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Abstract
Acrosstheglobe,recentworkexaminingthestateoffreshwaterresourcespaintsanincreasingly
direpictureofdegradedwaterquality.However,muchofthisworkeitherfocusesonasmallsubset
oflargewaterbodiesorusesinsituwaterqualitydatasetsthatcontainbiasesinwhenandwhere
samplingoccurred.Usingtheseunrepresentativesampleslimitsourunderstandingoflandscape
levelchangesinaquaticsystems.Inlakes,overallwaterclarityprovidesastrongproxyforwater
qualitybecauseitrespondstosurroundingatmosphericandterrestrialprocesses.Here,weuse
satelliteremotesensingofover14000lakestoshowthatlakewaterclarityintheU.S.hasincreased
byanaverageof0.52cmyr−1since1984.Thelargestincreasesoccurredpriorto2000indensely
populatedcatchmentsandwithinsmallerwaterbodies.Thisisconsistentwithobserved
improvementsinwaterqualityinU.S.streamsandlakesstemmingfromsweepingenvironmental
reformsinthe1970sand1980sthatprioritizedpoint-sourcepollutioninlargelyurbanareas.The
comprehensive,long-termtrendspresentedhereemphasizetheneedforrepresentativesamplingof
freshwaterresourceswhenexaminingmacroscaletrendsandareconsistentwiththeideathat
extensiveU.S.freshwaterpollutionabatementmeasureshavebeeneffectiveandenduring,atleast
forpoint-sourcepollutioncontrols.

1.Introduction

Recentlarge-scalestudiesofaquaticecosystems
havebeenfacilitatedbyagrowingnumberofeasy
touseglobal[1]andsub-continental[2–4]data-
setsoffieldwaterqualitymeasurements.However,
researchintooneofthelargestsuchdatasets[2]sug-
geststhathistoricalfieldsamplestendtobebiased
towardslarger,problematicwaterbodiesandoften
lackthetemporalcontinuitynecessaryfordetect-
inglongtermtrends[5].Usingthisunrepresent-
ativedatatounderstandregionaltonationalscale
lakedynamicscanleadtosignificantlydifferentres-
ultswhencomparedtostatisticallyrepresentative
samples[6,7]. Whilethisproblemofrepresent-
ativenessisincreasinglyacknowledgedinsampling
efforts(e.g.theU.S.NationalLakeAssessment;NLA)
[8]systematicsamplingprogramsarecostly,can

havelimitedtemporalresolutionandcontinuity,
andrequirecompromisebetweenscientificrigorand
logisticalpracticality[9].Nosuchsamplingpro-
gramisavailableatcontinentalscalesovermultiple
decades.
Oneresponsetothechallengesrepresentedby

fieldstudiesistouseremotesensingtoestimatewater
qualityparameters.Overthepastdecade,inland
waterqualityremotesensingresearchhasincreas-
inglyfocusedonlargerspatialandtemporaldomains
inordertoaddresschallengingsciencequestions
[10–12].Here,weuseremotesensingtoconductthe
firstmulti-decadal,national-scaleassessmentofU.S.
lakewaterclaritybydevelopingacarefullyvalidated
data-drivenmodelthatisgeneralizableacrossmore
thanthreedecadesfortheentirecontiguousU.S.We
calculateregionalsummerlakewaterclaritytrends
from1984to2018acrossnineU.S.ecoregionsin
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twodifferentsamplesoflakes:astatisticallystratified
sample(n=1029lakes)definedbythe2012NLA[13]
andalargerandomsample(n=13362lakes)from
theNationalHydrographyDataset(NHD)[14].We
comparetheoverarchingtrendsfromtheseremotely
sensedestimatestoeachotherandtotheentiretyof
theavailableinsitudatafromtheWaterQualityPortal
(WQP)[3]andLAGOS-NE[2],whichjointlyhave
overonemillionfieldobservationsofU.S.lakeclar-
itydatingbackto1984.Indoingsoweobservethe
impactofdifferentsamplingapproachesandillus-
tratethebiasesthatexistwhenusinghistoricalfield
samplestoidentifylongtermtrends.Tocomplement
theecoregionanalysisandcompareourworktoexist-
ingstudiesfocusingonlargerlakes[11],weaddall
U.S.lakeslargerthan10km2toourNLAandran-
domsamplesandexaminetrendsinlakeswithover
25yearsofobservations(n=8897)toidentifyhow
lake-specifictrendsvarywithlakesizeandpopulation
density.

