r;, approaches r,,, the ion term
¥ (black) clearly dominates, the sheath term Py (red) is in on the
order of unity, and Wy (blue) can be neglected because n, goes to
zero. However, when r,,/r,, < 1, the order of importance is reversed,
where Py is now the most negative component, ¥y is less negative,
and W1 approaches zero since r, — 0.

Whereas in Refs. 27 and 28 the sheath potential term ¥y, was
modeled as positive definite, it can now flip sign because #; remains

scitation.org/journal/php

finite at the rear of the wake instead of going to zero. Combining all
three terms, we observe strong agreement between 1), calculated from
Eq. (6) (red) and the on-axis wake potential obtained from the simula-
tion data (black) in Fig. 3(d). It is also worth noting that we can
recover the single-sheath model, which assumed that S > 0 outside of
the ion bubble r > r;,(&), by setting n, = 0 everywhere. Under this

assumption, n; becomes 1 and /)"

becomes
(1+40)°—1

na =
p= % — 1.”7?* It is clear from Eq. (10) that /,,,, = 0 for
such a model. We plot i, (blue) in Fig. 3(d) obtained by reintegrating
Eq. (12) to obtain r, with 1,y = 0 and all other parameters kept the
same. It is clear that the result from the single-sheath model begins to
deviate from the simulation results for r,/r,, =< 0.7. This shows that
although the single-sheath model is reasonable for such values, i/ still
deviates because it is connecting to an incorrect value for r, — 0.

In Fig. 4(a), we plot numerical calculations of the bubble trajec-
tory r,(&) using the multi-sheath model 8 with /,,,,, = —1 (red) and
single-sheath model f§ with y,,,;, = 0 (blue) along with r,() obtained
from PIC simulation results (black). It can be readily seen that the
addition of a second plasma sheath acts to bend the electron trajecto-
ries toward the axis sooner, thus shortening the predicted wavelength.
As a result, the multi-sheath model demonstrates improved agreement
with the simulation results over the single-sheath model. The progres-
sively more negative slope ‘fi—'g observed in the simulation results is due
to the fact that sheath electrons copropagate with the wake, ie.,
v, ~ 1, as they approach the axis where 1/,,,;, = —1. Thus, they exhibit
virtually no phase slippage d¢ = (1 — v,)dt ~ 0 for a given change in
bubble radius dr;, in this region. In fact, we can show mathematically

FIG. 4. Comparisons of (a) r,, (b) %, (c)

%, and (d) E, obtained from PIC simula-

9 fion results (black) and numerical calcula-
tions (red, blue) for the wakefield shown in
Fig. 3. Integration parameters are Ay = 1

+0.05r,, A; =3, and n, = nzoe*sfé/r%,

(d) ] where s=3 and ny is calculated from

1 Eq. (10) using the multi-sheath model p’

] with ., = —1 (red) and the single-
sheath model f5 with ., = 0 (blue).
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why this also occurs in the multi-sheath model by rewriting 7 dn Using
the constant of motion y — P, = 1+ ,”” we find that

@_drb/dt_ U _ PL
dé — dejar T4y

For the innermost sheath electrons returning back to the axis,
the numerator P, is known to be negative and finite. However, the
denominator will depend on what kind of model is used for . For the
single-sheath model wherein ,,;, = 0, the slope of the trajectory is

1—v, (15)

limited by dry o p | near the axis. However, for the multi-sheath model

which employs Vonin =

min = — 1, the slope % approaches —oo near the axis
where the denominator (1 + /) approaches zero.

As shown in Fig. 4(b), the asymptotic behavior of ¢ predicted by
the multi-sheath model (red) at the rear of the wake is also borne out
in the PIC simulation results (black) where the observed minimum
wake potential is close to —1. This is an important point because the
derived expression for the electric field E,(&) [Eq. (13)] not only
depends on r; but also on the slope of the trajectory 4 Since both the

multi-sheath and single-sheath models for y/(r;) are functrons of only

1y, we can express the electric field as E, = %@ As can be seen in

Fig. 4(c), the slope of the wake potential %: is larger for the multi-

sheath model across all 7, than it is for the single-sheath model due to
the larger peak to trough amplitude of /o, when using v, = —1

min
rather than

for the more negative electric fields obtained using the multi-sheath

model in the range 8 < k,{ <9 seen in Fig. 3(d) where the slope of

the trajectories ‘j"’ is largely similar for both models and simulation

results. At the rear of the wake where r,/r,, < 1, the slope of the
dl//

min = 0. It is this term ’%0 which is initially responsible

potential ;> is small and approaches zero near the axis for both single

and multi- sheath models. Since d'“ is finite for the single-sheath model,

the calculated electric field 1ncreases to zero at the rear of the wake

k=9 as ‘/'0 decreases. In contrast, d—’i’ approaches —oo for the

multi- sheath model near the axis resultmg in the characteristic nega-
tive spike in the electric field at the rear of the wake observed in PIC
simulation results. Therefore, for highly nonlinear plasma wakes, the
multi-sheath model employing negative 1/,,,;,, is needed to predict the
electric fields at the back of the bubble, which is a region of interest for
accelerating self-injected and trailing bunches.

11l. COMPARISONS OF PLASMA WAKEFIELD THEORY
AND SIMULATIONS

In the work of Tzoufras et al.,”” it was shown that beam loading
in nonlinear plasma wakes can be viewed as a modification to the tra-
jectory of r,(&) due to the presence of a witness beam with a normal-
ized charge per unit length A(&). Implicit in such an analysis is the
assumption that the theory of Lu et al.””*" provides a reasonable pre-
diction for r,(¢) (and hence the fields) due to the drive beam.
However, the single-sheath model used by Lu et al. does not do as well
in the second half of the bubble particularly where a witness beam
would be loaded.

In this section, we examine the predictions of Eqgs. (12)-(14) for
witness beams with specified A(¢) and compare the numerical results
with simulation results obtained using the PIC code osiis™ for various
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examples of nonlinear plasma wakefields in the blowout regime. We
also show how the multi-sheath model improves upon previous results
by comparing it to the single-sheath model from Refs. 28 and 27. The
purpose of these comparisons is to show that the new multi-sheath
model can be used to accurately predict the wake potential i and elec-
tric field E, at the rear of an unloaded plasma wake and in a loaded
wake with a known trailing bunch profile A(£). In a subsequent sec-
tion, we discuss how to use the multi-sheath model to determine a
profile (&) of a witness beam that leads to a desired loaded wakefield
E. () and compare the results to those in Tzoufras et al.””"’

A. Unloaded plasma wakes

We first examine several cases where an electron drive bunch is
used to excite an unloaded plasma wake. As mentioned previously, we
are interested in plasma wakes where r,, = 3. For a bi-Gaussian driver
with k,0, ~ 1, this corresponds to Ag = 2 since r,, ~ 21/A;.”"” For
these parameters, sheath electrons that trace r,(&) can be accelerated
to high velocities v, ~ 1 as they approach the ¢ axis where ,,,;, can
be well-approximated by —1.'>** This regime is important because
most injection schemes rely on accelerating sheath electrons into the
plasma wake at the back of the bubble by temporarily decreasing the
phase velocity of the wake. Once injected, these electrons can be accel-
erated to GeV energies with ultra-high gradients. This region is also
interesting because the accelerating fields E, and transformer ratios are
largest for electron bunches at the rear of the wake. However, in order
to model the effects of beam loading in this region, we must first be
able to capture the behavior of the plasma wake in the absence of any
externally injected or trailing bunch.

In Fig. 5, we plot the numerical calculations of the bubble trajec-
tory r(&), potential ¥y (&), electric field E, (&), and electric field slope
d:E.(&) from Eqs. (7)-(10) using the multi-sheath model 8 (red) and
single-sheath model f (blue) together with the simulation results
(black curve) for electron drivers with different A, ranging from 1 to
6. Nonevolving drivers were used with y, = 20000, k,0, = 1, and

\{(/)Td = %’ The same profiles A; =1+ 0.05r,, Ay =3,

Ny = Nye =s13/m and s=3 are used for all calculations. The multi-
sheath model calculates 75, [Eq. (10)] using ¥,,;, = —1 while the
single-sheath model uses 1, = 0 everywhere and, therefore, ¥, = 0.

In each case, strong agreement is observed between the calculated
bubble radius 7,(£) and the simulation results along regions where 7,
is close to the maximum blowout radius r,, and where n, can be
neglected due to its exponential profile. It is only at the rear of the
wake that the trajectories (&) of the single-sheath and multi-sheath
models begin to deviate due to inclusion of the negative source term
1, which allows for ,,;, = —1.

As noted previously, the negative wake potential near the axis
employed by the multi-sheath model and observed in PIC simulations
is responsible for the bubble trajectories bending back to the axis with

kyo, =

large negatrve slopes dh from Eq. (15) and hence large negative values

of E,(¢) = d é. This leads to the multi-sheath model providing better
agreement with the simulation results at the rear of the wake when
compared to the single-sheath model. Although not shown for
A4 = 1, the multi-sheath still works well if a less negative value for
W in is used. From simulation results, it can seen that /,,, ~ —0.85

min
drb

for Ay = 1. Therefore, from Eq. (15), the slope of the trajectory 9
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from the PIC simulation does not bend as much as that of the multi-
sheath model near the axis. Thus, it is possible to improve the results
by tailoring 1/,,,;,, from PIC simulation data for drivers with Az=<1.

