Self-aware Memory Management for Emerging
Energy-efficient Architectures

(Invited Paper)

Biswadip Maity
Department of Computer Science
University of California, Irvine
Irvine, USA
maityb@uci.edu

Abstract—With the advent of GPUs and application-specific
accelerators in embedded platforms, data-intensive applications
have exacerbated the memory performance and energy bottle-
neck. Memory requirements and usage patterns vary widely
in emerging architectures, and resource contention manifests
differently based on the instance of the architecture. Workload-
specific and system-specific optimizations for energy-efficient
architectures are impractical due to the fast-evolving landscape of
computer applications and hardware. We discuss how to apply
self-awareness principles to design an energy-efficient memory
subsystem, and the different degrees of self-awareness such a
system can achieve. We apply these principles on approximate
memory systems and observe energy savings of 10.5% for on-chip
L1 cache. We believe this is a rich area for research and outline
some future opportunities for using self-awareness in emerging
energy-efficient architectures.

Index Terms—Computational Self-awareness, Memory Man-
agement, Approximate Computing.

I. INTRODUCTION

Modern applications are increasingly data-centric, produc-
ing and processing terabytes of data, resulting in bottlenecks
in memory and storage subsystems. Innovations in storage
devices (e.g., NAND flash, DRAMs, PCRAMs) have helped
maintain Moore’s law trajectory. However, memory bandwidth
requirements of modern applications (e.g., video transcoding,
machine learning) are increasing faster than memory technol-
ogy is advancing.

This problem is further exacerbated in embedded systems
where data movement remains a significant performance and
energy bottleneck. Figure 1 illustrates an example of an
emerging embedded architecture with heterogeneous process-
ing elements. The data-movement can occur within and across
different elements, and main-memory accesses remain one of
the biggest bottlenecks. Current efforts in computer architec-
ture research support platform heterogeneity in three com-
mon ways. (1) Sophisticated out-of-order heterogeneous cores
with highly optimized micro-architecture pipelines. These
architectures fail to fully exploit the parallelism inherent in
some applications (e.g., image processing), pose significant
challenges for effective resource scheduling to prevent noisy

This work was supported in part by NSF under Grant CCF-1704859.

978-1-6654-1552-1/20/$31.00 ©2020 IEEE

Bryan Donyanavard

Ericsson Research

Stockholm, Sweden
bryan.donyanavard @ericsson.com

Nikil Dutt
Department of Computer Science
University of California, Irvine

Irvine, USA

dutt@uci.edu

Main Memory

o

Shared last level cache ‘

] ] L]

GP

c

HMP ACC

Fig. 1: Example of an embedded platform with heterogeneous
processing elements on the chip. The processing elements
shown here are Heterogeneous Multiprocessor (HMP), Graph-
ics Processing Unit (GPU), and Accelerator (ACC). The pro-
cessing elements share a main-memory, which is a significant
performance and energy bottleneck in emerging architectures.

neighbors from hogging shared memory bandwidth, and fail
to adapt to dynamic application behavior. (2) GPUs with
small but numerous cores that are used to achieve data-driven
efficiency. GPU SIMD engines can exploit inherent application
parallelism; however, application developers often lack the
hardware expertise to optimize data movements, resulting in
excessive memory contention. (3) Application-specific solu-
tions (e.g., application-specific circuits to accelerate bottleneck
tasks). Application-specific processing elements suffer from
large orchestration overhead to set up and tear down the region
of interest.

Memory requirements and usage patterns vary widely in
emerging architectures, and depend on the architecture imple-
mentation. Furthermore, active developments in device tech-
nologies [21], [8] and rapid changes in computing architectures
make workload/architecture-specific optimizations impractical.
A promising approach to provide the required flexibility is to

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



use intelligent management via computational self-awareness
principles, in which systems can learn from experience and
adapt to changes. The growing literature in computational
self-awareness proposes several mechanisms for a system to
build models through observation, and use the knowledge
gained to make efficient decisions at runtime [33]. However,
designing intelligent management requires a description of the
desired system properties, and a reference architecture that
engineers can use to provide self-awareness capabilities in
the system. We discuss how self-awareness properties can
be advantageously applied to the memory subsystem and
demonstrate the utility through a memory approximation use-
case.

