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Abstract

Visual reasoning is a challenging but important task that
is gaining momentum. Examples include reasoning about
what will happen next in film, or interpreting what actions
an image advertisement prompts. Both tasks are “puzzles”
which invite the viewer to combine knowledge from prior ex-
perience, to find the answer. Intuitively, providing external
knowledge to a model should be helpful, but it does not nec-
essarily result in improved reasoning ability. An algorithm
can learn to find answers to the prediction task yet not per-
form generalizable reasoning. In other words, models can
leverage “shortcuts” between inputs and desired outputs, to
bypass the need for reasoning. We develop a technique to
effectively incorporate external knowledge, in a way that is
both interpretable, and boosts the contribution of external
knowledge for multiple complementary metrics. In particu-
lar, we mask evidence in the image and in retrieved external
knowledge. We show this masking successfully focuses the
method’s attention on patterns that generalize. To properly
understand how our method utilizes external knowledge, we
propose a novel side evaluation task. We find that with
our masking technique, the model can learn to select useful
knowledge pieces to rely on."

1. Introduction

Visual reasoning is an important family of problems in-
cluding visual question answering (VQA) [5, 9, 12, 41]
and visual commonsense reasoning (VCR) [56]. The name
“reasoning” bears a flavor of classic Al and structured logic-
inspired inference steps; one might argue that a human ac-
cumulates knowledge as they mature, and they store this
knowledge in a metaphorical “knowledge base”, then re-
trieve information from it as needed. Indeed, some ap-
proaches to VQA/VCR do rely on structured, symbolic rea-
soning [4, 18, 44, 47]. However, in many domains state of
the art performance is achieved by end-to-end transformer
models [6, 27, 43] or other attention models [3, 16] which
do not perform structured reasoning. These models excel

'0ur code is available at ht tps : //github.com/yekeren/Ads—KB.

Single Task
Reasoning process is
not explicitly evaluated.

Does this person have
20/20 vision?

Why is [person4] pointing
at [person1]?
Reas::i‘:g"iesl :Er\?aslkuated Why is this answer right?

) g o
as a separate task with —

no guarantee for @ What should | do,
3 according to this

helping the main task. S O advertisement? [action]
T Why, according to this ad,

should | take this action?
[reason]

Which of the following comments help
Side Task ' to understand the ad?
Reasoning is integral to

. b) Nike was the goddess of victory.
the main task and can

be evaluated directly.

Match the image with a description
based on the comment you choose

Figure 1: Visual reasoning tasks. Previous definitions ei-
ther oversimplify reasoning (as answering, top) or treat it
as a standalone task parallel to answering (middle). One of
our contributions is a new evaluation side task (bottom) that
checks the decisions made by our model, i.e. which knowl-
edge pieces it selected to complete the answering task.

when sufficient labeled data is available, and potentially a
large pool of image-text data in a disjoint domain, because
they can effectively learn to mimic patterns in the data.

However, we highlight two limitations of existing meth-
ods for reasoning tasks. First, even though human reasoning
is grounded in knowledge accumulated over the years from
multiple sources, most methods just leverage data from the
human-curated target dataset. Second, these models often
learn shortcuts which do not generalize well; for example,
they might learn to perform string or object matching be-
tween question/image and answers, rather than reasoning
about properties and causality.

We propose a mechanism to effectively incorporate ex-
ternal knowledge for a task that especially requires it. To
properly leverage the benefit that external knowledge can
provide, we enable the model to filter irrelevant knowledge,
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Figure 2: Overview of the proposed model. Given a single image ad, we first expand the representation using object
detection and OCR, and also retrieve relevant knowledge based on slogan snippets (left). We build a graph-based model to
infer the ad’s message (top-right) using all available information (right), but allow the model to filter irrelevant knowledge
(shown with red slashes). For more effective training, we randomly mask query keywords and other tokens (crossed-out).

and make training more robust, by partly blocking the effect
of shortcuts through masking.

In particular, we first present a graph-based model that
represents the image meaning using visual information, em-
bedded textual information, and information from external
knowledge bases. Unlike most approaches that treat knowl-
edge as always-correct-and-useful, we require the model to
learn to filter out irrelevant information provided in the un-
controlled environment (e.g. paragraphs from DBPedia), by
learning to dynamically downweight some graph edges.

