3524

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Secure Automatic Speaker Verification (SASV)
System Through sm-ALTP Features and
Asymmetric Bagging

Muteb Aljasem™, Aun Irtaza, Hafiz Malik™, Senior Member, IEEE, Noushin Saba, Ali Javed™, Member, IEEE,

Khalid Mahmood Malik

Abstract— The growing number of voice-enabled devices and
applications consider automatic speaker verification (ASV) a
fundamental component. However, maximum outreach for ASV
in critical domains e.g., financial services and health care, is not
possible unless we overcome security breaches caused by voice
cloning algorithms and replayed audios. Therefore, to overcome
these vulnerabilities, a secure ASV (SASV) system based on the
novel sign modified acoustic local ternary pattern (sm-ALTP)
features and asymmetric bagging-based classifier-ensemble with
enhanced attack vector is presented. The proposed audio
representation approach clusters the high and low frequency
components in audio frames by normally distributing frequency
components against a convex function. Then, the neighborhood
statistics are applied to capture the user specific vocal tract
information. The proposed SASV system simultaneously verifies
the bonafide speakers and detects the voice cloning attack, cloning
algorithm used to synthesize cloned audio (in the defined set-
tings), and voice-replay attacks over the ASVspoof 2019 dataset.
In addition, the proposed method detects the voice replay
and cloned voice replay attacks over the VSDC dataset. Both
the voice cloning algorithm detection and cloned-replay attack
detection are novel concepts introduced in this paper. The voice
cloning algorithm detection module determines the voice cloning
algorithm used to generate the fake audios. Whereas, the cloned
voice replay attack detection is performed to determine the SASV
behavior when audio samples are simultaneously contemplated
with cloning and replay artifacts.

Index Terms— ASVspoof 2019, VSDC, logical access (LA)
attack, physical access (PA) attack, secure ASV, countermeasures,
and classifier ensembles.
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I. INTRODUCTION

UTOMATIC speaker verification (ASV) is an essen-

tial component of voice biometric applications. These
applications authenticate speakers based on their unique vocal
characteristics and protects user accounts against identity theft.
However, due to synthetic audio generation algorithms and
counterfeited audios through digital manipulation, security
breaches occur that fails the ASV systems and, hence, make
the voice biometric applications unreliable. Similarly, smart
speakers e.g. Google Home, Amazon Alexa, Siri etc., and
many voice enabled devices in IoT that rely on the robustness
of the ASV system are also prone to audio spoofing attacks
as elaborated in [1].

Audio spoofing attacks over ASV systems can be catego-
rized i.e. 1) imitation [2], 2) voice conversion [2], 3) synthesis
(voice cloning) [3] 4) and replay [4], attacks. These attacks
can be grouped into the Physical Access (PA) and Logical
Access (LA) attack categories. In PA attacks, physical channel
is accessed to launch the attack, whereas, in case of LA the
audio is considered to be transmitted directly to the ASV
systems. In replay attacks, which fall under the category
of PA attacks, the prerecorded voice of the genuine target
speaker is played back to deceive the ASV systems. Replay
attack pose a threat as they are easy to launch, and the only
precondition to launch this attack is to have a prerecorded
speaker voice. Voice cloning technologies, which come under
the LA attack category, take the prerecorded voice samples
of a speaker and aims to produce speech samples that are
perceptually indistinguishable from bonafide speech [5]. The
speech samples generated through voice cloning algorithms
are also hard to detect and needs the ASV systems to be
specifically trained to recognize LA attacks.

In research, many state-of-the-art methods have been pro-
posed to counter voice spoofing attacks. In this regard three
community-led challenges of ASVspoof/2015/2017/2019 were
launched to promote the development of countermeasures
to protect ASV systems from the threat of spoofing [5].
The resulting systems were aimed to combine countermea-
sures with ASV in a plug-and-play manner either by placing
(i) the countermeasure step followed by ASYV, (ii) the ASV
step followed by countermeasures, or (iii) in parallel [6].
In all these systems the spoofing detection was performed
through different feature and classifier combinations by con-
sidering the spoofing detection as a binary classification prob-
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Fig. 1. Block diagram of Secure ASV (SASV) system.

lem [7]. As a first step, these approaches generate the audio
representations through various feature combinations. Then,
binary classifiers predict an input audio as spoofed or bonafide.

In contrast to the existing approaches, the proposed SASV
system (Figure 1) aims to identify the speaker and liveliness of
the input audio (i.e., the speech is genuine or spoofed) through
a comprehensive framework. Furthermore, an enhanced attack
vector is also introduced in the system to make it robust
against spoofing attacks. The attack vector of conventional
countermeasures are usually comprised of replayed or cloned
audios only. In contrast, in the case of an LA attack, our
method also detects the voice cloning algorithm, and the
replay detection module also detects the cloned replay attacks.
Furthermore, existing approaches consider that the generated
audio through a voice cloning algorithm directly transfers to
the anti-spoofing system, without first going through a physical
channel. However, we have considered real-world LA attacks
over PA attacks, where a physical channel will be used to
launch the LA attacks.

For any input audio, after feature extraction, our framework
performs the speaker identification step to determine which
user is interacting with the system, and passes the speaker ID
to the speaker profile generation module. Then, our system
determine, if someone has attacked our system through
a replayed audio or not, and pass the binary decision to
the speaker profile generation module as well. If the input
audio is not a replayed audio, then the framework analyzes
the input audio for the voice cloning attack that possibly
can be launched through a smart speaker or a microphone.
For cloned audios, the framework (in the defined settings)
also identifies the voice cloning algorithm that was used to
generate the cloned voice samples. The voice cloning and
algorithm decisions are also passed to the profile generation
module. Our speaker profile generation module, grants the
system access to only those speakers, where both replay and
cloned flags are zero (to represent No). For the bonafide
audios, the speaker profile contains the user information e.g.,
system-user ID, name, account number, account type etc.,
by accessing the main stream databases as per the application
requirements. In the case of spoofing attack, the framework

will return, the attack details i.e., which user was attacked,
which algorithm or commercial solution was used to generate
the fake audios, etc.

For feature extraction, a novel audio representation scheme
i.e., sign modified acoustic local ternary pattern (sm-ALTP)
features, is proposed. The sm-ALTP features are an extension
of the ALTP features that we earlier proposed in [8]. The
sm-ALTP captures the features corresponding to the vocal tract
of a user and also determines the non-linearity that conse-
quently comes in a signal due to the recording or voice cloning
artifacts through the local correlation scores. The liveliness
of the voice is determined through the SVM-based classifier
ensemble that is generated through the asymmetric bagging
and random subspace sampling over the feature repository. The
classifier ensemble used in the proposed work takes a series
of the weak classifiers and combines the classification output
through the weighted normalized voting rule (WNVR) to
generate a stable classifier. The generated model then verifies
the speakers and detects the voice cloning attack, the cloning
algorithm used for the attack (in the defined settings),
the voice replays, and the cloned voice replay attacks over
the ASVspoof 2019 dataset, and the voice spoofing detection
corpus (VSDC). Through voice cloning algorithm detection,
we want to further analyze the cases and scenarios that are
challenging for our system and can cause failure to any exist-
ing countermeasure approach. The intention behind algorithm
detection is to counter the commercial solutions that allow
even amateurs to generate cloned audios. With our approach,
after algorithm/commercial solution detection, the culprits can
be identified easily depending on the severity of the case.