By construction, the on-axis wake potentials (&) differ at the
very rear of the wake. Both sheath models predict nearly identical peak
potentials /o (1), i.e., B(rm) ~ B (r,n). However, the values of y/,(r;)
differ between the two sheath models for r,=<0.7r,,. Since the multi-
sheath model covers a larger range of potentials from peak, (), to
trough, V,,;, = —1, it also exhibits larger ‘{%‘) at all , when compared
to the single-sheath model. The difference between the two models is
more pronounced at lower A, since the peak potential scales roughly
with the blowout radius squared ¥, (r,,) ~ r2, from Eq. (7) while the
minimum wake potentials connect to ¥, = 0 for the single-sheath
model and ,,;, = —1 for the multi-sheath model.

In each case, the multi-sheath model produces a monotonically
decreasing electric field with a characteristic negative spike near the

ARTICLE
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axis, which is also borne out in PIC simulation results. However, this
characteristic spike is absent in the single-sheath model, wherein the
electric field actually increases at the rear of the wake in every case.
This is also noted in the positive electric field slope d:E, predicted by
the single-sheath model at the rear of the wake. By comparison, the
multi-sheath model and simulation results indicate that d:E, should
remain negative and monotonically decreasing until the innermost
electrons reach the ¢ axis.

B. Gaussian trailing bunches

We now present several cases in which short bi-Gaussian trailing
bunches are placed at the rear of the plasma wakefields as shown in
Fig. 5. The goal is to show that the multi-sheath model provides accu-
rate predictions for beam loading including regions where the wake
potential  is negative. In Fig. 6, we examine several examples in
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FIG. 5. Comparisons of simulations (black) and numerical calculations (red, blue) of r, /o, E,, and d:E; using Egs. (7)-(10) for plasma wakes excited by bi-Gaussian electron
drivers. The peak charge per unit length A4 is 1, 2, 4, and 6 and the blowout radius kry, is 2.10, 2.85, 3.83, and 4.53 in figures (a)—(d), respectively. Nonevolving electron driv-
ers with energy y, = 20000, centroid k,&, = 0, koo, =1, and kyo, = %JA—d were used. The integration parameters Aqg = 1, As = 0.05r,, Ay = 3, and s=3 are
used for all numerical calculations. The multi-sheath model 8" (red) calculates nyo [Eq. (10)] using v,,;, = —1 and single-sheath model B (blue) uses Wmin = 0 and

n, = 0 everywhere. ny is determined from Eq. (5).
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FIG. 6. Comparisons of simulations (black) and numerical calculations (red, blue) of r,, ¥, E, and d:E; using Egs. (7)-(10) with bi-Gaussian drive and trailing bunches. The
drivers used are identical to those described in Fig. 5 for each A4 The frailing bunch parameters are k,¢»p =6.5,8.9, kyorp = 0.08,0.14,0.14, and kyo,2 =
0.15,0.25, 0.25 in figures (a)-(c), respectively. All bunches are nonevolving with 7, = 20 000 and the peak charge per unit length of the driver A4 and trailing bunch A is the
same in each case. The integration parameters {Asq, As, Ay, S} are the same as those used in Fig. 5. The multi-sheath model f' (red) calculates ny [Eq. (10)] using
Y in = —1and the single-sheath model /3 (blue) uses ,,.;, = 0 and n, = 0 everywhere. For all calculations, n is determined from Eq. (5).

which trailing bunches were added at the back of the same ion chan-
nels with centroids located at k,{, = 6.5,8,9 and bunch lengths
kyo2, = 0.15,0.15,0.2. The density profile contours of the narrow
bunches are also shown in plots of r;,(&) (top row of Fig. 6). In each
case, non-evolving drive and trailing bunches with the same energy
7, = 20000 and peak charge per unit length A, = A, are used. The
multi-sheath model using /,,;, = —1 is shown in red while the single-
sheath model using V,,,;, = 0 is shown in blue. It is clear that the wake
potentials ¥, (&) and electric fields E, (&) of the two models diverge at
the back of the wake. In every case, the single-sheath model overesti-
mates the electric field in regions where the beam load is present. In
contrast, the multi-sheath model accurately captures the behavior of
the nearly constant electric field in the center of each beam and exhib-
its strong agreement with the simulation results. The difference
between the two models is also illustrated in plots of the electric field
slope, d:E;.

C. Self-injected bunches

The multi-sheath model can also be used to characterize the load-
ing of the wake due to self-injection. In this section, we revisit a recent
result published in Ref. 24 in which a new method of controllable
injection was demonstrated using an evolving electron driver. The
simulation parameters and details are provided in Appendix A. The
electron density distribution of the plasma wake, driver, and injected
beam is shown in Fig. 7(a) after the driver has propagated a distance
kyz = 1630 into the constant density plasma. The blowout radius at
this point is 7, ~ 3.9 and each driver scallop corresponds to a full
betatron oscillation.” As seen in the inset plot of Fig. 7(a), the current
profile of the injected bunch A(£) varies from 2 to 4 over the core of
the bunch.

In Fig. 7, we compare numerical calculations (dashed red, solid
red, and solid blue) of the bubble trajectory r, (&), potential 1/, (&), and
electric field E, (&) from Egs. (7)-(10) to simulation results (black).
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FIG. 7. (a) Electron density distribution of a plasma wake with a blowout radius
rm ~ 3.9 excited by an evolving electron driver with peak current A4 = 6, energy
75 = 20000, kya, = 0.7 after propagating a distance of 1630 ¢/w), into a con-
stant density plasma. The driver is initially focused at the plasma entrance with a
spot size k,o, = 1.225 and CS parameters k, 5 ~ 1225 and o = 0. The current
profile A(&) of the injected electrons is shown in purple in the inset plot.
Comparisons of simulation results (black) and numerical calculations (dashed red,
solid red, and solid blue) of (a) r, (b) o, and (c) E, using Egs. (7)—(10). For all cal-
culations, the integration parameters {A¢ =1, As = 0.05r, Agp = 3,5 = 3}
are the same as those used in Figs. 5 and 6. The dashed and solid red lines corre-
spond to the unloaded and loaded wake calculated using the multi-sheath model '
with ¥,,.,, = —1. The blue lines correspond to the loaded wake calculated using
the single-sheath model /5 with /,,,;,, = 0.

The numerical calculations use 4(&) of the injected bunch taken from
the simulation. The integration parameters {Ajq, Ay, s} are identical
to those used in Figs. 5 and 6. The solid red lines correspond to the
loaded wake calculated using the multi-sheath model with v, = —1
in Eq. (10) while the solid blue lines correspond to the loaded wake
calculated using the single-sheath model with ,,;,, = 0. For reference,
we also plot the unloaded wake (dashed red) obtained from the multi-
sheath model to illustrate the effects of beam loading from the
self-injected bunch. The multi-sheath model agrees very well with the
simulation results. This agreement is significant because it shows that
it is now possible to model precisely how injected beams load the
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plasma wake. This sets the stage for using the multi-sheath model to
accurately predict how to shape the witness beam for desired profiles
for E,(&).

IV. DESIGNING BEAM LOADS FOR NONLINEAR
PLASMA WAKES

In Sec. III, we showed that the multi-sheath model accurately
predicts the bubble trajectories and fields in the second half of
unloaded and loaded plasma wakes in the nonlinear blowout regime.
We considered situations where the current profile of the trailing
bunch A(£) was either calculated from the PIC simulation data or
specified beforehand. In this section, we show how to design a beam
load A(¢) using Egs. (10)-(12) to produce a specified plasma wakefield
E,(&) =f(&) for the axial wake potential v, = (1 + f')r7 /4. The
beam profiles designed using the multi-sheath model will be validated
against PIC simulations using osmis.”” Simulation results using the
multi-sheath model are compared to results obtained from Tzoufras
et al””>” In the subsequent section, we discuss the differences between
this work and Refs. 29 and 30.