Then, we use the presented model to study how the
model uses external knowledge to reason. We find that
models exploit “shortcuts”, namely they can (1) select the
true label, without (2) finding the correct and helpful knowl-
edge for prediction. We call the former the main task and
the latter a side task in that most benchmarks only eval-
uate (1) but not (2). We study the phenomenon in detail
and use a stochastic masking technique which prevents the
model from leveraging shortcuts. The masking forces the
model to “work harder” and learn more generalizable re-
lationships. With our proposed masking, our model better
utilizes knowledge, resulting in gain in performance on the
main task, but an even larger boost on the side task. Note
that we do not collect annotations for the side task for train-
ing, but only for evaluation.

We test our framework on a reasoning task where exter-
nal knowledge is especially necessary due to the creative
nature of the images. We use the Ads dataset of [14] since
advertisements naturally anchor the message of the image in
information from external world (e.g., brand names, celebri-
ties, etc.). Given a visual ad, the method should retrieve the
correct “action-reason’ statement which captures the action
that the ad implies the viewer should take and reasons it
provides for taking the suggested action. The word “rea-
son” in this context is akin to “rationale”. In contrast, by
“reasoning” we mean the ability to use the right evidence
to select a statement. Fig. 2 shows an example of expected

correct reasoning on an ad: knowing Nike is a sportswear
company and observing the shoe is the key to match to “/
should buy Nike sneakers because they protect my feet”.

The knowledge required to understand the ads is usually

domain-specific and focused (e.g., details regarding brand
names and persons). In contrast to using an image-text
disjoint dataset to pre-train, as done for other VQA/VCR
benchmarks, we use a sparse number of knowledge pieces
(i.e. from DBPedia). Thus, it is more feasible to verify the
correct use of knowledge in our setting (with our side task).

As for the benefits of using masking to learn generaliz-

able features, we show that masking allows our model to
improve the standard metrics used for evaluating advertise-
ment understanding (main task). Besides, we verify that
the external knowledge our method chose to use, is actually
supporting the reasoning (side task). We show that the sim-
ple masking strategy more than doubles the accuracy of the
knowledge selection (evaluated in the side task).

To summarize, our contributions are as follows:

e a bottom-up graph model that utilizes external knowl-
edge and filters irrelevant knowledge,

e a method to effectively utilize external knowledge, by
masking retrieved knowledge and image evidence, to
prevent the model from learning shortcuts, and

e anew side task with annotations to evaluate reasoning.

2. Related work

Use of external knowledge in VQA. Early bench-
marks [5, 8, 58] provide only the image and paired ques-
tion/answers, but more recent approaches incorporate di-
verse resources external to the target corpus. In this
work, we focus on discrete external knowledge (e.g. facts
in a knowledge base), rather than pretraining on multi-
modal data in unsupervised fashion (i.e. learning better
image and text representations). Some prior knowledge-
based visual reasoning methods assume applicable facts or
background knowledge are present in the VQA dataset it-
self [29, 39, 42, 47, 46]. However, in the NLP domain,



[15, 17, 48] showed on the SQuAD [35] benchmark that
providing always-relevant knowledge is not good practice
since the learned models do not necessarily properly use
the facts to reason. Others methods [31, 32, 1] use a sep-
arate, general knowledge base (e.g. ConceptNet), predict
whether the answer is in the knowledge base and choose the
most suitable answer candidate. Our method assumes this
more challenging setting (only general knowledge base is
available). In contrast to [31, 32], we explicitly evaluate the
ability of the method to choose relevant knowledge, without
requiring additional annotations at training time (through
our side task). Importantly, we propose a new mechanism
to make the incorporation of knowledge more effective than
simply using additional graph nodes [31, 32], and without
requiring the use of a special relational engine [1].

Metrics for reasoning ability. VQA datasets typically
ask a single question, i.e. while answering is explicitly eval-
uated, reasoning evaluation is only implicit. This setting
is not suitable for verifying the effectiveness of external
knowledge usage. In addition to the main metric (which
measures the accuracy of answer prediction), we explicitly
evaluate a method’s reasoning capability, i.e., whether the
model could find the correct knowledge piece to use. Other
methods e.g. [56, 14] also incorporate additional metrics,
e.g. the model needs to provide a rationale for its answer.
However, they treat answering and reasoning as parallel
tasks, and do not enforce the answer prediction to be based
on the rationale. In our setting, answering directly depends
on reasoning, thus evaluating answering verifies the output,
while evaluating reasoning verifies the inner workings of
the algorithm. See Fig. 1 for a comparison of tasks/metrics.

