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Abstract—This paper asks a basic question: how much training
is required to beat a universal source coder? Traditionally, there
have been two types of source coders: fixed, optimum coders
such as Huffman coders; and universal source coders, such as
Lempel-Ziv. The paper considers a third type of source coders:
learned coders. These are coders that are trained on data of a
particular type, and then used to encode new data of that type.
This is a type of coder that has recently become popular for
(lossy) image and video coding.

The paper evaluates two criteria for performance of learned
coders: the average performance over training data, and a
guaranteed performance for all training except for some error
probability Pe, which is PAC learning. In both cases the coders
are evaluated with respect to redundancy.

The paper considers the independent identically distributed
(IID) binary case and binary Markov chains. In both cases
it is shown that the amount of training data required is very
moderate: to code sequences of length l the amount of training
data required to beat a universal source coder is m = K l

log l
,

where the constant K depends on the case considered.

I. INTRODUCTION
Traditionally, there have been two types of source coders:

fixed, optimum coders such as Huffman coders; and universal
source coders, such as Lempel-Ziv [1], [2], [3]. We will
consider a third type of source coders: learned coders. These
are coders that are trained on data of a particular type, and
then used to encode new data of that type. Examples could
be source coders for English texts, DNA data, or protein data
represented as graphs.
In both machine learning and information theory literatures,

there has been some work on learned coding. From a machine
learning perspective, the paper [4] stated the problem precisely
and developed and evaluated some algorithms. A few follow
up papers, e.g., [5], [6], [7], [8], [9], [10] have introduced new
machine learning algorithms. For lossy coding, in particular of
images and video, there has been much more activity recently,
initiated by the paper [11] from Google, see for example [12],
[13], [14]. Our aim is to find theoretical bounds for how well
it is possible to learn coding. In the current paper we will limit
ourselves to lossless coding. From an information theory per-
spective, Hershkovits and Ziv [15] considered learned coding
in terms of learning a database of sequences. The results in
[15] are quite pessimistic. Basically they state that to code a
sequence of length l so as to approach the entropy rate H, a
length 2lH training sequence is needed – so that one observes
most of the typical sequences. This means that essentially
learned coding is infeasible, as the amount of training needed
is exponential in the sequence length!

The research was funded in part by the NSF grant CCF-1908957.

Our perspective on learning coding is to compare with
universal source coders with redundancy as measure. The
redundancy of a coder is is the difference between the entropy
of a source and the average length achieved by the coder.
Suppose that the sources are (or assumed to be) in some
probability class Λ characterized by a parameter vector θ.
For a universal source coder with length function L, the
redundancy to encode a sequence of length l is defined by
[16]

Rl(L,θ) =
1

l
Eθ[L(X

l)]−Hθ(X),

where xl denotes a sequence of length l. Since θ is unknown,
even in terms of probability law, usually the minimax redun-
dancy is considered [16]

R+
l = min

L
sup
θ
Rl(L,θ).

A good coder is one that achieves this minimum.
This setup can be generalized to learning. We are given

a training sequence xm; based on the training we develop
coders C(xl;xm) with length function L(xl;xm) for encoding
test sequences xl. The codelength is 1

lEθ[L(X
l;xm)|xm] (the

expectation here is only over xl), and the redundancy is

Rl(L, x
m,θ) =

1

l
Eθ[L(X

l;xm)|xm]−Hθ(X). (1)

The redundancy depends on the training sequence xm. One
way to remove this dependency is to average also over xm,

Rl(L,m,θ) =
1

l
Eθ[L(X

l;Xm)]−Hθ(X) (2)

R+
l (m) = min

L
sup
θ
Rl(L,m,θ). (3)

The idea of learning to code is to obtain information about
the distribution of the source from the training xm and then
apply this to code the test sequence xl. One can take two
approaches to the application phase. First, the the coder can
be frozen in the sense that it does not further update from
the test sequence. There are both practical and theoretical
reasons for freezing the coder. Machine learning algorithms
usually have a distinct learning phase, and once the algorithm
is trained, it is not updated with test samples; the reason for
this is both that training is much more computational intensive
than application, often run on specialized hardware, and that
there are few good algorithms for updating for example neural
networks with new data. As a case in point, the LSTM in [4]
was not updated after the training phase, and the theoretical
work in [15] also considered frozen coders. Here we consider
only frozen coders, but the journal version [17] also will
consider non-frozen coding.