Our framework also detects cloned replay attacks, which is
also a novel concept proposed in this paper. The cloned replays
are comprised of the voice samples recorded by playing syn-
thetic voice samples before the microphone. The applications
of the cloned replays are possible in the scenarios where an
attacker needs to play a recorded voice for impersonation
(for instance before the smart speakers i.e., Google Home), but
he lacks the prerecorded voice samples of the speaker. Thus,
the model evaluation over the enhanced attack vector conse-
quently empowers the proposed ASV system against various
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possible security breaches. Moreover, due to the lightweight
nature of the proposed approach, our system can easily be
adopted in resource constrained environments.
The main contributions of the proposed work can be sum-
marized as follows:
o Development of a secure and lightweight ASV framework
against multiple audio spoofing attacks.

— Extension of the attack vector through cloning algo-
rithm detection, and cloned replay attack detection,
to further strengthen the ASV systems against the
real-world cloning attacks.

« A novel feature extraction approach for audio representa-
tion capable of capturing speaker as well as attack specific
attributes.

The rest of paper is organized as follows: Section II reviews
the literature in spoofing attacks detection. Section III details
the methodology used in SASV. Section IV provides the
dataset and experimental details for performance evaluation.
Last, the paper is concluded in section V.

II. RELATED WORK

As we elaborated earlier, the research community has
considered audio spoofing attack detection as a binary
classification problem and aimed to produce countermeasures
through different features and classifier combinations [7].
In feature domain cepstral coefficient features, i.e., constant-Q
transform (CQT), Log-CQT, constant-Q cepstral coefficient
(CQCC), extended CQCC (eCQCC), inverted CQCC
(ACQCC), linear frequency cepstral coefficient (LFCC),
Mel-frequency cepstral coefficient (MFCC) have been used
widely [5], [9]-[12]. The benefit of CQT-based features stems
from a variable spectro-temporal resolution, and captures
the tell-tale signs of manipulation artifacts, which indicate
spoofing attacks [13]. The CQT-based features provide a
greater frequency resolution at low frequencies and a greater
time resolution at high frequencies. However, it is difficult
to couple them with traditional cepstral analysis approaches,
which require post-processing to yield a linear frequency
scale. This multi-resolution analysis together with further
post-processing may impose a high computational load [14].
The CQCC, which is a derivative of CQT features, provides
more spectral detail in the lower-frequency region but neglects
the high-frequency region which provides more discriminative
information. LFCC performs the time-frequency analysis of
the entire input signal through discrete Fourier transform
(DFT). However, the spoofing information is mainly found
on low and high frequency sub-bands [15]. Therefore,
the LFCC feature is unable to provide more spectral detail
in the discriminative frequency bands [15]. Other cepstral
features i.e., MFCC, are renowned features, however, their
performance drops for spoofing detection due to sensitivity
towards noise [16].

Phase-based features, e.g., relative phase shift, group delay,
modified group delay, phase difference, and cosine normalized
phase features, have also been explored in spoofing detection
research [17]-[19]. Careful analysis reveals that, phase infor-
mation is lost/changed during the analysis-synthesis step in
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some speech-synthesis approaches, which makes bonafide and
spoofed speech different from each other. However, in practice,
such prior knowledge is not available; thus, these features
are not guaranteed to be effective to attacks which have
unchanged phase information [20]. Other popular features
are deep features, which are deep neural network hidden
layer responses, used in [9], [21]-[23]. Although, the deep
features provide competitive results, they cannot be used
in resource constrained environments due to the need for
expensive retraining.

For classification, the Gaussian mixture model (GMM) [5],
[9], [24], [25], deep neural networks (DNN) [7], [12], [21],
and classifier ensembles [26]-[28] have been widely used.
The GMM restates the spoofing detection task as a basic
hypothesis test, where whether an utterance belongs to a true
speaker or not is determined through the likelihood ratio test.
Although the GMM gives promising results, its performance
degrades when high dimensional features are used [18], [29].
In contrast to the GMM, DNN classifiers can effectively
handle high dimensional features. However, the DNN needs
more training data than GMM. On the other hand, classifier
ensembles take a series of weak classifiers on the subset of
the data and generate a stable classifier by combining the
classification outputs [30]. The ensemble approaches hardly
overfit, allowing for solutions that are difficult to reach be
achieved with a single hypothesis [31].

A. Details of Specific Approaches

In [32] Todisco et al. trained the GMM classifier using the
CQCC features for spoofing attack detection. The features
provide a variable-resolution, time-frequency representation
of the spectrum to capture the detailed characteristics of
the input signal. Then, these characteristics were used to
detect the spoofing attack. CQCC features outperformed earlier
approaches for spoofing detection with a good margin. How-
ever, there was a marked discrepancy between the performance
of the known and unknown spoofing attacks.

Nagarsheth et al. [33] used CQCC and high-frequency cep-
stral coefficients (HFCC) features and applied cepstral mean
and variance normalization (CMVN) to generate the tandem
features for replay attack detection. The CMVN removes
the nuisance channel effects that have primarily been used
for automatic speech recognition [34]. The tandem features
were fed to a DNN to generate feature embeddings. The
features were subsequently passed to a SVM classifier, which
determines the replay attack type. The application of CMVN
to detect the replay attack may seem counter-intuitive. The
speech recording in different acoustic environments using dif-
ferent devices accumulates additional channel effects. CMVN,
which aims to attenuate channel effects, uses this information
to detect the replay attack. However, this assumption holds
only, if bonafide speech was captured across a common,
consistent channel [34].

The existing literature on voice replay spoofing detection
[4], [35] trained the GMM classifier on various high-frequency
features for replay detection. In [4], transmission line cochlea
(TLC) features were used in conjunction with the GMM
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Fig. 2. Detailed architecture of SASV system.

classifier to detect the replay attack. The TLC accurately
resembles the auditory system and effectively uses amplitude
modulation for replay attack detection. However, in TLC,
the input and output signals vary in the same dynamic range.
Therefore, for the large energy variation in the input signal,
it becomes difficult to capture the discriminative information
present in low energy regions. In [35], Witkowaski et al.,
emphasized that replay spoofing introduces spectral alterations
at higher frequencies in the range of 6 to 8§ kHz, which can
be considered for replay attack detection. Several methods
e.g., the inverted-MFCC, linear predictive cepstral coefficients
(LPCC), and LPCC residual features in combination of CQCC,
MEFCC, and Cepstrum features were scrutinised alongside the
GMM for replay attack detection. Although the method didn’t
solve the spoof detection problem completely, it introduced
a significant improvement over the baseline CQCC-GMM
system in ASVspoof-2017 challenge.

Several works [36]—[38] also focused on channel informa-
tion, recording and playback device characteristics for replay
attack detection. Saranya er al. [37] used MFCC, CQCC,
and Mel-Filterbank-Slope (MFS) features to train the GMM
for replay attack detection. Their work emphasized that the
discriminative information used to categorize a signal as gen-
uine or replayed speech is mainly distributed in two sub-bands,
i.e., 0-1 kHz and 7-8 kHz. Yang and Das [38] employed the
low frequency frame-wise normalization approach for voice
replay spoofing detection.