A. Exact solutions for loading arbitrary wakefields

We consider here a general methodology for loading wakefields
of arbitrary profiles E, (¢, < ¢ < &f) = f(¢) when the current profile
of the bunch has a well-defined beginning at £ = ¢, and end at
¢ = &. The current (&) profile required to produce the specified
wakefield f (&) can be obtained using a simple two-step process. In the
first step, the unloaded bubble trajectory r,(&) is calculated by inte-
grating Eq. (12) starting from r, = r,,. Once r,(&) is obtained, the
unloaded wakefield E, (&) is determined from Eq. (13). In the second
step, the order of operations is reversed. Since the desired loaded
wakefield E, (¢, < & < &) = f(&) is known, the loaded bubble trajec-

tory 7,(£) can be reversed engineered from Eq. (13) by numerically
integrating the following:

diy _ f(2)
dé  D(7p)Fp

(16)

from 7;(¢) = ry(&) =1 to either 74(&) or 7 =0, whichever
comes first. The function f(£) is constrained by boundary conditions
at ¢=¢,, which require wakefield continuity f(&,) = lim._o-
E.(¢ + €) = —E,. Once 7,(&) is calculated, the corresponding wake
potential (7,) = [1 + f'(7)]7}/4 can be determined. Although
Egs. (12)-(14) were derived to solve for r,(&) given (&), conversely
they can instead be used to solve for A(¢) for a given trajectory 7, (&).
Expressing the derivatives of 7, (&) in terms of (&) and Z—é using Egs.
(13) and (14), we can rewrite Eq. (12) as

B AF A"\ d
MO =CTi+ (ﬁ_DTf;)f @ (5) 4w

f(&) is the desired loaded electric field and A'(7;), B'(74), C'(7s),
D/(7p), and F'(},) are specified in Sec. II. Since the left-hand side
must be positive definite [1(£) > 0] for an electron bunch, the wake-
field slope d¢f is naturally constrained by Eq. (17). Physically, this
means that the slope of the loaded wakefield f (&) cannot be more neg-
ative than the corresponding slope in the absence of any load. In cases
where the slope def is sufficiently negative, the current profile
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calculated from Eq. (17) would flip sign [A(¢) < 0] which would
require positive charge densities, e.g., positrons, along portions of the
beam load which cannot be focused. Although we have not discussed
the transverse force, we note that for azimuthally symmetric wakes the
focusing force remains perfectly linear even for loaded wakefields.

B. Ultrarelativistic blowout regime

In the ultrarelativistic limit, where the bubble radius is large
rp > 1, the sheath terms are small, i.e., /3’ < 1and /)”ri /4=1, rela-
tive to the ion term rﬁ /4> 1. Therefore, Eqs. (16) and (17) can be
approximated by the leading terms of the coefficients [A'(ry),
B'(ry),C (1), D'(rp),F (rp), B (rp)] — (r}/4,1/2,1/4,1/2,1/2,0).
In this limit, the loaded bubble trajectory can be expressed as

@ _f(0)
dé  7p/2’ (18)

() =12 +4 [ f(O)de.

In the ultrarelativistic limit, the corresponding current profile of
the beam load from Eq. (17) becomes

L 2 (7127) af (<)

e ="rer+ (2) %2 (19)
In the absence of a beam load [A(£) = 0], it can be seen from Eq. (19)
that the slope of the electric field inside the bubble is df/d¢&
= dE,/d¢ ~ —1/2 when the bubble radius is maximum r, = r,,, and
f=E ~ lrb‘fi—’g =~ 0. As noted in Sec. IV A, the slope of the loaded
wakefield is naturally constrained by Eq. (19). For an electron (or anti-
proton) beam 1 > 0,

~2 ~2
b 2, (Te\F(E)
Z+f(£) JF(?) dé >0, (20)
from which it follows that
afe 1, 4’
2 2—5(1+ 72 ) @1

Equations (18) and (19) can be solved analytically for many func-
tions f(&). However, any such functions f(£) must satisfy Eq. (21) for
all & € [&;, & along the beam load and the continuity constraint at
the head of the bunch f(&,) = —E;. In Refs. 29 and 30, analytic solu-
tions to Eqgs. (18) and (19) were derived for a beam load designed to
produce a constant wakefield f(& > ¢,) = —E, and df/dé=0
extending from the head of the bunch ¢, all the way to the rear of the
wake 75(&f) = 0. Such a wakefield can be used to accelerate a trailing
bunch to multi-GeV energies while maintaining the kinds of low
energy spreads needed for next-generation linear collider and XFEL
applications.

For a constant wakefield df /d& = 0, it is trivial to show that
Eq. (21) is always satisfied and the solution to Eq. (18) is a parabola
r, =12 —4E (¢ — &). It follows directly from the loaded bubble
trajectory that the maximum length of the beam load A, = &

=& :;—; is limited by the length of the bubble 7;(¢s) = 0.

Substituting the loaded trajectory 7, into Eq. (19), the underlying cur-
rent profile is given by

scitation.org/journal/php

75()?
4

2
r I3
ME) =E + :Ef+Z’—Et(c— Ct)- (22)
In Refs. 29 and 30, it was shown that this trapezoidal current pro-
file could be written as

; rh : .
A& = \/EH?—Ef(q—ct), (23)

by solving for r? /4 = \/E} + r% /2* — E? in terms of E; and r,,, in the
ultrarelativistic limit. In Secs. IV C-IV E, we will compare the analytic
result [Eq. (23)] derived by Tzoufras et al””” in the ultrarelavistic
limit (B, B — 0,0) with the exact beam profiles obtained by numeri-
cally integrating Eq. (16) for both the multi-sheath " and single-
sheath ff models.

C. Comparisons of theory and simulation results for
loading constant wakefields

We next use the methodology outlined above to design beam
loads that produce constant electric fields extending to the very rear of
the bubble. Exact profiles will be calculated numerically from Egs. (16)
and (17) for the multi-sheath 8 and single-sheath models f3. We also
present results for beam loads calculating using the analytic theory
[Eq. (23)] in the relativistic limit (B, — 0,0). Beam profiles
obtained for each model will be simulated using the PIC code osris.”®
Finally, we will present examples of loading longitudinally varying
electric fields using the multi-sheath model and compare the numeri-
cal results to PIC simulations.

We use Ay = 3, n, = e o/, and s=3 when numerically
integrating Egs. (16) and (17). For each case, Ay is first optimized for
the multi-sheath model using the unloaded plasma wake as shown in
Appendix B. For the multi-sheath model, 1,y is determined from
Eq. (10), which depends on ,,;, used. For the single-sheath model,
1150 = 0 and, therefore, n, = 0 everywhere. Reasonable estimates can
be obtained for a large parameter space if Ajp = 1.

In Fig. 8, we compare results for an electron drive bunch with
parameters Ay = 6, y, = 20000, k,0, = 0.245, ko, = 1, and
ky&. = 0. The maximum blowout radius is r,, ~ 4.53. For this driver,
we found that a value of Ajp = 0.875 gave the best results (see
Appendix B). Weuse i, = —1 to determine 7,o. The unloaded bub-
ble trajectory (&) (dashed red) obtained from integrating Eq. (12) is
also shown in Fig. 8(a). We are interested in calculating the current
profile of the beam load that can produce a constant wakefield starting
at ¢, = 8.5 using the multi-sheath model. To self-consistently solve
for the loaded bubble trajectory 7}, using the multi-sheath model, we
numerically integrate Eq. (16) using r; ~ 2.73 and E; ~ 2.26 from the
unloaded calculations. The loaded trajectory 7, obtained using the
multi-sheath model is plotted (solid red) in Fig. 8(a) and exhibits
strong agreement with the simulated wake trajectory produced by the
underlying trailing bunch. The loaded trajectory in the ultrarelativistic
limit ?b(f)z =1} —4E, (¢ —¢,) is also plotted (dashed blue) using
¢ ~ 2.81 and E; ~ 2.26 from the PIC simulation data. It can be seen
that the loaded parabolic trajectory (analytic result for ultra-relativistic
regions of r,) underestimates the length of the plasma wake as it
crosses the axis much sooner than expected when compared to the
loaded multi-sheath trajectory.
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FIG. 8. (a) Plasma wake excited by a driver {Ag = 6,ky0, = 0.245, ko,
=1,k,¢, = 0} with a load [Eq. (17)] placed at & = 8.5 designed to produce a
constant wakefield £; = 2.26 using the multi-sheath model ' with /,,,;, = —1.
The unloaded (loaded) trajectory is shown in dashed (solid) red. (b) Predicted current
profiles A(¢) for the multi-sheath model B’ (red), single-sheath model f3 (green) with
Womin = 0, and analytic theory B = B = 0 (blue). (c) Simulated £, (&) using the pro-
files shown in (b). E; (&) calculated from Eq. (13) using the " current profile is in black.
(d) Simulated E,(&) using mult-sheath model f [Eq. (17)] to load the wake at
& =8, B =1.81with ,,;,, = —0.9 (purple) and —1 (black).
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The current profile A(&) predicted by the multi-sheath model
[Eq. (17)] is plotted (solid red) in Fig. 8(b). For comparison, we also
plot the current profile A(&) ~7.22 —2.26 x (¢ —8.5) [Eq. (23)]
obtained in the ultrarelativistic limit (dashed blue line). While the pro-
files are both trapezoidal, the multi-sheath model predicts a bunch
length A¢;, ~ 1.44 which is ~63% longer than that of the analytic
beam loading theory A¢,, = 4’—1”5 =~ 0.88. On the other hand, the ana-
Iytic theory predicts larger currents along the load compared to the
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multi-sheath model. Integrating the current profiles, the total loaded
charge predicted by the multi-sheath model Qy,/ enpk;3 ~ 41.8 (solid
red) is ~21% higher than the loaded charge predicted by the analytic
beam loading theory Q;,/ en},kﬂj3 o~ 34.5 (dashed blue).

