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Abstract. The abundance of multimodal data (e.g. social media posts)
has inspired interest in cross-modal retrieval methods. Popular approaches
rely on a variety of metric learning losses, which prescribe what the prox-
imity of image and text should be, in the learned space. However, most
prior methods have focused on the case where image and text convey
redundant information; in contrast, real-world image-text pairs convey
complementary information with little overlap. Further, images in news
articles and media portray topics in a visually diverse fashion; thus, we
need to take special care to ensure a meaningful image representation.
We propose novel within-modality losses which encourage semantic co-
herency in both the text and image subspaces, which does not necessar-
ily align with visual coherency. Our method ensures that not only are
paired images and texts close, but the expected image-image and text-
text relationships are also observed. Our approach improves the results
of cross-modal retrieval on four datasets compared to five baselines.

1 Introduction

Vision-language tasks such as image captioning [2, 27, 58] and cross-modal gen-
eration and retrieval [40, 60, 63] have seen increased interest in recent years. At
the core of methods in this space are techniques to bring together images and
their corresponding pieces of text. However, most existing cross-modal retrieval
methods only work on data where the two modalities (images and text) are well
aligned, and provide fairly redundant information. As shown in Fig. 1, caption-
ing datasets such as COCO contain samples where the overlap between images
and text is significant (both image and text mention or show the same objects).
In this setting, cross-modal retrieval means finding the manifestation of a single
concept in two modalities (e.g. learning embeddings such that the word “banana”
and the pixels for “banana” project close by in a learned space).

In contrast, real-world news articles contain image and text pairs that cover
the same topic, but show complementary information (protest signs vs informa-
tion about the specific event; guns vs discussion of rights; rainbow flag vs LGBT
rights). While a human viewer can still guess which images go with which text,
the alignment between image and text is abstract and symbolic. Further, images
in news articles are ambiguous in isolation. We show in Fig. 2 that an image
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contains multimodal articles from New York Times, and another contains
articles from far-left/right media [49]. We also conduct experiments on [25,
43]. Our approach significantly improves the state-of-the-art in most cases.
The more abstract the dataset/alignment, the more beneficial our approach.

– We tackle a new cross-modal retrieval problem where the visual space is
much less concrete. This scenario is quite practical, and has applications
ranging from automatic caption generation for news images, to detection of
fake multimodal articles (i.e. detecting whether an image supports the text).

2 Related Work

Cross-modal learning. A fundamental problem in cross-modal inference is the
creation of a shared semantic manifold on which multiple modalities may be
represented. The goal is to learn a space where content about related semantics
(e.g. images of “border wall” and text about “border wall”) projects close by,
regardless of which modality it comes from. Many image-text embedding meth-
ods rely on a two-stream architecture, with one stream handling visual content
(e.g. captured by a CNN) and the other stream handling textual content (e.g.
through an RNN). Both streams are trained with paired data, e.g. an image and
its captions, and a variety of loss functions are used to encourage both streams
to produce similar embeddings for paired data. Recently, purely attention-based
approaches have been proposed [6, 26]. One common loss used to train retrieval
models is triplet loss, which originates in the (single-modality) metric learning
literature, e.g. for learning face representations [42]. In cross-modal retrieval, the
triplet loss has been used broadly [9,32,34,38,57,66]. Alternative choices include
angular loss [51], N-pairs loss [47], hierarchical loss [11], and clustering loss [36].

While single-modality losses like triplet, angular and N-pairs have been used
across and within modalities, they are not sufficient for cross-modal retrieval.
These losses do not ensure that the general semantics of the text are preserved
in the new cross-modal space; thus, the cross-modal matching task might distort
them too much. This phenomenon resembles forgetting [14,24] but in the cross-
modal domain. Our method preserves within-modal structure, and a similar
effect can be achieved by leveraging category labels as in [5,31,50,64]; however,
such labels are not available in the datasets we consider, nor is it clear how
to define them, since matches lie beyond the presence of objects. Importantly,
classic retrieval losses losses do not tackle the complementary relationship be-
tween images and text, which makes the space of topically related images more
visually diffuse. In other words, two images might depict substantially different

visual content but nonetheless be semantically related.