Dataset bias. Many works studied the VQA benchmark
validity, e.g. [8, 58] retrospected on organizing the VQA
challenge and proposed methods to improve the datasets.
[36] studied the language priors in the VQA dataset, and
forced the method to look at the image; we instead (implic-
itly) force it to look at external knowledge.

Ads understanding. We focus on advertisement under-
standing as our testbed to study the incorporation of exter-
nal knowledge. This is because ads often appeal to human
associations (guns are dangerous, vegetables are healthy)
that are not explicitly stated in images and cannot be eas-
ily learned from the dataset itself. [14] provided action-
reason statement annotated by multiple humans (“What ac-
tion should the viewer take based on the ad? What reason
does the ad provide for taking the suggested action?”). [52]
proposed a cross-modal retrieval task to match the human-
annotated statements with help from captioning and sym-
bol prediction models, [2] used a symbolism-based atten-
tion model, and [33, 53] additionally used textual slogans
in the image extracted with OCR techniques. Instead of
using an embedding from a single modality or fusing the
multi-modal features, we use a graph and allow message

passing between modalities. The learned weights in the
graph structure capture the model’s reasoning and can be
used to gauge “How does the model incorporate external
knowledge to reason about an ad?”.

Explainable models. Our focus is on ensuring and eval-
uating a model’s ability to select reliable evidence (i.e. ex-
ternal knowledge), not on the explainability/interpretability
of models to a human. We care about the correctness of
knowledge pieces used, rather than how interpretable the
model’s selections are. Prior work [10, 13] collects explana-
tion annotations and requires a model to point to the human-
annotated reasons for an effect—for example, finding the
spatial location in an image that directly affects a model’s
prediction. Unlike our work, these require annotation effort,
i.e. humans provide explanations for training. Attention
mechanisms [28, 34, 50, 55, 30, 40, 49, 51] and graph con-
volutional methods [21, 31, 38] are another way to achieve
explainability. They optimize a primary goal while also
learning the reliability of different evidence. Our approach
is similar in that we do not require additional supervision,
but we explicitly study the relation between choosing cor-
rect supportive evidence and predicting the correct answer.

3. Approach

We focus on one specific reasoning task, namely ad-
vertisement understanding. We incorporate image regions,
text in the image, and external DBpedia knowledge [26],
in a graph model. Because we retrieve knowledge from an
open, general, real-world knowledge base, retrieved irrele-
vant pieces of knowledge dominate in count. We thus allow
our model to select which pieces of knowledge and infor-
mation to leverage, using learnable scalar edge weights.

One interesting but easy to neglect problem is that when
the answer options can easily be matched to the image evi-
dence, additional information (external knowledge) may not
be necessary and hence may not help performance on the
main task. Fig. 2 shows an example in the Ads dataset:
given a Nike ad with an embedded slogan containing the
word “Nike”, the model must retrieve external knowledge
to infer the particular properties that this ad demonstrates,
so it can select the correct action-reason statement. How-
ever, the model can also find a shortcut and not perform rea-
soning, by merely looking for potential choices containing
the brand name (e.g. simply matching “Nike” between the
slogan, which is part of the input, and the word “Nike” in
one of the answer options). Another example is the famous
PepsiCo celebrity branding, where a naive model can sim-
ply remember popular celebrities and directly match them
to “Pepsi” rather than understanding their shared charac-
teristics (e.g. athleticism), thus it may generalize poorly if
a new spokesperson is introduced in the ads. This means
a model can correctly answer without reasoning correctly
(i.e. without squeezing more useful information out of the



retrieved knowledge and without using the right knowl-
edge). We refer to this phenomenon as a shortcut effect.
Quantitatively, the gap between answering and reasoning is
demonstrated by the difference in performance we obtain
on the main answering task and the side knowledge selec-
tion task (Sec. 4). While we study shortcut effects in the
Ads dataset, we want to point out that similar issues exist-
ing in other datasets. We show a small example in VCR
[56], where the subject repetition seems to be the trick to
answer the question without knowing the visual cues:

How is Jackie feeling? Avery is very excited.
How is Jackie feeling? Jackie is focused and active.