We also plot the beam profile calculated using the single-sheath
model (dashed green) by integrating Eqs. (16) and (17) with n, = 0.
For the single-sheath results, we self-consistently sample the bubble
radius r, ~ 2.7 and electric field E; ~ 2.05 at & = 8.5 from the
unloaded wake trajectory integrated from Eq. (12) using f instead of
. Compared to the other profiles, the single-sheath model signifi-
cantly underestimates the slice currents of the beam load at all longitu-
dinal positions. The disagreement is largely attributed to the fact that
the unloaded electric field predicted by the single-sheath model does
not capture the characteristic negative spike observed in the multi-
sheath model and simulation results in Figs. 4 and 5. Instead, the slope
of the unloaded electric field d:E, predicted by the single-sheath
model flips signs from negative to positive at the rear of the wake. As a
result, the current profile predicted by the single-sheath model also
flips sign (4 < 0) at the rear of the wake which corresponds to positive
charge densities, i.e., positrons, along portions of the beam load.

In Fig. 8(c), we show the electric fields from PIC simulations
using the currents profiles predicted by the multi-sheath model and
analytic theory shown in Fig. 8(b). For reference, we also plot the
expected electric field from the multi-sheath model using Eq. (13). The
simulation results clearly show that the profile delineated by Eq. (23)
(dashed blue) does not extend to the very rear of the wake. The simu-
lation results using the multi-sheath model (black) produce a nearly
constant electric field E, over almost the entire length of the load
extending all the way to the back of the bubble. The electric field in the
simulation is in agreement with the expected field calculated using the
multi-sheath model shown in red. The deviation between these two
curves is small (the red curve has a slight negative slope) and can be
attributed to the minimum wake potential V,,;, not being exactly
equal to —1.

In cases with longer loads A, = r,,/2, higher values of 1,,;,
may be needed to correctly load the wake since the loads, themselves,
can modify the electron momenta at the back of the bubble and, there-
fore, alter the wake potential described by the constant of motion
14+ =y—P,." In Fig. 8(d), we show electric field simulation
results using beam loads [Eq. (17)] designed to produce a constant
wakefield E; ~ 1.81 starting at £, = 8. The bubble radius is r, ~ 3.31
at &, from the unloaded PIC simulation. Two different cases are pre-
sented for trailing beams where 7, is determined from Eq. (10) using
W min = —0.9 (solid purple) and ,,;,, = —1 (dashed black). While the
black curve increases at the back of the bubble (9.5 < ¢ < 10.5), the
purple curve remains flat over virtually the entire beam load. The dif-
ference can be attributed to the fact that the underlying beam profile
used to load the wakefield in black is calculated using V,,;, = —1
which is more negative than the empirical value of V,,;, >~ —0.65
observed in the PIC simulation with the beam load as predicted from
the model. As a result, the current profile overestimates the length
A¢,. over which the wake can be loaded as well as the ion channel
radius r, thus leading to larger currents from Eq. (17).

This issue can be addressed by incrementally increasing the value
of Y i, used by the multi-sheath model until it matches the empirical
Yomin from the PIC simulation results with the beam load. For
Vppin = —0.9, we see that the plasma wakefield is nearly perfectly
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loaded over a reduced bunch length in purple. The value v, = —0.9
is now in good agreement with the minimum wake potential ,,;,
~ —0.87 found in the PIC simulation results in purple. Integrating the
current profiles of the underlying beam loads, the total loaded charge
Qu/ enpkp‘3 o~ 55.4 obtained using the multi-sheath model with
W in = —0.9 is only marginally lower (~7.5%) than the loaded charge
Qu/enpk, 3 ~ 59.9 calculated when using ¥/ ,,;,, = —1.

As in the previous example, the bunch length A&, ~ 2.31 pre-
dicted by the multi-sheath model using ¥,,,;,, = —0.9 is ~53% longer

than the optimal bunch length predicted by analytic beam loading
theory A, = 4'—}2 ~ 1.51. As a result, the loaded charge Q;/ enpkf’
~ 55.4 predicted by the multi-sheath model is ~23% higher than the
loaded charge Qy/ enpk;3 ~~ 45 predicted by integrating Eq. (23) of
the analytic theory. As in the previous example shown in Fig. 8(b), the
gain in the loaded charge Q,, is primarily driven by the longer bunch
length A&,,. The increase in Q;, is lower than that of A¢,, because the
slice currents are also lower.

In the next example, we revisit a beam loading result published
by Tzoufras et al.”’ in which a bi-Gaussian driver {np(r, &) = [Ny/
(27t)3/20'26 Je /@107 kg, = 0.5, kyo, = 1.41, Nb 139
(c/ wp) is used to excite a plasma wakeﬁeld with a blowout radius
rm =~ 5 in Fig. 9(a). For these parameters, the peak charge per unit
length of the driver is Ay ~ 6.24.

Using an optimized sheath width A,y = 0.825 and ¥, = —1,
the unloaded bubble trajectory (dashed red) is calculated using the
multi-sheath model [Eq. (12)] and plotted in Fig. 9(a). We are inter-
ested in generating a beam profile that can load a constant wakefield
E; ~ 1.75, as previously done in Ref. 30. From the unloaded PIC sim-
ulation results, this electric field occurs at &, ~ 8.27 where the simu-
lated bubble radius is r, >~ 3.91. Using the multi-sheath model, we
self-consistently solve for the loaded bubble trajectory 7;, (solid red) by
integrating Eq. (16) starting at &, ~ 8.27. We use ,,,;,, = —0.9 in this
example since the bunch length is long, i.e., A, = r,, /2. Strong agree-
ment is observed between the loaded trajectory calculated from the
multi-sheath model and the trajectory from the PIC simulation with
the underlying bunch. For reference, we also plot the loaded trajectory
in the ultrarelativistic limit 72 i =r? —4E,(& — &) using r, and E; from
PIC simulation data. Like in the previous example, the parabolic tra-
jectory underestimates the length of the wake when compared to the
loaded trajectory of the multi-sheath model.

The current profile obtained using the multi-sheath model
[Eq. (17)] is shown in Fig. 9(b) in solid red. For reference, we also plot
the beam profile A(&) ~ 6.96 — 1.75 x (¢ — 8.27) [Eq. (23)] in the
ultrarelativistic limit in dashed blue. While both models predict trape-
zoidal profiles with similar slice currents, the bunch length predicted
by the multi-sheath model A, ~ 3.09 is nearly ~42% longer than
that of the analytic theory A&, = 4'—5[ o~ 2.18. Despite the fact that
most of the charge is front-loaded in both profiles, the total charge pre-
dicted by the multi-sheath model Q/ enpk; 3~ 87.1 is still ~25%
more than the total charge predicted by the analytic theory
Qs /enpk;3 ~ 69.4.

The beam profile obtained using the single-sheath model (dashed
green) with 7, = 0 is also shown for qualitative comparisons. Since
the head of the bunch is situated at r;/r,, ~ 0.78 where the second
sheath can be largely neglected, the single-sheath model will initially
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FIG. 9. (a) Electron density distribution of a plasma wake excited by an electron
driver {A =6.24, ko, = 0.5,ky0, = 1.41,k,& = 0} with a load [Eq. (17)]
placed at & = 8.27 designed to produce a constant wakefield E; = 1.75 using the
multi-sheath model /3. Integration parameters are Ajp = 0.825, As = 0.05rp,
Ag = 3, and s =3. The unloaded (dashed red) and loaded (solid red) trajectories
are calculated using ¥,,.. = —1and ... = —0.9, respectively. (b) Current pro-

files A(&) for the multi-sheath model ﬂﬂ’”n(red) with ,,,;, = —0.9, single-sheath

model B (green) with ,,,, = 0, and analytic theory ' = 8 =0 (blue). (c)
Simulated E, (&) using the profiles shown in (b).

predict slice currents similar to those obtained using the multi-sheath
model. However, at lower 7j, the multi-sheath model and single-
sheath begin to diverge as the second sheath comes into play.
Eventually, the current profile predicted by the single-sheath model
turns negative (4 < 0), similar to what can be seen in Fig. 8(b), due to
the absence of the characteristic spike in the electric field when using
the single-sheath model.

In Fig. 9(c), we plot the PIC simulation results using the profiles
given by the multi-sheath model and analytic theory shown in
Fig. 9(b). It can be readily seen that the multi-sheath model provides
improved accuracy over the analytic theory in terms of flattening the
wakefleld. Furthermore, the beam load predicted by the multi-sheath
extends all the way to the very rear of the wake while the beam load
predicted by the analytic theory does not.

D. Total accelerating force

When loading a constant wakefield f(& > &) = —E,, the inter-
play between the maximum loaded charge Q,, and the accelerating
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field E; can be characterized by examining the total accelerating force
Qu-E;. In Ref. 30, the total accelerating force was found to be

Qi ek 1 4
e mifr, & (kprm) (24)

in the ultrarelativistic limit by integrating the analytic theory described
by Eq. (23). An exact calculation for Q; E; can be obtained by numeri-
cally integrating loaded trajectory 7;,(¢) from Eq. (16) and, then, inte-
grating the current profile (&) described by Eq. (17) using

Qi eE; _lff

e me2/r, 2

G 25)
St

for a specified constant wakefield E, until the very rear of the wake
defined by 74 (&f) = 0.