II. SYSTEMS AND THE MACHINE LEARNING LANDSCAPE

Current efforts related to “intelligent systems” typically
deploy machine learning (ML) techniques to solve a wide
range of problems, both at the application and system levels.
We therefore begin with a brief overview of the research
landscape addressing energy efficiency at the intersection of
systems and ML.

A. Systems for Machine Learning

Machine learning applications have been widely adopted
in domains ranging from low-power Internet-of-Things (IoT)
devices, edge networks, autonomous vehicles, to large-scale
data centers. Application researchers have looked into various
facets of machine learning: model accuracy, interpretability,
security, bias, privacy, model scalability, and opportunities
for acceleration. Heterogeneous many-core systems are con-
tinuously evolving to support the data-centric nature of ML
applications. We refer to these systems as Systems for ML.
Some of these applications (e.g., deep learning algorithms
such as convolutional neural networks) consist of a large
number of floating-point multiplications and additions which
are well supported by graphics processing units (GPUs).
GPUs have evolved into highly parallel many-core processing
elements allowing efficient manipulation of large blocks of
data. GPUs with dedicated main-memory (server GPUs) can
perform extremely fast floating-point arithmetic compared to
general-purpose processing units (CPUs). However, the energy
consumption of server GPUs often limits its applicability
in embedded domains. Alternatively, embedded GPUs in
systems-on-chip (SoCs) share main-memory with the general-
purpose CPUs while offering more energy-efficiency [10] than
the server GPUs, an essential requirement for battery-driven
mobile devices. Embedded GPUs offer embedded designers an
opportunity to use the streaming multiprocessors for general-
purpose parallel processing [52]. Machine learning software
frameworks like Tensorflow and Pytorch provide libraries for
ML application researchers to efficiently utilize heterogeneous
resources without specialized knowledge about the underlying
hardware. However, due to the limited number of registers in
the small cores, GPU kernels require many memory accesses
to the shared main-memory. Access to the main-memory
remains the significant performance and energy bottleneck in

embedded systems [19]. To honor the low-power constraints
while increasing performance (i.e., accuracy, throughput, and
scalability), accelerators have gained traction for machine
learning applications. Literature in different domains ranging
from healthcare applications [48] to deep learning [23] demon-
strates that application-specific accelerators can achieve higher
performance throughput with better energy-efficiency. Acceler-
ating common building blocks with specialized hardware still
requires general-purpose processors to launch the kernels with
the initial data and fetch the results at the end of execution to
continue the rest of the application. Sriraman et al. [5] show
that the orchestration spent around core-application logic,
which includes copying, allocating, and freeing memory, can
consume up to 37% of cycles for datacenter workloads. In
emerging systems for ML, data movement remains a critical
bottleneck for performance and energy-efficiency.

B. Machine Learning for Systems

We now focus our attention on energy-efficiency challenges
faced by designers during the design as well as runtime
execution of embedded systems. While embedded systems
(e.g., a battery-powered mobile phone) are purpose-built, they
are also expected to run various applications throughout their
lifetime. Some of these applications are data-centric (e.g.,
rendering a game), while others are less resource-intensive
(e.g., browsing emails). In some cases, users expect appli-
cations to deliver a minimum performance (e.g., 30 frames-
per-second (FPS) refresh rate in games), which we define
as the quality-of-service (QoS). It is the embedded system
designer’s responsibility to configure the system parameters
before deployment and further deploy runtime policies that
deliver the required performance while still being energy-
efficient at runtime. We refer to the intelligent strategies used
for design and management of systems as ML for Systems
and review some related efforts.

The plethora of on-chip and off-chip resources (e.g., com-
pute, memory, network) available in a system presents a
challenging task for an embedded system designer: configuring
the system to meet the application’s QoS requirements while
minimizing the energy consumption. The operating parame-
ters for CPUs, GPUs, memory, and interconnect creates a
large design space. Together with runtime decisions (e.g.,
scheduling, mapping), parameter configuration puts the burden
on system designers to identify operating points that meet
the performance requirements while being energy-efficient.
In the face of dynamic workloads, performing workload-
specific optimizations for runtime resource allocation and dy-
namic power management for energy-efficiency is infeasible at
design-time. Recent efforts have leveraged machine-learning-
based techniques to guide the design of specialized hardware,
as well as improve the computational efficiency of hardware
design optimization [46]. Online learning techniques (e.g.,
reinforcement learning) can also be leveraged to automatically
learn policies specific to workloads, reducing the burden on
system designers [15]. We now review some representative

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



efforts in both design-time, as well as run-time optimizations
that exploit ML techniques.