Existing voice replay spoofing detection approaches have
also employed various deep learning models. In [26], a fusion
of GMM, DNN and ResNet classifiers was trained on MFCC
and CQCC features to detect voice replay attacks. However,
this method achieved a lower equal error rate (EER) but
at the expense of increased computational cost. Bakar and
Hanilci [39] used the long-term average spectrum and MFCC
features to train a deep neural network for replay attack
detection. To overcome the limitations of higher computational
cost, a light-weight CNN model originally proposed for face
recognition was used in [40] to detect voice replay spoofing.
Despite the computational cost, CNN and other deep learning
model require large amounts of data to be trained effectively.

In [41]-[43], the GMM classifier was used for voice cloning
attack detection. Phillip et al. [41] extracted the relative phase
shift features from the harmonic phase of the input audio signal
and later used these features to train the GMM classifier for
voice cloning detection. The model achieved good results, even
though there were only 283 test samples. Moreover, the system
is sensitive to the vocoder used for synthetic audio generation.
To achieve the good performance, the vocoder used by the
impostor must be used to train the system.

Wester et al. [42] employed the GMM-Universal
background model (GMM-UBM) using the MFCC and
cosine-normalized phase features for cloned voice detection.
This is the first work that compared the performance of a sys-
tem against 100 native English listeners. The results indicate
that the automatic detectors outperformed the human listeners
for all of the cases except one. The results also suggest that
human and automatic countermeasures use different cues to
discriminate between spoofed and genuine audios [44].

Patel and Patil [43] used MFCCs, cochlear filter cep-
stral coefficients in combination with cochlear filter cepstral
coefficients-instantaneous frequency features, to train a GMM
to detect spoofing attack. The main findings of the work was
that the countermeasures are more dependent on the robust
features as compared to the classifiers.

Janicki [45] used long term prediction residual signals
to train SVM for voice cloning attack detection. The work
considered the prediction coefficients such as the energy of
the prediction error, prediction gains and temporal parameters
related to the prediction error signals, etc., to differentiate
between genuine and spoofed signals. The performance of
the method is dependent on tuning the parameters, which
negatively impacts the generalization capabilities. Due to this,
the method showed better performance on known attacks as
compared to unknown attacks.

B. Limitations of the Existing Approaches

As ASV systems are vulnerable to voice replay and voice
cloning attacks, therefore, an effective countermeasure should
consider the following facts during the audio representation

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 30,2021 at 22:33:34 UTC from IEEE Xplore. Restrictions apply.



3528

step—(1) The microphone adds a layer of non-linearity due to
inter-modulation distortions, which induces detectable patterns
[36]; thus, an audio representation mechanism should be
able to characterize these patterns during audio-fingerprinting
to discriminate between original and replayed audios.
(2) The subsequent recordings of the same recording, which
is very common in audio splicing, consequently introduce
higher-order non-linearities and make an audio signal more
distinguishable. Therefore, pattern analysis of the audio sam-
ples should be considered during the audio representation
phase. (3) Similarly, voice cloning algorithms also introduce
artifacts and need to be captured while selecting any audio
representation schemes. As shown in (Figure 3), the spectral
analysis of a genuine audio and its cloned version reveals that
the finer lines were appearing in the spectral image of the
cloned audio that represents the artifacts caused by the voice
cloning algorithm. These lines were missing in the spectral
image of the genuine audio. The voice cloning algorithm
artifacts are unique; therefore, the cloned audios generated
by different algorithms can be discriminated from each other
and also from the bonafide ones. (4) An audio representation
mechanism for ASV systems should be less sensitive to the
noise for speaker verification under different environments.
(5) For real-time applications, the ASV systems should con-
sider those features and classifier combinations, which can
ensure fast retraining of the model to incorporate new users.

III. PROPOSED METHOD

The main objective of the proposed work is to present a
secure ASV (SASV) system to verify the registered bonafide
speakers, and counter the voice cloning, voice replay, and
cloned voice replay attacks. Moreover, in case of a voice
cloning attack, it also identifies the cloning algorithm used
to generate the cloned audios. In the proposed SASV sys-
tem, the audio repository comprised of the replayed, cloned,
and bonafide speaker-voices. The cloned-voices are generated
through multiple voice cloning algorithms against each reg-
istered speaker. Thus, for m bonafide speakers and p voice
cloning algorithms, we have (m x p) cloned-speaker classes.
To counter the cloned audio samples, which are generated
through any unseen voice-cloning algorithm, our model may
incorrectly predict the cloning-algorithm type, but it will still
detect the cloning attack successfully; in that case our model
will label the input audio as cloned audio. Similarly, for
replay attack detection, input audio samples are labeled as
replayed/bonafide. Thus, there are ¢ =m + (m x p) +2+2
number of speaker classes that we want to recognize.

As shown in Figure 2, for the bonafide voice samples
of the registered users and the spoofed samples present in
the audio repository, feature extraction is performed through
the novel sm-ALTP features. Once, the feature extraction
is done, we generate the SVM-based classifier ensembles
through asymmetric bagging [30] and subspace sampling. The
asymmetric bagging and subspace sampling also overcomes
the class imbalance problem that naturally occurs, as bonafide
samples are far fewer than the spoofed samples. The classifier
ensembles integrates the outcome of multiple SVM classifiers
by applying the weighted normalized voting rule (WNVR) to
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counter the voice cloning and replay attacks. The speaker
identification module determines which registered user is
interacting with the system, whereas, voice cloning algorithm
detection module determines the voice cloning algorithm used
to generate the fake audios. As the speech characteristics of
each speaker and voice cloning algorithm artifacts are unique,
the speaker identification and voice cloning algorithm detec-
tion is performed through a multi-class SVM classifier using
the polynomial kernel. Once our models are trained, we use
trained models to verify the input audio. To grant the system
access to the identified speaker, the voice cloning and replay
detection modules must give negative results. The details of
the proposed method are covered in the following subsections.

A. Feature Extraction

1) Overview of ALTP Features: An input audio signal
Y[n] with N samples is partitioned into i = {1,2,...,k}
non-overlapping frames/windows F@) with length [ = 9.
In each frame F®, ¢ represents the central sample in a
frame and has z\/) neighbors, where j represents the neighbor
index in the frame FY. To compute the ALTP response,
the difference between ¢ and z\/) is computed by applying the
parameter #;, around the sample c. The value of the parameter
15 lies between 0 and 1, and is obtained by performing linear
search operation. Next, the sample values in F() are quantized
to zero that lie in the range of width £#, around c, whereas
values above and below ¢ + 1, are quantized to 1 and —1
respectively. Thus, we obtain a three-valued function as:

_ -1 D —(c—1)<0
pe,2 ) =1 0 (c+m) <z <@—nm)p 1)
+1 D —(c+m) >0

The function p(c,z), ;) is then decomposed into two
patterns classes, i.e., upper pattern P“P(.) and lower pattern
P () as:

_ 0, 1) =
wp (e ) gy = 11 Pe ) =+1
PP (c,zY, 1) = I() Otherwise @
Similarly
. W), 1) = —
e, ) gy = |1 Pe20m) =-1
P (c,zY, 1) = {0 Otherwise )

These upper and lower patterns are then used for upper
and lower ALTP representation generation. The upper-ALTP
features Ay are computed using eq. 4.