In Fig. 10, we plot the accelerating force QE; as a function of the
accelerating field E, for the plasma wakefield as shown in Fig. 8(a) with
a blowout radius 7, ~ 4.53. The blue line corresponds to the analytic
theory described by Eq. (24) while the red line is obtained by numeri-
cally integrating Eq. (25) using the multi-sheath model starting at dif-
ferent positions in the wake. For simplicity, we use V,,;,, = —1 to
calculate QuE; using the multi-sheath model rather than tailoring
Wmin for cases with long beam loads, i.e., A, =r,/2. As shown in
Sec. IV C, adjusting \/,,;,, to account for self-consistent beam loading
effects can decrease the predicted charge by =<O(10%).

As can be seen in Fig. 10, Eq. (24) predicts a constant accelerating
force regardless of where the load is placed while the multi-sheath
model predicts an accelerating force that decreases as the amplitude of
the accelerating field E, increases. For values of E; < 2.73, the multi-
sheath model predicts more loaded charge Q,, than the analytic theory
due to its longer beam loads with comparable slice currents. It is worth
pointing out that all examples of beam loading presented in Figs. 8
and 9 were operating in this range. On the other hand, the multi-
sheath model predicts less charge can be loaded for larger accelerating
fields E; > 2.73 because the lower slice currents now outweigh the dif-
ferences between the predicted bunch lengths. While the exact cross-
ing point E, will vary on a case by case basis, the qualitative features of
the accelerating force Q,E; predicted by multi-sheath model will be

14¢ H — F[Eq. @5)] E
— 12b : — B =B=0[Eq (4] |]
: o = -
“~ 6F 1 3
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FIG. 10. The accelerating force Q:E; as a function of the accelerating field E; for
the plasma wakefield from Fig. 8 with maximum bubble radius r, ~ 4.53. The blue
curve corresponds to Eq. (24). The red curve is numerically integrated from Eg.
(25) using the multi-sheath model /8’ [Eq. (17)] to load constant wakefields, i.e.,
E, (¢ > &) = —E, at different positions in the wake. The same integration param-
eters {Ag = 0.875, Ay = 3,5 = 3,,,;, = —1} from Fig. 8 are used for each
calculation.
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largely similar for nonlinear wakes with different r,,,. Since the analytic
theory is also a limit of the multi-sheath model, the accelerating force
QyE; obtained using the multi-sheath model also scales with r% when
tm > 1.

E. Beam loading longitudinally varying wakefields

While much of the discussion has focused on loading constant
wakeflelds, we will now present several examples in which longitudi-
nally varying plasma wakefields are loaded using the formalism
described by Eqs. (16) and (17) of the multi-sheath model. Designing
beam loads for tailored ‘fj—Eg is of interest to self-injection or collider
designs where initial energy chirps are present in the witness beam.
Beam profiles will also be presented in the ultrarelativistic limit
(B', B — 0,0) using Eqgs. (18) and (19). In each case, an electron drive
bunch {As = 6,7, =20000, k0, = 0.245, k0. = 1,k,&. = 0} is
used to excite a plasma wake with a blowout radius r,, ~ 4.53. Since
the driver is identical to the one used in Fig. 8, we will also use the
same parameters {Ajg = 0.875,A; = 0.05r,, Ay = 3,5 =3} to
obtain results using the multi-sheath model f8'. 1 is calculated from
Eq. (10) using ¥,,;, = —1 since the trailing bunches are short. For this
driver, we refer to Fig. 8(a) for the unloaded wake trajectory (dashed
red) calculated using the multi-sheath model.

In Figs. 11(a) and 11(b), we design a beam profile that loads a lin-
ear plasma wakefield with a positive slope df /dé > 0. Such a wake-
field can be used to dechirp a beam with a positive energy chirp
dey > 0 while still maintaining an accelerating field E; < 0 over the
electron load. In this example, we choose to load the function
fl&)=-E+(&—-¢&) from & =85 to & =95 such that
df /d& = 1. From the unloaded trajectory calculated from Eq. (12), the
bubble radius r; ~ 2.73 and electric field E; ~ 2.26 at the head of the
bunch are known.

To calculate the beam load profile, we must first numerically inte-
grate Eq. (16) to obtain the loaded bubble trajectory 7,(¢) from &, to
¢r After the beam load ¢ > ¢, the remaining unloaded trajectory is
calculated by integrating Eq. (12) starting at 7, (s ). The electric field is
then calculated from Eq. (13) across all regions (unloaded and loaded)
and plotted (solid red) in Fig. 11(a). From the results, it is clearly evi-
dent that the loaded region does not extend to the very rear of the
wake since the characteristic negative spike in the electric field is still
present. In Fig. 11(b), the underlying current profile A(¢) calculated
from Eq. (17) is shown (solid red). Using this current profile, PIC sim-
ulation results (solid black) shown in Fig. 11(a) indeed confirm that
the desired wakefield f (&) is produced along the bunch. Strong agree-
ment is also observed between the simulated and calculated electric
fields in regions before and after the beam load.

In the ultrarelativistic limit 8° — 0, it is straightforward to show
that the analytic solution to Eq. (18) along the beam load is a hyper-
bola 75, (¢)* = r2 — 4E,(& — &) + 2(& — &,)*. Substituting 7, into Eq.
(19), the analytic current profile is a parabola A(¢) =2r7 4 E?
—5E (¢ — &) + g (&- ft)z. This profile is evaluated using 7, ~ 2.81
and E; ~ 2.26 from the PIC simulation data and plotted (dashed
blue) in Fig. 11(b). While this analytic profile captures the general
trend of the multi-sheath results, we note that disagreement is still
observed between the two profiles along portions of the load.

In Figs. 11(c) and 11(d), we design a beam profile that loads a
sinusoidally oscillating plasma wakefield to highlight the limitations of
the loaded plasma wakefield slope df /d¢&. For this case, we choose to
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FIG. 11. Simulation results (black) using the multi-sheath model [Egs. (16) and
(17)] with .., = —1 for two different electric field profiles: (a) f(& < & < &)
=-E+(E-¢&) from &=85 to &=95 and (c) f(&<E<E)
= —E +Eisink(¢—&)] from & =7.75 to & = 9.75, where E; :% and
k = 7. The solid red lines correspond to the electric field calculated from Eq. (13).
The corresponding current profiles A(&) [Eq. (17)] from (a) and (c) are plotted in (b)
and (d), respectively. Analytic current profiles A(¢) calculated from Eq. (19) are
plotted in dashed blue.

ol

load the function f(&) = —E; + E; sin [k(& — &,)] from &, = 7.75 to
¢r = 9.75 where E; = i and k = 7. From the unloaded bubble trajec-
tory calculated from Eq. (12), we use r; >~ 3.45 and E; ~ 1.66 to
numerically integrate the loaded bubble trajectory 7,(&) [Eq. (16)]
from &, to &y After the beam load ¢ > ¢, the remaining unloaded tra-
jectory is calculated from Eq. (12) starting at ?h(éf). In Fig. 11(c), we
plot the electric field calculated from Eq. (13) using the multi-sheath
model in solid red. The current profile of the load A(&) calculated
from Eq. (17) is plotted (solid red) in Fig. 11(d). Using this current
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profile, the electric field from PIC simulation results (solid black)
exhibits strong agreement with the multi-sheath results in all regions.

As pointed out previously, A(¢) is defined to be positive definite
for an electron load, which limits how negative df /d¢ can be in Eq.
(17). As shown in Figs. 11(c) and 11(d), the current profile approaches
zero around ¢ &~ 8.7 where df /d¢ is near its minimum. In this case,
increasing the amplitude or the frequency of the sinusoidal oscillation
would result in a more negative slope df /d&, which would require a
positive (positron) charge density along regions of the load to attract
the sheath electrons that trace the bubble trajectory back to the axis
more quickly.

A similar analysis can be done in the ultrarelavistic limit where
the analytic solution to Eq. (18) is (6 = r2 —4E (¢ — &) —0—%
[1 — cos (k(¢ — &,))]. Using this analytic trajectory, the current profile
of the underlying bunch (&) = % + (&) + g% [Eq. (19)] can now
be completely expressed in terms of ¢ where % = kE; cos [k(¢& — &,)].
The slope df /d¢ is naturally constrained since it is the only term
which can be negative and 4 > 0 for an electron driver by definition.
In Fig. 11(c), this profile is evaluated using r; =~ 3.49 and E; ~ 1.63
from unloaded PIC simulation results and plotted (dashed blue).
While the analytic current profile qualitatively reproduces the oscilla-
tions observed in the multi-sheath profile, it is still an approximation
of the multi-sheath model and, therefore, deviates from it along por-
tions of the beam load. For example, near & ~ 8.7, the analytic current
profile dips to 4 & 1.56, whereas the multi-sheath profile approaches
A = 0. In Sec. VI, we provide more detailed comparisons between the
single and multi-sheath models and the analytic results. Explanations
for these differences are also given.

