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Abstract

This article, for the first time, demonstrates Cross-device Deep
Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy
of > 99.9%, even in presence of significantly higher inter-device
variations compared to the inter-key variations. Augmenting traces
captured from multiple devices for training and with proper choice
of hyper-parameters, the proposed 256-class Deep Neural Network
(DNN) learns accurately from the power side-channel leakage of
an AES-128 target encryption engine, and an N-trace (N < 10)
X-DeepSCA attack breaks different target devices within seconds
compared to a few minutes for a correlational power analysis (CPA)
attack, thereby increasing the threat surface for embedded devices
significantly. Even for low SNR scenarios, the proposed X-DeepSCA
attack achieves ~ 10X lower minimum traces to disclosure (MTD)
compared to a traditional CPA.

CCS Concepts

« Security and privacy — Embedded systems security; Side-
channel analysis and countermeasures.
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1 Introduction

In today’s computing and communication systems, cryptographic
algorithms are designed to provide integrity and confidentiality of
data. The mathematical security of these implementations depend
on the secrecy of a short key, which provides a computational ad-
vantage to the communicating parties over the adversary. Hence, a
brute-force attack on these algorithms can only succeed with negli-
gible probability. Side-channel analysis (SCA) is a form of cryptan-
alytic attack which breaks the secret key of an embedded device
by utilizing the unintended ‘side-channel’ leakage emanating from
the physical implementation of the cryptographic algorithm. These
side-channel leakages can be obtained by monitoring the power
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Figure 1: (a) Histogram plot showing that the mean of
device-to-device variations of the power traces is signifi-
cantly higher than the mean of key-to-key (class) variations
for one device. 40 traces with 3000 time samples each were
used in each case. (b) Training with one device (TR;), the 256-
class DNN is able to classify unseen test traces from the same
device (TR;) accurately as seen from the confusion matrix,
while it does not generalize for other devices and misclassi-
fies many test traces from a different device (D).

consumption of the device running the algorithm [4, 5, 25], elec-
tromagnetic radiations [6, 16] during the cryptographic operations,
processing time [3], cache hits/misses, and so on.

This article focuses on the power SCA attacks. Non-profiled
power SCA attack techniques include differential and correlational
power analysis (DPA/CPA), which have been utilized to break many
real-world encryption devices [1, 9, 30]. Profiled power SCA attacks
comprise of two stages: profiling and attack [2, 8, 27]. In the profiling
phase, multiple traces from an identical device are collected by
varying sub-keys (part of the cryptographic key), and a model is
built. During the attack stage, the model is utilized to classify each
sub-key of the device under attack.

In recent years, various machine-learning (ML) techniques have
been evaluated to perform profiling power SCA attacks [13, 20, 29].
Although successful attacks have been shown, these ML techniques
require pre-processing of the traces with proper time-alignment.
In 2017, Cagli et al. [11] proposed a deep-learning based approach
utilizing convolutional neural networks (CNNs) to provide an end-
to-end profiling strategy, even in the presence of trace misalign-
ments. Masking-based countermeasures were also shown to be
broken using neural networks [15, 26]. Deep learning based SCA
attacks does not require extensive statistical analysis to identify
the points of leakage, in contrast to the template attacks. Also, as
the dimensions of the data increase, ML SCA attacks become more
prominent compared to the template attacks [20]. Deep Learning
(DL) based SCA is still a new research paradigm [14] and all the
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Figure 2: (a) Trace Capture Set-up using the Chipwhisperer
platform. (b) Traces are captured from multiple Atmega mi-
crocontroller devices (TR;—4) for training a DNN so that the
model is able to generalize to any other target device (D1—_4).

previous works till date have focused on evaluating and im-
proving the attack on the same device which has been used to
train the neural network.

This work, for the first time, demonstrates a Cross-Device Deep
Learning based Side-Channel Attack (X-DeepSCA) using a 256-class
DNN. Figure 1(a) shows the measured cross-device variations in the
form of a histogram (red plot) of the absolute difference between
the samples at the same time index of the averaged traces from 2
different devices (TRy, D1) running the same software implemen-
tation of AES-128. For the device TRj, the green curve shows the
histogram of the variation between 2 different key bytes (classes).
We see that the inter-device variations for the same key are signifi-
cantly higher than the inter-key variations of the same device, which
makes the cross-device attack particularly challenging. The confu-
sion matrices in Figure 1(b) show that although the test accuracy
on the same device (DNN trained with device TRy and tested with
unseen traces from the same device) is very high (red dots represent
the misclassified key bytes), the accuracy on a different test device
(Dy) is significantly lower. Hence, training with one profiling device
overfits to that particular device leakage and may not be able to
generalize well to other devices.