2.Materialsandmethods

2.1.Dataprocessingandacquisition

FigureS1(availableonlineatstacks.iop.org/ERL/16/
055025/mmedia)depictsasummaryoftheproject
workflow.Dataformodeltrainingandvalidationwas
derivedfromavariantoftheAquaSatdatabase[15,
16]whichcombineshistoricalwaterqualitymeasure-
mentsfromtheWQP[3]andLAGOS-NE[2]with
coincident(±1d)satelliteimagesfromtheUSGS
tier1surfacereflectancecollectionsforLandsat5,
7,and8.Whiletheatmosphericcorrectionsusedto
generatethesesurfacereflectanceproductswereori-
ginallydevelopedforterrestrialapplications,agrow-
ingbodyofresearchshowsthattheycanbeused
toaccuratelyestimateinlandwaterqualityparamet-
ersandperformonparwithwater-specificatmo-
sphericcorrectionalgorithms[17–19].SiteIDsfrom
AquaSatwerespatiallyjoinedtolakepolygonsfrom
NHDPlusV2[14](NHD)andthenlinkedtocatch-
mentlevelmetricsfromtheLakeCatdatabase[20].
FromtheinitialAquaSatdatabase,observationswere
removedif:

•theydidnotcoincidewithalakepolygonfrom
NHDPlusV2
•overhalfofthewaterpixelswithin120mofthe
samplesitewereclassifiedasanythingotherthan
highconfidencewaterbytheUSGSDynamicSur-
faceWaterExtentwatermask[21]
•theLandsatscenecontainedover50%cloudcover
•oneormoreLandsatbandswasbeyondareason-
ablereflectanceforwater(0–0.2)
•theFmask[22]indicatedthepresenceofclouds,
cloudshadows,oriceoverthesamplesite
•theobservation wasimpactedbytopographic
shadow

•recordedfieldwaterclarity(measuredasSecchi
diskdepth)was<0.1mor>10m(thelimitsused
fortheNLAfieldsampling).
•twoidenticalclarityobservationsoccurredonthe
samedaywithinthesamelakeasaresultofduplic-
ationbetweenWQPandLAGOS-NE(WQPobser-
vationswerekeptwhileLAGOS-NEobservations
wereremovedinthesecircumstances)

Similarly,reflectancevaluesforanalyzingnational
claritytrendswerecalculatedusingthesamefilters
andmethodologydescribedaboveusingthelakecen-
terasthesamplepointandtakingthemedianvalue
ofhighconfidencewaterpixelswithin120mfor
allstudylakes.Asanadditionaltest,thepredic-
tionsusinglakecentermedianvalueswerecompared
withpredictionsusingwholelakemedianvaluesfor
the2012NLAlakesample.Thetwosetsofpredic-
tionsshowedstrongagreement(R2=0.95,figure
S2),solakecenterswereusedforconsistencywith
AquaSat’spointbasedmethod.Allreflectanceval-
ueswereextractedfromGoogleEarthEngine[23]
forthethreesamplesofinterestwithinthestudy:the
statisticallystratifiedNLA2012sample(n=1038),
alargerandomsampleof2000lakesperecoregion
(n=18000),andalllakesgreaterthan10km2

(n=1170).
Eachsubsamplecontainedaportionoflakesthat

wereultimatelyremovedthroughthequalitycon-
trolmeasuresdescribedabove.Spotcheckingofthe
removedwaterbodiesrevealedthatthemostcom-
moncauseforremovalwaslackofLandsatvisible
purewaterpixelscausedbyeitherirregularwater-
bodyshape(longandnarrow),surfacevegetation
onthewaterbody,overhangingvegetationalongthe
shoreline,oramisclassificationofalakewithinNHD.
Removalofthesewaterbodiesledtototallakecounts
of1029fortheNLAsample,13362fortherandom
sample,and1105forlakesover10km2(foratotal
of14971uniquelakes).Whileconservative,thisfil-
teringapproachensuredminimalerrorfrommixed
pixels,sunglint,andsurroundingadjacencyeffects
fromnearbyland.
ReflectancevaluesfromthedifferingLandsat

sensorswerenormalizedfollowingGardneretal[24].
Foreachsatellitepair(Landsat5/7andLandsat7/8),
thereflectancevaluesobservedovertheentiretyof
theNLAsampleoflakeswerefirstfilteredtocoin-
cidenttimeperiodswhenbothsensorswereactive
(1999–2012forLandsat5and7and2013–2018for
Landsat7and8).Weassumethatthedistributionof
collectedreflectancevaluesforagivenbandshould
beidenticalgivenasufficientnumberofobserva-
tionsoverthesamearrayoftargetsregardlessof
sensor.Basedonthisassumption,wecalculatedthe
1st–99threflectancepercentilesforeachsensor/band
duringperiodsofcoincidentsatelliteactivity.Since
Landsat7spansthetimeperiodsofbothLandsat
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5andLandsat8,eachbandin5and8wascorrec-
tedtoLandsat7valuesthrougha2ndorderpolyno-
mialregressionofthe1st–99thpercentilesofreflect-
ancevaluesbetweenthetwosensorsfortheoverlap-
pingtimeperiod(figureS3).Theresultingregression
equationswerethenappliedtoallLandsat5and8
valueswithinAquaSataswellasforalltheincluded
studylakes.Ultimately,applyingthesecorrectionsto
thereflectancevaluesreducedthefinalmodelmean
absoluteerrorby0.2m,suggestingthatstandardiz-
ingthereflectancevaluesbetweensensorssuccessfully
reducederrorsfromsensordifferences.
Applicationoftheabovequalitycontrolmeasures