The question we consider now is: how many training
samples do we need in order to beat a universal source coder,
i.e., how large should m be so that

R+
l (m) ≤ R+

l . (4)

Learning to code has similarities with universal prediction
[18]. The paper [19] developed bounds for universal prediction
for IID (independent identically distributed) sources, and [20],
[21] for Markov sources. In fact, the paper [19] exactly
considers (3), and proves

1

2m ln 2
+ o

!
1

m

"
≤ R+

l (m) ≤ α0

m ln 2
+ o

!
1

m

"
(5)

α0 ≈ 0.50922. (6)

(The result was improved to α0 = 1
2 in [22]). On the other

hand, we also have good expressions for R+
l [16], which can

be expressed as1 R+
l = log l

2l + o
#
1
l

$
. Thus, ignoring o-terms,

(4) becomes

m ≥ l

ln 2 log l
. (7)

The conclusion is that it is very easy to beat a universal coder.
For l moderately large l

ln 2 log l < l, so we need fewer training
samples than the length of the sequences we want to encode.
We now return to (2). Averaging over the training xm

might be reasonable for universal prediction. But in learning
one usually learns once and applies many times. The average
codelength over test sequences in (1) is therefore reasonable,
but the averaging over the training less so. Instead one can
require that the training is good for most training sequences,
or, put another way, that the probability of a bad training
sequence is low. So, we consider the criterion

E(m, a) = sup
θ
P (Rl(L,X

m,θ) > a), (8)

where the probability is over Xm. For some given a and small
Pe the goal is then to ensure

E(m, a) ≤ Pe.

This criterion will be recognized as the well-known PAC
(probability approximately correct) learning criterion [23] ap-
plied to lossless coding, with redundancy as loss function.
Again, we can consider the bottom line of beating the universal
coder, in which case a = log l

2l for the IID case.

II. IID CASE

We consider the IID binary case characterized by the
parameter θ = p, where p = P (X = 1) and q = 1 − p.
Learning a coder boils down to finding an estimator p̂. It is
then well known [3] that the redundancy of a coder defined
by p̂ is Rl(L, x

m, θ) = D(p%p̂) = p log p
p̂ + (1 − p) log 1−p

1−p̂
(except for some small constant), and therefore

E(m, a) = sup
p
P (D (p%p̂) ≥ a) .

1All logaritms in the paper is to base 2 except when ln is explicitly used.

We consider estimators p̂. We assume that p̂ = f(p̌), where

p̌ =
k

m
,

with k the number of ones, is the minimal sufficient statistic;
the function f can depend on m. For convenience, we assume
f is invertible. Let

P (p, a) = P (D(p%p̂) > a)

for fixed p ≤ 1
2 . The equation D(p%p̂) = a has two solutions

p̂± so that

P (p, a) = P
#
p̌ < f−1(p̂−)

$
+ P

#
p̌ > f−1(p̂+)

$
,

the sum of the lower and upper tail probabilities.
We consider what can be named the moderate deviations

regime. We fix Pe independent of m and require E(m, a) ≤
Pe and desire to find the smallest a(m,Pe) that satisfies this
inequality. We solve the problem asymptotically as m → ∞;
necessarily a(m,Pe) → 0, and we want to find how it
converges to zero. This essentially gives the redundancy as
a function of m. We can use this to determine how many
training samples we need to beat universal source coding:
solving a(m,Pe) < l

2 log l .
Let 0 ≤ λ ≤ 1 and put

p̂−(p,m,λPe) = inf{p̂ : P
#
p̌ < f−1(p̂)

$
≤ λPe}

p̂+(p,m, (1− λ)Pe) = sup{p̂ : P
#
p̌ > f−1(p̂)

$
≤ (1− λ)Pe}.

