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Self-driving systems execute an ensemble of different self-driving workloads on embedded systems in an end-

to-end manner, subject to functional and performance requirements. To enable exploration, optimization, and

end-to-end evaluation on different embedded platforms, system designers critically need a benchmark suite

that enables flexible and seamless configuration of self-driving scenarios, which realistically reflects real-

world self-driving workloads’ unique characteristics. Existing CPU and GPU embedded benchmark suites

typically (1) consider isolated applications, (2) are not sensor-driven, and (3) are unable to support emerging

self-driving applications that simultaneously utilize CPUs and GPUs with stringent timing requirements. On

the other hand, full-system self-driving simulators (e.g., AUTOWARE, APOLLO) focus on functional simula-

tion, but lack the ability to evaluate the self-driving software stack on various embedded platforms. To address

design needs, we present Chauffeur, the first open-source end-to-end benchmark suite for self-driving vehi-

cles with configurable representative workloads. Chauffeur is easy to configure and run, enabling researchers

to evaluate different platform configurations and explore alternative instantiations of the self-driving soft-

ware pipeline. Chauffeur runs on diverse emerging platforms and exploits heterogeneous onboard resources.

Our initial characterization of Chauffeur on different embedded platforms – NVIDIA Jetson TX2 and Drive

PX2 – enables comparative evaluation of these GPU platforms in executing an end-to-end self-driving compu-

tational pipeline to assess the end-to-end response times on these emerging embedded platforms while also

creating opportunities to create application gangs for better response times. Chauffeur enables researchers

to benchmark representative self-driving workloads and flexibly compose them for different self-driving sce-

narios to explore end-to-end tradeoffs between design constraints, power budget, real-time performance re-

quirements, and accuracy of applications.
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1 INTRODUCTION

Self-driving systems have seen an increasing demand in the recent decade fueled by investments
from the industry as well as traction within research communities. For example, Autonomous
transportation could reduce accidents and time spent in traffic by reducing human intervention
while driving. Warehouse robots work alongside humans to increase the safety and efficiency of
a factory, and have motivated advancements in both algorithmic and hardware technology. The
cyber-physical functionalities in self-driving systems are achieved by executing an ensemble of
autonomy applications on embedded systems in an end-to-end manner. While the orchestration
of the end-to-end workloads is already extremely complex, providing functional guarantees and
performance constraints becomes extremely challenging due to the stringent safety requirements.
System designers of feasible self-driving solutions critically require a benchmark suite that repre-
sents the self-driving workloads and enables exploration, optimization, and end-to-end evaluation
on different self-driving platforms. To further cater to the increased proliferation and diversity
of self-driving applications, the benchmark suite must enable flexible and seamless configuration
of self-driving scenarios. However, architecting such systems on resource-constrained low-power
embedded platforms remains an open research challenge, as there remains a disconnect between
academic research and real-world constraints for deployment.

Platform designers typically use existing CPU and GPU embedded benchmark suites to identify
resource bottlenecks and tune and/or design future hardware. However, these existing CPU and
GPU benchmark suites typically (1) consider isolated applications that do not represent the end-
to-end workload pipeline, (2) are not sensor-driven, and (3) utilize synthetic applications that are
not representative of self-driving workloads, and therefore, cannot simultaneously utilize CPUs
and GPUs with stringent timing requirements. At the application level, application designers typi-
cally use full-system self-driving simulators (e.g., AUTOWARE, APOLLO) that focus on functional
simulation and are often oblivious to the platforms on which the software executes; thus, it is not
feasible to deploy application stacks with performance requirements in embedded hardware to
meet/explore Size, Weight, Area and Power (SWAP) constraints. We seek to bridge the gap between
algorithms and platforms for self-driving applications to aid both system and platform designers
to evaluate and explore practical self-driving solutions.

To this end, we present Chauffeur, the first open-source end-to-end benchmark suite for self-
driving vehicles with configurable representative workloads. Chauffeur consists of publicly avail-
able popular implementations of state-of-the-art real-world self-driving vehicle algorithms. Rather
than focusing on a single software stack for an end-to-end use case, Chauffeur enables flexible com-
position of realistic workloads comprising multiple components of the perception-control pipeline.
Chauffeur is easy to configure and run, enabling researchers to evaluate different platform config-
urations and explore alternative instantiations of the self-driving software pipeline. We illustrate
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the use of Chauffeur through analysis of a typical full-system self-driving application behavior
executing on diverse embedded NVIDIA platforms. The comparative evaluation of these GPU
platforms for executing representative workloads enables system designers to assess the implica-
tions of executing the sensing-perception-planning-control pipeline on these emerging embedded
platforms. In particular, we demonstrate the utility of Chauffeur by evaluating the schedulability of
self-driving workloads on shared resources. Chauffeur thus enables researchers to benchmark rep-
resentative self-driving workloads and flexibly compose them for different self-driving scenarios
to explore end-to-end tradeoffs between design constraints, power budget, real-time performance
requirements, and accuracy of applications.

The main contributions of this paper are summarized as follows:

(1) Chauffeur, a benchmark suite for embedded systems that allows hardware designers, system
software engineers, and researchers to profile and characterize configurable end-to-end

pipelines of self-driving workloads easily.
(2) Characterization of Chauffeur applications on two exemplar ARM-based embedded plat-

forms from NVIDIA comprising of Pascal embedded GPUs: (1) Jetson TX2 (GPU with shared
memory), and (2) Drive PX2 (GPU with discrete memory).

(3) Exemplar Chauffeur use case demonstrating how system designers can exploit parallel exe-
cution on multicore systems to minimize the end-to-end delay of Chauffeur applications.

(4) Public release of source code1 along with complete documentation and profiling scripts to
easily download and run Chauffeur.

Organization: The rest of the paper is organized as follows. Section 2 introduces the self-driving
software pipeline and the limitations of existing state-of-the-art benchmarks for designing self-
driving systems. Section 3 presents details of the Chauffeur benchmark suite with an emphasis
on the representative software modules required for self-driving vehicles. Section 4 describes the
target embedded platforms on which the benchmark suite is tested. Section 5 evaluates the per-
formance of the Chauffeur benchmarks and the architectural implications for hardware designers.
Section 6 demonstrates an example Chauffeur use-case of end-to-end delay minimization. Finally,
Section 7 concludes the paper.

2 MOTIVATION

Designing self-driving vehicles requires the orchestration of an ensemble of different self-driving
workloads working in an end-to-end manner, guaranteeing functional and performance con-
straints. Figure 1 shows the task graph of a generic end-to-end self-driving software pipeline. Based
on this representative task graph, we investigate and formalize the requirements of a benchmark
suite for self-driving vehicles geared toward system designers and researchers.

