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Abstract

This article, for the first time, demonstrates Cross-device Deep

Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy

of > 99.9%, even in presence of significantly higher inter-device

variations compared to the inter-key variations. Augmenting traces

captured from multiple devices for training and with proper choice

of hyper-parameters, the proposed 256-class Deep Neural Network

(DNN) learns accurately from the power side-channel leakage of

an AES-128 target encryption engine, and an N-trace (N ≤ 10)

X-DeepSCA attack breaks different target devices within seconds

compared to a few minutes for a correlational power analysis (CPA)

attack, thereby increasing the threat surface for embedded devices

significantly. Even for low SNR scenarios, the proposed X-DeepSCA
attack achieves ∼ 10× lower minimum traces to disclosure (MTD)

compared to a traditional CPA.

CCS Concepts

• Security and privacy → Embedded systems security; Side-

channel analysis and countermeasures.

Keywords

Side-channel Attacks, Profiling attacks, Cross-device Attack, Deep

Learning, Neural Networks.

1 Introduction

In today’s computing and communication systems, cryptographic

algorithms are designed to provide integrity and confidentiality of

data. The mathematical security of these implementations depend

on the secrecy of a short key, which provides a computational ad-

vantage to the communicating parties over the adversary. Hence, a

brute-force attack on these algorithms can only succeed with negli-

gible probability. Side-channel analysis (SCA) is a form of cryptan-

alytic attack which breaks the secret key of an embedded device

by utilizing the unintended ‘side-channel’ leakage emanating from

the physical implementation of the cryptographic algorithm. These

side-channel leakages can be obtained by monitoring the power
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Figure 1: (a) Histogram plot showing that the mean of

device-to-device variations of the power traces is signifi-

cantly higher than the mean of key-to-key (class) variations

for one device. 40 traces with 3000 time samples each were

used in each case. (b) Training with one device (TR1), the 256-
classDNN is able to classify unseen test traces from the same

device (TR1) accurately as seen from the confusion matrix,

while it does not generalize for other devices and misclassi-

fies many test traces from a different device (D1).

consumption of the device running the algorithm [4, 5, 25], elec-

tromagnetic radiations [6, 16] during the cryptographic operations,

processing time [3], cache hits/misses, and so on.

This article focuses on the power SCA attacks. Non-profiled

power SCA attack techniques include differential and correlational

power analysis (DPA/CPA), which have been utilized to break many

real-world encryption devices [1, 9, 30]. Profiled power SCA attacks

comprise of two stages: profiling and attack [2, 8, 27]. In the profiling

phase, multiple traces from an identical device are collected by

varying sub-keys (part of the cryptographic key), and a model is

built. During the attack stage, the model is utilized to classify each

sub-key of the device under attack.

In recent years, various machine-learning (ML) techniques have

been evaluated to perform profiling power SCA attacks [13, 20, 29].

Although successful attacks have been shown, these ML techniques

require pre-processing of the traces with proper time-alignment.

In 2017, Cagli et al. [11] proposed a deep-learning based approach

utilizing convolutional neural networks (CNNs) to provide an end-

to-end profiling strategy, even in the presence of trace misalign-

ments. Masking-based countermeasures were also shown to be

broken using neural networks [15, 26]. Deep learning based SCA

attacks does not require extensive statistical analysis to identify

the points of leakage, in contrast to the template attacks. Also, as

the dimensions of the data increase, ML SCA attacks become more

prominent compared to the template attacks [20]. Deep Learning

(DL) based SCA is still a new research paradigm [14] and all the
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Figure 2: (a) Trace Capture Set-up using the Chipwhisperer

platform. (b) Traces are captured frommultiple Atmega mi-

crocontroller devices (TR1−4) for training a DNN so that the

model is able to generalize to any other target device (D1−4).

previous works till date have focused on evaluating and im-

proving the attack on the same device which has been used to

train the neural network.

This work, for the first time, demonstrates a Cross-Device Deep

Learning based Side-Channel Attack (X-DeepSCA) using a 256-class
DNN. Figure 1(a) shows the measured cross-device variations in the

form of a histogram (red plot) of the absolute difference between

the samples at the same time index of the averaged traces from 2

different devices (TR1,D1) running the same software implemen-

tation of AES-128. For the device TR1, the green curve shows the

histogram of the variation between 2 different key bytes (classes).