Then we can write

a(m,Pe) = min
λ

sup
p

max{D(p%p̂−(p,m,λPe)),

D(p%p̂+(p,m, (1− λ)Pe))}. (9)

For achievability, we consider estimators of the well-known
form [3], [24], [19]

p̂ =
k + α

m+ 2α
. (10)

The main result is

Theorem 1. For estimators that are functions of the sufficient
statistic and Pe sufficiently small,

a(m,Pe) ≥
Q−1(Pe/2)

2

2m ln 2
+ o

!
1

m

"
, (11)

with Q(x) = 1 − Φ(x), Φ being the Gaussian CDF. The
estimator (10) has on optimum value of α that satisfies

1

6
Q−1(Pe/2)

2 − 1 ≤ α ≤ 1

6
Q−1(Pe/2)

2 + 1, (12)

which gives an achievable a(m,Pe);

a(m,Pe) = b(Pe)
Q−1(Pe/2)

2

2m ln 2
+ o

!
1

m

"
, (13)

where

lim
Pe→0

b(Pe) = 1.

Proof: Space only allows for a proof outline. The com-
plete proof can be found in [17]. It can easily be seen that we



can use convergent sequences in the proof technique. We can
divided such sequences into three regimes:
• CLT regime: limm→∞mp(m) = ∞. In this regime the

central limit theorem (CLT) can be applied.
• Poisson regime: 0 < limm→∞mp(m) < ∞. In this

regime a Poisson approximation can be used.
• Sub-Poisson regime: limm→∞mp(m) = 0.

We consider the limit of ma(m,Pe) in each of these regimes,
and maximizes over these limits. In the following we will drop
the explicit dependency p(m) and just write p. It turns out the
worst achievable performance is in the Poisson regime, which
gives (13), and we will therefore here only include the analysis
for this regime in the conference paper. On the other hand, for
the lower bound we will consider the CLT regime – a lower
bound in one regime is clearly a lower bound everywhere.

CLT Regime: We can use the central limit theorem, here for
the upper tail,

P
#
p̌ > f−1(p̂+)

$
= P

#
p̌− p > f−1(p̂+)− p

$

= P

!√
m

√
pq

(p̌− p) >

√
m

√
pq

(f−1(p̂+)− p)

"

→ Q

!
lim

m→∞

√
m

√
pq

(f−1(p̂+)− p)

"
(14)

for m → ∞, which can be seen from Berry-Esseen [25].
Therefore

p̂+ = f

!√
pq

√
m
Q−1((1− λ)Pe + $(m)) + p

"
. (15)

In the following we will omit the $(m) as it does not affect
the results.
We derive a converse in the CLT regime, more specifically

for p constant rather than a function ofm. We use use Pinsker’s
inequality for relative entropy [26], D(p%p̂+) ≥ 2

ln 2 (p− p̂+)
2

in (9),

a(m,Pe) ≥
2

ln 2
min
f

min
λ

sup
p

max

%!
f

!√
pq

√
m
Q−1((1− λ)Pe) + p

"
− p

"2

,

!
f

!
−
√
pq

√
m
Q−1(λPe) + p

"
− p

"2
&
. (16)

Let f(x) = x + gm(x), where we have made explicit that f
can depend on m. We can then write this as

a(m,Pe) ≥
2

m ln 2
min
f

min
λ

sup
p

max

%!
√
pqQ−1((1− λ)Pe) +

√
mgm

!√
pq

√
m
Q−1((1− λ)Pe) + p

""2

,

!
−√

pqQ−1(λPe) +
√
mgm

!
−
√
pq

√
m
Q−1(λPe) + p

""2
&
.

(17)

We will argue that gm = 0 and λ = 1
2 is optimum, or more

precisely that limm→∞
√
mgm = 0. Suppose that for some p,

limm→∞
√
mgm

'√
pq√
m
Q−1((1− λ)Pe) + p

(
= b, so that

lim
m→∞

!
√
pqQ−1((1− λ)Pe)

+
√
mgm

!√
pq

√
m
Q−1((1− λ)Pe) + p

""2

=
#√

pqQ−1((1− λ)Pe) + b
$2
.