1) Design-time Optimizations: The design-time objective
is to evaluate different system configurations across varied
dimensions of power, performance, temperature, reliability,
and estimate behavior of real hardware. Design-space explo-
ration requires careful profiling of representative workloads
on available hardware and observation (or simulation) of
system configurations for all objective metrics of interest (e.g.,
performance, power). Researchers develop machine learning
techniques as part of design-time optimization frameworks
to explore configuration space strategically [46], [45], [7].
Similar techniques have been applied in the memory subsys-
tem. Sen and Imam [4] present ML techniques for developing
various memory-response models that can instantly provide a
predicted response corresponding to any new memory config-
uration to help design hybrid main memories. Navarro et al.
[44] develop an ML methodology for cache memory design
by predicting the optimal cache reconfiguration for any given
application, based on its dynamic instructions. Hasemi et al.
[39] demonstrate the ability to learn memory access patterns
through recurrent neural networks.

2) Run-time Optimizations: Once a system is deployed
with the configuration obtained from design-space exploration,
several factors (e.g., device variability, dynamic workloads,
aging) require further adaptation at runtime. These adaptations
can be performed with the help of (1) ‘knobs’: adjustable
parameters in the systems and applications (e.g., core op-
erating frequency, task mapping), and (2) ‘sensors’: provide
telemetry information to aid runtime decisions (e.g., temper-
ature, power, applications FPS). Runtime optimizations for
memory subsystems require policies that are aware of the
underlying technology and architecture properties, observe the
manifestation of memory behavior at runtime, and prioritize
system goals accordingly. Several works propose such poli-
cies in the memory subsystem for runtime adaptivity [42],
[36], [35]. More recently, intelligent computing systems use
machine learning techniques to manage critical hardware re-
sources at runtime efficiently [1]. Broadly, ML-based runtime-
optimizations can be categorized into two bins: (1) model-
based control through prediction [14], and (2) model-free
control through decisions [15]. Prior research has explored
the use of intelligent agents within the memory subsystem.
Ipek et al. in [27] presents a reinforcement-learning-based
method in the memory-controller for the complex problem of
DRAM scheduling. In Kleio [50], Doudali ef al. presents a
page scheduler with machine intelligence for applications that
execute over hybrid memory systems. Huang ef al. [37] de-
velop a reinforcement-learning-based joint task offloading and
bandwidth allocation for multi-user mobile edge computing
scenarios.

ML-based techniques for system design rely on black-box
models with very limited interpretability, and cannot be rea-
soned about. On the other hand, self-awareness in computing
systems [49] allows us to develop an intelligent system by
building reasoning on top of the black-box models along with

other properties like adaptation and self-healing. Computa-
tional self-awareness principles draw on a large body of work
from different communities such as psychology, neuroscience,
autonomic computing, machine learning, artificial intelligence,
and multi-agent systems. The ability to reason using the
models allows the system to introspect: a fundamental property
of a self-aware computational system as described in the next
section. Self-awareness properties can be used to leverage
the most out of the available resources and improve the
performance, energy-efficiency, reliability, and fast adoption
of emerging computing systems. Therefore, we now look at
the characteristic properties of computational self-awareness
and how they can be applied to a memory subsystem.

III. COMPUTATIONAL SELF-AWARENESS

The growing literature in self-aware computing systems
suggests that intelligent systems are being designed and de-
ployed that can learn and adapt at runtime. It draws its roots
from the fields of psychology and neuroscience and integrates
interdisciplinary research.

Kounev et al. [49] defines self-aware computing systems
as systems with the following properties: (1) Modelling: the
ability to learn models by capturing knowledge on an ongoing
basis about the system as well as the environment in which
the system is running, and (2) Reflection: ability to make
decisions by reasoning using the models, and perform actions
based on the decision. The model here is a generic abstraction
of the system and environment. Examples are: (a) descriptive
model that captures system performance-related parameters,
(b) prescriptive model that defines actions based on different
system states, and (c) predictive model to perform ‘what-if’
queries. The learning can include static information gathered
during design-time, along with dynamic information gathered
during runtime.