V. BEAM LOADING IN LASER WAKEFIELDS

Up to this point, we assumed that the wakefields are excited by
electron drivers. However, the formalism described in Sec. Il can
be easily extended to a laser driver specified by the vector
potential Ajer = R{A | e/}, where w, is the laser frequency and
a = eA; /mc? is the normalized vector potential envelope. To do this,
we use the same source term profile for S described by Eq. (2).
Therefore, the expressions for the wake potential y = (1 + f')rZ/4
—1?/4 obtained by integrating Eq. (1) and the electric field
E, = dd—‘é}’ =D (rh)rh‘;—ré’ are identical to those derived in Sec. II. The
trajectory of the sheath electron for a laser driver, as derived by Lu
et al.,”® can be written as

dr,\’ A
+ B (r)r, (d_:) +C(r)r = % G, (n)V L laf",

dzrh

A,(Tb) dg“z

(26)

where the new coefficients for the laser case denoted with the subscript
“L” are defined as

1 1+ a]*/2
Culr) =g |1+ gr\2|’
1
1+28
( * 4>
1 1
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It is worth mentioning that A’(r;,) and B'(r,) are the same coeffi-
cients specified for the beam-driven wake in Sec. II. While the equa-
tion of motion describing the trajectory of the sheath electron is
slightly different in the case of a laser driver, the general procedure for
modeling the wakefield remains the same. For the laser wakefields in
this section, we use the same profiles for A; (), Az (1), and ny (1) as
described in Sec. II. As in the beam-driven case, 1, (r,) is calculated
from Eq. (5) and n, is constrained by Eq. (10). Using these quantities,
we can calculate f8'(r;) from Eq. (8) and, then, numerically integrate
Eq. (26) to obtain the trajectory of the sheath electron that traces r;, (&)
starting at the maximum bubble radius r,,. Once r,(&) is known, the
wake potential (r, £) and electric field E, (&) can be obtained every-
where inside the bubble r < 7, ().

For a laser that is well-guided in the plasma with a matched spot
size Wy ~ 1, ~ 2\/%,28 determining the exact value of the blowout
radius r,, is generally more difficult because the electrons are not
completely blown out by the ponderomotive force of the laser, which
is largely localized to W), As a result, the particle tracing “r,” is no lon-
ger the innermost electron but the characteristic sheath electron with

2(149)* .
—=Y ___ near the axis
1+P2 +af* /2+(1+y)’

where V/ is minimum. Like in the beam-driven cases, the minimum
wake potential 1/,,;, can be well-approximated by values close to —1
when r,, = 3 for the trajectory traced out by this electron. This regime
typically corresponds to lasers with normalized vector potentials
ag = 2 since r,, = 2./ao.

The methodology for loading a wakefield E (¢ < ¢ < &)
= f(¢) also remains largely unchanged from the procedure described
in Sec. IV. By integrating Eq. (16), we can then obtain the modified
sheath electron trajectory 7,(&) corresponding to a loaded wakefield
f (&) starting at the beam head located at &,. The only difference is that
the corresponding current profile for the beam load is now given by

o) = G+ (B’ AT >f(é)2

the largest forward velocity v, =1 —

D2 DAt
AN 2
+(ﬁ> Ti + Girva‘ﬂ s (27)

where the last term corresponds to the ponderomotive force from Eq.
(26). In cases with short laser pulses, the ponderomotive term in Eq.
(26) can be dropped in the back half of the wake.

In Figs. 12(a)-12(c), we show the results for the bubble trajectory
rp(&), potential 1/, (&), and electric field E, () obtained from calcula-
tions using the multi-sheath model (red) and osiris (quasi-3D) PIC
simulation results (black) for an unloaded wake excited by a 40 fs
(FWHM) 0.8 um laser driver after propagating into a constant plasma
density n, = 1.5 x 10'® cm™. The PIC simulation used a customized
finite-difference solver to reduce numerical effects from relativistic
particles,”™ a high resolution grid with k,Ar = 0.0073, k,Az
= 0.0059 and w,At = 0.0029, and 32 particles per cell (2 x 2 x 8).
The laser is initially focused at the plasma entrance with a normalized
vector potential ap = 4 and a transverse Gaussian envelope having a
matched spot size k, Wy = 2,/ag = 4.” The electron density distribu-
tion in the r — & plane is shown in Fig. 12(a) after a propagation dis-
tance z = 0.32 mm into the plasma at which point the blowout radius
is 7, = 4.26. It can readily be seen that while the multi-sheath model
generates a sheath electron trajectory r,(£) in Fig. 12(a) that is in good
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agreement with the bubble trajectory from the simulation results, it
overestimates (underestimates) the potential (electric field) over most
of the wake in Figs. 12(b) and 12(c). The disagreement is primarily
due to the fact that the plasma electrons are not completely blown out
by the ponderomotive force of the laser. Therefore, plasma electrons
can now propagate inside the bubble, i.e.,, r < 1, resulting in spatially
varying charge densities and currents in the bubble.

As a result, the expressions for Y (r, &) [Eq. (7)] and E.(¢)
[Eq. (13)] obtained using the multi-sheath model [Eq. (2)] break
down because the source term inside the channel S(r < r;,) is no
longer exactly —1 as shown in the inset plot of S along r=2 in
Fig. 12(a). The presence of plasma electrons inside the bubble is
also important because the focusing force is no longer perfectly lin-
ear. In addition, these electrons can move from the inside (r < ;)
to the outside of the bubble (r > r,), effectively splitting the plasma
sheath into two. This effect can be seen from the simulation results
in Fig. 12(a) inset near the bubble radius r,(¢) at ¢ ~ 6. This sheath
splitting phenomenon can typically produce more than three dis-
tinct regions in which S has alternating signs, which differs from
the model assumed in Eq. (2).

In Figs. 12(d)-12(f), we show the electron density distribution of
the laser-driven wakefield at z = 0.32 mm with a beam load designed
to produce a constant wakefield starting at £; = 6. To self-consistently
load the wake using Eqs. (16) and (27), the electric field at the head
of the bunch is sampled from the multi-sheath model f(& > &)
= —E, = —1.74 rather than the simulation results. The current profile
A(&) of the beam load calculated from Eq. (27) is shown in the inset of
Fig. 12(d).

It is clear from the simulation results that the multi-sheath model
fails to capture the behavior of the modified sheath electron trajectory
7, [Eq. (16)], wake potential Vo, and electric field E, in Figs.
12(d)-12(f). The underlying reason is that the multi-sheath model pre-
dicts an electric field at the head of the bunch that is more negative
than the simulated electric field. Therefore, the currents calculated
from Eq. (27) are larger than needed due to the f(&)® term on the
right-hand side. The simulation results show that the current profile
produces an electric field that actually increases along the beam load
rather than remaining constant.

It is also worth noting that the beam load blows out the remain-
ing electrons inside the channel » < r;, and forms another thin plasma
sheath as can be seen in the electron density phase space and inset
plots in Fig. 12(d). As these electrons are being blown out, the source
term inside the bubble becomes more negative until only ions remain
and S(r < r,) = —1. This effect also contributes to the positive slope
of the loaded wakefield E, near the head of the bunch &,.

From the results presented in this section, it is evident that the
model for S described by Eq. (2) is not sufficient for modeling
unloaded and loaded laser wakefields. Plasma electrons propagating
inside the “bubble,” sheath splitting, and blowout of remaining elec-
trons by the beam load are some of the features making it difficult to
apply the multi-sheath model, as is, to cases with a laser driver. For
these very same reasons, electron beams are ideal for driving high-
quality plasma wakefields in which electrons are completely blown out
and the focusing force is perfectly linear. While the multi-sheath
model can be adapted to laser drivers by using a source term model in
which S(r < 1) is no longer constant, the force equation will also
need to be modified due to the fields from the plasma currents inside
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FIG. 12. Comparisons of simulations (black) and numerical calculations (red) of r,, o, and E, using E%s. (7), (13), and (26) for laser wakefields excited by a 40 fs (FWHM)

0.8 um laser driver after propagating a distance z = 0.32 mm into a plasma with density n, = 1.5 x 10

cm~3. In both cases, the laser pulse is initially focused at the plasma

entrance with a normalized vector potential ay = 4, normalized spot size k, Wy = 4, and centroid k, & = 0. At z = 0.32 mm, the electron density distribution is shown for two
cases with (a) no load and (d) a beam load designed to produce a constant wakefield starting at k,& = 6 using Egs. (16) and (27). The insets show the lineout of the source
term S at k,, = 2 (dashed black) for the unloaded case and the trailing bunch profile A(&) (red) obtained using the multi-sheath model for the loaded case. The corresponding
Vo(&) and E, (&) are shown in (b) and (c) and (e) and (f) for the unloaded and loaded cases, respectively. The integration parameters are Aig = 0.3, Ay = 3, and s=3.

Ny is calculated from Eq. (10) using v,,.;, = —0.85 and ny is calculated from Eq. (5).

the bubble. Such an analysis will also require assumptions about the
electron currents inside the channel. This is an area for future work.

VI. DIFFERENCES BETWEEN THE SHEATH MODELS
AND ANALYTIC THEORY FOR BEAM LOADING

In this section, we provide details regarding the differences in the
predictions between the sheath and analytical models. These details
also show why the anlaytic model provides reasonable agreement for
the witness beam current but poor predictions for 7.