Let pm be the solution to

−
√
pmqm√
m

Q−1(λPe) + pm =

√
pq

√
m
Q−1((1− λ)Pe) + p.

Then

lim
m→∞

!
−√

pmqmQ
−1(λPe)

+
√
mgm

!
−
√
pmqm√
m

Q−1(λPe) + pm

""2

=
#
−√

pqQ−1(λPe) + b
$2
.

Thus the maximum in (17) as m → ∞ becomes

max
)#√

pqQ−1((1− λ)Pe) + b
$2
,
#
−√

pqQ−1(λPe) + b
$2*

.

(18)

Since there is a minimization over f and λ, we can choose λ
and b. It is now easily seen that (18) is minimized for λ = 1

2
and b = 0 due to the convexity of Q−1(x) for x < 1

2 .
Thus, in (16) the minimum is achieved for f the identity and

λ = 1
2 , while the maximum over p is achieved for p = q = 1

2 .
This gives (13) as a lower bound.

Poisson regime: Let p = γ
m . We also set κ± = mp̂±. Then

D
' γ

m

+++
κ±
m

(
=

κ± − γ + γ ln γ − γ lnκ±
m ln 2

+ o

!
1

m

"
(19)

We define

d(x, y) = y − x+ x ln
x

y
.

Now

P
#
p̌ ≤ f−1(p̂−)

$
= P

!
k ≤ κ−

!
1 +

2α

m

"
− α

"

→ Pγ(κ− − α),

where Pγ is the Poisson CDF. Similarly

P
#
p̌ > f−1(p̂−)

$
→ 1− Pγ(κ+ − α).

Figure 1 illustrates the proof.
We will first analyze the lower tail probability corresponding

to κ−. Let γk, k = 0, 1, . . . be the sequence of solutions
Pγk(k) = Pe

2 – these correspond to the peaks in the solid
blue curve in Fig. 1. Notice that if γk−1 < γ ≤ γk,
|γ − k| ≤ |γk − k|, and this is also true for other distance
measures. Now, according to [27]2,

Pe
2

= Pγk(k) < Φ
'
sign(k + 1− γk)

,
2d(k + 1, γk)

(
,

2While [27] states the bounds for k = 1, 2, . . ., it is easy to see that the
bounds are also valid for k = 0, and the upper bound is also valid or non-
integer values of k.



Figure 1. Plot of d(γ̃, κ̃−), d(γ̃, κ̃+) for Pe = 10−6 for α =
1
6
Q−1(Pe/2)2 − 1. The solid curves are for the exact values of κ±, while

the dashed curves are the bounds. The solid curves are sawtooth like, but this
cannot be seen at the scale of the figure. The bounds are for the peaks of the
solid curves.

so that 1
2Φ

−1(Pe/2)
2 > d(k + 1, γk) (since k + 1 < γk). As

κ− = k + α, we therefore have

d(κ− − α+ 1, γ) <
1

2
Φ−1(Pe/2)

2 =
1

2
Q−1(Pe/2)

2

By normalizing by Q−1(Pe/2)
2 we get

d(κ̃− − α̃−, γ̃) <
1

2
, (20)

where specifically α̃− = α−1
Q−1(Pe/2)2

. From (19) it can be seen
that a(m,Pe) is determined by the swapped relative entropy,
d(γ̃, κ̃−). Solving (20) with equality we get

κ̃− − α̃− = r−(γ̃)γ̃ =

1
2γ̃ − 1

W−1

'
1
e

'
1
2γ̃ − 1

(( γ̃, (21)

where W−1 is the Lambert W -function of order −1.
For the upper tail probability, we instead define λk, k =

0, 1, . . . as the sequence of solutions Pλk(k) = 1 − Pe
2 . We

use the lower bound from [27],

1− Pe
2

= Pγk(k) > Φ
'
sign(k − γk)

,
2d(k, γk)

(

d(k, γk) <
1

2
Φ−1(1− Pe/2)

2 =
1

2
Q−1(Pe/2)

2.