forAquaSatresultedinamodeltrainingandtest-
ingdatabaseof250760observationsofSecchiDisk
depth,associatedLandsatreflectance,andsitespecific
lakeandcatchmentpropertiesforanopticallydiverse
sampleofwaterbodiesacrosstheUnitedStatesdating
backto1984(figureS4).Reflectancevaluesforspe-
cificbandsandbandratioswithinthetrainingdata-
setwereanalyzedforcorrelationswithatmospheric
opticaldepthderivedfromtheMERRA2reanalysis
data[25].Correlationswereexaminedbothoverthe
entirestudyperiodandbetween1991and1993,when
aerosolopticaldepthvalueswereparticularlyhigh
duetotheeruptionofMt.Pinatubo.Opticalpara-
metersthatshowedtheleastcorrelationtoatmo-
sphericopticaldepth(r<0.15during1992and1993
andr<0.1forthestudyperiod)werethenchosenfor
inclusioninthemodellingpipeline.Theseincluded
Blue/GreenandNir/Redratiosandthedominant
wavelengthasdescribedbyWangetal[26].
Ofthenon-opticalparametersfromtheLakeCat

database,weincludedthosethatcouldimpactwater
clarityandweremostlystaticovertime(tableS1).
Static2006valuesforcatchmentlevelpercentimper-
vioussurfaces,percenturbanlandcover,percent
forestedlandcover,percentcropland,andpercent
wetlandlandcoverwereincludeddespitepotentially
beingunrepresentativeoftheentirestudyperiod
insomecatchments.Thesevariablesweredeemed
importantbasedonexistingresearch[27,28],
domainexpertise,andvariouspreliminaryempir-
icaltestsoffeatureimportance,andthereforewere
includedinthe modellingpipeline.Alllakeand
landscape-levelvariableswereroundedtothenearest
tenthorwholenumber,dependingonthevariable
scale,inordertopreventcertainvariablesfromacting
aslocationidentifiersandtoavoidoverfittingduring
modeltraining.Thisinitialreductioninthefeature
spaceofthetrainingdatasetresultedinthreeoptical
variablesand27staticlake/landscapevariablesfor
eachAquaSatmatchupobservation.

2.2.Modeldevelopmentandvalidation

Non-parametric, supervised machine learning
algorithmsareincreasinglypopular withinthe
remotesensingcommunityduetotheirrobust-
ness,easeofuse,andrelativelylowcomputational

requirements[29].Amongthesealgorithms,extreme
gradientboosting(Xgboost)hasbeenshowntoout-
performsimilarnon-parametricclassificationand
regressionschemesforurbanlandcoverclassifica-
tion[30],determiningaerosolopticaldepth[31],
andmodelingsolarradiation[32].Xgboostclassi-
fiersareensemblemodelsthatcombineasuiteof
‘weak’classifiersinordertominimizeoverallerror.
Withineachiteration,estimateswithlargeerrors
fromthepreviousiterationareweightedinorderto
forcethemodeltomaximizeitsperformanceonthe
mostchallengingcalibrationdata.Theiterationsare
additive,meaningthatthefinalmodelisthesumof
thepreviouslyweightedregressions.
Here,weusethegeneralizedlinearmoduleof

Xgboostasitwasfoundtooutperformthetree
basedmoduleforlowvaluesofwaterclarity.This
implementationofXgboostcreatesageneralized
linear modelusingelasticnetregularization[33]
andcoordinatedescentoptimization[34].Tobetter
understandthestructureofthefinalmodel,aswellas
theinfluenceofeachinputfeatureonmodelpredic-
tions,wecalculatedthefeatureimportanceandaccu-
mulatedlocaleffects(ALEs)[35]forallmodelinputs
(figureS5).ALEvaluesrepresenttheaveragemar-
ginalimpactofafeatureonfinalpredictionsasthe
featurevalueincreasesordecreasesalongalocalized
windowofvalues.ExaminingALEvaluesisaneffect-
ivemethodforinterpretingmachinelearningmodels
thatareotherwiseopaqueintheirstructure(i.e.black
boxes)[36].
Inordertoavoid modeloverfittingandlimit

thefinalnumberofinputvariables,weincorpor-
atedforwardfeatureselection(FFS)[37]withtar-
getorientedleave-location-leave-timeoutcrossval-
idation(LLLTO-CV)[38]intoourXgboostmodel
development.FFSandLLLTO-CVeffectivelyreduce
overfittingbycross-validatingthemodelonlocations
andtimesnotusedformodeltrainingandremov-
ingvariableswithhighspatialortemporalcorrel-
ationswithobservedclarity. Wesetaside20%of
thetrainingdataset(n=50153)touseforpost-
developmentmodeltestingandtrainedourinitial
modelwiththeremaining80%(n=200607)using
FFSandLLLTO-CV.Thisprocessreducedtheoverall
numberofinputvariablesfrom30to11(threeoptical
propertiesandeightstaticlake/landscapevariables)
(tableS1).Finally,thehyperparametersofthemodel
weretunedusingagridsearchapproachwithconser-
vativehyperparametervalues.