2.1 End-to-end Pipeline for Self-driving Vehicles

A self-driving system must plan and follow a trajectory to reach a given destination using real-time
sensor information [12, 46, 54]. Consider Figure 1 where we present a generic software pipeline
for operating a self-driving vehicle. The pipeline shown here is implementation-independent and
captures the logical computation blocks (tasks) and data flow pipeline (relation between tasks).
We can divide the pipeline into four stages: Sensing, Perception, Planning, and Actuation. (1) Sens-
ing is composed of three tasks associated with collecting real-time data from hardware sensors:
Camera grabber, LIDAR/RADAR sensing, and CANbus polling. These tasks are responsible for
reading raw sensor data connected using either (a) Automotive Ethernet [21], or (b) Controller

1https://github.com/duttresearchgroup/Chauffeur.
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Fig. 1. Software components and flow of information in a self-driving vehicle. Interfaces with sensors and

actuators are marked with a circle.

Area Network (CAN bus). (2) The Perception stage uses the real-time raw information to extract
relevant environmental knowledge for decision-making. The tasks involved are (a) depth esti-
mation (Structure From Motion), (b) detection of lane boundaries (Lane Detection), (c) bounding
and identification of surrounding objects (Object Detection), (d) tracking of detected objects, and
(e) position estimation (Localization). More details on these tasks are present in Section 3. (4) In
the Planning stage, the planner uses the perception information to determine the future trajectory
by setting the target steer and speed. (5) Finally, the Drivers Assistance System Module (DASM)
uses CANbus to perform the hardware actuation and control the vehicle.

The generic self-driving software pipeline in Figure 1 can be instantiated in different ways. Ven-
dor implementations vary in (a) the number and types of sensors, (b) the number of instances of
software tasks, and (c) the underlying hardware on which the stack is running. For instance, Tesla’s
Full Self-Driving (FSD) computer [49], is equipped with eight cameras and uses a radar distance
sensor along with multiple ultrasound sensors surrounding the car (Figure 2(a)) for autonomous
transportation. On the other hand, self-driving warehouse robots have different requirements: 8
cameras surrounding the vehicle are excessive, and vendors often deploy a LIDAR sensor instead
of cameras [50]; and Lane-Detection is no longer required. An example pipeline representing such
a scenario is shown in Figure 2(b). Although the task graph has a different instantiation, the end-
to-end pipeline will still need to be designed effectively for the hardware on which it is running.

2.2 Requirements of a Benchmark Suite for Self-driving Vehicles

Designing self-driving vehicles requires cross-layer collaboration from researchers in diverse
domains, including hardware designers, system software architects, and application developers.
Running a full-stack end-to-end simulation is often time-consuming and infeasible on resource-
constrained embedded boards. Instead, we focus on flexibly composing a computational pipeline
of critical software components representing real autonomous driving workloads. To support the
flexible exploration of end-to-end configurations, we identify the following requirements for a
benchmark suite for self-driving vehicles:

Self-driving workloads. Self-driving workloads consist of sensor-driven, resource-intensive
applications with real-time safety-critical requirements[39]. In Section 3.1, we describe the
applications which constitute a typical self-driving scenario. Future systems require a redesign
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Fig. 2. Implementation-specific instances of the generic self-driving pipeline with different tasks.

of the hardware and heterogeneous resources to meet these applications’ real-time performance
requirements.

Configurable end-to-end pipeline. The performance and efficiency of autonomous driving sys-
tems require researchers to analyze the end-to-end pipeline: sensing, perception, planning, and ac-
tuation. This requires studying different end-to-end pipelines. Very few works [25] [15] [53] [29]
[55] have been able to study the system performance of end-to-end pipelines as the monolithic soft-
ware stacks are too complex to deploy on an embedded platform. To the best of our knowledge,
there is no configurable end-to-end pipeline that can be used to study self-driving workloads.

Embedded Runtime. A key challenge in designing self-driving vehicles is that resource-hungry
applications consume a lot of power. This is critical for battery-powered vehicles where users
need high mileage operation from a single charge. Several optimizations have been made for such
platforms (e.g., using shared physical memory between the CPU and GPU). However, real-time
performance requirements, energy constraints, and safety are extremely hard to satisfy simultane-
ously. While trading off performance for energy can cause problems in the vehicle’s safe operation,
having energy optimizations as an afterthought leads to a poor design. For practical deployment,
it is essential to evaluate these workloads on resource-constrained platforms.

Heterogeneity. Integrated GPUs are already ubiquitous. Future systems trend is to meet the real-
time performance requirements by accelerating the bottlenecks in applications either through
GPUs or dedicated on-device hardware accelerators for specific kernels. Consequently, applica-
tions must support multiple, heterogeneous resources (e.g., CPU version, GPU version) and utilize
any available resource at runtime. Fickenscher et al. in [16] have analyzed automated code genera-
tion for self-driving algorithms on these heterogeneous platforms with the help of Domain-Specific
Language (DSL).

Diverse platforms. As applications embrace heterogeneity, vendors have developed various plat-
forms to support their runtime. Notably, heterogeneous multi-cores augmented with graphics
processing units (GPUs) as accelerators show promise to meet real-time self-driving workloads’
performance requirements. NVIDIA strongly advocates such an approach through their series of
embedded platforms like Jetson TX2 (integrated GPU with shared physical memory, not aimed
for safety-critical applications) and Drive PX2 (discrete GPU, provides dual-modular redundancy
features for safety-critical applications). A benchmark suite should not only be representative of
the real-time workloads but also support these types of diverse embedded platforms.
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Research support. Open-source benchmarks that are easy to download and run are critical to
engage and support research in this area. Chauffeur would enable hardware designers and system
researchers to go beyond full stack driving simulators that are difficult to run on low-resource
boards. We provide the infrastructure to instrument and derive the performance implications on
state-of-the-art systems efficiently.

2.3 Related Work: Limitations of Existing Benchmark Suites

Table 1 summarizes the status of existing benchmark suites, showing how they fail to meet all
of the requirements discussed above, while showing the capabilities of Chauffeur; we expand on
Table 1 below.

Traditional embedded benchmark suites such as PARSEC [10], MiBench [19], SPEC [24]
include programs from different domains like computer vision, media processing, enterprise
servers, animation physics. These benchmarking suites mainly focus on computer architecture and
system/hardware design. However, they fail to capture the implications of highly data-intensive
applications having stringent performance requirements that constitute a typical self-driving sce-
nario. These benchmarks either focus solely either on CPU workloads (e.g., PARSEC) or on GPU
workloads (e.g., Rodinia [14]). The narrow scope fails to capture the correct ratio of heterogeneous
resource utilization in self-driving vehicles.