We then have

γ̃ − (κ̃+ − α̃+) + (κ̃+ − α̃+) ln
κ̃+ − α̃+

γ̃
<

1

2
, (22)

where now α̃+ = α+1
Q−1(Pe/2)2

. The solution of (22) with
equality is

κ̃+ − α̃+ = r+(γ̃)γ̃ =

1
2γ̃ − 1

W0

'
1
e

'
1
2γ̃ − 1

(( γ̃. (23)

The problem is now reduced to finding

sup
γ>0

max{d(γ̃, κ̃−), d(γ̃, κ̃+)}
△
=

1

2
b(Pe) (24)

d(κ̃− − α̃−, γ̃) =
1

2
, d(κ̃+ − α̃+, γ̃) =

1

2
.

We notice that d(γ̃, κ̃−) is decreasing with α while d(γ̃, κ̃+)
is increasing. We will first show that if α̃+ ≤ α̃∗

+ for some
α̃∗
+, then supγ d(γ̃, κ̃+) ≤ 1

2 .
By inserting (23) in d(γ̃, κ̃+) we find that (Mathematica)

lim
γ̃→∞

κ̃+ − γ̃ + γ̃ ln
γ̃

κ̃+
=

1

2
. (25)

It can be proven that if α̃+ ≤ 1
6 and d(γ̃, κ̃+) > 1

2 , then
d(γ̃, κ̃+) is increasing in γ̃, which would then contradict the
limit (25). The proof is technical and can be found in [17].
We now argue by contradiction. Let α̃+ ≤ 1

6 . If at some time
κ̃+ − γ̃ + γ̃ ln γ̃

κ̃+
> 1

2 then κ̃+ − γ̃ + γ̃ ln γ̃
κ̃+

is increasing,
thus it stays strictly above 1

2 . But then the limit (25) cannot
be achieved. Thus we conclude that we must have κ̃+ − γ̃ +
γ̃ ln γ̃

κ̃+
≤ 1

2 .
For the lower tail, the above argument can be repeated,

where we now have α̃− ≥ 1
6 .

Since α̃− < α̃+ we cannot have both α̃− ≥ 1
6 and α̃+ ≤

1
6 . However, we can choose α so that both limPe→0 α̃− =
limPe→0 α̃+ = 1

6 . We can use this to conclude that in the
limit both supγ>0 d(γ̃, κ̃−), supγ>0 d(γ̃, κ̃+) ≤ 1

2 . To reach
this conclusion, notice that explicitly

d(γ̃, κ̃+) = r+(γ̃)γ̃ + α̃+ γ̃ ln
γ̃

r+(γ̃)γ̃ + α̃
∂

∂α
d(γ̃, κ̃+) = 1− γ̃

r+(γ̃)γ̃ + α̃

Since limγ̃→∞ r+(γ̃) = 1, the derivative is bounded over γ̃.
Thus, for any $ > 0 we can find a δ > 0 so that if α̃ < α̃0+δ,
|d(γ̃, κ̃+)|α̃=α̃0 − d(γ̃, κ̃+)|α̃=α̃0+δ| < $ for all γ̃, a kind of
uniform continuity. We now conclude that when α̃+ → 1

6 ,
supγ>0 d(γ̃, κ̃+) → 1

2 . This shows that b(Pe) given by (24)
converges to 1 as m → ∞.

The first thing to notice from this result is that as for average
performance, the performance increases as 1

m . Specifically,
to beat universal coding of sequences of maximum length l
with probability 1 − Pe the number of training samples is
approximately

m ≥ Q−1(Pe/2)
2

2 ln 2

l

log l
. (26)

The other thing to remark is that the upper and lower bounds
are only tight in the limit: they are separated by a factor b(Pe).
An upper bound on b(Pe) is

b(Pe) ≤ 2max
γ̃>0

κ̃− − γ̃ + γ̃ ln γ̃ − γ̃ ln κ̃−, (27)

where κ̃− is given by (21). A plot of this upper bound on
b(Pe) can be seen in Fig. 2 below.