The properties associated with a self-aware system (which
we refer to as self-* properties) are domain-specific and
different, for example, in a collective system [30] versus in
robotics [51]. Agarwal et al. [6] examine the fundamental
properties that pertain to self-aware computation: introspec-
tion, approximation, goal orientation, adaptation, and self-
healing. Bellman et al. [33] review the challenges of apply-
ing self-awareness principles in resource-constrained cyber-
physical systems. Following the road-map laid out in prior
literature, we discuss some of the self-* properties and define
them in the context of memory-management:

e Introspection: the ability to observe the system and
environment during execution, reflect on its behavior,
and learn. Platform and application-level telemetry are
utilized as sensors to observe the behavior of the memory
subsystem at runtime. The sensors are spread across mul-
tiple abstraction layers: device, hardware, kernel, vendor-
library, and application layer.

Figure 3 shows the different abstraction layers with
corresponding sensors. Examples of sensors in the mem-
ory subsystem: cache miss rate at various levels, main-
memory bandwidth, main-memory latency, working set

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



Approximation

Goal-oriented Goal-oriented
2
Introspection

Adaptation Adaptation

Self-healing

(a) Traditional

Approximation

Self-healing

(b) Ongoing work

Approximation

Goal-oriented
2

ntrospection

Adaptatio

Self-healing

(c) Comprehensive self-awareness

Fig. 2: Self-aware Approximate Memories: (a) past, (b) present and (c) future. Values corresponding to each property are

explained in Section V.

of processes, numbers of errors in data transmissions,
or memory access, CUPTI [3] sensors for CUDA GPU
kernels, and application-level QoS (e.g., FPS).

o Approximation: automatically choosing the level of pre-
cision required for the execution of a task. Due to
constrained resources (e.g., energy, memory bandwidth)
in computing systems, it is essential to utilize the least
amount of precision to accomplish the task at hand and
not waste more resources than necessary. As seen in
Section II, data movement is a significant performance
and energy bottleneck in emerging architectures. Thus,
researchers have explored knobs for emerging memory
technologies to tradeoff accuracy of memory load/stores
to achieve higher performance and energy-efficiency [11],
[12], [40]. We discuss approximation for memory subsys-
tem in detail in Section V.

o Goal orientation: attempt to meet user’s or application’s
goal while optimizing under the constraints. Goals en-
capsulate a user’s requirements without any specification
about how to achieve them (e.g., processing at-least
30 FPS in a video application, maintain a maximum
dissipation power to avoid shutdown). Emerging many-
core systems are highly complex and require thorough
orchestration of different goals across the computing
abstraction stack to satisfy constraints [9]. These goals
are dynamic and change with time, as well as across
different abstraction layers. In the memory subsystem,
a goal can be to limit the maximum allocated band-
width for main-memory access for efficient performance
isolation in multi-core platforms [32]. For an energy-
efficient system, there are multiple ways to formulate
the goal of the memory subsystem. For example: (1)
meet the application’s QoS while minimizing the energy
consumption, (2) if the application does not report QoS,
then the goal can be formulated as minimizing the energy
consumed per unit of work executed by the system.

o Adaptation: Ability of the computing-system to dynami-
cally change the operating configuration using decisions
at runtime. A self-adaptive system: (1) analyzes the

observed information about system state and environment
at runtime, (2) computes the difference between the
observed information and current goals, and (3) tunes
the knobs and selects a different operating point in
the operating space of knobs if necessary to reach the
goal. Through adaptivity, a system can realize the goals
currently defined by a user/application. A key challenge
in selecting the values of actuation knobs is the size
of the associated design space. The effect of knobs is
not always predictable, and dynamic interactions across
knobs often result in expected behavior. In a memory
subsystem, examples of knobs include memory-controller
schedule, bandwidth reservation, dynamic voltage and
frequency scaling (DVFS) of memory-controller, and
load/store accuracy.

o Self-healing: ensure correct operation in the face of
unexpected errors or incorrect emergent behavior. Self-
healing systems introspect to observe errors at runtime
and perform appropriate actions to adapt to the errors.
Although it is a special case of adaptation, self-healing
is still defined as a separate property because emerging
architectures can be used for safety-critical applications
(e.g., autonomous driving, pacemaker) [24], [25], [26].
A cross-layer representation of faults can be modeled
using a Resilience Articulation Point (RAP) model [13]
where faults in physical sources (e.g., process variation,
temperature) causes errors in the form of bit flips in the
memory, which can corrupt the stored data, ultimately
causing the application to fail. Furthermore, multi-layer
analysis can improve memory resilience [41], [43]. Self-
healing systems need to implement appropriate mecha-
nisms to detect and recover from such situations.