Note that we do not propose a new model for image-text alignment, but
instead propose cross-modal embedding constraints which can be used to train
any such model. For example, we compare to Song et al. [48]’s recent polysemous
visual semantic embedding (PVSE) model, which uses global and local features
to compute self-attention residuals. Our loss improves [48]’s performance.
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Our work is also related to cross-modal distillation [10, 12, 15, 46], which
transfers supervision across modalities, but none of these approaches exploit the
semantic signal that text neighborhoods carry to constrain the visual represen-
tations. Finally, [1,22,61] detect different types of image-text relationships (e.g.
parallel, complementary) but do not retrieve across modalities.

Metric learning approaches learn distance metrics which meaningfully mea-
sure the similarity of objects. These can be broadly categorized into: 1) sampling-
based methods [17, 18, 28, 29, 36, 44, 45, 53, 54, 56, 59], which intelligently choose
easy/hard samples or weight samples; or 2) loss functions [8,11,16,42,47,51,55]
which impose intuitions regarding neighborhood structure, data separation, etc.
Our method relates to the second category. Triplet loss [20, 42] takes into ac-
count the relative similarity of positives and negatives, such that positive pairs
are closer to each other than positives are to negatives. [62] generalize triplet loss
by fusing it with classification loss. [37] integrate all positive and negative pairs
within a minibatch, such that all pair combinations are updated jointly. Simi-
larly, [47]’s N-pair loss pushes multiple negatives away in each triplet. [52] pro-
pose a structural loss, which pulls multiple text paired with the same image to-
gether, but requires more than one ground truth caption per image (which most
datasets lack). In contrast, our approach pulls semantically similar images and

text together and only requires a single caption per image. More recently, [51]
propose an angular loss which leverages the triangle inequality to constrain the
angle between points within triplets. We show how cross-modal complementary
information (semantics paired with diverse visuals) can be leveraged to improve
the learned embedding space, regardless of the specific loss used.

3 Method

Consider two image-text pairs, {xi, yi} and {xj , yj}. To ground the “meaning” of
the images, we use proximity in a generic, pre-trained textual space between the
texts yi and yj . If yi and yj are semantically close, we expect that they will also
be relatively close in the learned space, and further, that xi and xj will be close
also. We observed that, while intuitive, this expectation does not actually hold in
the learned cross-modal space. The problem becomes more severe when image
and paired text do not exhibit literal alignment, as shown in Fig. 1, because
images paired via text neighbors could be visually different.

We describe how several common existing loss functions tackle cross-modal
retrieval, and discuss their limitations. We then propose two constraints which
pull within-modality semantic neighbors close to each other. Fig. 4 illustrates
how our approach differs from standard metric learning losses.

3.1 Problem formulation and existing approaches

We assume a datasetD = {I,T} of n image-text pairs, where I = {x1, x2, . . . , xn}
and T = {y1, y2, . . . , yn} denote the set of paired images and text, respectively.
By pairs, we mean yi is text related to or co-occurring with image xi. Let fI
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anchor and positive embedding away from multiple negatives simultaneously:

LNP
ang (T ) =

∑

yj∈minibatch, j 6=i

Lang

(

xa
i , y

p
i , y

n
j

)

(3)

The symmetric constraint [65] can also be added to explicitly account for
bidirectional retrieval, i.e. text-to-image, by swapping the role of images and
text to form symmetric triplets Tsym = (yai , x

p
i , x

n
i ):

LNP+SYM
ang (T , Tsym) = LNP

ang (T ) + LNP
ang (Tsym) (4)

Limitations. While these loss functions have been used for cross-modal retrieval,
they do not take advantage of several unique aspects of the multi-modal setting.
Only the dashed pull/push connections in Fig. 4 (c) are part of triplet/angular
loss. The solid connections are intuitive, but only enforced in our novel formula-
tion. We argue the lack of explicit within-modality constraints allows discontinu-
ities within the space for semantically related content from the same modality.