CAVBench is a benchmark suite targeted towards evaluating autonomous driving computing
system performance [51] in a connected vehicle setting. It focuses on six workloads: SLAM, ob-
ject detection, object tracking, battery diagnostics, speech recognition, and edge video analysis.
CAVBench analyzes the execution time breakdown for each application and the Quality of Service
(QoS)—Resource Utilization (RU) curve (QoS-RU curve). The QoS-RU curve is used to calculate
the matching factor (MF) between the application and the computing platform on autonomous
vehicles. CAVBench serves as an initial artifact to study edge computing systems for autonomous
driving but fails to present a holistic view of the end-to-end self-driving scenario.

Autoware [27] is a popular open-source full-stack driving simulator that is expected to be de-
ployed on autonomous vehicles. Autoware is based on Robot Operating System (ROS) and other
well-established open-source software libraries. However, full-stack simulators typically require
powerful platforms (e.g., recommended system for evaluating Autoware is an 8-core X866 CPU
with 32GB of main memory, which is infeasible for embedded platforms). Researchers have re-
designed Autoware to customize the software stack to run on NVIDIA DRIVE PX2 computing
platform to study self-driving workloads [28]. However, such customizations restrict hardware
designers to studying a single workload (one specific implementation) rather than different algo-
rithms for the same task. Significant customization is required to port such a complex stack to
emerging embedded platforms.

This problem is further exacerbated in industry-standard autonomous driving software frame-
works like Apollo [6]. These frameworks are developed with the application (self-driving vehicle)
in mind. However, operating such stacks on low-resource embedded hardware requires careful
system design by researchers to account for architectural implications [32]. Hardware designers
and system researchers find it cumbersome and time-consuming to set up an end-to-end driving
stack to study hardware/architectural implications.

Chauffeur incorporates the features highlighted in Table 1 using a set of benchmarks aimed at
hardware designers and system researchers. It comprises state-of-the-art representative applica-
tions from the domain of self-driving vehicles and targets low-resource embedded systems. Chauf-
feur is open-source and easy to download and run, enabling quick analysis of system implications
of a configurable end-to-end self-driving pipeline.
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Table 1. Popular Benchmark Suites and the Key Challenges Addressed

Features Traditional
benchmarks

CAVBench Autoware Apollo Chauffeur

[10, 19, 24] [51] [27, 28] [2]

Self-driving workloads � � � �
Configurable end-to-end pipeline ∗
Embedded Runtime � � �
Heterogeneity � � � �
Diverse Platforms � �
Supports research � � � � �
(∗ = uniquely addressed by Chauffeur).

3 CHAUFFEUR: BENCHMARK SUITE FOR DESIGNING SELF-DRIVING VEHICLES

Chauffeur is a benchmark suite comprising some essential applications for designing self-driving
vehicles, with the ability to expand with additional applications. We categorize the (initial ten)
applications in Chauffeur into four stages: (1) Sensing, (2) Perception, (3) Planning, and (4) Actu-
ation. Sensing applications receive sensory information from different communication buses and
share it with the rest of the pipeline. Perception applications collect the raw information shared
by sensing applications and extract relevant knowledge used for decision making [41]. Perception
provides a contextual understanding of the vehicle’s environment (e.g., what the different objects
are, location of the objects, road signs, traffic cones), and the vehicle’s position with respect to
the environment. The planning application develops and continuously updates the vehicle’s tra-
jectory to achieve the higher-level goals of the user (e.g., driving from Redmond to Seattle) while
following the rules of the road. Finally, actuation applications control the vehicle and execute the
planned actions generated by the previous stage. The applications defined in Chauffeur are not
vendor/implementation-specific and apply to different self-driving use cases (e.g., autonomous
driving versus warehouse robots). Table 2 summarizes these applications, inputs and outputs, and
captures the relationship among the applications.

3.1 Description of Self-driving Application Categories

Camera Grabber. Visual sensors (e.g., CMOS camera) are a vital component to enable percep-
tion about the environment in self-driving vehicles. Typically, visual sensors generate a lot of data
and require a high-bandwidth communication bus. This requirement is incredibly stringent when
interfacing multiple cameras simultaneously, as shown in Figure 2(a). Car manufacturers use au-
tomotive ethernet to transfer such high volume data with very low latency and meet real-time
performance requirements. The sensing application camera grabber is a representative workload
for such processes. The camera grabber is responsible for receiving the packets from the network
and then placing them on the main memory for the following stages.

LIDAR/RADAR. Although cameras are reliable and relatively cheap to produce, perception solely
using camera data is non-trivial as it relies on black-box neural networks. Traditionally, car man-
ufacturers use detection and ranging sensors (e.g., LIDAR, RADAR) to detect surrounding objects
and calculate distances. Distance sensors assist in hazard detection and range-finding in features
like adaptive cruise control (ACC) and automatic emergency braking (AEB). These sensors are im-
perative during adverse weather and lighting conditions and are still prevalent in modern vehicles.
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Table 2. Applications in a Typical Self-driving Vehicle; Highlighting Inputs and Outputs and How

Different Applications are Related

Applications Stage Input Output

Camera Grabber Sensing Packets over Automotive
Ethernet

S1 Image frames in the shared
memory

LIDAR/RADAR Sensing Packets over Automotive
Ethernet

S2 Point cloud in the shared
memory

CAN bus pooling Sensing Messages (Frames) over CAN
bus

S3 Sensed information in shared
memory

Structure From Motion Perception S1 P1 Depth estimation

Lane Detection Perception S1 P2 Lane Boundaries

Object Detection Perception S1 , S2 I1 Bounding Box

Object Tracking Perception I1 I2 Object movement

Localization Perception S2 I3 position and orientation
pose(x, y, yaw)

Extended Kalman Filter Perception I3 , S3 I4 Corrected pose

Fusion Perception I2 , I4 P3 Fused object and vehicle
location

Path planner Planning P1 , P2 , P3 A1 Spatio-temporal trajectory

DASM Actuation A1 Steer, Brake

CAN bus Polling. The Controller Area Network (CAN bus) is another integral interface found
in automobiles that automobile engineers use to interface with the vehicle’s hardware. CAN bus is
typically used for low-volume data transfers with high reliability. It serves the following purposes:
(1) reading the current status of the vehicle (e.g., Odometer value), (2) interfacing with CAN bus
sensors (e.g., Inertial Measurement Unit (IMU)), and (3) controlling the steer and speed of the
vehicle.

Structure From Motion (SFM). SFM is a perception application that aims to reconstruct three-
dimensional structures from a sequence of two-dimensional moving images [22]. SFM uses the
subsequent images to triangulate the 3D position of objects in the environment.