Below, we first describe the advertisement understand-
ing task (Sec. 3.1). We introduce our overall framework and
how we train (Sec. 3.2). We describe our image represen-
tation (Sec. 3.3-3.4) and knowledge selection mechanisms
(Sec. 3.5). Finally, we describe our strategy for breaking
shortcuts and forcing the model to “study harder” and learn
more generalizable patterns (Sec. 3.6).

3.1. Task: Advertisement understanding

We focus on the advertisement understanding task [14]
because it considers an interesting and practical scenario.
First, ads exploit symbols that refer to content outside the
image; thus, retrieving external knowledge is required. Sec-
ond, unlike [39, 56], neither external knowledge nor reason-
ing rationales are available in clean form. Third, multiple
modalities (image and slogan text) must be considered.

For each image, [14] provide three statements in which
each is an action-reason pair (e.g., “I should buy Nike be-
cause it protects my feet.”). There may be multiple plausible
reasons per action, e.g. to buy “sportswear”, the image may
argue “it protects”, “is cheap”, or “celebrity wears it”. Mod-
els are required to match an advertisement with the correct
action-reason descriptive statement.

Given an ad image A, we assume it is composed of two
parallel entity sets A = {V, T}, where V stands for visual
signals and 7" represents the embedded slogans (i.e. textual
signals). For each image, we generate a group of object
proposals as the salient visual signals from the ad, noted
as V' = {v1,va,...,vy}. We also use existing optical
character recognition (OCR) engines to extract embedded
text slogans as T' = {t1,ta,...,t|7|}.

3.2. Training: Matching to the statements

We follow the approach in [52] and use triplet loss
(Eq. 1) to optimize the cosine similarity cosine(h,s) =
thﬂﬁ between advertisement representation h and answer
choice statement embedding s. Eq. 1 ensures that paired
image and answer choices should be more similar than un-
paired ones (i.e., cosine(h,s;) > cosine(h,s_)). s; de-
notes the embedding of a paired annotation, s_ is a sam-

pled statement embedding in the mini-batch, using semi-
hard mining [37], and 7 is the margin in the triplet loss.
L(h,s) = max(0, cosine(h,s_) —cosine(h, s} )+n) (1)
We encode statements s = W BILSTM(¢(s);05) €
RP*1 where 1 is the word embedding process, 8, denotes
the parameters of the statement encoder, and W is for the
linear layer. Below we describe how we represent the ad
image h using a graph. During inference, models pick the
most probable statement from candidates according to co-
sine similarity: argmax cosine(h,s).

s€candidates

3.3. Image representation graph: Nodes and edges

Briefly, an image h is partially represented using slogan
text found in the image; in turn, these slogans are repre-
sented using external information found using the slogans
as queries. Our image representation graph contains four
types of nodes (image, slogan, knowledge and a global
node), and three types of edges connecting these nodes.

Image nodes. For each image proposal v; € V, we use
a pre-trained model to extract its feature CNN(v;). The em-
bedding of v;, denoted as v; € RP>1 is obtained as a linear
projection v; = W, CNN(v; ) where W, is the parameter.

Slogan nodes. We represent each OCR-detected slo-
gan ¢; € T using a BILSTM encoder, then project

it into the same feature space as the image: tgo)
W,BILSTM(%(t;); 8;) € RP*1. As OCR may produce
noisy detections, model weights 3 discussed below (Eq. 3)
choose which OCR results to use.

Knowledge nodes. Since the embedded slogans in ads
are usually succinct, abbreviated, or ambiguous [24, 57], an
external database will be used as a source of knowledge to
help enriching and clarifying the meaning of the slogans.
Specifically, we send each word in slogan ¢; to the DBpedia
knowledge base [26] as a query. This retrieval process ¢ re-
turns a set of related comments. For example, p(“WWF”)?
returns the explanations of “Windows Workflow Founda-
tion”, “Words with Friends”, and “World Wide Fund for
Nature”. We take the union of the retrieved knowledge en-
tries to enrich a slogan, denoted as ¢(t;) = U, ¢,, ¢(q). In
Fig. 2, the blue boxes show these extended pieces of knowl-
edge for a specific slogan. Our model will learn to select
the relevant ones using the weights « in Eq. 2.