3.2 Our proposed loss

The text domain provides a semantic fingerprint for the image-text pair, since
vastly dissimilar visual content may still be semantically related (e.g. image of
White house, image of protest), while similar visual content (e.g. crowd in church,
crowd at mall) could be semantically unrelated. We thus use the text domain to
constrain within-modality semantic locality for both images and text.

To measure ground-truth semantic similarity, we pretrain a Doc2Vec [23]
model Ω on the train set of text. Specifically, let d be the document embedding
of article yi, T denote the number of words in yi, wt represent the embedding
learned for word t, p(·) be the probability of the given word, and k denote
the look-around window. Ω learns word embeddings and document embeddings
which maximize the average log probability: 1

T

∑T

t=1 log p (wt|d, wt−k, . . . , wt+k).
After training Ω, we use iterative backpropagation to compute the document
embedding which maximizes the log probability for every article in the dataset:
Ω(T) = {Ω (y1) , . . . , Ω (yn)}.

Because Doc2Vec has been shown to capture latent topics within text doc-
uments well [35], we seek to enforce that locality originally captured in Ω(T)’s
space also be preserved in the cross-modal space M. Let

Ψ (Ω(yi)) = 〈xi′ , yi′〉 (5)

denote a nearest neighbor function over Ω(T), where 〈·, ·〉 is an image-text pair
in the train set randomly sampled from the k = 200 nearest neighbors to yi, and
i 6= i′. Ψ (Ω(yi)) thus returns an image-text pair semantically related to yi.

We formulate two loss functions to enforce within-modality semantic locality
in M. The first, Ltext, enforces locality of the text’s projections:

T ′
text =

(

yai , y
p
i′ , y

n
j

)

Ltext (T
′
text) = Lang (T

′
text)

Lang (T
′
text) =

[

‖yai − ypi′‖
2
2 − 4 tan2 α‖ynj − Ci‖

2
2

]

+

(6)
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where ynj is the negative sample chosen randomly such that i 6= j and Ci =
(yai + ypi ) /2. Ltext is the most straightforward transfer of semantics from Ω(T)’s
space to the joint space: nearest neighbors in Ω should remain close in M.

As Fig. 4 (c) shows, Ltext also indirectly causes semantically related images to
move closer inM: there is now a weak connection between xi and xi′ through the
now-connected yi and yi′ . To directly ensure smoothness and semantic coherence
between xi and xi′ , we propose a second constraint, Limg:

T ′
img =

(

xa
i , x

p
i′ , x

n
j

)

Limg

(

T ′
img

)

= Lang

(

T ′
img

)

Lang

(

T ′
img

)

=
[

‖xa
i − xp

i′‖
2
2 − 4 tan2 α‖xn

j − Ci‖
2
2

]

+

(7)

where xn
j is the randomly chosen negative sample such that i 6= j and Ci =

(xa
i + xp

i ) /2. Note that xi and xi′ are often not going to be neighbors in the
original visual space. We use N-pairs over all terms to maximize discriminativity,
and symmetric loss to ensure robust bidirectional retrieval:

LOURS
ang

(

T , Tsym, T ′
text, T

′
img

)

= (8)

LNP+SYM
ang (T , Tsym) + αLNP

text (T
′
text) + βLNP

img

(

T ′
img

)

where α, β are hyperparameters controlling the importance of each constraint.

Second variant. We also experiment with a variant of our method where the
nearest neighbor function in Eq. 5 (computed in Doc2Vec space) is replaced
with one that computes nearest neighbors in the space of visual (e.g. ResNet)
features. Now xi, xi′ are neighbors in the original visual space before cross-modal
training, and yi, yi′ are their paired articles (which may not be neighbors in the
original Doc2Vec space). We denote this method as Ours (Img NNs) in Table
1, and show that while it helps over a simple triplet- or angular-based baseline,
it is inferior to our main method variant described above.