We see that the inter-device variations for the same key are signifi-

cantly higher than the inter-key variations of the same device, which

makes the cross-device attack particularly challenging. The confu-

sion matrices in Figure 1(b) show that although the test accuracy

on the same device (DNN trained with device TR1 and tested with

unseen traces from the same device) is very high (red dots represent

the misclassified key bytes), the accuracy on a different test device

(D1) is significantly lower. Hence, training with one profiling device

overfits to that particular device leakage and may not be able to

generalize well to other devices.

Hence, in this work, we augment traces from multiple profil-

ing devices (Figure 2(b)) and build a DNN architecture to per-

form cross-device deep-learning based power side-channel analysis

(X-DeepSCA) attack. In addition, we analyze the individual class

(key byte) accuracies and demonstrate the practicality of an N-trace

(N ≤ 10) X-DeepSCA attack to achieve > 99.9% success of attack.

Finally, we study the effect of varying SNR scenarios, and show

that the X-DeepSCA attacks require ∼ 10× lower number of traces

to attack (minimum traces to disclosure: MTD) than the traditional

correlation power analysis (CPA) attacks [10].

In summary, the key contributions of this work are:

• A combination of designing the appropriate 256-class DNN

with proper choice of the hyperparameters to prevent over-

fitting, utilizing traces from multiple devices (TR1−4) during
training, coupled with the proposed N-trace attack leads to

the first successful demonstration of a cross-device deep-

learning SCA (X-DeepSCA) attack.
• Using the Keras library with a Tensorflow backend [21], we

show that the single-trace X-DeepSCA attack using the DNN

model achieves an average accuracy of > 99.9% for all the

Table 1: Overview of the RelatedWorks on Profiling Attacks

test devices (D1−4) under attack using 200K total traces for

the training (Sec. 3).

• Further, we investigate the individual class accuracies by

introducing a measure of entropy, leading to the proposed N-

trace X-DeepSCA attack to guarantee > 99.9% attack success

with N ≤ 10 encryptions (Sec. 4).

• Finally, we show that the X-DeepSCA attack performs > 10×
better in terms of MTD, with different signal-to-noise ratio

(SNR) scenarios, reducing the time of attack from minutes

to seconds (Sec. 5).

2 BACKGROUND & RELATEDWORK

Template-based profiling power SCA attacks are extremely power-

ful as they can potentially break the encryption key within a few en-

cryption traces [7, 27]. Recently, machine learning (ML) based pro-

filing attacks have been studied extensively [13, 17–20, 29]. These

ML-based attacks use supervised learning models like the support

vector machine (SVM), Self-Organizing Map (SOM) or Random

Forest (RF) for classification.

Deep neural networks (DNNs) have generated significant interest

in the recent years. It has been shown that the clock-jitter based

countermeasures against power/EM SCA can be broken using a

convolutional neural network (CNN) [11, 12, 14]. Also, masking

based countermeasures have been shown to be broken with neural

networks [15, 26].

A summary of the related works is shown in Table 1. Most of

the existing works [11, 17–20, 26, 27, 29] on profiling attacks have

tested their attack on the same device used for the template genera-

tion. [7, 22, 23] have evaluated cross-device template-based attacks

(TA) using statistical multivariate analysis, Principal Component

Analysis (PCA), Mutual Information Analysis (MIA) and Linear

Discriminant Analysis (LDA). [24] showed a multi-device profiling

using statistical TA.

However, none of the ML-based works have focused on the

cross-device attacks yet. Also, the previous works based on neural

networks (NNs) have evaluated their models with the same device

used for training. We have seen in Figure 1(a), the inter-device

variation is typically much higher than the inter-key (or inter-class)

variations. Hence, a NN model evaluated against the same device

may not necessarily work well on a different target device. This

work shows the first cross-device profiling attack using a deep

neural network (DNN).

To train a neural network, the typical leakage models used for

the power consumption are the Hamming Weight (HW) model

(9-class classification), and the identity (ID) model (256-class classi-

fication) [14]. In this work, we use the identity model for 256-class

classification and train our DNN to learn the leakage information
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Figure 3: Architecture of the proposed FullyConnectedDNN

for X-DeepSCA. The input layer consists of N = 500 neurons.

The 1st fully-connected (FC) hidden layer consists of 200

hidden neurons, followed by Batch Normalization, Recti-

fied Linear Unit (ReLU) activation, and a dropout layer. The

2nd hidden layer is similar without the dropout layer. Fi-

nally, the output layer has 256 neurons for predicting the

correct key byte utilizing the softmax function. If the traces

are not aligned in time, a convolutional layer as the input

layer would be required. In this work, we use the Fully Con-

nected DNN as the traces captured from the Chipwhisperer

are time-aligned.

accurately. For all the analyses shown in this work, the attacks are

performed on the 1st key byte of the AES-128 encryption engine.