From the results presented in Sec. IV, it is clear that the analytic
theory can be a useful tool for predicting the general form of the

current profiles for beam loading. However, as it is an approximation
of the multi-sheath (and single-sheath) model, it is generally not as
accurate even for 7, ~ r,,. For beam loads designed to produce con-
stant wakefields, the resulting parabolic trajectory 75(¢)* = r2
—4E, (¢ — &) predicted by Eq. (18) can also deviate significantly from
that of the multi-sheath model as seen in Figs. 8 and 9. As a result, the
analytic theory can underestimate the maximum length of the beam
load A&, and, thus, the total charge Q, when compared with the
multi-sheath results for these cases. Despite this, the slice currents pre-
dicted by the analytic theory are still comparable to those obtained
using the multi-sheath model.
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To understand why this occurs, we revisit the differential equa-
tion for the bubble trajectory from Eq. (12). In the ultrarelativistic limit
(', B — 0,0), Eq. (12) describing the innermost particle trajectory
ry(€) was found to be”””

d*r, dry\’ 42(2)
2( — 1= 28
ry déz + (dé + 7’;% ) ( )
where the wake potential is now
i
MG 29)
and the electric field is E, (&) = dd—‘/’f" = %rh Z—’é As shown in Refs. 29

and 30, Eq. (28) can be integrated starting at the blowout radius r,, to
obtain the following expression for the bubble trajectory for an
unloaded plasma wake (1 = 0):

c 1 1
s 2E |:arccos (Q) ’ :| —F [arccos (&) ‘ :| , (30)
Tm Tm) |2 Tm) |2
where F and E are incomplete elliptical integrals of the first and second

kind. The corresponding electric field can also be calculated analyti-
cally to be””"

1 odry T rh
Ez(é)—irbdfé— 2\ L. (31)

In Fig. 13, we compare the analytic theory [Egs. (30) and (31)]
with the multi-sheath model ('), single-sheath model (3), and simula-
tion results for an unloaded plasma wake excited by an electron driver
with Ag =6, k,o, =1, y, = 20000, and kyo, = 0.245. For the
multi-sheath and single-sheath calculations, the integration parame-
ters are specified in the figure caption. From Fig. 13(a), it is clear that
the bubble trajectory r,(&) (blue dashed) described by Eq. (30) devi-
ates significantly from the simulation results (black), multi-sheath
model (dashed red), and single-sheath model (dashed green). In fact,
Eq. (30) will always predict an ijon channel with a half-length
Ly = &(rp = 0) — &(rp, = 1) & 0.857,,, whereas the bubble actually
traces a nearly spherical shape L; ~ r,, in this case.

In Ref. 28, it was pointed out that the deviation between the ana-
Iytic expression for r,(£) in Eq. (30) and the actual wake trajectory
from PIC simulations could be largely attributed to the additional
(dr,/dE)* term in Eq. (28) which caused the particle trajectories to
bend toward the ¢ axis sooner than expected. Since the analytic theory
underestimates the length of the ion channel, it naturally follows that
as shown in Fig. 13(b) the electric field predicted by Eq. (31) deviates
from the empirical wakefield in a similar fashion. However, Eq. (31)
still captures the negative spike in the electric field near the axis since
the slope of the trajectory ’Z—rg =— % —1 approaches —oco as
rp, — 0.

Upon inspection of Eq. (15), this behavior arises because P, [Eq.
(15)] asymptotes to —oo since Y, =0 for the wake potential
Wy = r}/4. Thus, although its underlying approximations break down
as 1, — 0, the analytic model still predicts a spike because P| — —oo
while the multi-sheath model predicts a spike because (1 + /) — 0.
On the other hand, the single-sheath model cannot predict a spike
because P| remains finite and ,,;,, = 0. This is perhaps the most
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FIG. 13. (a) Electron density distribution and electric field E, as a function of (b) &
and (c) r,(&) for a plasma wake excited by a nonevolving driver with parameters
Ag =6, y, = 20000, k,&, = 0, kyor = 0.245, and k,o, = 1. The maximum
bubble radius is k,r, ~ 4.53. Simulation data are shown in black. Numerically
integrated results are shown for the multi-sheath model ' (dashed red) with
Vin = —1 and the single-sheath model /5 (dashed green) with v,,.., = 0 using
Egs. (7)-(10) with A4y = 0.875, As = 0.05r,, Ayg = 3, and s=3. Analytic
results using Eqs. (30) and (31) are shown in dashed blue.

important distinction between the analytic theory and single-sheath
model in which the electric field is not a monotonically decreasing
function of &, despite the fact that it also employs ¥,,;,, = 0. As we
have shown in Sec. I'V, this limitation of the single-sheath model at the
rear of the wake is the primary reason why it cannot be used to design
beam loads that produce constant wakefields, i.e., ’fj—% ~ 0.

Despite the fact that Eqs. (30) and (31) cannot accurately model
the bubble radius and electric field as a function of ¢, the (E., r;,) phase
space predicted by Eq. (31) agrees well with the simulation results and
multi-sheath model for values of 7, = 2 as depicted in Fig. 13(c). This
is important because the analytic current profile described by Eq. (22)
for loading a constant wakefield E, (¢ > &) = —E; samples the phase
space of E; and r; at the head of the load &,. While Egs. (30) and (31)
do not accurately predict r, and E, as a function of &, Eq. (23) can be
evaluated using the simulation data instead. Sampling the parameters
this way will still produce self-consistent results in regions where the
analytic theory is assumed to be valid (r, = 3) since we are only shift-
ing our initial position up the phase space curve (E,, 1;,).
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For the profile described by Eq. (23), the loaded bubble trajectory
obtained from Eq. (28) is parabolic r7 = r7 — 4E,(¢ — &,). As we will
show below, this expression underestimates the loaded wake length in
the same manner as with Eq. (30). Therefore, in many cases, the cur-
rent profile predicted by analytic theory [Eq. (23)] does not produce a
perfectly constant wakefield over the entire bunch length. This can be
seen in several examples provided in Ref. 30 where wakefields loaded
using Eq. (23) still exhibit marginally nonzero slopes.

The disagreement between the analytic theory (8, f/ — 0,0) and
multi-sheath model for r,(¢) stems directly from the underlying
assumption that the wake potential contributions from regions outside

the bubble can be neglected ie, Yo (&) =¥ = % In Fig. 14(a), wi

(dashed blue) to v obtamed from the simula-
tion results (black), the single-sheath model %’7( + B) (dashed green),
%(1 + B') (dashed red) for the driver

compare the ion term &

and the multi-sheath model
specified in Fig. 13.

From the results, it is clear that the analytic curve (' — 0) is
only close to the simulation and multi-sheath model in a small region
around 7, ~ 0.457,,. This is because the sheath components Wy
+Wm = fB'r}/4 cancel each other nearly exactly in this region as seen
in Fig. 3(c). In contrast, the term fr7 /4 from the single-sheath model
is positive-definite and only goes to zero when ry, is zero. While the ion
contribution ¥ = ri /4 is the leading term when r, & r,,, it underes-
timates the wake potential since the sheath term Wy(r,,) is on the
order of unity while Wyy(r,,) is approximately zero and can be
neglected (since 1, ~ 0) as shown in Figs. 3(b) and 3(c). In this region,
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FIG. 14. (a) The on-axis wake potential 1o and (b) maximum bunch length A&,
[Eq. (33)] for loading a constant accelerating field E,(r, < r;) ~ const = —E; as a
function of r; /r, for the plasma wake shown in Fig. 13. The black curves use simu-
lation data for v(r;) and E,(r;) to evaluate Eq. (33). Numerical calculations are
shown for the multi-sheath model 8" (dashed red) with ,,..,, = —1 and the single-
sheath model S (dashed green) with ,;, =0 using Egs. (7)-(10) with
Ay = 0.875, 45 = 0.05rp, Aao =3, and s=3. The analytic theory (dashed
blue) for v, ~ b and A&, = i is evaluated using simulation data for r; and E,.
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the wake potentials of the single-sheath and multi-sheath models are
in agreement with the simulation results since ' ~ .
Even though the blowout radius r,,, ~ 4.53 is large, the ion term

r2/4 still underestimates the simulated wake potential w by

approximately (~ 20%) at the top of the bubble. Therefore, from Eq.
(15), the bubble trajectory predicted by the analytic theory should ini-
tially bend toward the axis with a more negative slope resulting in a
shorter wake length.

On the other hand, when r, < r,,, the ion term W can be
neglected while Wy and Wy from the multi-sheath model are both
negative at the rear of the wake and, when combined, capture the lim-
iting behavior of the wake potential ,,,;,, = lim,, o f'r?/4 ~ —1 in
Fig. 3(c). However, the analytic theory using /, ~ r7/4 and single-
sheath model using Y, = (1 + f8)r2/4 result in v,,;, = 0 at the axis.
In addition, it is evident that the sheath term ' — —oo near the axis
which violates the underlying assumption of the analytic theory that /3’
can be neglected. When including the source terms outside the ion
channel described by Eq. (2) of the multi-sheath model, the wake
potential ¥, = (1 + f8')r} /4 obtained in Eq. (7) exhibits significantly
improved agreement with the empirical simulation results across all
values of r;,. As seen in Fig. 14(a), the curves for y, from the single and
multi-sheath models deviate from each other at r,/r,, as large as 0.7.
This occurs because the curves must diverge such that ,,;, = 0 (sin-
gle-sheath) rather than y,,,;, = —1 (multi-sheath) for r, — 0.