Discussion. At a low level, our method combines three angular losses. However,
note that our losses in Eq. 6 and Eq. 7 do not exist in prior literature. While [52]
leverages ground-truth neighbors (sets of neighbors provided together for the
same image sample in a dataset), we are not aware of prior work that estimates
neighbors. Importantly, we are not aware of prior work that uses the text space
to construct a loss over the image space, as Eq. 7 does. We show that the choice
of space in which semantic coherency is computed is important; doing this in the
original textual space is superior than using the original image space. We show
the contribution of both of these losses in our experiments.

3.3 Implementation details

All methods use a two-stream architecture, with the image stream using a
ResNet-50 [19] architecture initialized with ImageNet features, and the text
stream using Gated Recurrent Units [7] with hidden state size 512. We use im-
age size 224x224 and random horizontal flipping, and initialize all non-pretrained
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learnable weights via Xavier init. [13]. Text models are initialized with word em-
beddings of size 200 learned on the target dataset. We apply a linear transfor-
mation to each model’s output features (R2048×256 for image, R512×256 for text)
to get the final embedding, and perform L2 normalization. We use Adam [21]
with minibatch size 64, learning rate 1.0e-4, and weight decay 1e-5. We decay
the learning rate by a factor of 0.1 after every 5 epochs of no decrease in val. loss.
We use a train-val-test split of 80-10-10. For Doc2Vec, we use [41] with d ∈ R

200

and train using distributed memory [23] for 20 epochs with window k = 20,
ignoring words that appear less than 20 times. We use hierarchical softmax [33]
to compute p(·). To efficiently compute approximate nearest neighbors for Ψ ,
we use [30]; our method adds negligible computational overhead as neighbors
are computed prior to training. We choose α = 0.3, β = 0.1 for LOURS

trip , and

α = 0.2, β = 0.3 for LOURS
ang , on a held-out val. set.

4 Experiments

We compare our method to five baselines on four recent large-scale datasets. Our
results consistently demonstrate the superiority of our approach at bidirectional
retrieval. We also show our method better preserves within-modality semantic
locality by keeping neighboring images and text closer in the joint space.

4.1 Datasets

Two datasets feature challenging indirect relations between image and text, com-
pared to standard captioning data. These also exhibit longer text paired with
images: 59 and 18 words on average, compared to 11 in COCO.

Politics [49] consists of images paired with news articles. In some cases,
multiple images were paired with boilerplate text (website headliner, privacy
policy) due to failed data scraping. We removed duplicates using MinHash [4].
We were left with 246,131 unique image-text pairs. Because the articles are
lengthy, we only use the first two sentences of each. [49] do not perform retrieval.

GoodNews [3] consists of ∼466k images paired with their captions. All
data was harvested from the New York Times. Captions often feature abstract
or indirect text in order to relate the image to the article it appeared with. The
method in [3] takes image and text as input, hence cannot serve as a baseline.

We also test on two large-scale standard image captioning datasets, where
the relationship between image and text is typically more direct:

COCO [25] is a large dataset containing numerous annotations, such as
objects, segmentations, and captions. The dataset contains ∼120k images with
captions. Unlike our other datasets, COCO contains more than one caption per
image, with each image paired with four to seven captions.

Conceptual Captions [43] is composed of ∼3.3M image-text pairs. The
text comes from automatically cleaned alt-text descriptions paired with images
harvested from the internet and has been found to represent a much wider variety
of style and content compared to COCO.
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Img-Text Non-Literal Img-Text Literal

Politics [49] GoodNews [3] ConcCap [43] COCO [25]

Method I→T T→I I→T T→I I→T T→I I→T T→I

Ang+NP+Sym 0.6270 0.6216 0.8704 0.8728 0.7687 0.7695 0.6976 0.6964

Ours (Img NNs) 0.6370 0.6378 0.8840 0.8852 0.7636 0.7666 0.6819 0.6876

Ours 0.6467 0.6492 0.8849 0.8865 0.7760 0.7835 0.6900 0.6885

PVSE 0.6246 0.6199 0.8724 0.8709 0.7746 0.7809 0.6878 0.6892

PVSE+Ours 0.6264 0.6314 0.8867 0.8864 0.7865 0.7924 0.6932 0.6925

Trip+NP+Sym 0.4742 0.4801 0.7203 0.7216 0.5413 0.5332 0.4957 0.4746

Ours (Trip) 0.4940 0.4877 0.7390 0.7378 0.5386 0.5394 0.4790 0.4611

Table 1. We show retrieval results for image to text (I→T) and text to image (T→I)
on all datasets. The best method per group is shown in bold.