Since the notion of self-awareness can be applied to various
domains, the associated properties and their definitions vary
both within and across domains. Following the definition in
[6], we restrict our discussions to these five critical properties
for computational self-awareness to see some examples in the
memory-subsystem; however, other self-* properties remain to
be explored.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



Goal

Reflect

Manager

Fig. 3: Observe-Decide-Act (ODA) loop in an embedded system with reflection (R) for self-aware management [17]. The
layers shown are application (blue), vendor libraries (green), kernel (orange), hardware (red), and device (black). Each layer

has sense (S) and act (A) capabilities.

IV. IMPLEMENTATION THROUGH REFLECTION

Implementation of self-aware systems require fundamen-
tally new design methodologies [33] to (1) continuously mon-
itor the state of the system and the environment, (2) reason
about the current state through reflection and learning from
past experiences, and (3) dynamically adapt to new goals. We
exploit the Observe-Decide-Act (ODA) loop to systematically
implement some properties of computational self-awareness
described in Section III to alleviate the memory energy-
efficiency bottleneck. Figure 3 demonstrates a reference ar-
chitecture for realizing self-awareness by adding reflection in
the ODA loop [17].

A. Observe

In the observation step, telemetry information is collected
about the system along with the environment. It is one of
the pillars of introspection (the other being reflection). The
collected information is then either (1) used directly by the
decision step or (2) used to construct static/dynamic models
along with episodic history (discussed in the following subsec-
tion), which is then utilized by the decision making process.

Figure 3 follows a similar approach for cross-layer sensing
(shown with a dark-green arrow), where information is col-
lected from across the abstraction layers for efficiently manag-
ing the memory subsystem. Prior works [31], [32] utilize main-
memory bandwidth information to efficiently manage memory
subsystems by determining runtime requirements and develop
dynamic policies to configure system knobs (e.g., memory-
controller frequency, bandwidth reservation) accordingly.

A singular metric like bandwidth utilization is not always
sufficient: policies for a range of workload scenarios require
insight into an application’s memory access pattern and work-
ing set size. Memory profilers provide fine-grained information
such as the memory access pattern for the entire virtual
address space, call-stack information, or load/store density

of different memory regions. However, parsing this detailed
information frequently at runtime induces excessive overhead.
In [19], Maity et al. perform an initial study based on a
metric (WBP) that combines the working-set-size and main-
memory bandwidth to characterize data-centric applications
based on their memory access patterns. WBP can be estimated
with low overhead, and the combined metrics provide insight
that runtime policies can use to decide the desired system
configuration for specific workload scenarios. Early results
show that a static configuration devised with this metric yields
an optimal memory-controller frequency 80% of the time for
PARSEC workloads [22], demonstrating the promise of this
approach.

B. Reflect and Decide

Reflection uses observed knowledge to aid decision-making
by reasoning, and performs actuations based on these de-
cisions. Continuous cross-layer observations together with
reflection allow the system to introspect, which is one of the
key properties of computational self-awareness.

Through reflection, intelligent systems can consider past
observations as well as predictions made from past observa-
tions [16] during the decision making process. Reflection and
predictions involve ‘what-if’ queries to two types of models:
models for the subsystem(s) under control (e.g., memory
subsystem, GPU subsystem), and models for other decision-
making policies. Some of these models can be obtained at
design-time (e.g., through system identification), while others
can be generated at runtime (e.g., through linear regression,
binning). In Figure 3, a self-model of the system is being used
to performed the reflection (shown in white box).

The runtime manager (violet box in Figure 3) is responsible
for closing the loop by making decisions about the system
under control. Runtime resource management through decision
making is a well-researched area. Several efforts have been
undertaken for energy-efficient management of the memory

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Examples of self-awareness properties for realizing a runtime memory-approximation manager.