Lane Detection. Lane detection is a perception application that aims to detect road boundaries
(lane line markings) and estimate the vehicle pose with respect to the detected lines using visual
sensors on the vehicle. The application includes the localization of the road, the determination of
the relative position between vehicle and road, and the analysis of the vehicle’s heading direction
[8].

Object Detection. Vision-based object detection is a perception application that is one of the
primary prerequisites for self-driving vehicles. Distance and ranging sensors (e.g., LIDAR, RADAR)
alone are not sufficient to meet the requirements of self-driving. For example, RADAR sensors,
albeit working in adverse environmental conditions, do not produce a high precision output. On
the other hand, information from LIDAR sensors, albeit extremely precise, are too complicated to
process and prohibitively expensive. Modern object detection applications use neural networks
along with visual sensor data to identify objects in the area surrounding the vehicle by drawing
bounding boxes and classifying the object inside each bounding box.

Object Tracking. Given some objects of interest marked in a frame, the object tracking appli-
cation locates the objects in subsequent frames in the video [23]. Object tracking is a part of the
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perception stage, and it tracks objects as they move in the environment. It also allows the self-
driving vehicle to estimate the motion of objects and predict how they will move in the subsequent
frames.

Localization. Localization is a perception application that works closely with the environmental
perception using visual sensors to identify the vehicle’s position within the perceived environment.
Global Positioning System (GPS) is the most commonly used localization system used in the vehicle
industry. Although cheap and easily accessible, GPS suffers from poor reliability and accuracy and
is not a good candidate for localization applications in self-driving vehicles [31]. Researchers have
developed advanced sensors (e.g., RADAR, LIDAR, Visual sensors) that can further be fused to
provide more robust, accurate, and reliable localization used in modern vehicles.

Extended Kalman Filter (EKF). The result of localization (using distance sensor like RADAR) is
prone to drift over time and can be noisy. A Kalman filter is an excellent candidate for combining
the distance information with other vehicle-status information (e.g., IMU, Odometer, GPS) and
handling such disturbances. Kalman filter fuses multiple data sources and performs continuous
prediction (for missing data) and correction (for drifting data) on the localization results. The EKF
application is the non-linear implementation of the Kalman filter [42].

Fusion. The fusion task helps combine object information with the car’s location on the fly. The
information is sourced by pre-processing raw data from different sensors (e.g., cameras, different
types of RADAR, LIDAR) and fused synchronously. The fusion process involves transformation of
different coordinate systems and updating the environment maps periodically in real-time. These
tasks have inherent data parallelism and are good targets for hardware acceleration [17].

Path Planner. The planning stage is responsible for understanding higher-level goals from the
user (e.g., Navigate from Seattle to Redmond) and convert them to purposeful decisions to achieve
the higher-level goals while avoiding obstacles [41]. The complexity of this stage compels a hi-
erarchical design by partitioning the software into layers: (1) Mission planning, (2) Behavioral
planning, and (3) Motion planning. Mission planning computes the global trajectory based on the
current location and the target destination along with stops and which roads can be taken to
achieve this application (e.g., avoid freeways). Behavioral planning generates local objectives (e.g.,
Change lanes, overtake) to interact with other agents on the path and follow the rules of the road.
Motion planning takes the local objectives and generates the control plan to actuate the steering
and speed. Although most recent works [7, 44, 47] follow some implementation of the planner
hierarchy, the exact partitioning within the planner often varies between implementation.

Drivers Assistance System Module (DASM). The DASM application performs the final actua-
tion stage in the pipeline. The local objectives of the path planner (through motion planner) are
realized through a PID controller. The PID controller actuates the speed and steering based on
the velocity and angle commands and can automatically use the odometer and IMU feedback to
maintain the targets set by the path planning stage.

3.2 Why is Chauffeur Useful

The lack of a complete collection of an open-source and configurable set of autonomous vehicle
applications motivated us to develop Chauffeur. The existing benchmarks [2, 27, 28, 51] are focused
on a rigid stack without a configurable end-to-end pipeline. For example, Lin et al. [32] identifies
the architectural implications of autonomous driving by creating an infrastructure for an end-
to-end pipeline. However, such pipelines are specific to one implementation with very specific
workloads. Traditionally application developers focus on the application stack, whereas platform
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Table 3. Implementations Used in Chauffeur

Implementation Application Dataset Data Size and Type

ROS Camera Grabber application-specific variable

ROS LIDAR/RADAR application-specific variable

OpenMVG [36] Structure From Motion provided 360◦ 5376 × 2688 color images

Jetson Inference [38] Object Detection cuda-lane-detection 30FPS h.264 1280 × 720

darknet-ros [11] Object Detection KITTI Odometry Dataset [18] 1392 × 512 color images

lidar-tracking [40] Object Detection & Tracking KITTI Odometry Dataset 3D Velodyne point cloud 100k

points per frame

LaneNet [33, 52] Lane Detection tusimple-benchmark 1280 × 720 color images

cuda-lane-detection [26] Lane Detection provided 1280 × 720 30FPS h.264 video

FLOAM [20] Localization KITTI Odometry Dataset 3D Velodyne point cloud 100k

points per frame

orb-slam-3 [13] Localization KITTI Odometry Dataset 1392 × 512 greyscale images

EKF [45] Extended Kalman Filter provided radar and lidar pose estimates

Hybrid A* [30] Path planner provided 2D obstacle map

developers determine if a given computing platform is competent for the application stack. Thus,
hardware is an afterthought. Our Chauffeur approach is the opposite: provide a set of benchmarks
that are representative applications that enable hardware designers and system software engineers
to observe system implications and plan future hardware. The application implementations we
chose for Chauffeur are presented in Table 3.

Chauffeur enables opportunities for multiple research directions:

• Chauffeur enables researchers to compare different implementations of the same applica-
tion (e.g., jetson-inference vs darknet for object detection) in the pipeline and observe their
implications on the underlying system.
• Chauffeur is configurable and is capable of launching diverse applications as well as mul-

tiple instantiations of the same application. Configurability can potentially help identify
bottlenecks in different instantiations of the self-driving pipeline (Figure 1) that are good
candidates for accelerators.
• Chauffeur enables researchers to study different pipelines and explore optimization tech-

niques; It opens the door for future runtime policies to govern the system and have dynamic
policies if the pipeline changes (e.g., number of cameras changed leading to a heavier imple-
mentation of object detection).
• Chauffeur enables researchers to explore workload partitions across different resources (e.g.,

CPU and GPU) and understand the implications of data dependencies between tasks.
• Chauffeur is easy to configure and run and is accompanied by dockerized cross-compiling

infrastructure. This helps researchers easily deploy Chauffeur on emerging embedded
systems.
• End-to-end analysis: Despite a significant reduction in inference times using neural net-

works, the current end-to-end delay in self-driving systems is not satisfactory [25]. Chauf-
feur provides a configurable environment for end-to-end delay optimization not only in the
perception stage but also considering sensing, planning, and actuation stages as illustrated
in Section 6.
• Convenient evaluation: Currently, several works rely on synthetic data due to the complexity

of setting up driving simulators (e.g., Saifullah et al. in [43] used an empty for-loop to mea-
sure energy consumption for their proposed methods). Chauffeur will serve as a real-world
benchmark suite that researchers can use to compare results.
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Fig. 3. Tool flow for using Chauffeur suite.