4.2 Baselines

We compare to N-Pairs Symmetric Angular Loss (Ang+NP+Sym, a com-
bination of [47, 51, 65], trained with LNP+SYM

ang ). For a subset of results, we
also replace the angular loss with the weaker but more common triplet loss
(Trip+NP+Sym). We show the result of choosing to enforce coherency within
the image and text modalities by using images rather than text; this is the second
variant of our method, denoted Ours (Img NNs).

We also compare our approach against the deep structure preserving loss [52]
(Struc), which enforces that captions paired with the same image are closer to
each other than to non-paired captions.

Finally, we show how our approach can improve the performance of a state-
of-the-art cross-modal retrieval model. PVSE [48] uses both images and text to
compute a self-attention residual before producing embeddings.

4.3 Quantitative results

We formulate a cross-modal retrieval task such that given a query image or text,
the embedding of the paired text/image must be closer to the query embedding
than non-paired samples also of the target modality. We sample random (non-
paired) samples from the test set, along with the ground-truth paired sample.
We then compute Recall@1 within each task: that is, whether the ground truth
paired sample is closer to its cross-modal embedding than the non-paired em-
beddings. For our most challenging datasets (GoodNews and Politics), we use
a 5-way task. For COCO and Conceptual Captions, we found this task to be
too simple and that all methods easily achieved very high performance due to
the literal image-text relationship. Because we wish to distinguish meaningful
performance differences between methods, we used a 20-way task for Conceptual
Captions and a 100-way task for COCO. Task complexities were chosen based
on the baseline’s performance, before our method’s results were computed.

We report the results in Table 1. The first and second group of results all
use angular loss, while the third set use triplet loss. We observe that our method
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significantly outperforms all baselines tested for both directions of cross-modal
retrieval for three of the four datasets. Our method achieves a 2% relative boost
in accuracy (on average across both retrieval tasks) vs. the strongest baseline on
GoodNews, and a 4% boost on Politics. We also observe recall is much worse
for all tasks on the Politics dataset compared to GoodNews, likely because the
images and article text are much less well-aligned. The performance gap seems
small but note that given the figurative use of images in these datasets, often
there may not be a clear ground-truth answer. In Fig. 2, Themis may be con-
strained to be close to protestors or border wall. At test time, the ground-truth
text paired with Themis may be about the Supreme Court, but one of the “in-
correct” answers could be about immigration or freedom, which still make sense.
Our method keeps more neighbors closer to the query point as shown next, thus
may retrieve plausible, but technically “incorrect” neighbors for a query.

Importantly, we see that while the variant of our method using neighborhoods
computed in image space (Ours Img NNs) does outperform Ang+NP+Sym,
it is weaker than our main method variant (Ours). We also observe that when
adding our loss on top of the PVSE model [48], accuracy of retrieval improves.
In other words, our loss is complementary to advancements accomplished by
network model-based techniques such as attention.

Our method outperforms the baselines on ConcCap also, but not on COCO,
since COCO is the easiest, least abstract of all datasets, with the most lit-
eral image-text alignment. Our approach constrains neighboring texts and their
images to be close, and for datasets where matching is on a more abstract, chal-
lenging level, the benefit of neighbor information outweighs the disadvantage of
this inexact similarity. However, for more straightforward tasks (e.g. in COCO),
it may introduce noise. For example, for caption “a man on a bicycle with a ba-
nana”, the model may pull that image and text closer to images with a banana
in a bowl of fruit. Overall, our approach of enforcing within-modality semantic
neighborhoods substantially improves cross-view retrieval, particularly when the
relationship between image and text is complementary, rather than redundant.