Also, most of the previous NN models have been evaluated

on the available DPA v4 contest dataset, or the newly pub-

lished ASCAD database [12] which, to the best of our knowledge,

do not contain traces from multiple devices. Hence, to evalu-

ate our cross-device attack, we built a new database by capturing

traces from multiple devices using the Chipwhisperer platform

(Figure 2(a)). Separate sets of Atmega microcontrollers (Figure 2(b))

running AES-128 are used for profiling and testing the X-DeepSCA
attacks.

3 SINGLE TRACE X-DeepSCA ATTACK

In this section, we evaluate a single-trace X-DeepSCA attack. A 256-

class classifier is necessary to perform a single-trace cross-device

SCA attack (X-DeepSCA). However, designing a 256-class classifier

is significantly more difficult compared to the HW-based 9-class

classifier. Hence, choice of the hyperparameters like the learning
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Figure 4: Effect of Model Hyper-parameters on the Test Ac-

curacy (on the test device D1 after training with TR1−4): (a)
Learning rate (LR) of ∼ 0.01 provides the maximum test ac-

curacy, and higher LR leads to overfitting of the DNN re-

ducing the test accuracy. (b) Lower dropout shows higher

accuracy which implies that the data gathered from the mi-

crocontroller devices has sufficient electronic noise which

helps generalize to unseen data. Dropout higher than 0.3 re-

duces the accuracy.

A
cc

ur
ac

y 
(%

)

L
os

s

Epochs Epochs

Training Loss Function of the DNN a) b)Training Accuracy of the DNN

Figure 5: (a) Training and Validation Accuracy of the DNN

reaches ∼ 100% within 25 epochs and does not show any

overfitting. (b) Loss function of the DNN for both the train-

ing/validation sets. Note that training and validation have

been performed with data from all the 4 devices (TR1−4).

rate, number of hidden neurons, dropout, are extremely critical to

prevent overfitting or underfitting.

3.1 DNN Architecture

Figure 3 shows the architecture of the proposed fully-connected (FC)

DNN for the X-DeepSCA attack. Note that, for our work, the traces

collected from the Chipwhisperer platform are time-synchronized

and hence use of a convolutional layer is not necessary. Although

the captured traces from the AES-128 encryption engine (clocked

at 7.37 MHz) had 3000 time samples (ADC sampling frequency of

29.48 MHz) for an entire encryption operation, it was initially fed

to the DNN and verified that the network learns accurately from

the points of leakage (cross-verified using a CPA attack) within

the first 200 time samples for the 1st key byte under attack. After

this verification1, to reduce the model complexity (and the time for

training the DNN), only the first 500 time samples from each power

trace were fed to the DNN.

The first FC layer of the DNN consists of 200 neurons, and in-

creasing the number of hidden neurons may lead to overfitting.

Batch normalization layer [28] and the dropout layers provide reg-

ularization to prevent overfitting and encourage generalization to

1It is also worth noting that the DNN model can also serve as a leakage assessment
tool for cryptographic devices.
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Figure 6: Attack Accuracy on the test devices (D1−4) with the

DNN model trained with varying number of training traces

gathered from the 4 training devices, where each of them

(TR1−4) contributed equally .

unseen data. The Rectified Linear Unit (ReLU) is used as the non-

linear activation function to learn non-linear mappings from the

input to the output. The second FC layer is similar without the

dropout layer, and is finally followed by the output layer with 256

neurons, which predicts the correct key byte in a single trace utiliz-

ing the softmax function. The loss function used was categorical

cross-entropy, optimized with the Adam algorithm and with a batch

size of 32.

Figure 4(a, b) shows the effect of some of the hyper-parameters

of the DNN model on the accuracy of a different test device. Fig-

ure 4(a) shows that a learning rate of 0.01 provides the maximum

test accuracy, while a higher learning rate could lead to overfitting

resulting in reduced test device accuracy. From Figure 4(b), we see

that even in case of low dropout, the test accuracy remains high,

which implies that the data gathered from the real-world devices has

sufficient electronic noise. However, dropout more than 30% leads to

reduced classification accuracy.

To train the DNN, for all our experiments (unless otherwise

mentioned), 10K traces (equally distributed for all the 256 possible

values for the 1st key byte (classes) with a fixed plaintext) from

each of the four devices were augmented together, and 20% of the

total number of traces were kept for validation of the DNN during

the profiling phase.