• Future versions will support integrations with real sensors and simulators, automated instan-
tiation of the end-to-end pipeline, as well as connected, networked autonomous systems.

One of the goals that we pursue with the Chauffeur benchmark suite is to identify the system
implications of the representative applications on emerging embedded platforms. We offer insights
obtained by profiling the applications under different configurations (e.g., integrated vs shared
main memory, different degrees of parallelism). We believe this will serve as a good starting point
for researchers to design computing platforms for future self-driving vehicles.

4 EVALUATION FRAMEWORK USING CHAUFFEUR

A significant challenge faced by system designers when using existing software stacks to analyze
end-to-end performance bottlenecks and exploration of different platform configurations is the
complexity of configuring and running them on embedded platforms. Chauffeur overcomes these
barriers through a tool flow that enables researchers to analyze and evaluate different platforms
quickly. We describe the Chauffeur tool flow and present an example of this tool flow for evaluating
end-to-end performance evaluation.

4.1 Tool Flow

Figure 3 illustrates the Chauffeur tool flow across the host and target platforms. Users have two
options to compile applications for the target platform: (1) directly compile the source on the
board, or (2) use cross-compilation. We provide a dockerized build environment that builds the
source code of applications and includes necessary dependencies. The application binaries are
then deployed on the target platform and profiled using different tools. We use perf for IPC and
CPU performance counters, nvprof and NSight Systems for GPU profiling. The tools are used to
understand the implications of the end-to-end pipeline on the system. We include the scripts used
for compiling, executing, and profiling as part of the repository. The compilation, deployment, and
profiling steps are currently not completely automated and must be performed in a step-by-step
fashion, manually, as explained in the repository.

4.2 Sample Experimental Evaluation platforms

We illustrate the use of Chauffeur to comparatively evaluate application execution on two
exemplar embedded hardware platforms from NVIDIA: (a) NVIDIA Jetson TX2 platform, and
(b) NVIDIA Drive PX2 platform. These emerging embedded platforms are widely adopted in
many self-driving use cases (e.g., warehouse robotics, Tesla’s Autopilot Hardware 2.0). Due to the
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Fig. 4. Architecture of exemplar NVIDIA evaluated platforms.

widespread adoption of these platforms, prototype design and product performance evaluation
are effortless as researchers can compare different policies against the same hardware.

Figure 4(a) shows the architecture of the Jetson TX2. The TX2 consists of a Parker system on
a chip (SoC) with two super Denver (NVidia proprietary) cores and four big A57 (ARM) cores.
The Parker SoC includes an integrated Pascal GPU (iGPU) with two Streaming Multiprocessors
(128 cores each). The CPU and GPU share 8GB LPDDR4 main memory. The Linux version used is
4.9.140-tegra, and the CUDA runtime library version is 10.0. Figure 4(b) shows the architecture of
the Drive PX2. Like the TX2, the PX2 has a Parker SoC with two super Denver cores and four big
A57 cores. We do not use the on-chip Pascal iGPU (grayed-out in the figure) in our experiments, as
the Drive PX2 has a more powerful discrete GPU (dGPU). As a result, the entire 8GB LPDDR4 main
memory is dedicated to the CPU. The dGPU consists of nine Streaming Multiprocessors (128 cores
each), and is connected to the Tegra SoC using a PCIe bus. The dGPU also has a dedicated 4GB
of GDDR5 memory. The Linux version used is 4.9.80-rt61-tegra, and the CUDA runtime library
version is 9.2. Although the Drive PX2 supports dual modular redundancy by providing two in-
stances of the described hardware architecture, we do not use the second Parker SoC/dGPU for our
experiments. We run all experiments in maximum performance mode by disabling the dynamic
frequency scaling of CPU cores and GPU.

The experimental platforms encompass diverse memory layout, and GPU compute capability.
The shared main memory of Jetson TX2 creates two challenges at runtime: (1) memory space is a
limiter for parallel applications when the end-to-end pipeline is considered, (2) memory contention
between CPU and GPU workloads creates a memory bandwidth bottleneck. The discrete GPU on
the Drive PX2 can alleviate challenges (1) and (2) in some cases. Still, the cost of memory copies
before launching and after finishing kernel execution may outweigh the benefits. We explore some
of these challenges by analyzing the Chauffeur applications that form the end-to-end self-driving
pipeline.

5 CHARACTERIZATION OF CHAUFFEUR APPLICATIONS

To demonstrate the utility and flexibility of Chauffeur, we characterize Chauffeur applications
and observe the performance implications of these Chauffeur applications on the two exemplar
NVIDIA embedded platforms, to generate takeaways that can guide the exploration of different
end-to-end self-driving pipelines. First, we report the utilization of the compute micro-architecture.
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Fig. 5. Comparison of instructions per cycle (IPC) (averaged across all cores) across different NVIDIA embed-

ded platforms.

Then, we identify the resource bottleneck for each application. Finally, we present the power
breakdown among the different resources. Identification of performance and power bottlenecks
of Chauffeur applications serve as guidance for future optimizations.

5.1 Performance of Chauffeur Applications

Our first goal is to observe how well applications can utilize platform CPU’s micro-architecture.
We use instructions per cycle (IPC) to show on average how many instructions the CPU can retire
in each clock cycle. Improving IPC directly translates to lowering execution time for the applica-
tion, critical for performance in self-driving applications. The Cortex A57 cores in our exemplar
NVIDIA platforms (Figure 4) contain a 3-wide decoder front-end for fetching instructions. Mean-
while, the Denver (“super”) cores are implemented by NVIDIA and have a 7-wide decoder width.
The maximum theoretical IPC for A57 cores is 3, and Denver cores are 7. Applications can exhibit
a low IPC for various reasons: (a) the processor pipeline is not able to fetch enough instructions
for the execution stage, (b) incorrect speculations, or (c) not enough resources to retire instruc-
tions (e.g., not enough cores, high cache misses). Typically IPC > 1 indicates that the application is
instruction-bound (bottle-necked by code execution on CPU cores). IPC < 1 shows some resource
(e.g., Memory, GPU) is stalling code execution, and further investigation is required to identify the
bottle-necked resource.