For external knowledge k; ; € ¢(t;) (with j ranging over
all retrieved comments for slogan ¢;), we use a separate Bil-
STM encoder k; ; = W;BILSTM(¢(k; ;); 0;) € RP*L.
Note that knowledge nodes share the word embedding pro-
cess ¢ with slogan nodes and human-annotated statements
but not the BILSTM encoder, because we suppose word
meanings in different modalities (DBpedia comments, slo-
gans, action-reason statements) are the same, but the gram-
mar structures may differ.

2http://dbpedia.org/page/WHE



Edges. We build an inference graph (DAG) to capture
the relationships for a better understanding of the image.
We treat all the proposals, slogans, and knowledge pieces
as nodes, with the knowledge nodes connected to the asso-
ciated slogans by IsADescriptionOf edges. Next, we
add a global node as an overall representation and connect
all proposals and slogans to it using ContributesTo
edges. The representation of the global node will be used to
facilitate message passing and graph inference (described
next). We also add extra IsIdenticalTo self-looping
connections to all slogan nodes. Fig. 2 shows an example.

3.4. Image representation graph: Inference

Our method propagates information in a bottom-up man-
ner and adjusts edge weights to optimize the final image
representation h (Eq. 1). This inference procedure is simi-
lar to the Graph Convolutional Network (GCN) [21] in that
we both use message passing to deduce the uncertain node
embeddings. However, we fuse global context information
to compute the edge weights, while GCN considers only the
local information among neighbors.

Updating slogan embeddings. The slogan ¢; chooses

a meaning (soft selection using the o weights) among its
initial embedding tl(-o) and representations of the retrieved

DBpedia comments k; ;.
[(ti)l

6 = aiot” + > aigkiy @)
—— —
original meaning R ,

descriptions from extra knowledge

The weight vector a; € RFI®(t)| denotes the incoming
edge scores for a slogan node ¢;, where «; ¢ is the weight
of the self-loop edge IsIdenticalTo, and a;; (J €
{1,...,|¢(t;)|}) are the weights of IsADescriptionOf
edges. We require that ) j¢:0 2 a; ; = 1. We describe how
we learn a shortly.

The global embedding h is a weighted sum of image
patches and updated slogan embeddings.

V] [VI+|T| .
h= Y gvi + Y gt 3)
i i=|V|+1

o

messages from proposals

messages from slogans

Specifically, we define a vector 3 € RIVI*ITI denoting the
weights of different Cont ributesTo edges. The first | V|
values are the contributions of image proposals and the next

|T| denote slogans. We require ZLZ'IHTl B = 1.
3.5. Image representation graph: Edge weights

The weight vectors a and 3 allow our model to choose
which knowledge pieces and slogans to use. We show the
knowledge pieces chosen (with o larger than 0.05) in Fig. 3;
thicker arrows correspond to larger values of «, /3.

We use an image-guided attention mechanism to infer
a (Eq. 2) hence choose whether to incorporate the external
information or maintain the original slogan feature. This
choice depends (1) the relation between the node and the
connected slogan target, and (2) the relation between the
node and the image context. We use a group of three-layer
perception models denoted as MLP(x, y; 8) to model the
relations between any two types of feature vectors (x,y €
RP>1) In Eq. 4, [;] denotes concatenation, and - point-
wise multiplication; & = (W1, W) denotes parameters of
a specific relation MLP, in which W1, Wy, are parameters.

MLP(x,y;0) = Watanh(W; [x;y;x-y]) (4

Eq. 5 defines the edge weights connecting to textual slo-
gans t;. We define the image context v = IV\ Zlv‘l Vi.
0%, and 6¢ are the parameters of the node-slogan and node-
context MLPs. These MLPs measure how strong is the rela-
tionship between a node and the target slogan, and between
anode and the image context.

MLP(t? {”; 6 ) + MLP(t\”,v;62)
S when j =0
"I MLP(k, 5, 67:0!) + MLP(k; ;,v:62)  (5)
when 1 < j < [¢(t;)|

a; = softmax(a;)

To compute weight vector 3, we update the slogan con-
text £ = ‘T‘ ST ¢, then use Eq. 6. This is a co-
attention mechanism in that we use visual context to deter-
mine weights of slogan nodes, and use slogan context to
decide contributions of image proposals. When there is no
slogan detected, the image features will dominate.