3.2 Performance Analysis of Single-Trace
X-DeepSCA Attack

Figure 5(a,b) shows the training and validation accuracies of the

DNN. We can see that the DNN model reaches an accuracy of

> 99.9% within 25 epochs and also that the training and validation

loss approach 0. The validation set accuracy remains almost same

as that of the training set, implying that the DNN model is not

overfitting. Note that the validation loss is lower since the dropout

layer is present during training and not for the validation.

Figure 6 shows the performance of the trained DNNmodel on the

test devices (D1−4) with varying number of training traces, drawn

equally from all the four devices (TR1−4) reserved for training.

The X-DeepSCA attack on all the 4 test devices shown reaches 99%
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Figure 7: Confusionmatrix for each of the test devices (D1−4).
At most 3 key bytes out of the 256 (∼ 99% overall accuracy)

are getting misclassified for each of the test devices, with

the DNN model trained with 10K traces from each of the 4

training devices (TR1−4).

Attack Accuracy on Multiple Test Devices 
with varying number of training devices

Number of Training Devices
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Figure 8: Effect of augmenting traces fromMultiple Devices

during training: As the number of devices is increased, the

DNNmodel generalizes well to new devices (D1−4) and hence

the accuracy improves and reaches 99% with 4 training de-

vices (TR1−4 - 10K traces each).

accuracy with 40K training traces, and > 99.9% with 200K training

traces in total(drawn equally from each of TR1−4).
Note that for the test devices, traces are collected for different

keys to evaluate the accuracy of all the classes (key bytes). Fig-

ure 7(a-d) shows the confusion plots on the test devices (D1−4) after
training with 40K traces (10K from each of the 4 training devices).

As expected, for all the test devices, we see that at most 3 key bytes

are misclassified (marked in red, outside the diagonal line) out of

the all 256 different key bytes.

Figure 8 shows the effect of augmenting traces from multiple

devices (with 10K traces each) for training the DNN. We see that

with only 1 training device, the accuracy on a test device goes to

∼ 80%, while it increases to ∼ 99% after augmenting traces from
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Figure 9: Individual Key Byte (Class) Accuracy Distribution

for the test deviceD4 (showed theworst average accuracy out

of the D1−4): The black plot represents the accuracy for each

key byte, and the red plot denotes the maximum percent-

age of a particular class misprediction for the test device D4.

(a) With 1-device training (TR1 - 10K traces), for some of the

key bytes the black and red curves overlap, while (b) with

4-device (TR1−4 - 10K traces each) training, there is a signif-

icant reduction in the measure of entropy and an N-trace

attack would be able to predict even the lowest accuracy key

byte with high success probability (refer to Fig. 10).

all the 4 training devices with only 10K traces captured from each

device.

4 N-TRACE X-DeepSCA ATTACK

In the previous section, we have shown that a single-trace X-DeepSCA
attack with an accuracy of > 99.9% (averaged over all the 256

classes) can be performed on a test device, with 200K training

traces (equally from each of the devices TR1−4) used to build the

DNN model. In this section, we analyze the individual class (key

byte) accuracies to evaluate the practicality of a single-trace attack.

4.1 Individual Key Byte Accuracy

Figure 9(a, b) shows the individual key byte (class) accuracies and

the percentage of the misclassified key byte with the highest occur-

rence in prediction (for every key byte class) for the test device D4

(as it showed the lowest accuracy of the 4 test devices and poses the

worst case scenario for an attacker). The separation between the

class accuracy (Kpred = Ktarдet ) and the maximum percentage of

the mispredicted class (the particular key byte which is wrongly

Traces to Attack (N)

Test Accuracy = 60% (*)
Test Accuracy = 70% (*)
Test Accuracy = 80% (*)
Test Accuracy = 90% (*)

N-Trace X-DeepSCA Attack: Success Probability
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Figure 10: N-trace X-DeepSCA Attack: Number of traces re-

quired by an attacker to achieve a confidence of 99.9%. Even

for classes with low accuracies, the N-trace X-DeepSCA attack
would reveal the correct key byte within N ≤ 10 traces, as

long as the individual class accuracy remains higher than

the % of maximummispredicted key byte for that class.

predicted maximum number of times - Kx � Ktarдet ) gives a mea-

sure of the entropy (ηKtarдet ) of the X-DeepSCA attack, as shown
in Eqn. 1,

ηKtarдet = 1 −
[ |Kpred = Ktarдet |

|Ktotal |

− arдmax(|Kpred = Kx | : Kx � Ktarдet )
|Ktotal |

]
(1)

where, Kpred represents the predicted key byte, Ktarдet is the

target key byte, Kx is any other key byte (mispredicted) which

has the maximum occurrence for the Ktarдet class, and |Ktotal |
denotes the total number of queries (traces) for that particular