Figure 5 shows the observed IPC of Chauffeur applications. The periodic applications are oper-
ated in a data-ready mode to discount any idle periods. Figure 5(a) is the result of execution on
Jetson TX2 and Figure 5(b) is the result of execution on Drive PX2. We make the following obser-
vations: (1) average IPC for six cores (1.4) > average IPC for one core (0.8). While this confirms
the intuition that applications, in general, perform better with more cores, we explore effective
speedup from parallelization in more detail in Section 5.2. (2) Some applications (e.g., openMVG,
kalman-filter, orb-slam-3) have much better IPC when the super cores are enabled. Therefore, it
is better to map them to super cores instead of big cores. (3) Object detection applications suffer
from the lowest average IPC across all core configurations (average jetson-inference IPC is 0.42,
average darknet-ros IPC is 0.61). We explore this in detail in Section 5.3.
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Takeaways: (1) We need to investigate the degree of parallelism of high IPC applications (cuda-
lane-detection, openMVG) (2) For the applications with a low IPC but running on a GPU, we need a
full system analysis for identifying if GPU is the actual bottleneck. (3) For the remaining applications,
we need to look into the memory access behavior.

5.2 Effective Speedup From Parallelism

Applications with large inputs and working sets are typically good candidates for exploiting par-
allelism. We explore Chauffeur applications’ ability to exploit CPU parallelism by increasing the
number of online CPU cores. Figure 6 shows the results in terms of speedup. We make the fol-
lowing observations: (1) All applications gain speedup when increasing from 1 to 2 cores. For
applications that are not explicitly parallelized (e.g., hybrid-star, jetson-inference, kalman-filter),
this benefit comes from multicore execution thanks to reduced contention even in single-threaded
implementations. (2) Certain applications (e.g., kalman filter, lidar-tracker) perform better when
supercores are enabled (increasing from 4 to 5 cores). They can benefit from supercores’ power-
ful floating-point units or larger L1 cache; (3) Some applications (e.g., OpenMVG, lidar-tracker)
show linear speedup by increasing from 1 to 6 cores. This results from parallelization (OpenCV
multi-threaded APIs for lidar-tracker and OpenMP for OpenMVG). (4) openMVG (SFM) experi-
ences up to 3.3× speedup on Jetson TX2 and up to 3.9× speedup on Drive PX2 when compared
to a single-core execution. The application operates on large images, is multi-threaded, and data-
parallel. Hence it benefits a lot from multiple cores. However, the current implementation does
not leverage the GPU. (5) jetson-inference (Object detection) experiences no speedup on the Jet-
son TX2 and up to 1.3× speedup on the Drive PX2. Although it spends 52% time executing the
decoder thread on CPU, a large number of memcpy operations limits the degree of parallelism. We
further investigate the difference in speedup across platforms in Section 5.3. (6) darknet-ros (Ob-
ject detection) does not show any speedup with an increasing number of cores. We conclude it is
not core bound. Candidate backend bottlenecks for darknet-ros include memory and GPU (further
investigated in Section 5.3). (7) floam (Localization) is a compute-intensive application with the
current implementation running only on CPU. The execution time to process one input on Drive
PX2 is around ≈150ms and is not affected much by increasing cores. However, on Jetson TX2, we
see it starts poorly (≈250ms for one core), improves with more cores (≈106ms for four cores), but
performs worse with super cores. We performed a finer-grained analysis and found the source:
a high number of branch mispredictions in super cores (≈16 Million/s) as opposed to big cores
(≈13 Million/s).

Takeaways: (1) floam (Localization) and openMVG (Structure from Motion) implementations are
CPU (core) bound in the micro-architecture pipeline. (2) Further study is required for the remaining
perception applications to identify their bottleneck. (3) Bigger cores with wider instruction decode
paths are not always a better choice for running applications, as bad speculations in modern CPUs
can cause severe degradation in performance.

5.3 Architectural Implications of GPU Applications

GPU-accelerated applications achieve speedup by utilizing hundreds of small cores. Typically, per-
ception applications are compute-intensive and promising targets for GPU acceleration. However,
application developers are often unaware of details of the GPU architecture and cannot exploit the
full potential of the device. Since GPU micro-architecture varies across platforms, designers often
need to perform several optimizations before an application can meet the performance constraints.

From the previous section, we observed that although perception applications typically pro-
cess large amounts of data, some of the worst-performing apps are object detection (darknet-ros,
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Fig. 6. Speed-up of application execution time with increasing number of online cores.

jetson-inference) and lane detection.2 Therefore we analyze GPU implementations of these applica-
tions to identify the resource bottleneck for the applications running on the NVIDIA CUDA cores.
The GPU on the two platforms, Jetson TX2 and Drive PX2, have different compute capacities. Un-
like ARM PMU counters, which can be profiled at a very fine granularity, GPUs typically lack such
fine-grained performance counters, presumably because of the overwhelming number of cores. In-
stead, there are aggregated counters for a group of cores or for all the cores. We leverage two tools
for GPU profiling: (1) NVIDIA Nsight Systems, which gives performance-breakdown of the vari-
ous threads along with a detailed timeline of the resource utilization; and (2) nvprof, which reports
performance-breakdown by the various kernels (as opposed to threads). In embedded platforms,
nvprof can only report aggregated metrics at the end of the execution.

We analyze the following applications: (1) jetson-inference, which takes a video as input and de-
tects objects in each frame using a deep neural network (DNN). While processing DNN is a heavy
operation, other operations in the application, such as decoding and grayscaling, are also present.
(2) cuda-lane-detection, that uses the Hough transform to detect lanes in images. (3) darknet-ros,
a ROS based version of another popular DNN object detection application. We use ROS to en-
able periodic execution of applications and separate the sensor grabber processes from the data
processing, which we profile. This incurs a slight overhead (<2%) of inter-process communication,
which we believe represents actual communication from sensor grabber to the periodic invocation
of processing applications.

Figure 7 presents an overview of the major (most time-consuming) threads obtained by full-
system profiling of the GPU applications on Jetson TX2. The first row shows major components’
share of execution time, and the second row represents a breakdown of each component in detail
(where applicable).

5.3.1 jetson-inference. (Figure 7(a)) We make the following observations: (1) jetson-inference
involves a lot of memory operations (memcpy), which account for 52% of the execution time. (2)
Although classification uses CUDA GPUs, it only accounts for 35% of execution time. (3) If higher

2Although we include Lanenet, a popular lane detection application, we were unable to profile it with any of the NVIDIA

tools. Thus we do not have it in the analysis.
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Fig. 7. Nsight Profiling Results on Jetson TX2 showing % of time spend on GPU vs. CPU for running threads.