2.3.Annuallakewaterclaritypredictions

LakeobservationsdownloadedfromGoogleEarth
Enginewerelimitedtothosebetween Mayand
Septemberinordertoremovetheinfluenceofsnow
andicewhilemaximizingthenumberofcloudfree
imagescaptured.Foranygivenlakeandyear,the
medianofallcloudfreepredictionswastakenasrep-
resentativeofsummerlakeclarity.Thesesummer
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claritypredictionswerethenaveragedacrossthenine
ecoregionsdefinedwithintheNLAtogenerateestim-
atesofannualregionalwaterclarity.FortheNLA
sampleoflakes,thisprocessledtoanaverageof
883observationsspreadacross103lakesbeingaver-
agedforeachregionalestimateofsummerwater
clarity.TheNLAprovidesweightsforlakesused
inanalysesatthestateandnationalscale;however,
noecoregionscaleweightsareprovided,andthere-
foreregional meanscalculatedhererepresentthe
unweightedregionalmeansofthe2012NLAsample
lakes.
Modelerror waspropagatedintothe mean

regionalestimatesthrough1000iterationsofboot-
strapsampling. Withineachiteration,annuallake
medianvalueswithineachregionweresampledwith
replacement,andthenewsubsamplewasusedtocal-
culatetheannualmeanfortheregion.Thisboot-
strappingprocedureeffectivelypropagatesadifferent
amountofmodelnoiseintoeachestimateofmean
summerclaritybyincorporatingadifferentsample
oflakesintoeachiterationoftheregionalestim-
ate.Thisresamplingresultsinadistributionof1000
estimatesofclarityforeachyear/region.Wetakethe
mean± standarddeviationofthesedistributions
togenerate90%confidenceboundsforeachannual
estimateofclarity.
Inordertoanalyzeoverarchingregionaltrends,

wecalculatedThiel–Senslopesforeachofthegen-
eratedtimeseriesbasedonthemeanoftheboot-
strapsamplingprocedure.Thiel–Senslopeisanon-
parametricmeasureofthemagnitudeofmonotonic
trendsthatisinsensitivetooutlierswithinthedata-
set[39].Itdeterminesoveralltrendsbycalculating
slopesbetweeneachpairofpointsinatimeseriesand
thentakingthemedianofallslopes.Itisoftenused
inconjunctionwithMann–Kendalltrendanalysisto
quantifythemorebinaryMann–Kendalltaustatistic
[40].Thetrendspresentedherearebasedonthefull
remotesensingtimeseries;however,wealsocalcu-
latedtrendsexcludingtheyearsinwhichatmospheric
opticaldepthwaspotentiallyimpactedbythe Mt.
Pinatuboeruption(1991–1993).Overalltrendsusing
thefilteredtimeseriesshowedonlyminordifferences
fromthefull-timeseries(figureS6)indicatingthat
thereportedpatternsobservedherearenotartefacts
oftheabnormalatmosphericconditionsintheearly
1990s.Trendsforthefielddatawereanalyzedusing
thesamemethodastheremotesensingpredictions
byfirsttakingthesummermedianofeachsampling
point,averagingthemedianvaluesbyyear/region,
andcalculatingThiel–Senslopesfromtheresulting
regionalestimates.
Finally, weidentifiedlakes with morethan

25yearsofobservationstoconductlake-scaleana-
lysis(n=8897). WecalculatedThiel–Senslopes
foreachindividualtimeseriesof mediansum-
merclaritytoexaminethedistributionoftrends
atthelakescale.Individuallaketrendswerebinned

bylakesizeandcatchmentpopulationdensityto
analyzetheimpactoftheselakecharacteristicson
overallclaritytrends.Theresultingdistributions
acrosssizeclassesandcatchmentpopulationdensity
showedlongertailstowardspositivetrendsandwere
thereforeanalyzedusingnon-parametric Mann–
Whitneytestsratherthanthemorecommonpara-
metrict-test.Whilewedidnotexplicitlypropagate
modelerrorintotheseindividuallaketimeseries,
weattempttoreducetheimpactofmodelnoiseby
examiningdistributionsratherthanindividuallakes
andcalculatingthemediantrendforeachbinned
distribution.

3.Results

3.1.Modelvalidation

Validationofourdata-drivenremotesensingmodel
(figures1andS7)indicatesthatitperformson
parwithexistingregionalremotesensing models
developedusingeithertraditionalregressionmeth-
odsorsemi-analyticalmodelling[12,41,42].How-
ever,unlikepreviousregionalmodelsthatareonly
applicabletoaspecificscene,sensor,orarea,the
modelpresentedhereisgeneralizableforoverthree
decadesfortheentirecontiguous UnitedStates.
Modelerrorwascalculatedusingthehold-outdata
(n=50153)notusedinmodeltraining.Errormet-
ricswerecalculatedattheobservationlevelaswell
asattheaggregatedecoregionlevelusedinthefinal
analysis.Examinationofthemodelresidualsshows
aconsistentnormaldistributionovertime.Thisis
importantbothbecauseitreaffirmsthesensorcor-
rectionproceduredescribedaboveandbecauseit
leadstomoreaccurateregionalestimates,asover
andunderpredictionscanceleachotherout.Obser-
vationlevelerrormetricsforthefinalmodelinclude
ameanabsoluteerrorof0.71m(mape=38%)
andbiasof<0.01m.Regional/annuallyaggregated
errormetricsincludeameanabsoluteerrorof0.25m
(mape=14%)andabiasof−0.02m.Thedistri-
butionsofestimatesgeneratedthroughthebootstrap
samplingprocedurehaveanaveragestandarddevi-
ationof0.09maroundthemeanestimate.Aseachre-
samplingpropagatesvaryingamountsofmodelerror
intothefinalmeanannualvalueforaregion,this
lowstandarddeviationsuggeststhatthebootstrap-
pingprocedurelikelyfurtherreducestheuncertainty
ofourannualregionalestimates.
Featureimportance,measuredasgain(i.e.the