Degree of self-awareness

archy as candidates of approximation (e.g.,

layers of memory (e.g., on-chip cache and

Property Degree 1: (low) Degree 2: (medium) Degree 3: (high)
Introspection Reactive: A closed-loop system that reacts | Reflective: Use predictive models of ap- | Meta self-aware: The system is aware that
to observed behavior by tuning approxima- | proximation knobs (e.g., model the bit- | it is self-aware.
tion knobs (e.g., if observed quality drops | error-rate (BER) relationship to voltage and
below the threshold, increase the precision). | temperature for SRAM).
Approximation Target a single layer in the memory hier- | Policies can automatically tune different | Polices can determine knobs for multi-layer

memory hierarchies, as well as device vari-

L1 cache, DRAM).

off-chip main-memory).

ations.

Goal-orientation | Single-objective  goal maximize

energy-efficiency).

(e.g.,

namic.

Multi-objective goals (e.g., maintain QoS
while minimizing energy), which are dy-

Goals specified in different abstraction lay-
ers that may conflict with each other.

Adaptation Model-based closed loop control.

Self-optimizing model-free control.

Robust and self-optimizing model-free con-
trol.

Self-healing Detect failures and terminate gracefully.

Detect failures and take corrective actions
to continue execution.

Find the root cause of failure and take action
to mitigate the error.

subsystem and can broadly be categorized into: (1) heuristic-
based [2], [29], (2) control-theory-based [34], [38], and (3)
machine-learning-based [27], [28]. Decisions enable adaptivity
in systems by specifying a mechanism to update the system
state based on the difference between observed information
and the current goals.

C. Act

Once the decision-making engine determines the updated
operating configuration, the next step is to change the knobs of
the system. Several knobs already exist in a system that effect
the energy-efficiency of the memory subsystem: per-cluster
CPU DVEFS, GPU frequency, memory-controller frequency,
scheduling memory requests in the controller, active tasks
in the heterogeneous processing elements. With emerging
architectures (e.g., RISC-V, on-chip accelerators), new knobs
are exploding the design space, making the runtime decision
process of selecting optimal operating points even harder.
Moreover, due to the shared memory in embedded systems,
one knob’s effect on another can be unpredictable due to
memory contention. To explore the effect of novel actuators in
the memory subsystem, Maity et al. [20] implement device-
agnostic memory approximation knobs using the Sniper sim-
ulator [18]. We discuss memory approximation in more detail
in Section V as it is essential in computational self-awareness.

V. USE CASE: APPROXIMATE MEMORIES

Modern data-centric applications often contain large data
sections that do not need to adhere to an all-or-nothing
correctness model. Inherently, these applications are resilient
to certain imprecision levels, which leads to efficient utilization
of underlying resources. Exploiting imprecision opportunity
is crucial in designing energy-efficient memory systems as
applications with models consisting of trillions of parameters
and terabytes of storage become a reality and continue to grow.

Approximation during memory load/store/hold operations
takes us one step closer to a self-aware computing system,
aiming to utilize the least amount of precision required to
accomplish the system/application goals. Traditionally, appli-
cation programmers are burdened with the difficult task of

System /Policy ‘

Models Application Quality |
monitor
arge . Mai
Target Introspection MApprx } .

QoS ) ) Memory
Approximation L
Goal-orientation » L

Error Adaptation pprx 2

Self-healing

I

Core

L. Apprx

Self-aware

Memory Manager

Fig. 4: Self-aware Memory Management using output quality
monitoring.

setting memory approximation knobs to achieve the desired
quality of service. An approach based on self-awareness prin-
ciples can potentially alleviate the manual task of tuning the
knobs with an intelligent memory manager as shown in Figure
4. In [20], a control-theory-based approach where developers
only specify a target QoS metric is proposed. The system uses
a formal control-theoretic approach to tune the memory relia-
bility knobs of a quality-configurable memory to guarantee the
desired QoS. Before the system is deployed, a system model
is identified for the memory components and their behavior
given different approximation settings using a statistical black-
box modeling technique. Using the system model, a controller
is designed that observes the application’s behavior at fixed
epochs and tunes knobs automatically to deliver the desired
QoS in the face of workload and system variation. We use this
runtime memory-approximation exemplar to demonstrate the
realization of self-awareness properties in Table I. Traditional,
state-of-art, and future directions in self-aware approximate
memories are shown in Figure 2.

Preliminary results from [20] show that self-adaptive mem-
ory approximation using formal control theory can alleviate
the programmer’s burden of manual knob tuning for on-
chip memory approximation. Energy savings of 10.5% are

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.




achieved for the L1 data cache using this method. Recent work
[47] for determining approximation knobs using a design-time
exploration indicates up to 54% and 22% power consumption
improvements for the SRAM cache and the DRAM memory,
respectively, highlighting opportunity for improvement in fu-
ture self-aware approximate memory systems.