Hence, in this work, we augment traces from multiple profil-
ing devices (Figure 2(b)) and build a DNN architecture to per-
form cross-device deep-learning based power side-channel analysis
(X-DeepSCA) attack. In addition, we analyze the individual class
(key byte) accuracies and demonstrate the practicality of an N-trace
(N < 10) X-DeepSCA attack to achieve > 99.9% success of attack.
Finally, we study the effect of varying SNR scenarios, and show
that the X-DeepSCA attacks require ~ 10X lower number of traces
to attack (minimum traces to disclosure: MTD) than the traditional
correlation power analysis (CPA) attacks [10].

In summary, the key contributions of this work are:

e A combination of designing the appropriate 256-class DNN
with proper choice of the hyperparameters to prevent over-
fitting, utilizing traces from multiple devices (TR;—4) during
training, coupled with the proposed N-trace attack leads to
the first successful demonstration of a cross-device deep-
learning SCA (X-DeepSCA) attack.

o Using the Keras library with a Tensorflow backend [21], we
show that the single-trace X-DeepSCA attack using the DNN
model achieves an average accuracy of > 99.9% for all the

Table 1: Overview of the Related Works on Profiling Attacks

Train/Test Scenario Profiling SCA Attacks Classifier
Train and Test with the [11], [15], [17], [18], SVM, RF, FCN, CNN,
same Device [19], [20], [26], [27], [29] Statistical TA
Train with one device and 171, [22], [23] PCA/LDA, MIA, | No Cross-
Test on different Devices ! ! Statistical TA device
Machine
Training with multiple [24] Statistical TA Learning
devices, test with SCA exists
different devices This Work* DNN

*First Cross-device Deep-Learning Side-Channel Attack

test devices (D1-4) under attack using 200K total traces for
the training (Sec. 3).

o Further, we investigate the individual class accuracies by
introducing a measure of entropy, leading to the proposed N-
trace X-DeepSCA attack to guarantee > 99.9% attack success
with N < 10 encryptions (Sec. 4).

e Finally, we show that the X-DeepSCA attack performs > 10x
better in terms of MTD, with different signal-to-noise ratio
(SNR) scenarios, reducing the time of attack from minutes
to seconds (Sec. 5).

2 BACKGROUND & RELATED WORK

Template-based profiling power SCA attacks are extremely power-
ful as they can potentially break the encryption key within a few en-
cryption traces [7, 27]. Recently, machine learning (ML) based pro-
filing attacks have been studied extensively [13, 17-20, 29]. These
ML-based attacks use supervised learning models like the support
vector machine (SVM), Self-Organizing Map (SOM) or Random
Forest (RF) for classification.

Deep neural networks (DNNSs) have generated significant interest
in the recent years. It has been shown that the clock-jitter based
countermeasures against power/EM SCA can be broken using a
convolutional neural network (CNN) [11, 12, 14]. Also, masking
based countermeasures have been shown to be broken with neural
networks [15, 26].

A summary of the related works is shown in Table 1. Most of
the existing works [11, 17-20, 26, 27, 29] on profiling attacks have
tested their attack on the same device used for the template genera-
tion. [7, 22, 23] have evaluated cross-device template-based attacks
(TA) using statistical multivariate analysis, Principal Component
Analysis (PCA), Mutual Information Analysis (MIA) and Linear
Discriminant Analysis (LDA). [24] showed a multi-device profiling
using statistical TA.

However, none of the ML-based works have focused on the
cross-device attacks yet. Also, the previous works based on neural
networks (NNs) have evaluated their models with the same device
used for training. We have seen in Figure 1(a), the inter-device
variation is typically much higher than the inter-key (or inter-class)
variations. Hence, a NN model evaluated against the same device
may not necessarily work well on a different target device. This
work shows the first cross-device profiling attack using a deep
neural network (DNN).