improvementinaccuracywhenagivenfeatureis
included),showsthatopticalvariables,especiallythe
dominantwavelength,contributethemostpredict-
ivecapabilitytothemodel(figureS5).Tofurther
validatethecontributionofopticalvariablestothe
model,wevalidatedasecond,purelyopticalmodel
onthesametrainingandtestingdatawhichresul-
tedinanRMSEof1.3m.Thepurelyopticalmodel
wasabletoexplain50%ofthetotalvariance(R2)
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Figure1.Modelvalidationbasedonhold-outdatanotusedinmodeldevelopment.Clockwisefromtheupperleft:pointbased
modelperformance,modelperformanceaggregatedbyyearandregion,andregionaltimeseriesofaggregatedvalidation.Note
thatthetimeseriesshownonlyincludehold-outestimatescoincidentwithfieldmeasurementsusedforvalidationanddonot
representthefinaltimeseriesofthestudy.Theyareprovidedtoillustratethatthevalidationcapturesregionaltemporalpatterns
seeninthefielddata.

withinthevalidationdatasetcomparedto72%from
thecombinedlandscapemodel.Thisdifferenceindic-
atesthattheopticalparameterscontributedupto
70%(0.50/0.72)oftheexplainedvariancewithinthe
finalcombinedlandscapemodel,withthestaticlake
andlandscapevariablecharacteristicscontributingat
least30%.ThecalculationofALEvaluesprovides
additionaldetailontheunderlyingstructureofthe
modelaswellasevidencethatthemodeliscapturing
manyofthephysicalrelationshipswewouldexpect.
Forexample,weseethatasthedominantwavelength
ofanobservationmovesfrom475nm(withinthe
bluespectrum)to560nm(withinthegreenspec-
trum)theimpactonclaritypredictionsgoesfroma
50cmincreasetoa75cmdecrease.Thisdifference
likelycapturesdecreasedclarityasalgaeandsuspen-
dedsedimentincreases.

Modelperformancewasalsobrokendownbylake
size,satellite,datasource,andtimetoensurethatpre-
dictedtrendswerenotartefactsoflakeorsensorchar-
acteristics(figureS7).Whilevariationsinmodelfit
acrosslakesizes,sensors,anddatasourcesarenom-
inal,thevalidationdidshowaslightincreaseinbias
overtime,withclarityinearlieryearsbeingslightly
overpredictedonaverageandclarityinlateryears
beingslightlyunderpredicted.However,ifanything,
thissmallchangeinbiasovertimemakesourtrend
predictionsconservativeaslateryearsaregenerally
underpredicted. Weincludedabreakdownbydata
sourcebecauseLAGOS-NEfieldmeasurementsare
allgeolocatedtolakecenterpointswhileWQPuses
explicitsamplingsitecoordinates[15].Forobserva-
tionsrecordedinboth,wedeferredtoWQPbecause
ofthespatialspecificity.However,validationresults
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Figure2.RegionalmodelledtrendsinwaterclarityforthestatisticallystratifiedsampleofNLAlakesthatareLandsatvisibleanda
largerandomsampleofLandsatvisiblelakes.Trendsandtheirassociatedconfidenceintervalsrepresentthemeanandstandard
deviationofvaluescalculatedthrough1000iterationsofbootstrapsamplingoftheNLAandrandomsamplelakesrespectively.
Pointsonmapsrepresentindividuallakesincludedinthesample.Asterisksindicatesignificancelevelsoftrendsdeterminedby
Thiel–Senslopesat90%(∗),95%(∗∗),and99%(∗∗∗)confidencelevelsfortheNLAsampleoflakes.

frombothdatasetsshowstrongagreement,likely
becausethevastmajorityoflakesaresmallenough
thatthereisminimalvariationbetweenlakecenter
pointsandnearbysamplinglocations.Thissimilar-
ityalsosupportstheabovestateddecisiontopre-
dictclaritybasedonmediancenterpointreflect-
ancevaluesratherthanmedianwholelakereflectance
values.
Asanadditionalcheck,weconductedtwocom-

parisonsof modelperformanceagainstknown
benchmarksinthefield.First,wecomparedour
regionalestimatesoflakewaterclaritytothoseof
the2007and2012NLAsandfoundstrongagree-
mentbetweenthereportedfieldvaluesandour
modelpredictions(mape = 17.7%)(figureS8).
Second,wegenerated meansummerpredictions
fortheindividuallakesincludedinLakeBrowser
[12],awell-validatedwaterclarityremotesensing

projectfocusedonover10000lakesinMinnesota
(https://lakes.rs.umn.edu/).Comparisonofthepre-
dictionsfromthetwomodellingapproachesshow
agreementwhencomparingannualestimatesatthe
ecoregionlevelusedbyLakeBrowser(R2=0.82)
andwhencomparedtofielddatafromtheWQPand
LAGOS-NE(figureS9).