Fig. 8. Execution time of GPU kernels on Drive PX2 normalized to Jetson TX2.

FPS is required for object detection, optimizing the decoder rather than tuning the GPU kernel is
better. Takeaway: jetson-inference is memory bound.

5.3.2 cuda-lane-detection. (Figure 7(b)) We make the following observations: (1) cuda-lane-
detection is extremely CPU-heavy and spends about 97% of computation time in CPU. (2) cuda-
lane-detection utilizes all six cores in the system very well with multi-threaded image operations
in OpenCV. Section 5.2 confirms the utilization by the high degree of parallelism. (3) Only the
Hough Transform is designed to use GPU, leaving the GPU cores highly underutilized. (4) We per-
formed a finer-grained analysis and found that the GPU kernel hardly uses DRAM bandwidth nor
saturate occupancy. Takeaway: Although cuda-lane-detection uses GPU kernels, it is CPU bound.
Developers didn’t use GPU code for OpenCV; as a result, 89% of execution time is spent in OpenCV,
which could be offloaded to GPU.

5.3.3 darknet-ros. (Figure 7(c)) We make the following observations: (1) darknet-ros creates
dedicated threads to detect objects in each frame. (2) The overhead of ROS (part of others block
in Figure 7(c)) is extremely negligible (< 2%). Meanwhile, unlike the previous applications, the
overhead of profiling (still <3%) has increased slightly due to extra management performed when
a thread is created/destroyed. (3) The thread creation and destroy overhead could be insightful
when designing timing-sensitive real-time systems as it will create jitter in terms of scheduling
and context switches. (4) darknet-ros is well-designed to utilize the GPU. However, the execution
is not well optimized, causing the GPU to be the bottleneck in the execution time. We further
investigate the energy implications of darkent-ros in Section 5.5. Takeaway: darknet-ros is GPU
bound. It is reasonable to optimize the GPU kernel or to design a system with a more efficient hardware
accelerator to achieve better performance.

We performed the above performance analysis on the Jetson TX2. We further compare these
applications’ performance across the different NVIDIA platforms in Figure 8. While cuda-lane-
detection and darknet-ros confirm the intuition that a bigger dGPU in Drive PX2 performs better
than a smaller iGPU in Jetson TX2, the increased execution time of jetson-inference seems an
anomaly at first. Careful analysis shows jetson-inference supports multiple versions of the Ten-
sorRT library. TX2 supports a newer version (6.0.1.10) of TensorRT which facilitates faster FP16
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Table 4. Comparison of Memory Access and Main Memory (DRAM) Bandwidth (B/W) of Chauffeur

Applications on the Jetson TX2

Transfer (MT/s) idle
cuda-lane-

detection

darknet-

ros
floam

hybrid-

astar

jetson-

inference

kalman-

filter

lanenet-

lane-

detection

lidar-

tracking
OpenMVG

orb-

slam-3

Avg Access 9 717 120 534 499 199 1348 537 934 1852 1346

Peak Access 55 2703 944 1703 1318 1110 2820 2353 1512 7225 2088

Avg B/W 0 1 1 4 1 3 0 1 10 15 18

Peak B/W 0 19 14 25 16 17 13 17 21 89 67

Measured numbers are only from CPU performance counters and do not consider memory traffic from GPU. Unit is

million-transfers/sec (MT/s).

Fig. 9. Main-memory access pattern of selected Chauffeur applications from CPU cores. Applications demon-

strate memory accesses phases.

operations, while PX2 (having TensorRT version 4.0.0.8) does not. FP16 can boost both arithmetic
and memory operations compared to FP32. As a result, the GPU kernels are three times faster on
the TX2 platform, leading to a 1.3× overall speedup as seen in Section 5.2 on PX2.

5.4 Main Memory Access by CPU

Table 4 shows the memory access characteristics of Chauffeur applications. We conduct these ex-
periments on Jetson TX2 will all six cores active using MARS framework [37]. We make the follow-
ing observations: (1) Although applications issue many memory requests, most accesses are served
by the cache hierarchy (L1 and L2 cache). Thus, memory access rates are much higher than main
memory bandwidth rates. (2) openMVG has the highest memory access rate and main memory
peak bandwidth utilization. The high number of memory requests is a result of data-parallelism
(as shown in Section 5.2) as openMVG exploits all cores. The CPU cores’ fast and parallel com-
putation on large inputs leads to numerous memory accesses, which increases the main memory
bandwidth. (3) Several applications report extremely low average main memory bandwidth. This
can be explained by looking at the memory access patterns over time (Figure 9). These applications
have phases of memory accesses, causing a surge of memory bandwidth requirement followed by
a computation phase (in CPU/GPU). Takeaways: Memory access patterns are highly dynamic and
very hard to model at design time. Runtime policies need to observe the memory access patterns and
avoid overlapping memory phases between applications to reduce contention when running the end-
to-end pipeline.
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Fig. 10. Power breakdown for Jetson TX2 using onboard I2C power sensors.

5.5 Power Profile of Applications

The average instantaneous power is a direct representation of utilization of the onboard resources
and demonstrates opportunities for future optimizations. Figure 10 shows the instantaneous power
breakdown of Chauffeur applications on the Jetson TX2. We could not provide a comparative study
due to the lack of power sensors in the Drive PX2 platform. We make the following observations:
(1) darknet-ros reports the highest GPU power consumption of 7.6W on the iGPU. We observed
in Section 5.3.3 that the performance bottleneck of darknet-ros is GPU (67% execution time spent
on GPU). (2) openMVG reports the highest CPU power of consumption of 4.4W on the iGPU. This
is expected, as we observed in Section 5.2 that openMVG exhibits a high degree of parallelism
(up to 3.7× speedup) with the increase in cores, and the reported results are for six cores. (3)
Memory requires a more profound investigation for optimizing power. Chauffeur applications are
a good target for accuracy/power tradeoffs, as some sensors might be more relevant than others
depending on the scenario.

Takeaways: (1) darknet-ros justifies hardware acceleration. (2) openMVG justifies GPU accelera-
tion. (3) Approximate memory techniques [35], and efficient memory management techniques [9, 34]
should be explored to reduce memory power.