To train a neural network, the typical leakage models used for
the power consumption are the Hamming Weight (HW) model
(9-class classification), and the identity (ID) model (256-class classi-
fication) [14]. In this work, we use the identity model for 256-class
classification and train our DNN to learn the leakage information
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Figure 3: Architecture of the proposed Fully Connected DNN
for X-DeepSCA. The input layer consists of N = 500 neurons.
The 15! fully-connected (FC) hidden layer consists of 200
hidden neurons, followed by Batch Normalization, Recti-
fied Linear Unit (ReLU) activation, and a dropout layer. The
274 hidden layer is similar without the dropout layer. Fi-
nally, the output layer has 256 neurons for predicting the
correct key byte utilizing the softmax function. If the traces
are not aligned in time, a convolutional layer as the input
layer would be required. In this work, we use the Fully Con-
nected DNN as the traces captured from the Chipwhisperer
are time-aligned.

accurately. For all the analyses shown in this work, the attacks are
performed on the 1st key byte of the AES-128 encryption engine.

Also, most of the previous NN models have been evaluated
on the available DPA v4 contest dataset, or the newly pub-
lished ASCAD database [12] which, to the best of our knowledge,
do not contain traces from multiple devices. Hence, to evalu-
ate our cross-device attack, we built a new database by capturing
traces from multiple devices using the Chipwhisperer platform
(Figure 2(a)). Separate sets of Atmega microcontrollers (Figure 2(b))
running AES-128 are used for profiling and testing the X-DeepSCA
attacks.

3 SINGLE TRACE X-DeepSCA ATTACK

In this section, we evaluate a single-trace X-DeepSCA attack. A 256-
class classifier is necessary to perform a single-trace cross-device
SCA attack (X-DeepSCA). However, designing a 256-class classifier
is significantly more difficult compared to the HW-based 9-class
classifier. Hence, choice of the hyperparameters like the learning
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Figure 4: Effect of Model Hyper-parameters on the Test Ac-
curacy (on the test device D; after training with TRi_4): (a)
Learning rate (LR) of ~ 0.01 provides the maximum test ac-
curacy, and higher LR leads to overfitting of the DNN re-
ducing the test accuracy. (b) Lower dropout shows higher
accuracy which implies that the data gathered from the mi-
crocontroller devices has sufficient electronic noise which
helps generalize to unseen data. Dropout higher than 0.3 re-
duces the accuracy.
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Figure 5: (a) Training and Validation Accuracy of the DNN
reaches ~ 100% within 25 epochs and does not show any
overfitting. (b) Loss function of the DNN for both the train-
ing/validation sets. Note that training and validation have
been performed with data from all the 4 devices (TR;—4).

rate, number of hidden neurons, dropout, are extremely critical to
prevent overfitting or underfitting.

3.1 DNN Architecture

Figure 3 shows the architecture of the proposed fully-connected (FC)
DNN for the X-DeepSCA attack. Note that, for our work, the traces
collected from the Chipwhisperer platform are time-synchronized
and hence use of a convolutional layer is not necessary. Although
the captured traces from the AES-128 encryption engine (clocked
at 7.37 MHz) had 3000 time samples (ADC sampling frequency of
29.48 MHz) for an entire encryption operation, it was initially fed
to the DNN and verified that the network learns accurately from
the points of leakage (cross-verified using a CPA attack) within
the first 200 time samples for the 1st key byte under attack. After
this verification!, to reduce the model complexity (and the time for
training the DNN), only the first 500 time samples from each power
trace were fed to the DNN.

The first FC layer of the DNN consists of 200 neurons, and in-
creasing the number of hidden neurons may lead to overfitting.
Batch normalization layer [28] and the dropout layers provide reg-
ularization to prevent overfitting and encourage generalization to

't is also worth noting that the DNN model can also serve as a leakage assessment
tool for cryptographic devices.
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Figure 6: Attack Accuracy on the test devices (D1—4) with the
DNN model trained with varying number of training traces
gathered from the 4 training devices, where each of them
(TRi-4) contributed equally .

unseen data. The Rectified Linear Unit (ReLU) is used as the non-
linear activation function to learn non-linear mappings from the
input to the output. The second FC layer is similar without the
dropout layer, and is finally followed by the output layer with 256
neurons, which predicts the correct key byte in a single trace utiliz-
ing the softmax function. The loss function used was categorical
cross-entropy, optimized with the Adam algorithm and with a batch
size of 32.

Figure 4(a, b) shows the effect of some of the hyper-parameters
of the DNN model on the accuracy of a different test device. Fig-
ure 4(a) shows that a learning rate of 0.01 provides the maximum
test accuracy, while a higher learning rate could lead to overfitting
resulting in reduced test device accuracy. From Figure 4(b), we see
that even in case of low dropout, the test accuracy remains high,
which implies that the data gathered from the real-world devices has
sufficient electronic noise. However, dropout more than 30% leads to
reduced classification accuracy.