3.2.TrendsinU.S.lakewaterclarity

TimeseriesgeneratedfortheNLAsampleoflakes
showthat,onaverage,waterclarityinU.S.lakes
increasedatarateof0.52cmyr−1from1984to
2018.SevenofthenineNLAecoregionsshowsig-
nificantpositivetrends(p<0.05)thatvariedfrom
0.23cmyr−1(p=0.040)intheCoastalPlainsto
1.00cmyr−1(p<1e−5)intheNorthernAppalachi-
ans(figure2).Significanttrendswereabsentinthe
SouthernAppalachianandSouthernPlainsregions,

6
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Figure3.Distributionofmodelledtrendsinlakeswithgreaterthan25yearsofobservationsby(left)lakesizeclass(<1km2,
n=7339;1–10km2,n=509;10–100km2,n=925;>100km2,n=124)and(right)2010catchmentpopulationdensity
quantiles.Actualvaluesforquintilesintermsofpeopleperkm2:[0–1],(1–3],(3–11],(11–43],(43,3970].Y-axislimitssetto−5
to5forvisualization.

butnoregionhadasignificantdeclineinclarity.
Allregionswithsignificanttrendsshowclarityshifts
throughoutthestudyperiodthataregreaterinmag-
nitudethantheirmeanconfidenceinterval.
Interannualvariationsinpercentclaritychange

betweenecoregionsaresignificantlycorrelated
(p<0.05)in24ofthe36(67%)possibleregion
paircombinations(figureS10).Additionally,dur-
ing29%(n=10)oftheobservedyears,atleast
eightofthenineecoregionsshowedsynchronous
increasesordecreasesinclaritycomparedtothepre-
viousyear. Whilesomeoftheseyearslineupwith
discreteevents(e.g.1987washeavilyimpactedbythe
PacificDecadalOscillation),ascribingthissynchrony
tospecificclimatologicaloranthropogenicdriversis
difficultduetothemultiscalecontrolsonlakewater
clarity[27,43].However,thescaleofthechangessug-
geststhatdriversofwaterclarityfunctionatnational
scalesforatleastsomepartsofthestudyperiod.

3.3.Impactsoflakesizeandpopulation

Recentstudiesoflarge-scaledriversofinlandwater
qualitysuggestboththat(a)avarietyofanthropo-
genicandclimateforcingsareleadingtoanincrease
inalgalbloomsandconcomitantdecreasesinwater
clarityinmanylakes[11,44],andthat(b)nutri-
entloadingofU.S.rivers,particularlynearurban
areas,isdecreasing[45,46],atrendthatshouldtrans-
latetodecreasedalgalgrowthindownstreamwaters,
particularlyifthesereceivingsystemshaverelatively
shortmeanwaterresidencetimesorareisolatedfrom

non-pointsourcesofnutrientinputs[47,48].These
contradictorynarrativesmayreflectlimiteduseof
representativesamplesatlargespatialscales,with
moststudiessystematicallyunder-samplingsmaller
waterbodiesdespitetheirnumericaldominanceand
ecologicalsignificance[49].
Tobettercompareouranalysistopreviouswork

focusingonlargerlakesandriversystems,wegen-
eratedannualwaterclaritytimeseriesforallU.S.
lakeslargerthan10km2(n=1105)inadditionto
ourNLAandrandomsamplestocreateafulldataset
of14971uniquelakes.Fromthissample,weselec-
tedonlythoselakeswithatleast25yearsofcloud-
freeremotesensingobservations(nlakes=8897lakes,
nobservations=2727021)andbinnedthembysize
class(<1,1–10,10–100,and>100km2)andcatch-
mentpopulationdensity(20%quantiles)tocom-
parehowtrendsdifferedbylakesizeandexamine
potentiallinkstoimprovingstreamwaterqualityin
urbanareas.Theresultingdistributionsoftrends
showthatthemostsignificantclarityimprovements
areoccurringinsmallerwaterbodiesandindensely
populatedareas(figure3).Lakesizeandpopulation
densityarenotsignificantlycorrelated,norarethese
resultsrelatedtodifferencesbetweennaturallakes
andreservoirs,whichshownosignificantdifference
intheirdistributionoftrends(p=0.69).Forlake
size,mediantrendsforlakesinthesmallesttolargest
sizeclassesare0.28,0.19,0.08,and0.02cmyr−1,

respectively,withallbutthelastclasssignificantata
99%confidencelevel.Trendsforlakesincatchments
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Figure4.Differencesinobservedecoregiontrendswhenconductingtheanalysiswithalltheinsitusamplesfromthe
WQP/LAGOS-NEandthemodellingresultsfromtheNLAlakesampleandalargerandomsample.Asterisksindicatesignificance
levelsoftrendsdeterminedbyThiel–Senslopesat90%(∗),95%(∗∗),and99%(∗∗∗)confidencelevels.

withinthelowestpopulationdensityquintile(20%)
wereapproximatelyfourtimessmallerthanforlakes
inthemosturbanupperquintile(p=2.2e−16).Given
thesetrendsandtheimportantcontrolsofpopula-
tiondensityandlakesize,researchfocusingprimarily
onlargelakesmayaccuratelyfindthatwaterclarity
isnotincreasing.However,themoresystematicana-

lysispresentedhereprovidesamorecomplexstoryin
whichclaritydynamicsaredependentonlake-specific
limnologicalandgeographicattributes.