6 EXEMPLAR SCENARIO: USING CHAUFFEUR FOR END-TO-END PERFORMANCE

CONSTRAINT EVALUATION OF AUTONOMOUS URBAN DRIVING

Chauffeur is also essential when analyzing and optimizing the end-to-end performance of
autonomous driving systems. Figure 1 shows the generic end-to-end application pipeline for
self-driving systems for which we have characterized individual applications using Chauffeur.
Chauffeur is an ensemble of interdependent real-world applications that researchers can utilize
to evaluate the end-to-end self-driving pipeline as a whole. To this end, we further demonstrate
a utility of Chauffeur by using observations and takeaways made in previous sections for
end-to-end performance analysis of the autonomous urban driving scenario shown in Figure 2(a).

When periodic applications are scheduled on multicore CPUs, timing requirement failures may
occur due to unpredictable inter-core interference. The severity of interference for complex work-
loads can prove infeasible to anticipate accurately. Recently, RT-gang [4] was proposed to address
this complexity. In RT-gang scheduling, applications are grouped into multiple periodic gangs, lim-
iting concurrent scheduling to a single gang. In other words, an application is allowed to run in
parallel only with a predefined set of other applications. Using RT-gang, system designers focus
only on the interference between gang members, reducing the complexity of analysis. RT-gang is
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Table 5. Example Per-input Execution Time of Applications with Single Core in Milliseconds

Camera

Grabber(1)

Lidar

Grabber(2)

CAN bus

polling(3)

Structure

from Motion(4)

Object

Detection(5)

Lane

Detection(6)

Localization

(7)

EKF

(8)

Planning

(9)

DASM

(10)

TX2 1.0 10.9 0.6 326.5 272.0 37.3 256.9 2.67 63.0 10.0

DPX2 1.0 10.9 0.6 439.0 102.5 45.2 147.2 3.9 70.0 10.0

Table 6. Gang Partitioning Using Table 6: Gang Configurations, Gang Periods, and Min.

End-to-end Response Time

gang1 gang2 gang3 gang p1 gang p2 gang p3 Min. E2E(ms)

TX2 4,5,6,7,9 1,2,3,8,10 - 399.6 59.6 - 1956.0

DPX2 4,5,6,7 9 1,2,3,8,10 734.1 293.1 66.8 2455.3

also useful with GPU applications. GPU execution time is difficult to bound because of the limited
control over proprietary hardware. Existing CPU-GPU inference minimization techniques [1, 3]
could be even more effective on bounded inference provided by RT-gang. However, current tech-
niques to form gangs do not consider a key performance metric in periodic systems: end-to-end
response time, i.e., the latency from sensors to actuators, which is derived from gang periods. Intu-
itively, applications with similar execution times should be grouped together in order to minimize
core idle time. However, if dependent applications are in the same gang, the gang needs consecutive
runs to propagate the data as the producer and consumer applications are running concurrently,
resulting in an increased end-to-end response time.

Chauffeur is an excellent candidate for the evaluation of such end-to-end performance con-
straints. The diverse workloads in Chauffeur make it perfect for measuring end-to-end response
time while considering the data dependencies among applications. To illustrate the potential of
Chauffeur, we evaluate various gang configurations of the task graph in Figure 2(a), instantiated
with exactly one instance of each application. We use the application execution times shown in
Table 5 to calculate gang periods and end-to-end response time. We observe that the perception
stage is the biggest bottleneck in both Jetson TX2 and Drive PX2. Although the perception stage
remains the biggest bottleneck in the pipeline, fine-grained bottleneck analysis is dependent on
the pipeline under study and the evaluation platform. Note that the sensing and actuation stage
values in Table 5 are an estimation due to the lack of ready sensors on the platforms.

Because gang partitioning is an NP-hard problem, we devise a simple greedy algorithm to cre-
ate gangs verified as optimal through brute force on a smaller set of applications. We report the
resulting gang partitioning in Table 6. We can see that differences in execution time of individual
applications between platforms (e.g., 112 ms for SFM) can result in a 500 ms difference in end-to-
end response time. Using Chauffeur, we can obtain estimates of the execution times of self-driving
applications and evaluate the end-to-end response time on different systems. We can further im-
prove response time by exploiting parallel execution of applications, i.e., assigning multiple cores
to an application. Mapping an application to multiple cores can decrease the response time but po-
tentially impact overall response time by limiting resources available to other applications. We pick
SFM as a target for parallelization because it proved beneficial in our effective speedup analysis
(Figure 6).

Using the speedup information from Section 5.2, we vary the number of cores assigned to
SFM and apply the same greedy algorithm. As a result, we further minimize the response time
on each platform when an additional core is allocated to SFM. Figure 11 shows the minimum
end-to-end response time with varying numbers of cores assigned to SFM. We make the following
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Fig. 11. Minimum end-to-end response time with varying numbers of cores to SFM.

observations: (1) Although SFM’s execution time decreases with more cores, that is not always
the case with the end-to-end response time. (2) After the allocation of 2 cores to SFM on Jetson
TX2, a further increase in the number of cores leads to worse end-to-end minimum response
times. (3) When a higher number of cores are allocated (3-6) to SFM, the Drive PX2 offers a lower
minimum end-to-end response time with the same strategy.

We demonstrated that using Chauffeur, we can better understand the end-to-end response time
of self-driving applications on different systems. Chauffeur provides representative workloads, an
effortless workflow of environment setup, and profiling scripts to make these kinds of evaluations
possible with minimal effort from researchers. Chauffeur enables researchers to benchmark rep-
resentative self-driving workloads and flexibly compose them for different self-driving scenarios
to explore end-to-end tradeoffs between design constraints, power budget, performance require-
ments, and accuracy of applications.

7 CONCLUSIONS

We presented Chauffeur, an open-source benchmark suite with representative applications for
the entire self-driving perception-control pipeline. Chauffeur includes a tool flow that supports
compilation and execution for two exemplar embedded platforms: the Nvidia Jetson TX2 and the
Nvidia Drive PX2, and can easily be adapted to other platforms. Using these exemplar embedded
platforms, we perform an analysis of system behavior of the Chauffeur applications and derive
takeaways on the performance and power bottlenecks of the CPU, GPU, and memory behavior
that can be flexibly used to analyze and explore different end-to-end self-driving pipeline con-
figurations. We demonstrate the utility of Chauffeur by using measured behavior to analyze the
real-time schedulability of the end-to-end self-driving workload on a resource-constrained battery-
powered platform for an autonomous urban driving scenario. Based on our observations, it is likely
that effective deployment of self-driving workloads will ultimately necessitate custom hardware
[48], but designers can identify bottlenecks and candidates for optimization if realistic algorithms
are evaluated on real embedded platforms. Chauffeur provides an essential toolkit for self-driving
vehicle designers, and we plan to maintain its relevance and utility by continuing to update the
representative inputs, algorithms, implementations, and workload composition in future versions.
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