VI. CONCLUSION

We discuss the challenges of energy-efficiency in emerging
architectures and how they can be addressed using self-
awareness principles, particularly in the context of memory
management. Self-awareness properties can be applied for
designing an energy-efficient memory subsystem and the dif-
ferent degrees of self-awareness the system can achieve. While
machine learning-based black-box methods are commonly
used today, they lack interpretable reasoning and cannot fully
leverage the available system resources. Through reflection in
self-awareness, system managers are able to reason using mod-
els when making decisions about system configuration. We
demonstrate the utility of computational self-awareness with
a approximate memory use-case, in which our preliminary re-
sults demonstrate 10.5% energy savings for L1 data cache. The
use of computational self-awareness principles is a promising
and exciting direction of research for memory management
that has great potential for improving the performance, energy-
efficiency, reliability, and fast adoption of emerging computer
architectures and newer memory substrates.

REFERENCES

[1] J. F. Martinez and E. Ipek. Dynamic Multicore Resource Management:
A Machine Learning Approach. IEEE Micro, 2009.

[2] A. Merkel and F. Bellosa. Memory-Aware Scheduling for Energy
Efficiency on Multicore Processors. In Proc. HotPower, 2008.

[3] NVIDIA. CUPTI CUDA Toolkit Documentation,
https://docs.nvidia.com/cuda/cupti/index.html.

[4] S. Sen and N. Imam. Machine Learning Based Design Space Exploration
for Hybrid Main-Memory Design. In Proc. MEMSYS, 2019.

[51 A. Sriraman and A. Dhanotia. Accelerometer: Understanding Acceler-
ation Opportunities for Data Center Overheads at Hyperscale. In Proc.
ASPLOS, 2020.

[6] A. Agarwal et al. Self-aware computing. MIT Tech. Rep., 2009.

[71 A. Deshwal et al. MOOS: A Multi-Objective Design Space Exploration
and Optimization Framework for NoC Enabled Manycore Systems.
ACM TECS, 2019.

[8] A. Ghosh et al. Communication - Impact of Electrode Chemistry
on the Non-Volatile Performance of Lithium Niobite Memristors for
Neuromorphic Computing. ECS JSS, 2020.

[9] A. M. Rahmani et al. HDGM: Hierarchical Dynamic Goal Management

for Many-Core Resource Allocation. IEEE ESL, 2018.

A. Maghazeh et al. General purpose computing on low-power embedded

GPUs: Has it come of age? In Proc. SAMOS, 2013.

A. Raha et al. Quality Configurable Approximate DRAM. IEEE TC,

2017.

A. Sampson et al.

Proc. MICRO, 2013.

Andreas Herkersdorf er al. Resilience Articulation Point (RAP): Cross-

layer dependability modeling for nanometer system-on-chip resilience.

Microelectron. Reliab., 2014.

B. Donyanavard et al. SPARTA: Runtime task allocation for energy

efficient heterogeneous manycores. In Proc. CODES+ISSS, 2016.

B. Donyanavard et al. SOSA: Self-Optimizing Learning with Self-

Adaptive Control for Hierarchical System-on-Chip Management. In

Proc. MICRO, 2019.

2014.

Approximate storage in solid-state memories. In

[16]

(17]
(18]
[19]
[20]

(21]

[22]
[23]

[24]

[25]
[26]
[27]

(28]

[29]

(30]

[31]

[32]

[33]
[34]
[35]

(36]

[37]

(38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]
[47]
[48]

[49]

B. Donyanavard et al.
through Computational Self-Awareness.
2020.

B. Donyanavard et al. Reflecting on Self-Aware Systems-on-Chip.
Springer International Publishing, Cham, 2021.

B. Maity et al. Simulation Infrastructure and System Dynamics of
Quality Configurable Memory. CECS Tech. Rep. 19-03, 2019.

B. Maity et al. Workload Characterization for Memory Management in
Emerging Embedded Platforms. In Proc. IESS, 2019.

B. Maity et al. Self-Adaptive Memory Approximation: A Formal
Control Theory Approach. IEEE ESL, 2020.

B. Zivasatienraj et al. Temporal versatility from intercalation-based
neuromorphic devices exhibiting 150 mV non-volatile operation. AIP
JAP, 2020.