3.4.Samplingimpactonpatternsofwaterclarity

Toexaminetheeffectoflakesamplingonobserved
patternsinwaterclarity,wereplicatedourNLAana-
lysisusing:(a)remotesensingestimatesforalarge
randomsampleoflakes(n=13362,figure2),and(b)
theentiretyoffielddatafrombothLAGOS-NEand
WQP,twoofthelargestnationalfielddatabasesof
waterqualityintheU.S(n=1296659observations
between1984and2018).Resultsofthiscomparison
showthattheNLAsampleoflakesaccuratelyreflects
temporalpatternsoflakeclarityacrossecoregions
comparedtoarandomsample,withsomeminorgeo-
graphicalexceptions(figure2).Regardlessofthese
differences,regionaltemporalpatternsinwaterclar-
ityarehighlycorrelatedbetweentheNLAandran-
domsamples,withPearson’sCorrelationCoefficients
rangingfrom0.55(p=5.4e−4)intheSouthern
Plainsto0.91intheUpperMidwest(p=1.0e−5).
Thesehighcorrelationsbetweensamplessuggestthat

theNLAsampleisrepresentativeofalargerrandom
sampleoflakesandthatobservedtrendsareinsensit-
ivetolakesamplinggivenalargeenoughsamplesize
andregularsamplingintervals.
Conversely,comparisonoftheremotelysensed

NLAandlargerandomsamplestohistoricalfield
observationsfromLAGOS-NEandWQPrevealssub-

stantialdiscrepanciesinoveralltrends(figure4).
Timeseriesofhistoricalregionalclaritycalculated
withthefullsetoffielddatalacksignificantcorrel-
ations(p<0.01)withthetimeseriesfromtheNLA
sampleinsevenoftheninestudyregions.Slopesdif-
ferbyordersofmagnitudefromthecloselymatched
randomandNLAsamples,insomecaseswithsigni-
ficanttrendsintheoppositedirection.Theseresults
emphasizethatconductinganidenticalanalysiswith
spatiotemporallyinconsistentandpotentiallyadhoc
fieldsamplingleadstosubstantiallydifferenttrends
inwaterclaritycomparedtothesameanalysisusing
representativelysampledremotesensingestimates.

4.Discussion

Ouranalysisoflong-termtrendsinlakewaterclarity
acrosstheUnitedStateshighlightsthat:

(a) OverallclarityinU.S.lakesincreasedbetween
1984and2018.Thisincreasewasconcentrated
largelyinlakessmallerthan10km2andinmore
urbanareas.
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(b) Asystematicunderstandingofnationalpatterns
inlakewaterclarityrequiresarepresentative
sampleoflakes.Thesemacrosystem-levelpat-
ternsarenotreflectedinaggregatedhistorical
fielddata.

Byapplyingour modelacrossboththeNLA
sampleoflakesandalargerrandomsample,wesuc-
cessfullycapturelong-termpatternsinU.S.lakewater
claritythatareunobservableinhistoricandcontem-
poraryfieldsamplingefforts.TheNLArepresents
thecurrentbest-practiceinlargescalefieldmonit-
oringacrosstheU.S.;however,weshowthatlake
claritynationallyhasdistincttemporalpatternsthat
arenotfullycapturedwiththe5yearreturnperiod
oftheNLAfieldsamplingefforts.Highcorrelations
betweentrendsobservedwithdifferentlakesamples,
highcorrelationsintimeseriesamongregions,and
periodsofuniformchangeatthenationalscaleall
pointtotheinfluenceofoneormoredriversoflake
waterclarityoperatingatanationalscaleorlarger.
Weexaminedrelationshipsbetweenobservedwater
claritypatternsandpotentialforcingvariables(tem-
perature,precipitation,sulfatedeposition,andthe
PacificDecadalOscillation,figureS11)andfound
thattheregionalimpactsofthesecorrelationsvar-
ied,likelyduetocomplex,cross-scaleinteractions
thatleadtovariableregionalinfluencesasdifferent
driversinteractwitheachother[3,27,43].How-
ever,whilemoredifficulttoquantify,theperiodana-
lyzedherebeginsdirectlyafteraroundofsweep-
ingenvironmentallegislationinthe1970sand1980s.
ThesemajornationallevelpoliciesincludetheClean
WaterAct(CWA1972;amended1977and1987),
theNationalEnvironmentalPolicyAct(NEPA1969),
theCleanAirAct(CAA1963,amended1965,1966,
1967,1969,1970,1977,1990),theSafeWaterDrink-
ingAct(SWDA1974,amended1986,1996),andthe
EndangeredSpeciesAct(ESA1973),allofwhich
targetedfreshwaterresourcesandhabitattovarying
extents.
Ourresultsareconsistent withrecentstud-