MLP(v,,5";63)
when 1 < i < |V|

MLP(t{", ¥ 6%) (6)
when |[V|+1<i<|V|+|T)|

3 = softmax(b)

3.6. Masking for effective knowledge utilization

As we show in our experiments, combining the knowl-
edge directly with the image and text, despite the learned
edge weights, achieves small gains over using image and
text alone. As we show in Fig. 3, our model as described so
far often ascribes small weights « to external knowledge re-
trieved. We discussed this “shortcut learning” phenomenon
in Sec. 1. Thus, we next focus the model’s attention towards
important cues and knowledge pieces for reasoning, using a
set of automatic masking strategies. To cope with this prob-
lem, we propose a simple yet effective masking strategy to
break shortcut learning. For example, we replace the query



from the retrieved paragraph with the out-of-vocabulary to-
ken. In this way, the two pieces of knowledge in Fig. 2
become “[oov] is a sportswear company” and “[oov]
is the name of an asteroid”. Then the model can figure
out whether “sportswear” or “asteroid” helps more for un-
derstanding the ad. At test time, when the model sees a
rare sportswear company, it can benefit from the retrieved
knowledge and not fail due to failed word-matching.

Our masking is similar to dropout (which we do use for
our baseline), but applied over pieces of evidence in the slo-
gan, knowledge comments, or action-reason statements. It
is also similar to masking in cross-modal transformer meth-
ods [27, 6] but (1) we do not train the method to recover the
masked symbol, and (2) transformer methods do not employ
external knowledge, which is the key focus of our work.

We experiment with the following masking strategies in
which the first two are only applied during training while
the last one is used for both training and inference.

o M, randomly drops a detected textual (T) slogan, with

a probability of 0.5.

e M; randomly sets the query words (e.g. “WWEF” or
“Nike”) in the human-annotated statements (S) to the
out-of-vocabulary token, with probability 0.5.

e M;, replaces the DBpedia queries in the retrieved
knowledge contents with the out-of-vocabulary token.

In Tab. 2, we show that these strategies are more effective
than masking over the image [25].

We found the masking strategy helps to significantly im-
prove the main task of retrieving an answer. Moreover,
when we evaluated the relevance of the knowledge pieces
our model chose using weights ¢, we found an even more
significant margin. While our masking strategy is specific
to our target domain, masking in general merits exploration
as a technique to aid in knowledge-based reasoning.

4. Experiments

Dataset. We use the data from the 2018 ad understand-
ing challenge [23]. There are 51,223 trainval images paired
with 161,557 annotated statements; and 12,805 fest images,
each with 3 correct statements and 12 incorrect distractions
(15 in total). We use Google Cloud Vision OCR [7] to rec-
ognize the embedded textual slogans. We retrieve DBpedia
comments based on detected slogans; an example SPARQL
query is shown in our supplementary file. Eventually we
obtain 443,747 detected textual slogans, and 30,747 unique
knowledge descriptions, to be associated with the 64,028
images (trainval+test). Each image is annotated with, on
average, 6.9 slogans and 27.5 DBpedia comments.

Main task metrics. Following the convention in the Ads
challenge, we report accuracy (aka. precision@1) to com-
pare against other methods from the challenge. However,
we note that statement retrieval accuracy on the original
task (3 correct with 12 incorrect statements) is not distin-
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Figure 3: Examples of the learned graphs (best with
zoom). We show the ad image and annotated action-reason
statements on the left, the graph learned without masking in
the middle, and that learned with masking (our approach)
on the right. We show slogans in blue, DBpedia comments
in orange, and the global node as a star. Arrow thickness
is correlated with learned weights o, 3. For visualization
we removed all edges with small weights (threshold=0.05).
Our method more effectively leverages external informa-
tion, as it relies on appropriate knowledge (in orange) more
than the baseline method w/o masking does.

guishable enough, as many methods tie on this metric. To
mitigate this issue, we additionally report min and avg rank
(of the three correct statements) and recall @K scores, in-
spired by [20, 22, 45]. Further, we created two additional
“harder” test sets named Sampled-100 and Sampled-500,
where each image is accompanied by 3 correct statements
and 97 (or 497) incorrect distracting options.