C. Bienia et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proc. of PACT, 2008.

C. Wang et al. DLAU: A Scalable Deep Learning Accelerator Unit on
FPGA. IEEE TCAD, 2017.

E. A. Rambo et al. The Information Processing Factory: A Paradigm
for Life Cycle Management of Dependable Systems. In Proc.
CODES+ISSS, 2019.

E. A. Rambo et al. The Information Processing Factory: Organization,
Terminology, and Definitions. arXiv:1907.01578 [cs.DC], 2019.

E. A. Rambo et al. The Self-Aware Information Processing Factory
Paradigm for Mixed-Critical Multiprocessing. IEEE TETC, 2020.

E. Ipek et al. Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach. In Proc. ISCA, 2008.

F. Farahnakian et al. Energy-Efficient Virtual Machines Consolidation
in Cloud Data Centers Using Reinforcement Learning. In Proc. PDP,
2014.

F. Pinel et al. Memory-Aware Green Scheduling on Multi-core Proces-
sors. In Proc. ICPPW, 2010.

F. Zambonelli et al. On Self-Adaptation, Self-Expression, and Self-
Awareness in Autonomic Service Component Ensembles. In Proc.
SASO, 2011.

H. David et al. Memory Power Management via Dynamic Volt-
age/Frequency Scaling. In Proc. ICAC, 2011.

H. Yun et al. MemGuard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms. In Proc. RTAS,
2013.

K. Bellman et al. Self-Aware Cyber-Physical Systems. ACM TCPS,
2020.

K. Moazzemi ef al. HESSLE-FREE: Heterogeneous Systems Leveraging
Fuzzy Control for Runtime Resource Management. ACM TECS, 2019.
L. Bathen ef al. VaMV: Variability-aware Memory Virtualization. In
Proc. DATE, 2012.

L. Bathen et al. ViPZonE: OS-Level Memory Variability-Driven
Physical Address Zoning for Energy Savings. In Proc. CODES+ISSS,
2012.

L. Huang et al. Deep reinforcement learning-based joint task offloading
and bandwidth allocation for multi-user mobile edge computing. Digital
Communications and Networks, 2019.

M. E. Tolentino et al. Memory MISER: Improving Main Memory
Energy Efficiency in Servers. IEEE TC, 2009.

M. Hashemi et al. Learning Memory Access Patterns. arXiv:1803.02329
[cs.LG], 2018.

M. Shoushtari et al. Exploiting Partially-Forgetful Memories for
Approximate Computing. [EEE ESL, 2015.

M. Shoushtari et al. Special session: quality-configurable memory
hierarchy through approximation. In Proc. CASES, 2017.

N. Dutt et al. Variability-aware memory management for nanoscale
computing. In Proc. ASP-DAC, 2013.

N. Dutt et al. Multi-Layer Memory Resiliency. In Proc. DAC, 2014.
O. Navarro et al. A Machine Learning Methodology for Cache Memory
Design Based on Dynamic Instructions. ACM TECS, 2020.

R. G. Kim ef al. Machine Learning and Manycore Systems Design: A
Serendipitous Symbiosis. IEEE Computer, 2018.

R. G. Kim et al. Machine Learning for Design Space Exploration and
Optimization of Manycore Systems. In Proc. ICCAD, 2018.

R. Yarmand et al. DART: A Framework for Determining Approximation
Levels in an Approximable Memory Hierarchy. IEEE TVLSI, 2019.

S. Huang et al. A flexible low-power machine learning accelerator for
healthcare applications. In Proc. ICSICT, 2016.

S. Kounev et al. Self-Aware Computing Systems. Springer, 2017.

Intelligent Management of Mobile Systems
arXiv:2008.00095 [cs.AR],

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



[50] T. Doudali et al. Kleio: A Hybrid Memory Page Scheduler with Machine
Intelligence. In Proc. HPDC, 2019.

[51] Yu Du er al. A multi-agent hybrid cognitive architecture with self-
awareness for homecare robot. In Proc. ICCSE, 2014.

[52] D. You and K. S. Chung. Dynamic voltage and frequency scaling
framework for low-power embedded GPUs. IET Electronics Letters,
2012.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 28,2021 at 21:58:56 UTC from IEEE Xplore. Restrictions apply.