The maximum theoretical length A, over which the plasma
wake can be loaded also depends on the profiles used for the on-axis
wake potentials [r,(&)]. In general, an expression for A, can be
obtained by integrating the electric field starting from the head of the
bunch r,(&;) = r; to the rear of the bubble where the innermost par-
ticles cross the axis r;,(¢f) = 0 as follows:

min

¢
Wolre) — Pol0) = — L’ E.de, (32)

where (= ¢ +AC,. For a constant loaded wakefield

E.(¢ < &< &) = —Ey, we obtain

_ ‘//o(rt) — lpmin

A&
gtr Et )

(33)
where the minimum wake potential is defined by .., = /,(0).
While the presence of the load will not modify the potential at the
head Yy (r;) due to continuity with the unloaded region, it can alter
the exact value of potential ¥/,,,;,, at the back of the bubble in some
cases. For the purpose of this analysis, we will use \/,,;, >~ —1 to obtain
an upper bound on A¢,, for the multi-sheath model.

We can now calculate the maximum bunch length A&, over
which a constant wakefield can be loaded for the potential profiles
specified in the analytic theory, and single-sheath and multi-sheath
models. For the wake potential y,(r,) ~ V1 =% from Eq. (29), we
recover the expression A&, = 4%. This expression was also derived in

Sec. 1V by solving the loaded parabolic trajectory 74(¢)* = r?
—4E, (& — &) for 7 = 0 of the analytic theory. For the potential used

in the single-sheath model v, (r;,) = i ~(1+ p), where ¥, = 0, the

maximum bunch length is AS,, = 4,; +£ (”)" /% For the multi-sheath
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potential 1, (rp) = % (1+p), satisﬁes the condition
(r,)rt /4+1

W min = —1, the maximum bunch lengthis AS,, = E L4

In Fig. 14(b), we plot (dashed blue) calculated by extractmg
(E, r,) from simulation data along with A¢,, calculated from Egs.
(7)-(10) for the single-sheath f (dashed green) and multi-sheath
model 8’ (dashed red). For reference, we also plot Eq. (33) using values
of Y and E, from simulation data (black). Since the potentials ¥, (r;)
in Fig. 14(a) are monotonically increasing, the maximum bunch length
A¢,, that can be loaded increases with r; in each case. The limiting
behavior A, — oo is also observed in each case at the top of the bub-
ble (r, = r,,) where d”’ =0andE,(r,,) = —E; = 0.

From the results displayed in Figs. 14(a) and 14(b), it can be read-
ily seen that the multi-sheath model generates values of A&, that agree
well with those calculated from simulation data while the model for o
used by Tzoufras et al.”””’ underestimates the maximum bunch length
for all values of r,. The underlying reason is that the wake potential
contributions Wy and Wi from source terms outside the ion channel
are monotonically increasing with r;, as shown in Fig. 3(c) and, there-
fore, add to the potential difference between any two points in the
back half of the bubble. This potential difference manifests itself in the

T
t

+¥u > ,,;, for all r, as depicted in Fig. 3(c). Since the ion channel
ends at the back of the bunch, ie., {; = & + A¢,,, it also follows that
the analytic expression for the bubble trajectory r} = r7 — 4E;(¢ —¢;)
also underestimates the length of the ion channel L, regardless of
where the load is placed. While the single-sheath model predicts lon-
ger bunch lengths than the analytic theory due to the additional sheath

/5(” r‘ /4 which is positive definite, it still falls short of the multi-

sheath model since it does not account for the negative wake potential
W min =~ —1 near the axis.

VII. CONCLUSIONS

We have proposed a multi-sheath phenomenological model for
describing the source term profile S=—-L(p —J./c) of plasma
wakefields excited by relativistic electron drivers in the nonlinear blow-
out regime. Using the multi-sheath model, a new expression for the
wake potential (7, £) is obtained and then used to solve for the trajec-
tory of the innermost sheath electron r, by integrating the equation of
motion from the nonlinear blowout theory.”* In cases with and with-
out trailing bunches, we have shown that the bubble radius r,, wake
potential ), and electric field E, predicted by the multi-sheath model
demonstrate significantly improved agreement with simulation results
at the rear of the wake when compared with the results from the
sheath model by Lu et al”® In addition, the model demonstrates the
capability to predict plasma wakefields in cases where electrons are
injected at the rear of the bubble. We have shown how the multi-
sheath model can be used to design beams that can load a constant
wakefield and have discussed differences between the predictions
for beam loading based on the multi-sheath model and single-
sheath model in the ultrarelativistic limit used by Tzoufras et al.”
Two examples are also provided in which the multi-sheath model is
used to load longitudinally varying wakefields. Finally, we exam-
ined the shortcomings of the multi-sheath model in cases with laser
drivers and briefly outlined how the model can be adapted in future
work.

where

, which is positive definite since f'(r,)r?/4 = Wy

term
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APPENDIX A: PARAMETERS OF SELF-INJECTION
TRIGGERED BY EVOLVING DRIVER

In this appendix, we provide the details of the simulation
results presented in Fig. 7 where self-injection is triggered by an
evolving driver. This approach relies on expanding the ion channel
by focusing the driver from spots sizes on the order of the blowout
radius r,, to spot sizes much less than r,,. During this process, the
wake velocity y, can be significantly reduced and sheath electrons
can be injected into the plasma wake near the axis. The driver
parameters that control this injection process are the peak current
A, duration o, energy 7, and Courant-Snyder (CS) parameters f,
o, and 7”7 where B = (x})/e, a=—(xx')/e, y = (x*)/e, and

€=/ (x)(x2) — (xx')> is the geometric emittance. For these

parameters, the diffraction length of the driver is f* = o3 /¢, where
gy is the focal spot size and the betatron wavenumber is
ks = kp/ /27

The results shown in Fig. 7 correspond to case B from Ref. 24,
in which a bi-Gaussian drive bunch with peak current A; =6,
energy 7, = 20000, and k,0, = 0.7 is initially focused at the plasma
entrance with a spot size of k,o, = 1.225 and CS parameters
kyp = kyp* ~ 1225, and o = 0. Since the driver is not matched, i.e.,
kpp* ~ 6.125, it is self-focused by the plasma and oscillates at the
scale length of the betatron wavelength 27./2y,c/w,. During the
first betatron period, plasma electrons are injected at the rear of
the bubble as the spot size of the driver decreases and the wake
expands. While the spot size continues to oscillate after the initial
injection, the bubble remains fully expanded due to beam loading
effects and scalloping of the drive bunch.

APPENDIX B: PHENOMENOLOGICAL PARAMETER
OPTIMIZATION FOR BEAM LOADING

In the results presented in Sec. III, we have shown that the
multi-sheath model reproduces the qualitative plasma wake features
in various cases using a fixed set of phenomenological parameters
{A;g = 1,A; =0.05rp,Ap =3,s=3,4,,,, =—1}. In  some
instances, however, there can be a slight mismatch between the
wake length predicted by the multi-sheath model and observed in
PIC simulations. The underlying reason is that the expression for i/
employed by the multi-sheath model does not perfectly match with
the empirical wake potential. Therefore, the trajectory [Eq. (12)]
can slightly undershoot or overshoot the PIC simulation results.

In Fig. 15(a), we show how the trajectory obtained using the
multi-sheath model can be adjusted by tuning the parameter A,
for the plasma wake shown in Fig. 5(d). Using Ajg = 1 (blue), the
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FIG. 15. Comparisons of simulations
(black) and numerical calculations (red,
blue) of r, (top) and E, (bottom) using
Egs. (7)-(10) for an (a) unloaded and (b)

loaded plasma wake. The driver and wit-

E, [mcwy/e]

1 1 1 1 1 L

— Simulation
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ness beam parameters are the same as
those used for Figs. 5(d) and 6(c). Results
are shown using the multi-sheath model
B with Aqg = 0.875 (red) and Aqg = 1
(dashed blue). The parameters {As = 0.05rp,
Ay =3, s=3, and ,,;,, = —1} are the
same as those used in Figs. 5 and 6.

4 5

6 7
€ [c/wy]

multi-sheath model overestimates the plasma wake length and,
therefore, the negative spike in the electric field occurs at a larger &
when compared with the simulation results. This disagreement can
be addressed by reducing the first sheath width A;o to decrease the
wake length for improved numerical results. By using Ay = 0.875
(solid red), it can be seen that the calculated trajectory now crosses
the ¢ axis sooner resulting in improved agreement with the simu-
lated bubble length. As a result, the calculated electric field exhibits
nearly perfect agreement with the PIC simulation results at the rear
of the wake. While A,y was lowered to reduce the wake length in
this example, it is worth noting that higher values of Ay can be
used to increase the wake length in other cases. Once the parameter
Ao is optimized for a particular driver, it can be used for any beam
loading calculations involving trailing bunches. In Fig. 15(b), we
show how beam loading results are improved by using the opti-
mized Ajp with a Gaussian trailing bunch. It can be readily seen
that numerical results using A;y = 0.875 provide better agreement
with the simulation results for the loaded wakefield and trajectory
crossing with the ¢ axis.
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