Side task. We recruit human annotators to manually ver-
ify whether the retrieved knowledge is helpful for the ad
understanding task. Specifically, for a given advertisement,
we show all retrieved knowledge pieces and ask humans to
annotate whether each piece is helpful or not in understand-
ing the ad. These annotations serve as “gold standard” for
knowledge selection evaluation (Sec. 4.3). We provide de-
tails in supp. Note these annotations are never used to train.

Training details. We use a pre-trained object detector
[54] to generate 10 proposals per image and keep the 20
largest OCR detected regions. Note we only use the pro-
posal regions, without any labels. Since we do not have
ground-truth annotations for both objects and slogans, we
manually verified proposal and OCR outputs are reason-
able. Improving these models may increase performance,
but we did not test alternatives since we care only about
the relative contribution (with/without masking) as a mech-
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OURS: V,T+K(M) |87.3 77.5 55.9 30.8(28.4 75.2 89.2 98.2(1.23 2.91 V,T+K(Ms,Mg) 3.00 7.43 29.64 +1.07%
Results on the Sampled-100 task OURS: V,T+K(M¢,Ms,Mg) 291 6.56 25.14 | +16.09%
Vv, T 79.8 66.5 46.9 26.2(126.0 64.4 74.9 83.5(2.38 7.52 V,T+K(M,,M¢,M¢,M},) 3.01 7.21 28.61 +4.51%
V, T+K 80.0 67.0 47.0 26.1(26.0 64.9 75.1 83.4|2.29 7.49 . : :
OURS: V,T+K(M) |80.2 67.9 47.9 26.8|26.1 65.8 76.6 85.4|2.14 6.56 Table 2: Average Rank on the ranking tasks. Relative
Results on the Sampled-500 task improvement is based on Sampled-500. Lower scores are
V,T 65.552.3 37.8 21.7]21.3 50.5 60.4 69.0[3.18 30.1 better. The best method is shown in bold.
V, T+K 65.4 52.3 38.0 21.9|21.3 50.6 60.7 69.6/7.60 30.0
OURS: V,T+K(M) |64.8 52.4 38.3 22.1|21.1 50.7 61.1 70.6(6.89 25.1 our masking strategy OURS: V,T+K(M) improves re-

Table 1: Main result using three ranking task setups. The
best model in each group is shown in bold. High Precision
and Recall scores, and low Rank scores, are better.

anism to make knowledge incorporation effective. To avoid
missing undetected objects, we also add the entire image
as a proposal. Our vocabulary for slogan, knowledge and
statements consists of words that appeared more than 5
times in human-annotated statements or more than 20 times
in OCR slogans or DBpedia comments. v;, tEO), tl(-l), k; ;.
h, s are all 200-D vectors. We use RMSprop with learning
rate 0.001, batch size 128, and 7 (in triplet loss) of 0.2.

4.1. Qualitative examples

Fig. 3 shows learned edge weights. The weights (width
of arrow) from visual objects, slogans and external knowl-
edge towards the global node (star) reveal their relative con-
tributions. The model without masking does not utilize the
external knowledge effectively: all knowledge pieces have
extremely small weights thus are omitted from the visual-
ization. This indicates that even though the external knowl-
edge is available, the model still tends to process superfi-
cial word pattern matching. Instead, when the entity in-
formation (potential shortcut) is masked from the retrieved
comments, along with other info randomly sampled and
masked, the model learns semantics from and thus better
exploits useful knowledge. These results also suggest the
need to evaluate knowledge selection explicitly as a side
task, as we do in Tab. 3, as models may solve the main an-
swering task but use irrelevant external knowledge or sim-
ply suppress all external knowledge.