III. EXTENSION TO MARKOV CHAINS

The results for the IID case can be extended to Markov
chains. We will provide the results here, and refer to [17]
for proofs. We consider a binary Markov chain with states
0, 1. Let pi = p(i|i) be the probability of staying in state i
when the current state is i. The stationary probability is πi =
pi

p0+p1
.Based on training, estimates p̂0 and p̂1 are generated.

The redundancy for coding then is [3]

π0D(p0%p̂0) + π1D(p1%p̂1).

We consider the two measures of performance

R+
l (m) = sup

p0,p1

E [π0D(p0%p̂0) + π1D(p1%p̂1)] (28)

E(m, a) = sup
p0,p1

P (π0D(p0%p̂0) + π1D(p1%p̂1) ≥ a) . (29)

In [20], [21] universal prediction (called estimation) for
Markov chains was considered, as an extension of [19]. It was
shown that the estimation error decreases as log logm

m , which
is an interesting contrast to (5). However, for learned coding
the redundancy does not decrease at all with the length of the
training sequence,

Proposition 1. Assume that the training data consists of a
single sequence. Then

R+
l (m) ≥ 1

2

E(m, a) = 1 for a <
1

2
.

The issue is that if the Markov Chain is slowly mixing, the
training sequence might see only a single state, whereas the
test sequence might be from the other state. It is clear that
multiple training sequences are required for learning how to
code. For achievability, we let the training data consist of n
sequences each of length s withm = ns, where each sequence
has an independent initial state according to the stationary
distribution. For the converse we allow optimization of initial
states.

Theorem 2. Consider a binary Markov chain. Assume that the
training consists of a set of sequences, so that both the size
of the set and the length of each sequence approach infinity.
For the estimator (10), with α = α0 (6) we get

R+
l (m) =

2α0

m ln 2
+ o

!
1

m

"
(30)

while a lower bound is

R+
l (m) ≥ 1

m ln 2
+ o

!
1

m

"
. (31)

Theorem 3. Consider a binary Markov chain. Assume that the
training consists of a set of sequences, so that both the size
of the set and the length of the sequences approach infinity.
Using the estimator from Theorem 1, the following decay is
achievable

a(m,Pe) = 2b(Pe)
Q−1((1−

√
1− Pe)/2)

2

2m ln 2
+ o

!
1

m

"
.

This is achievable for
----
1

6
Q−1((1−

,
1− Pe)/2)

2 − α

---- ≤ 1.

Theorem 4. A lower bound is

a(m,Pe) ≥
F−1
χ22

(1− Pe)

2m ln 2
+ o

!
1

m

"
(32)

where Fχ22
is the CDF for a χ2-distribution with two degrees

of freedom.

As opposed to the IID case, Theorem 1, the upper and lower
bounds are not tight as Pe → 0. There is a factor about 2
between the bounds. Fig. 2 shows the different bounds.
Our bottom-line comparison was with universal source cod-

ing. The redundancy of universal source coding of a Markov
chain with 2 states is about R+

l ≈ log l
l [28], a factor 2 increase

over IID sources. For the achievable rate we also have about
a factor 2 increase, and therefore approximately

m ≥ Q−1(Pe/2)
2

2 ln 2

l

log l
,

the same as (26). Thus no more samples are required than for
the IID case.
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Figure 2. Plot of the ratio between the IID lower bound and the Markov
bounds.

IV. CONCLUSIONS

The central question of this paper can be thought of as: how
much training is required to beat universal source coding? The
answer for both IID sources and Markov chains is: not many.
To code a sequence of length l the number of training samples
is proportional to l

log l . This optimistic conclusion is totally
opposite to the pessimistic conclusion of [15]. The reason is
due to the viewpoint – and perhaps that we so far only consider
very simple sources. While [15] focuses on approaching
entropy rate, we just want to beat the redundancy of universal
source coding. Additionally, [15] considers learning to be that
of building a dictionary, inspired by Lempel-Ziv coding [1],
[2]. However, the exceptional performance of modern machine
learning can be seen as being achieved through learning soft
information.
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