Ktarдet class.
Figure 9 shows that training with 4 devices has significantly

lower entropy (ηKtarдet ) compared to 1-device training. Also, we

see from Figure 9 that although the test device D4 achieves an

average accuracy of > 99% (most of the key bytes can be broken

with a single-trace), as seen from Figure 6, 8, the minimum accuracy

of few key byte drops below 80%. Hence, although the single-trace

attack will succeed on most key bytes, it may not work for a few

key bytes, and a multi-trace attack is required.

4.2 Success Probability of the N-trace
X-DeepSCA attack

Using the concept ofmajority voting, we propose anN-trace X-DeepSCA
attack. The number of encryption traces required to gather in order

to achieve a confidence (probability of success) of 99.9% can be

mathematically derived, as shown in Eqn. 2 (valid for N ≥3):

Pr (Maj(N ) = Ktarдet ) =
N∑
x=2

Pr (x)

=

N∑
x=2

(
N

x

)
px (1 − p)N−x 255PN−x

255N−x (2)
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Figure 11: (a) Number of traces (averaged) required for a suc-

cessful X-DeepSCA attack (with > 99.9% accuracy) in differ-

ent SNR scenarios. For SNR=20dB, averaging with less than

10 traces is sufficient to achieve > 99.9% accuracy, while it

requires ∼ 100 traces for SNR=10dB, and ∼ 1000 traces for

SNR=0 dB to be averaged over to achieve the 99.9% accuracy.

(b) Comparison of the X-DeepSCA attackwith traditional CPA

attack shows a lower MTD for X-DeepSCA for all SNRs.

where, Pr (Maj(N ) = Ktarдet ) gives the probability of a success-

ful target key recovery using the majority voting with N traces, p
is the single-trace test accuracies for each class (key byte value),

P represents the permutation operator. Note that the underlying

assumption of Eqn. 2 is that the class accuracy and the class mispre-

diction distributions are uniform, and there is no overlap between

them for any of the individual key bytes. Hence, as seen from Fig-

ure 9(b), majority voting works as the entropy is reduced, and even

for the lowest accuracy key byte (with 70% accuracy, p = 0.7), N-

trace X-DeepSCA attack achieves an accuracy (success probability)

of 99.9% with N ≤ 10 encryptions, as shown in Figure 10 (derived

from Eqn. 2).

5 DISCUSSIONS

5.1 X-DeepSCA Attack: Effect of SNR Variation

Now, we evaluate the effect of varying Signal-to-Noise Ratio (SNR)

on the efficacy of the X-DeepSCA attack. Figure 11(a) shows the num-

ber of traces required to average for a successful X-DeepSCA attack

with > 99.9% accuracy on the test device D1 using the training set

with TR1−4 (10K traces each). Figure 11(b) shows that the number

of traces required to retrieve the correct key byte of the AES-128

engine under attack is ∼ 10× lower than the traditional CPA at-

tack (at the 1st round S-box output using Hamming Weight(HW)

leakage model) for different levels of SNR.

5.2 Future Work

For the future scope of this work, the efficacy of the proposed

X-DeepSCA attacks can be further improved if we can guarantee

that the accuracy of each key byte and the mispredicted classes for

that key byte are uniformly distributed. This could be achieved by

ensuring that the DNN has minimum bias during a misclassifica-

tion, which would lower the number of traces (N) required for a

successful N-trace X-DeepSCA attack. Overall, the proposed attack

can put a huge dent to the security of embedded devices.

6 CONCLUSIONS

For the first time, this work shows a Cross-device Deep Learning

based Side-Channel Analysis (X-DeepSCA) attack. Utilizing multiple

(4) devices for training a fully-connected DNN, results showed that

an average accuracy of 99.9% can be achieved with all the 4 test

devices using 200K training traces, showing the possibility of a

single-trace attack. However, deeper analysis utilizing the proposed

measure of entropy revealed that few individual key bytes had

lower accuracies, and hence an N-trace X-DeepSCA attack (N ≤ 10)

is proposed to break the key with > 99.9% confidence. Finally,

we show that for varying SNR scenarios, the proposed X-DeepSCA
attack achieves ∼ 10× lower MTD, which breaks the target devices

within seconds compared to a few minutes for the traditional CPA

attack, increasing the threat surface significantly.
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