j=l
Ay =2 PP, 1) %2 @)
=0
whereas, lower-ALTP features Ay are computed through eq. 5.
j=l
A= P"(c,zY, ) %2/ (5)
j=0
Then, the histograms of Ay and A; are computed by
applying the Kronecker delta function d(.) as described
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in eq. 6 and eq. 7

a=k

H"(b) = ) 6(A},, b) (6)
a=1
a=k

H'(b) = > 6(A%,b) @
a=1

where b represents the bin and a represents the frame index.
After computing the H"(b) and H'(b), the ALTP features are
obtained by concatenating (||) both histograms as:

Ha=[H"(b) || H ()] ®)

2) Limitations of ALTP Features: The ALTP features were
originally proposed for indoor applications, i.e., fall detection
[8], [46]; and due to the tolerance against noise showed very
good performance as a feature descriptor against state-of-the-
art feature extraction methods. However, there are some vul-
nerabilities of ALTP that needs to be overcome for application
in ASV systems. These vulnerabilities are— (a) non-static
pattern detection—as shown in Figure 3 the spectral analysis
of the cloned audio reveals that the artifacts have a non-static
repetition pattern, which can be more effectively captured
through a dynamic threshold mechanism. However, the ALTP
has only the static threshold, i.e., *th; thus, room for
improvement exists in ALTP for ASV applications. (b) Signal
volatility—To effectively capture the artifacts in cloned and
replayed audios, it is important to know how quickly the signal
is changing in terms of artifacts [47]. However, the ALTP
features lack this attribute. Hence, the performance drops
against the spoofed audios. (c) Brute-force Optimization—in
ALTP a brute-force approach for threshold optimization was
required; consequently, error reduction was not guaranteed in
time critical applications. (d) Noise uniformity—ALTP was
robust against the uniform noise that remains consistent in
the audio scenes e.g. indoor audios. In contrast, in outdoor
environments as the noise is non-uniform, therefore, the static
threshold-based feature extraction becomes inconsistent and,
hence, demands a different approach for noise suppression.

3) Motivation for the Sm-ALTP Features: In order to over-
come the limitations of ALTP features and to detect the live-
liness of the voice in an effective way, sm-ALTP features are
proposed. The sm-ALTP features use the dynamic optimizable
threshold that effectively captures signal artifacts and generates
different representations for bonafide and spoofed voices.
Thus, the difference of representation for bonafide and spoofed

vices results in the form of a strong CM approach. Further-
more, the exploitation of the vocal tract information, which
was missing in the ALTP features, can also boost speaker
identification/ recognition capabilities.

4) Sm-ALTP Features: sm-ALTP features overcome the
vulnerabilities of ALTP features by defining a dynamic opti-
mizable threshold and capturing the vocal tract of the speaker.
In sm-ALTP we compute the three valued function as:

' —1 z(j)—(c—aa)§0
pe,z29,60) =10 (c4+oa)<zV <(c—0ga)} )
+1 2D —(c+0oa)=0

where ¢ is the standard deviation of F(®) and « is the scaling
factor, i.e., (0 < a < 1). o can be computed as:

szmﬁw%ﬂf
o= I—1

(10)

By replacing 7, with (¢ x a) we overcome the limitations
(a),(c), and (d) of the ALTP features (section III-A.2), which
demands the incorporation of the signal variance in terms
of neighborhood statistics. Another limitation of the ALTP
feature was that the #;, needed the brute-force optimization
through linear search. However, by defining the following
convex function we can optimize the new threshold value,
ie, oa.

q=M

2
J(o) = min% Z (g(HTa(x(q))) — y(q)) (11)

g=1

where J (+) is the cost function, @ are the classification weights,
qg = {1,2,..., M} are the total number of records in the
training-set, g is the classification function used, i.e., relu,
sigmoid, tanh etc., and y(q) represents the actual class-label
of the audio record. The probabilistic interpretation of the cost
function is:

1 @ _ @
@D @; 5) = ——ex (— A" ) (12)
Py ) NerT i 752

The parameter ¢ can then be optimized by applying the
gradient descent algorithm as:

, D) _ (2202
: (/Z& G

* 520

Opew = 0 — O
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where
oo oo oo oo
2200 = [8z(1) PEE) W} (1
Thus
o0 1 o [~ A1
720 = =T 50 [A+Bi| (15)
where
e - R e = ]
(16)
And
b= - () oy - (B2)
(17)

or in compact form we can write it as:

oo 1 P S > W) 2\ 172
_ UN* _
020~ JI=1 00 (Z(Z ) ( I (18)

thus, the partial derivative will return:

j%l_zz___l___* 221(2052__ ZQEYE e
oz 2 /T—1 l
. ()
*(25/)——22122]) (19)

or
oo 1 1

o) =T >
Z — .
(zeor- ()
. (0]
*(ZZ(J) — 221:722]) (20)

By replacing the eq. 2-5 with (¢ x ) we get the H"(b) and
H'!(b) using eq. 6 and 7 and generate feature representation
as:

H=[H"(b)|| H ()] 1)

The feature representation H captures the patterns present
in the input signal, but this representation lacks the vocal
tract information that can be captured through the cepstral
coefficients at Mel-scale [48]. For instance, at 1000 Hz the
cepstral coefficients of a particular speaker always appear
negative due to the phoneme representation attributed to the
vocal structure of that particular speaker, and this frequency
occurs very frequently; in case of sm-ALTP a large posi-
tive histogram-spike will appear, but it will not provide any
information regarding the vocal behavior at this particular
frequency. Therefore, we have further processed the sm-ALTP
representation using eq. 22.

Hy = H x sgn(u(C, (1)) x B

where C, (t) is the t"" order MFCC of the " frame (more
details in [49]), u; is the frame-wise mean of C, (f), and

(22)
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t =1{1,2,...,20}. C,(¢) is applied by computing the frame
energy E(f) with index f as represented in eq. 23.
. I,
C,(1) = Zlog[E(f)]cos[t(f — 5)—]
=0 1
The parameter f = 0.1 in eq. 22 is used for the feature

normalization in H. Our final representation of sm-ALTP
features then can be represented as:

Hgpm = [ﬂt(cy Q)] |Hs]

(23)

(24)

B. Classifier Comity Learning for Ensembles

No matter how powerful a feature extraction method
is, the characteristics of data in terms of data-quality,
data-collection mechanism, and dataset size affects the clas-
sification performance in ASV systems. For instance, if a
training-set is comprised of fewer bonafide representations,
and far more spoofed representations, it may cause a classifier
to tend towards the spoofed class. In this particular case,
higher classification accuracy may be an outcome of the bias
towards the spoofed class; in reality, the classifier is giving
far lower performance for the bonafide samples, which is
a primary goal of any ASV system. Thus, even the higher
classification accuracy will become insignificant. Meanwhile,
it is fundamentally important to identify the reasons why
classifiers generate the wrong output. In order to achieve
this objective, for cloning attack detection we also identify
the cloning-algorithm used for spoofed audio generation.
By capturing the correlation between spoofed samples and
the cloning-algorithm, classification models can be further
improved. Furthermore, we have ensured that the complexity
of the testing process may not increase in a way that makes the
classification model inappropriate for a real-time application.