To train the DNN, for all our experiments (unless otherwise
mentioned), 10K traces (equally distributed for all the 256 possible
values for the 157 key byte (classes) with a fixed plaintext) from
each of the four devices were augmented together, and 20% of the
total number of traces were kept for validation of the DNN during
the profiling phase.

3.2 Performance Analysis of Single-Trace
X-DeepSCA Attack

Figure 5(a,b) shows the training and validation accuracies of the
DNN. We can see that the DNN model reaches an accuracy of
> 99.9% within 25 epochs and also that the training and validation
loss approach 0. The validation set accuracy remains almost same
as that of the training set, implying that the DNN model is not
overfitting. Note that the validation loss is lower since the dropout
layer is present during training and not for the validation.

Figure 6 shows the performance of the trained DNN model on the
test devices (Dj—4) with varying number of training traces, drawn
equally from all the four devices (TRj—4) reserved for training.
The X-DeepSCA attack on all the 4 test devices shown reaches 99%
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Figure 7: Confusion matrix for each of the test devices (D1—_4).
At most 3 key bytes out of the 256 (~ 99% overall accuracy)
are getting misclassified for each of the test devices, with
the DNN model trained with 10K traces from each of the 4
training devices (TR1_4).

Attack Accuracy on Multiple Test Devices
with varying number of training devices
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Figure 8: Effect of augmenting traces from Multiple Devices
during training: As the number of devices is increased, the
DNN model generalizes well to new devices (D1—4) and hence
the accuracy improves and reaches 99% with 4 training de-
vices (TRi—4 - 10K traces each).

accuracy with 40K training traces, and > 99.9% with 200K training
traces in total(drawn equally from each of TR;_4).

Note that for the test devices, traces are collected for different
keys to evaluate the accuracy of all the classes (key bytes). Fig-
ure 7(a-d) shows the confusion plots on the test devices (D;—4) after
training with 40K traces (10K from each of the 4 training devices).
As expected, for all the test devices, we see that at most 3 key bytes
are misclassified (marked in red, outside the diagonal line) out of
the all 256 different key bytes.

Figure 8 shows the effect of augmenting traces from multiple
devices (with 10K traces each) for training the DNN. We see that
with only 1 training device, the accuracy on a test device goes to
~ 80%, while it increases to ~ 99% after augmenting traces from
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Figure 9: Individual Key Byte (Class) Accuracy Distribution
for the test device D4 (showed the worst average accuracy out
of the D;_4): The black plot represents the accuracy for each
key byte, and the red plot denotes the maximum percent-
age of a particular class misprediction for the test device Dy.
(a) With 1-device training (TR; - 10K traces), for some of the
key bytes the black and red curves overlap, while (b) with
4-device (TRi—4 - 10K traces each) training, there is a signif-
icant reduction in the measure of entropy and an N-trace
attack would be able to predict even the lowest accuracy key
byte with high success probability (refer to Fig. 10).

all the 4 training devices with only 10K traces captured from each
device.

4 N-TRACE X-DeepSCA ATTACK

In the previous section, we have shown that a single-trace X-DeepSCA
attack with an accuracy of > 99.9% (averaged over all the 256
classes) can be performed on a test device, with 200K training
traces (equally from each of the devices TRy_4) used to build the
DNN model. In this section, we analyze the individual class (key
byte) accuracies to evaluate the practicality of a single-trace attack.

4.1 Individual Key Byte Accuracy

Figure 9(a, b) shows the individual key byte (class) accuracies and
the percentage of the misclassified key byte with the highest occur-
rence in prediction (for every key byte class) for the test device Dy
(as it showed the lowest accuracy of the 4 test devices and poses the
worst case scenario for an attacker). The separation between the
class accuracy (Kpreq = Ktarget) and the maximum percentage of
the mispredicted class (the particular key byte which is wrongly

N-Trace X-DeepSCA Attack: Success Probability
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Figure 10: N-trace X-DeepSCA Attack: Number of traces re-
quired by an attacker to achieve a confidence of 99.9%. Even
for classes with low accuracies, the N-trace X-DeepSCA attack
would reveal the correct key byte within N < 10 traces, as
long as the individual class accuracy remains higher than
the % of maximum mispredicted key byte for that class.

predicted maximum number of times - Kx # K;arget) gives a mea-
sure of the entropy (7k,,,,.,) of the X-DeepSCA attack, as shown
in Eqn. 1,

_ |Kpred = Ktargetl

MKtarger = |Ktotal|

argmax(|Kpreq = Kx| : Kx # Ktarget)

- (1)
|Ktotal|

where, Kprea represents the predicted key byte, K;qrges is the
target key byte, Ky is any other key byte (mispredicted) which
has the maximum occurrence for the Kyarger class, and [Kyozqi]
denotes the total number of queries (traces) for that particular
Kiarger class.