ies showing regional [50,51] and national
[45,46]improvementstoU.S.streamsandrivers
[45,46,50,51]andlakes[46]directlyattributableto
theCWA.Specifically,theyshowdecliningnutrient
concentrationsinurbanareascausedbyreductions
inpointsourcepollutionandimprovedstormwa-
termanagementemphasizedbytheCWA.Although
agriculturalstreamshavenotundergonesignificant
changesinnutrientloads,theyhaveshowndeclines
insuspendedsediments,consistentwithimproved
sedimentmanagementpractices[45].Theserecor-
dedimprovementsinstreamsandriversprovide
a mechanismforincreasinglakewaterclarity,as
changesinfluvialsystemsoftenequatetochanges
insedimentandnutrientinputstolakes[52].This
argumentassumesthattheobservedimprovements
inclaritycanbeattributedtodecliningsuspended

sedimentandnutrientconcentrationsratherthan
theothercontributortowaterclarity—‘colored’dis-
solvedorganicmatter(cDOM)becausewherecDOM
patternsexistinlakes,theyarepredominantlyposit-
ive[53]andthereforenotcontributingtoincreases
inclarity.
Evaluatinglong-termnutrientdynamicsismore

challengingbecauseoflimitationsindataavail-
abilityovertheperiodofstudyatthenational
scale.Ananalysisofthe17-stateregionrepresen-
tedbytheLAGOSdatabaserevealedthattotalnitro-
gendecreasedwhiletotalphosphorusconcentrations
haveneitherdecreasednorincreasedinthevast
majorityoflakessampledduringsummermonths
between1990and2013[54]. Whilethisnutrient
decreasealonepotentiallycontributedtoincreased
lakeclarityinnitrogen-limitedwaterbodies,thestudy
lackslakewaterqualitydatathatcorrespondstothe
periodofgreatestchangeobservedinstreams,which
wassteepestfrom1982to1992withinurbanareas
[45].Thediminishingimprovementsinstreamwater
qualityafterthisperiodarelikelybecauseinvest-
mentinmunicipalandindustrialwaterpollution
controleffortsbegantograduallytaperoffinthemid-
1990s[55].Evenallowingforadelayinwaterquality
responsetophosphorusreductions[47],thesefund-
ingpatternsareconsistentwiththegreatestgainsin
waterclarityoccurringoverthefirsttwodecadesof
theCWAwithinlakesindenselysettledareasand
smallerwaterbodiesthattendtobemorerespons-
ivetomanagementactivitiesbecauseoftheirshorter
averagewaterresidencetimes.Ourresultssupport
thisconclusion,withsmallerlakesshowingover
threetimesthemedianincreaseinclaritythanlar-
gerlakes(p=4.7e−8),withlakesincatchmentswith
higherpopulationdensityshowingoverfourtimes
themedianincreaseinclaritythanlakesinlowpop-
ulationdensitycatchments(p=2.2e−16)(figure3),
andaslowdownofclarityimprovementsafter2000
duetodiminishingreturnsofreducedpointsource
pollution.Thisslowdownwaslikelyexacerbateddue
todifficultiesreducingnonpointsourcesofpollution,
particularlyinsomeregionsofthecountrywhere
changesintheprecipitationregimeareexacerbating
nutrientloadingtosurfacewaters[56].
ComparisonofobservedtrendsacrosstheNLA

sampleoflakes,alargerandomsample,andhis-
toricalfieldrecordsprovidesbothempiricalsupport
fortherepresentativenessoftheNLAandevidence
fortheshortcomingsofrelyingsolelyonpotentially
biasedhistoricalfieldsamplesforsystematicmon-
itoringoffreshwaterresources.Examiningtrendsat
thelakeandregionallevelhighlightsthepotential
foranunrepresentativesampleoflakestoinaccur-
atelydepictsystem-widepatterns.Specifically,when
werestrictanalysistolargerwaterbodies,wefind
onlynominalchangeinU.S.lakeclarity,butthe
moreinclusiveanalysispresentedheresuggeststhat
overalllakewaterclaritywithintheUnitedStateshas
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increasedoverthepast35years.Whilethisisthefirst
studyoftrendsinlakewaterclarityatanationalscale,
itextendsregionalstudiesthroughoutthenortheast
thathavefoundwaterqualityinlakesiseitherlargely
stableorimproving[54,57–59],aswellaswork
inChinaandSwedenindicatingthatnationalman-
agementpoliciesaredecreasingeutrophicationrates
[4,60,61].Whilemoreworkisrequiredtounder-
standthemultiscaledriversofwaterclarity,theresults
presentedherebringusclosertorealizingresearch
goalsdatingbackmorethan20yearsemphasizing
thatrepresentativesamplingisrequiredforeffective
monitoringoffreshwaterresources[6,7].

Dataavailability
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