To better ground our method’s performance in datasets typically used for re-
trieval, we also conducted an experimented on Flickr30K [39]. Since that dataset
does not exhibit image-text complementarity, we do not expect our method to
improve performance, but it should not significantly reduce it. We compared the
original PVSE against PVSE with our novel loss. We observed that our method
slightly outperformed the original PVSE, on both text-to-image and image-to-
text retrieval (0.5419 and 0.5559 for ours, vs 0.5405 and 0.5539 for PVSE).

In Table 2, we show a result comparing our method to Deep Structure Pre-
serving Loss [52]. Since this method requires a set of annotations (captions) for
an image, i.e. it requires ground-truth neighbor relations for texts, we can only
apply it on COCO. In the first column, we show our method. In the second,
we show [52] using ground-truth neighbors. Next, we show using [52] with es-

timated neighbors, as in our method. We see that as expected, using estimated
rather than ground-truth text neighbors reduces performance (third vs. second
columns). When estimated neighbors are used in [52]’s structural constraint, our
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Ours (Trip) Struc (GT, Text) Struc (NNΩ , Text) Struc (NNΩ , Img)

COCO
I→T 0.4790 0.4817 0.4635 0.4752
T→I 0.4611 0.4867 0.4594 0.4604

Table 2. We show retrieval results for image to text (I→T) and text to image (T→I)
on COCO using [52]’s loss vs. ours. GT requires multiple Ground Truth captions per
image, while NN uses Nearest Neighbors. The best method per row is shown in bold,
while the best method which does not require a set of neighboring text is underlined.

GoodNews [3] Politics [49]

Method I T I T

Trip+NP+Sym 0.1183 0.1294 0.1135 0.1311

Ours (Trip) 0.1327 0.1426 0.1319 0.1483

Ang+NP+Sym 0.1032 0.1131 0.1199 0.1544

Ours (Ang) 0.1270 0.1376 0.1386 0.1703

Table 3. We test how well each method preserves the semantic neighborhood (see
text) of Ω in M. Higher values are better. Best method is shown in bold.

method performs better (third vs. first columns). Interestingly, we observe that
defining [52]’s structural constraint in image rather than text space is better
(fourth vs. third columns). In both cases, neighborhoods are computed in text

space (Eq. 5). This may be because the structural constraint, which requires the
group of neighbors to be closer together than to others, is too strict for estimated
text neighbors. That is, the constraint may require the text embeddings to lose
useful discriminativity to be closer to neighboring text. Neighboring images are
likely to be much more visually similar in COCO than in GoodNews or Politics
as they will contain the same objects.

We next test how well each method preserves the semantic neighborhood

given by Ω, i.e. Doc2Vec space. We begin by computing the embeddings in M
(cross-modal space) for all test samples. For each such sample si (either image
or text), we compute ΨM (si), that is, we retrieve the neighbors (of the same
modality as si) in M. We next retrieve the neighbors of si in Ω, ΨΩ (si), de-
scribed in Sec. 3.2. For each sample, we compute |ΨM (si) ∩ ΨΩ (si)| / |ΨΩ (si)|,
i.e. the percentage of the nearest neighbors of the sample in Ω which are also its
neighbors in M. That is, we measure how well each method preserves within-
modality semantic locality through the number of neighbors in Doc2Vec space
which remain neighbors in the learned space. We consider the 200 nearest neigh-
bors. We report the result for competitive baselines in Table 3. We find that our
constraints are, indeed, preserving within-modality semantic locality, as sample
proximity in Ω is more preserved in M with our approach than without it, i.e.
we better reconstruct the semantic neighborhood of Ω in M. We believe this
allows our model to ultimately perform better at cross-modal retrieval.

We finally test the contribution of each component of our proposed loss. We
test two variants of our method, where we remove either Ltext or Limg. We
present our results in Table 4. In every case, combining our losses for our full
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