Figure 9 shows that training with 4 devices has significantly
lower entropy (17x,,,,.,) compared to 1-device training. Also, we
see from Figure 9 that although the test device D4 achieves an
average accuracy of > 99% (most of the key bytes can be broken
with a single-trace), as seen from Figure 6, 8, the minimum accuracy
of few key byte drops below 80%. Hence, although the single-trace
attack will succeed on most key bytes, it may not work for a few
key bytes, and a multi-trace attack is required.

4.2 Success Probability of the N-trace
X-DeepSCA attack

Using the concept of majority voting, we propose an N-trace X-DeepSCA
attack. The number of encryption traces required to gather in order
to achieve a confidence (probability of success) of 99.9% can be
mathematically derived, as shown in Eqn. 2 (valid for N >3):

N
Pr(Maj(N) = Krarget) = ) Pr(x)
x=2

255

N
PN-x
2 (f)pxu N @

255N —x

x=2
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Figure 11: (a) Number of traces (averaged) required for a suc-
cessful X-DeepSCA attack (with > 99.9% accuracy) in differ-
ent SNR scenarios. For SNR=20dB, averaging with less than
10 traces is sufficient to achieve > 99.9% accuracy, while it
requires ~ 100 traces for SNR=10dB, and ~ 1000 traces for
SNR=0 dB to be averaged over to achieve the 99.9% accuracy.
(b) Comparison of the X-DeepSCA attack with traditional CPA
attack shows a lower MTD for X-DeepSCA for all SNRs.

where, Pr(Maj(N) = Ktarget) gives the probability of a success-
ful target key recovery using the majority voting with N traces, p
is the single-trace test accuracies for each class (key byte value),
P represents the permutation operator. Note that the underlying
assumption of Eqn. 2 is that the class accuracy and the class mispre-
diction distributions are uniform, and there is no overlap between
them for any of the individual key bytes. Hence, as seen from Fig-
ure 9(b), majority voting works as the entropy is reduced, and even
for the lowest accuracy key byte (with 70% accuracy, p = 0.7), N-
trace X-DeepSCA attack achieves an accuracy (success probability)
0f 99.9% with N < 10 encryptions, as shown in Figure 10 (derived
from Eqn. 2).

5 DISCUSSIONS

5.1 X-DeepSCA Attack: Effect of SNR Variation

Now, we evaluate the effect of varying Signal-to-Noise Ratio (SNR)
on the efficacy of the X-DeepSCA attack. Figure 11(a) shows the num-
ber of traces required to average for a successful X-DeepSCA attack
with > 99.9% accuracy on the test device D using the training set
with TRy—4 (10K traces each). Figure 11(b) shows that the number
of traces required to retrieve the correct key byte of the AES-128
engine under attack is ~ 10X lower than the traditional CPA at-
tack (at the 1%/ round S-box output using Hamming Weight(HW)
leakage model) for different levels of SNR.

5.2 Future Work

For the future scope of this work, the efficacy of the proposed
X-DeepSCA attacks can be further improved if we can guarantee
that the accuracy of each key byte and the mispredicted classes for
that key byte are uniformly distributed. This could be achieved by
ensuring that the DNN has minimum bias during a misclassifica-
tion, which would lower the number of traces (N) required for a
successful N-trace X-DeepSCA attack. Overall, the proposed attack
can put a huge dent to the security of embedded devices.

6 CONCLUSIONS

For the first time, this work shows a Cross-device Deep Learning
based Side-Channel Analysis (X-DeepSCA) attack. Utilizing multiple

(4) devices for training a fully-connected DNN, results showed that
an average accuracy of 99.9% can be achieved with all the 4 test
devices using 200K training traces, showing the possibility of a
single-trace attack. However, deeper analysis utilizing the proposed
measure of entropy revealed that few individual key bytes had
lower accuracies, and hence an N-trace X-DeepSCA attack (N < 10)
is proposed to break the key with > 99.9% confidence. Finally,
we show that for varying SNR scenarios, the proposed X-DeepSCA
attack achieves ~ 10x lower MTD, which breaks the target devices
within seconds compared to a few minutes for the traditional CPA
attack, increasing the threat surface significantly.
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