1) Training-Phase—Asymmetric Bagging and Subspace
Sampling: In order to generate multiple classifiers, asymmetric
bagging and subspace sampling are used [30]. In asymmetric
bagging, bootstrapping is executed over the spoofed class
samples as there are far more spoofed samples as to bonafide
samples. This way each classifier is trained over a balanced set
using the complete bonafide-set and a subset of spoofed sam-
ples, thus improving unstable SVM classification performance.
The stable SVM classifiers then become able to discriminate
well even the unseen bonafide and spoofed samples. However,
if instead of using the asymmetric bagging, other data balanc-
ing methods are used, i.e., up-sampling, or down-sampling,
the classifier either becomes over-fit or under-fit. After the
asymmetric bagging, the aggregation of multiple classifiers
is performed through the weighted normalized voting rule
(WNVR) over the development-set.

2) Weighted Normalized Voting Rule (wNVR): After train-
ing multiple classifiers, wWNVR is applied to aggregate the
outcomes of all of these classifiers. The reason to choose
wNVR over majority voting rule (MVR) is that MVR is unable
to take advantage of the accurate classifiers and give equal
weight to all of the classifiers [50].

Let w = {1,2,..., Q} classifiers are used to generate
the ensemble classifier by applying weighted cross-entropy
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sm-ALTP Representation
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Fig. 4. sm-ALTP representation (eq. (21)) for genuine and cloned audios.

function as described in eq (25):

C(x) = Zz ZZ[yb—k logzK o

w=1 b=1 k=1

(25)

where A is the weight, to take the advantage of more accurate
classifier for k = {1,2,..., K} number of classes to be
classified, b = {1, 2, ..., M} are the number of instances x
in the development-set. The final class-label C*(x) is then
generated through the eq. (26):

K -1
C*(x) = sgn |:C(x) — :| (26)

2xs

The parameter s is the normalization factor to control the
bias/variance effect.

3) Testing Phase: After the training and model optimiza-
tion, the trained model can be used for the evaluation purposes.
The evaluation-set is comprised of the examples having seen
and unseen bonafide speakers, and in case of a voice-cloning
attack having samples generated through seen and unseen
algorithms. After model evaluation, any query audio sample
can be passed to the final model, and it can perform the ASV
tasks in the real-time scenarios.

C. Overcoming the Limitations of Existing Approaches

As described in section II-B, the existing approaches ignore
some important signal characteristics during feature extraction,
which consequently lowers their performance. For instance,
the first three limitations emphasize that during replay and
voice cloning, the inter modulation and algorithm artifact
appear, which exhibits distinguishable patterns. The proposed
approach performs the pattern analysis of the input signal, thus
effectively capturing these artifacts to distinguish the spoofed
signals from the bonafide. For instance, as shown in Figure 4,
the bonafide and cloned signals exhibit the peak at the same
feature points, but due to the difference of peaks, these signals
are still easily distinguishable. Moreover, at some feature
points e.g., feature 16 in Figure 4, the bonafide and spoofed
signals exhibit the peaks at opposite directions. The difference
of the feature values in Figure 4 shows that the cloned audio
appears similar to the genuine one, but the essential signal
components i.e., pitch, loudness, etc., are still not perfectly
replicated. However, the lower level analysis of the input signal
through the proposed approach easily reveals this difference.
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Audio Frame Analysis
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Fig. 5. Effect of the dynamic threshold over the audio frames.

TABLE I

NUMBER OF NON-OVERLAPPING TARGET SPEAKERS AND NUMBER
OF UTTERANCES IN TRAINING AND DEVELOPMENT SETS OF THE
ASVSPOOF 2019 DATABASE

#Speakers #Utterances
Logical Access Physical Access
Subset Male | Female Bonafide | Spoof Bonafide | Spoof
Training 8 12 2,580 22,800 | 5,400 48,600
Development | 8 12 2,548 22,296 | 5,400 24,300

Another limitation of the audio representation approaches
was that their robustness against noise was not easily quantifi-
able. However, the proposed approach is robust against noise,
and we can easily verify this claim. For instance, consider
the audio frame shown in Figure 5. We can observe that the
additive noise, which can either increase or decrease the value
of central sample ¢ in a frame F® and become a cause to
generate the wrong code against ¢, will become ineffective.
The reason is that, the value of the sample ¢ now lies in a
range of upper and lower threshold values; hence, becomes
more tolerant against additive values by noise. Moreover, due
to the less complex features, fast model retraining is possible;
thus, it makes our approach effective for the applications that
have continuous user enrollment requirements.

IV. EXPERIMENTS AND RESULTS
A. Dataset

Performance of the proposed method is evaluated on
ASVspoof 2019 [51] dataset, and voice spoofing detection
corpus (VSDC) [52].

ASVspoof 2019 dataset (Table I) is further comprised of
two datasets, i.e., logical access (LA) dataset for voice-cloning
attacks detection, and physical-access (PA) dataset for
replay attack detection. The LA-dataset has 25,380 sam-
ples for training-, 24,844 samples for development-, and
71,933 samples for evaluation- purposes. The training- and
development-set contains the voice samples of 20 speak-
ers (different speakers in both sets) that serves as the
bonafide classes whereas, the spoofed-set has cloned samples
of the same speaker utterances generated through 2 voice-
conversion and 4 speech synthesis algorithms comprised
of 120 (20 x 6) cloned speaker-plus-algorithm classes. The
voice-conversion algorithms are based on (i) neural-network-
based, and (ii) transfer-function-based methods. In contrast,
the speech synthesis algorithms are an implementation of
(i) waveform concatenation, (ii) neural-network-based para-
metric speech synthesis using source-filter vocoders, and
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TABLE II
DETAILS OF VOICE SPOOFING DETECTION CORPUS (VSDC)

| Audio Samples Sample Rate | Environment | Microphone

| Recording Device | Recording Source | Recording Device |

‘ Bonafide ‘ 4000 ‘ Recording Chamber ‘ Make

‘ Model

‘ ‘ ‘ 1st Order Replay ‘ 2nd Order Replay ‘

\
\ : Ibe
itchen Table Living Room
‘ 96K ‘ Kitchen Table L R
\
\

‘ Replay ‘ 4000 O,fﬁ,ce Desk ‘ g:}clliis;"fchnica shure ‘ 2;95 MKII ‘ Zoom R16 ‘ Male Speakers 10 ‘ iz(;lrir(; ]zlszsLéIi}051304 ‘ Echo plus Gen-2 ‘
w ‘ B:I;li‘c:lgelz}or(::nd ‘ Electro-Voice ‘ ECM 8000 | Olympus LS-12 | Female Speakers 10 ‘ GM-DS74 USB Audio Card ‘ Echo plus Gen-3 ‘
| Total | 12000 | | | 635 A/B | | | Ugreen 30521 | |

(iii) neural-network-based parametric speech synthesis using
Wavenet [51]. The evaluation-set includes unseen bonafide and
spoofed speech samples collected from 67 speakers, and the
spoofed-set includes samples generated through 19 algorithms
including the GAN-based, and deep neural network-based
methods. The PA-dataset comprises of 54,000, 33,534, and
1,53,522 training, development, and evaluation samples,
respectively (Table I). The details of ASVspoof 2019 corpus
can be found at [51].

VSDC was designed for replay and cloned replay attack
detection. Cloned-replay represents the recording of cloned
voice samples; for this the ASVspoof cloning samples were
used to generate the replay samples in a manner similar to what
was done for the bonafide voice recordings. The samples in
the dataset are diverse in terms of environment, configurations,
speaker-genre, recording, playback-devices, and number of
speakers (Table II). More specifically, the samples contain
noise and interference as well. To generate the replays, dif-
ferent playback devices were used to combat the effect of a
specific playback device. VSDC includes the voice samples
of ten male and nine female speakers who volunteered their
services for data collection.

B. Experiment [—Performance Evaluation for Speaker
Verification

In this experiment, the performance of the proposed method
is evaluated for bonafide speaker verification. Bonafide speaker
verification is the primary task performed by any ASV system.
For this experiment, all the 2580 audio samples correspond-
ing to the 20 bonafide speakers were selected from the
ASVspoof 2019 dataset. Amongst these samples 70% of the
data (i.e., 1806 records) was used for training of the model and
30% data (i.e., 774 records) was used for the testing purposes.
As shown in Table III, the proposed method achieved on
average 99% precision, recall, f1-score, and accuracy values.
For most of the classes the evaluation rates were 100%,
whereas there was no class that had more than 1 misclassified
sample; and amongst 774 testing samples only 7 samples
were misclassified, Moreover, even if we changed the training
and testing ratios as 30-70 (i.e., 774 records for training and
1806 records for testing), our method still gave 98% average
precision, recall, f1-score, and accuracy values, which clearly
signifies that our method effectively captures the unique vocal
tract information of the registered speakers; thus, our method
is reliable for the in-domain ASV tasks.

C. Experiment [I—Voice Cloning Algorithm Detection

In this experiment, we evaluated the performance of
the proposed method for synthetic audio generation algo-
rithms detection using ASVspoof 2019 LA-training dataset.

TABLE III

PERFORMANCE OF THE PROPOSED METHOD FOR BONAFIDE SPEAKER
VERIFICATION OVER LA-TRAINING DATASET

Precision Recall f1-Score Accuracy

0.99 0.99 0.99 0.99

The synthetic audio generation algorithms is comprised of both
voice conversion, and speech synthesis algorithms as described
in section IV-A. For this experiment, amongst 22,800 samples,
70% of the data (i.e., 15,874 samples) was used for model
training to recognize 6 algorithm classes, and 30% of the
data (i.e., 6,803 samples) was used for model testing. From
the results presented in Table IV, it can be observed that our
method gave approximately 100% performance in terms of all
the performance evaluation measures. Even if we increased
the testing samples from 6,803 to 15,874 and decreased the
training samples from 15,874 to 6,803, the algorithm detection
performance of the proposed method still remained constant.
Hence, the results confirm that each algorithm induces its
specific properties/artifacts in the generated cloned audios that
usually differ from the other audio generation algorithms, and
a good audio representation with an effective classification
mechanism can exploit these artifacts to perform the algo-
rithm level detection; consequently, the attack detection profile
becomes more reliable. This feature can also benefit the audio
forensics applications by inciting more credibility particularly
in court cases.

D. Experiment IlI—Performance Evaluation for
Compromised Speaker Identification

The objective of this experiment is to identify which regis-
tered user voices have been compromised to attack the appli-
cation. Through compromised user identification additional
security measures could be taken to further protect the target
user accounts. Thus, in this experiment, we combined the
algorithm and speaker information and used this information to
generate the true labels for model evaluation. The algorithms
are represented with the label "A01’ to *A06’ as described
in Table IV, and users IDs are represented as *LA_00xx’
and the term ’spoof’ is included to show that the audios
are synthetic. Thus, using 6 voice cloning algorithms, against
20 registered speakers, present in ASVspoof 2019 LA-training
dataset, we generated 120 audio classes. In Table V we present
the results of the 6 randomly selected classes, from the results,
we can observe that our method gives 97% accuracy, and
the average value of all the performance evaluation measures
is also 97%. The difference between the accuracy values of
Table IV and Table V is 2.6%, which is due to the probability
of a sample’s partial association with a particular output label;
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TABLE IV

PERFORMANCE EVALUATION OF THE PROPOSED METHOD FOR SYNTHETIC
ALGORITHM RECOGNITION OVER LA-TRAINING DATASET
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TABLE V

SPEAKER IDENTIFICATION WHOSE VOICES WERE USED TO ATTACK
THE SYSTEM WITH A CERTAIN VOICE CLONING ALGORITHM OVER
LA-TRAINING DATASET

for instance, a miss-classified sample in terms of the real
target speaker can still be associated with the correct voice
cloning algorithm. Moreover, as in case of algorithm detection
(table IV) as there were only 6 classes, the margin of error
was lower. However, our approach still gives high performance
even by applying the drill down operation. Thus, on the basis
of the results we can say that our method reliably provides us
the information regarding the compromised speakers, which is
also a unique attribute of our method.

E. Cross-Dataset Evaluation

For this experiment, 76,236 unseen examples were selected
for evaluation purposes. Amongst these examples 9,902 exam-
ples are bonafide, and 66,334 examples are cloned. These
76,236 examples are comprised of 5000 examples from
the ASVspoof 2019 development-set, and 71,236 examples
from the evaluation-set, which are never used for the train-
ing purposes. All of these examples have unseen speak-
ers (20 speakers from development-set and 67 speakers
from evaluation-set), and 19 different voice-cloning, and
voice-conversion algorithms (including 6 algorithms men-
tioned in Table IV and the remaining 13 in Table VII)
are used for cloned audio generation of these 87 speakers.
As algorithms used for the voice cloning are never used for
training of our method, our method cannot predict algorithm
labels. Therefore, for this experiment we trained our model
using the training-set with two labels, i.e., bonafide and cloned.
Thus, the aim of this experiment was to evaluate if our method
is able to discriminate between any bonafide/cloned audios,
no matter who the speaker is or how the cloning is performed.

From the results presented in Table VI, we can observe that
our method has 88% overall accuracy. By further applying the
drill-down operation on this accuracy value, we found that the
accuracy of the bonafide class is 86%, whereas, for the cloned
class the average accuracy is 90%; hence, the overall accuracy
becomes 88%. Amongst these 87 speakers, for 72 speakers
the average accuracy remains above 90%, which is fairly high
considering that only 20 speakers are used for training pur-
poses, and those 20 speakers are not considered for evaluation
purposes in this experiment. Similarly, as shown in Table VII,
if we analyze the 13 algorithms that were not used for
training, it can be observed that for 8 algorithms accuracy
is nearly 100%; whereas, for 2 algorithms accuracy is above
90%. The most problematic algorithms are A17-A19, where
accuracy significantly drops. However, it can be observed
from Table VII that the number of samples in all these
algorithm classes have fewest samples. A17, which has lowest
accuracy is just approximately 27% (in terms of sample size)
of A09 which has highest accuracy of 100% and also contains

Algo. ID Algorithm Precision | Recall | F1-score

A01 Neural waveform model | 0.998 0.996 0.997 Algo + Speaker ID Precision | Recall | Fl-score
A02 Source filter vocoder-1 0.996 0.999 0.997 AO01_LA_0079_spoof 0.99 1.00 0.99
A03 Source filter vocoder-2 0.994 1.000 0.997 A02_LA_0086_spoof 0.98 1.00 0.99
A04 Waveform concatenation | 0.990 0.987 0.989 A03_LA_0091_spoof 0.98 1.00 0.99
A05 Source filter vocoder-3 0.997 0.995 0.996 A04_LA_0095_spoof 1.00 1.00 1.00
A06 Spectral filtering 0.998 0.997 0.998 A05_LA_0081_spoof 1.00 1.00 1.00
Accuracy 0.996 A06_LA_0095_spoof 0.96 0.91 0.94

Accuracy for 120 classes 0.97

the most samples. Therefore, based on this we can conclude
that model optimization has positive correlation with sample
size, and although external algorithm labels are not used but
still our model identifies the correlation between the specific
types of artifacts that any synthetic algorithm introduce, and
it returns the correct output for most of the samples.

For a good algorithm, a higher accuracy value is one of the
many requirements including algorithm performance in terms
of precision, recall, and f1-score in class dependent scenarios.
The reason for the class dependent analysis is that in case of
imbalanced data, if a classifier even ignores the minor class,
it will still give higher overall accuracy and other performance
evaluation measures. However, such higher evaluation values
are unacceptable, as usually the minor class is the class of
interest that must be considered. By observing the results
presented in Table VI, we can see that our method has a 67%
precision rate for the bonafide class and 97% for cloned class.
As the precision measure also takes into account the false pos-
itive rate, for the highly imbalance data (as in our case where
13:87 ratio exist in both classes) the precision rate drops for the
bonafide class; however, the false positives in the cloned class
are less, thus, they did not impose a very high negative impact
on the precision rate of the cloned class. However, in case of
recall we only considered the correctly classified examples in a
class against all the relevant examples for that specific class;
therefore, in case of the bonafide class, the recall rates are
91%, which are approximately 24% higher than those of the
precision rate. Similarly, the recall rates drop by 6% for the
cloned class and becomes 91%. Thus, our method performs
well in terms of recall rate for the bonafide class as well as for
the precision rate of the cloned class. By combining the preci-
sion and recall rates through the f1-score, we get 81% and 94%
for bonafide and cloned classes, respectively. The difference
in the fl-score indicates that our model needs an enhanced
training-set to better classify the unseen bonafide examples.
However, in real-world scenarios, as we need our proposed
SASV system to only correctly classify the registered bonafide
speakers over which the model is trained as bonafide (as shown
in Table IIT and discussed in section IV-B), miss-classifying
the unregistered users although they are bonafide is a good
thing from the security perspective. The overall EER of the
system is 5.22%, which is significantly lower considering the
difference in the training and evaluation set sizes.

F. Replay Attack Detection

In a replay attack, the pre-recorded voice of any bonafide
speaker is played back before the ASV systems. As voice sam-
ples belong to the genuine speakers, the artifacts that appear
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TABLE VI

PERFORMANCE EVALUATION FOR CLONING DETECTION FOR UNSEEN
SPEAKERS AND SEEN/UNSEEN ALGORITHMS BY TRAINING OVER THE
LA-TRAINING SET AND TESTING THROUGH LA-DEVELOPMENT,
AND LA-EVALUATION SETS

Audio Label | Precision | Recall | F1-Score | EER | min t-dcf
Bonafide 0.67 0.91 0.81
Cloned 0.91 0.91 0.94 522 | 0.132
Accuracy 0.88

TABLE VII

CROSS DATASET VALIDATION USING UNSEEN ALGORITHMS OF THE
LA-EVALUATION SET

Algo. ID | Algorithm No of Samples | Accuracy
A07 Vocoder+GAN 4823 0.98
A08 Neural waveform 4855 0.99
A09 Source filter vocoder-4 4893 1.00
Al10 Neural waveform 4878 0.99
All Griffin lim 4882 0.99
Al2 Neural waveform 4603 0.94
Al3 waveform concat'enation 4908 1.00
+waveform filtering
Al4 Source filter vocoder-5 4904 1.00
Al5 Neural waveform 4747 0.97
Al6 Waveform concatenation | 4442 0.90
Al17 Waveform filtering 1352 0.28
Al8 Source filter vocoder-6 1855 0.38
A19 Spectral filtering 2345 0.48

during the voice cloning are missing in the replay samples;
thus, the audio fingerprints match the bonafide speakers, and
impersonation occurs. However, deeper analysis of the replay
samples reveals that a recorded voice also contains non-linear
components that can be used as a clue for replay attack
detection. In order to detect replay attacks, we first elaborate
what a replay sample is comprised of:

1) Replay and Cloned Replay Patterns: A first-order voice
replay attack can be modeled as a processing chain of
microphone-speaker-microphone (MSM) which is equivalent
to a cascade of three 2nd—order systems considering that the
speakers also behave in a non-linear manner. The processing
chain representing a first order replay attack is therefore
expected to introduce higher order non-linearity due to the
cascading of the MSM processing chain. The higher-order
harmonic distortions therefore can be used to differentiate
between a bonafide and spoofed audio. However, in case of
cloned replays (introduced in the VSDC), the voice cloning
artifacts further contain the non-linear components and have
a behavior similar to that of the deeper chaining of the
MSM. Moreover, by simultaneously capturing the non-linear
components and cloning artifacts through an effective audio
representation mechanism, cloned replays can be detected.

2) Replay and Cloned Replay Attack Detection: In this
experiment, we evaluated the performance of the proposed
method for the replay and cloned replay attack detection on
VSDC and PA-evaluation set of ASVspoof 2019. From the
results presented in Table VIII, we can observe that our method
achieves remarkable performance on both datasets for audio
replay attack detection. More specifically, we obtained an
average precision of 98.3% and 99%, recall of 98.5% and
99%, and Fl-score of 98.4% and 99%, EER of 1.33 and
1.1 and min t-dcf score of 0.089 and 0.0335 on VSDC and
ASVspoof datasets, respectively. We can observe from the
results that the proposed method performs slightly better on
ASVspoof dataset over VSDC due to the fact that samples
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TABLE VIII

PERFORMANCE EVALUATION FOR REPLAY- AND CLONED REPLAY ATTACK
DETECTION USING PA-EVALUATION SET OF ASVSPOOF 2019, AND
VSDC DATASET

Datasets Sample Type Precision | Recall | F1-Score mil;llEtl}(/icf
vspc Reply [ 99§ 9F ] /008
Cloned Replay | 98.9 98 98.4 -
ASVspoof 2019 g;";{‘fg{de gg gg 32 11700335
TABLE IX

COMPARISON AGAINST OTHER FEATURE EXTRACTION APPROACHES
USING VSDC, LA- AND PA-TRAINING SETS OF ASVSPOOF2019

Dataset Features EER/min t-def
Replay Cloning Cloned Replay
MFCC-GTCC-Spectral | 2.330.149 | - 0.4/0.04
ALTP-Spectral 2.5/0.164 170.061
ALTP 290,194 | - 1200072
Vvsbe GTCC 750497 |- 31029
sm-ALTP 1330089 | - 0.35/0.031
MFCC-GTCCSpectral | 6.75041 | 0600048 | -
ALTP-Spectral 150091 | 0.8/0.053
, ALTP 341024 0.9/0.06
ASVspoof 2019 —5ree 8470561 | 610042
sm-ALTP 0.69/0.0169 | 0.5/0.037
TABLE X

COMPARISON AGAINST STATE-OF-THE-ART METHOD ON LA AND PA
EVALUATION SETS OF ASVSPOOF2019

Paper Method LA-Eval PA-Eval
EER min-tDCF | EER min-tDCF
Baseline [51] LFCC-GMM 11.96 | 0.212 13.54 | 0.3017
” CQCC-GMM 9.87 0.236 11.04 | 0.2454
logSpec-SENet 11.75 | 0.216 1.29 0.036
ASSERT [53] Togspec-CQCC-SENet34-
Mean-std-ResNet- 6.70 0.155 0.59 0.016
SENet50-Dialated ResNet
STC [54] LFCC-CMVN-LCNN 7.86 0.183 4.6 0.105
FFT-LCNN 4.53 0.103 2.06 0.56
logSpec-VGG-SincNet 1
_SincNet 2 8.01 0.208 1.51 0.0372
BUT-Omilia [21] | SincNet with standard 301 0.356 211 00527
dropout . i i i
VGG 1-VGG 2 10.52 ] 0.279 1.49 0.04
SincNet with high dropout | 22.99 | 0.381 231 0.0591
MEMT (55] “ng';ﬁclag?lcegnffj“k 7.63 | 0213 096 | 0.0266
2
DKU [10] GD gram-ResNet - - 1.08 0.0282
Proposed Sm-ALTP. © 522 | 0.132 11| 00335
Asymmetric Bagging
of VSDC are generated in more challenging and diverse

conditions as compared to ASVspoof dataset. In VSDC, our
method achieves better performance for the cloned replay
attack detection as compared to the first order replay attack,
confirming our findings that cloned signals become more
distorted after replay as compared to normal samples; thus,
they become more distinguishable as well.

G. Comparison Against Other Feature Extraction Approaches

To further elaborate the effectiveness of the proposed
sm-ALTP features, we compared our features to several
acoustic features for spoofing attack detection. The selected
features were comprised of various combinations of MFCC,
GTCC, ALTP, and spectral features. The performance of var-
ious feature combinations was then evaluated on both VSDC,
and ASVspoof 2019 LA and PA training datasets. From the
results presented in Table IX, it can be observed that the
proposed features outperformed all the comparative features
for all types of spoofing attacks in terms of EER and min
t-dcf scores. Hence, the comparison results confirm again the
robustness of the proposed sm-ALTP features.

H. Comparison Against State-of-the-Art Methods

To further evaluate the effectiveness of the proposed
method for spoofing attack detection, we compared our
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TABLE XI
COMPARISON OF THE PROPOSED METHOD TO THE TOP 10 TEAMS OF LA AND PA SCENARIOS OF ASVSPOOF 2019

Position | Team LA tdef | LA Ranking | PA tdcf | PA Ranking | Average Ranking Score
1 T45 0.051 2 0.0122 2 2

2 T24 0.0953 4 0.0215 5 4.5
3 TO5 0.0069 1 0.0672 12 6.5
3 T50 0.1118 5 0.035 8 6.5
4 Proposed | 0.132 9 0.0335 9 9

4 T44 0.1554 15 0.0161 3 9

5 T60 0.0755 3 0.1492 21 12
6 T10 0.1829 23 0.0168 4 13.5
7 T02 0.1552 14 0.0614 12 13
8 T17 0.2129 30 0.0266 7 18.5
9 T53 0.2252 32 0.0219 6 19
9 T42 0.208 28 0.0372 10 19
10 TO1 0.1409 12 0.2129 29 20.5
11 T58 0.1333 10 0.2767 40 25
12 T32 0.1239 8 0.281 43 25.5
13 T28 - 51 0.0096 1 26
14 T41 0.1131 6 0.5452 49 27.5
15 T39 0.1203 7 — 51 29
16 T04 0.1404 11 — 51 31
16 T07 - 51 0.057 11 31

method to single-model approaches i.e., [21], [51], [53],
[54], [55] over LA and PA the evaluation-set scenarios of
ASVspoof 2019. From the methodological details and results
presented in Table X, it can be observed that the comparative
methods deployed large variety of acoustic features, with
GMM, and deep learning models. In comparison, our model
is much simpler and more accurate with min t-dcf score
of 0.1321; and amongst all the different methods used by the
comparative studies, only FFT-LCNN in [54] performs better
than our method in LA attack detection, but our method super-
sedes in terms of PA attack detection. Similarly, DKU [10]
outperforms our method in PA attack detection, however their
LA attack detection results are unavailable. Although achiev-
ing the minimum value of t-dcf measure is the desired goal,
by doing so the overall cost of the system should not increase
in a way that the integration of the spoofing detection system
may become difficult in real-time applications. If we consider
the case of FFT-LCNN [54], the model may suffer from slow
training which may span from hours to days as established
in deep learning research. However, as the feature extraction
time of our method is ® (), due to the linear time operation,
our proposed feature extraction approach is very efficient.

In order to compare our method to top challenge com-
petitors, we selected the top 10 teams amongst the 50 best
performing teams of LA and PA scenarios [5] (Table XI).
Next, we compared their performance to our proposed method
in terms of min t-dcf score and obtained a ranking of the
proposed system. Our method in both cases i.e., LA and PA
scenarios, was ranked in the 9th position. However, most of
the systems that were ranked higher than our method in the
LA scenario were lower than our method in the PA scenario
and vice versa. Furthermore, regarding the systems which were
amongst the top 10 in the LA scenario but were not amongst
the top 50 of the PA scenario, we assigned them the ranking
score of 51 for the PA scenario; similarly, the systems which
were listed amongst the top 10 of the PA scenario but were not
amongst the top 50 of the LA scenario were assigned the score
51 for the LA scenario. Then, we obtained the average ranking
score of the comparative systems by adding the LA and PA
ranking values and dividing by 2. The average ranking score

illustrates the cumulative performance of the comparative sys-
tems in both scenarios. Based on the sorted ranking score, our
method was ranked 4th in terms of cumulative performance
for both the LA and PA scenarios. The ranking score clearly
demonstrates the effectiveness of the proposed approach with
additional benefits i.e., lightweight nature.

V. CONCLUSION

This paper presents a secure automatic speaker verification
(SASV) system that can recognize registered ASV users,
and also counter voice cloning, voice replays, and cloned
voice replay attacks. Voice cloning detection module discrimi-
nates the original voices against the algorithmically generated
synthetic/cloned audios and also provides information about
the algorithm that was used for cloned audio generation.
The replay detection module counters the voice replays and
cloned-voice replay attacks. The proposed framework is based
on novel sm-ALTP features and ensemble learning through
asymmetric bagging. Our classifier ensemble approach takes
a series of weak classifiers and generates a stable classifier
by overcoming the class imbalance problem to recognize
multiple speakers and spoofing classes. Our findings suggest
that the artifacts that consequently appear due to microphone
characteristics (in case of replay) or synthetic audio generation
algorithms can be represented by applying the neighborhood
statistics. However, the audio representation approach in this
regard must also capture a speaker’s specific vocal charac-
teristics that are unique for all the speakers. The evaluation
of the ASVspoof 2019 and VSDC datasets reveals that our
approach effectively captures the spoofing patterns even when
they are generated through unseen algorithms, thus providing
a comprehensive security solution for ASV applications.
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