4.2. Main result: Effectiveness of masking

In Tab. 1, let V denote the visual proposals, T the textual
slogan information, and K the knowledge comments from
DBPedia. My, M;, and My, denote the different masking
strategies described in Sec. 3.6. Simply “M” (for mask)
means we use all three of them. By comparing V,T and
V,T+K in each task, we see that simply adding knowl-
edge achieves very marginal gains because the benefit of
knowledge gets drowned-out due to shortcuts. However,

sults over V,T+K on all tasks and almost all metrics. Ac-
curacy (P@1) provides limited information because it only
measures the easy-to-predict cases and all models are do-
ing equally well. However, with the ranking metric and on
the more challenging Sampled-100 and Sampled-500 test
sets, we see our masking strategy brings significant and
consistent performance gains. Further, masking in con-
junction with applying external knowledge (last row in
each group) achieves better results compared to nof us-
ing knowledge (first row). Our method allows better rea-
soning (through external knowledge) by mitigating the ef-
fect of shallow matches (through masking).

Tab. 2 shows an ablation using the average rank met-
ric. The table includes results for all three tasks, and we
use the evaluation on the most difficult Sampled-500 to de-
scribe our improvement. First, directly adding knowledge
(V,T+K v.s. V,T) does not help. The +K leads to only 0.5%
improvement which is negligible (29.96 v.s. 30.11). How-
ever, if we apply masking to mitigate the effects of shortcut
learning, the performance is improved by a large margin.
As we compare OURS: V,T+K(M;,M,,My) to V,T+K, the
average rank is reduced from 29.96 to 25.14 (-4.82 average
rank or +16.09% relative improvement when we use our
proposed masking). Further, we verify that removing any
of the masking mechanisms, resulting in V,T+K(M;,M;),
V, T+K(M;,My,), and V,T+K(M;,My), leads to inferior per-
formance (27.66, 26.04, 29.64 v.s. 25.14). We conclude the
useful information of external knowledge can be fully
unleashed if and only if shortcut learning can be sup-
pressed.

Relation to dropout and Singh [25]. We highlight
that avoiding shortcut differs from random dropout. First,
though strategies M; and M are similar to the dropout layer
dropping information randomly during training, they are ap-
plied to textual tokens instead of neurons. Second, our My
removes the query keywords from the retrieved knowledge
paragraphs at both training and testing time. In Fig. 2, if
“Nike” is not masked out (“Nike”), the model will consider
the explanations regarding “goddess” and “asteroid” (blue
boxes in the bottom-right) to be helpful because the key-
word “Nike” overshadows the extra information. Finally,



Methods Accuracy (%)
V,T+K 25.2
V,T+K(M¢,Mjs) 54.4
V., T+K(M¢,My,) 53.0
V, T+K(Ms,Mg) 25.9
OURS: V,T+K(M¢,Ms,My) 52.6

Table 3: Accuracy(%) on the knowledge selection task.

we provide comparison to the random masking of visual
regions (similar to [25]). In Tab. 2, we denote M,, as ran-
domly dropping an image region. We observe that it hurts
the overall performance (+4.51% improvement over V,T+K
for M,, v.s. +16.09% improvement for OURS). We argue
that applying masking on regions did not focus on the key of
knowledge utilization, unlike OURS: V,T+K(M;,M,,My).

4.3. Side task: Analyzing the knowledge utilization

We use a side task to measure how accurately the model
could select the useful knowledge pieces from the noisy
candidate pool. We use the edge weights methods learned,
with and without our masking strategy. For each image,
we take the learned weights for DBpedia comments (Eq. 2)
as a knowledge importance score, and select the one with
highest score using argmax; ; cv; ;. Then the model-selected
knowledge is compared against human annotations, for an
accuracy score. The procedure is integral to the main
task because the weights are learned automatically in
it. Note that methods did not receive supervision for this
task at training time; instead, our masking strategy helps
our method accomplish the task better than the baseline can.
To the best of our knowledge, similar experiments have not
been done in prior visual reasoning work. In knowledge-
based VQA datasets, all provided knowledge pieces are rel-
evant, but in our setting, the retrieved DBpedia knowledge
pieces are usually noisy. Such noisy retrieval is more likely
to happen in real-world applications.

The results are in Tab. 3. OURS: V,T+K(M;,M,,M;)
improves accuracy to 52.6% (+109% improvement!), and
V, T+K(M;,M;) improves it to 54.4% compared to 25.2%
for V,T+K (+115% improvement). Masking doubles the
ability of our method to retrieve appropriate knowl-
edge, by removing reliance on shortcuts. Further, this re-
sult quantitatively shows the impact of shortcuts effects
through the discrepancy of the main and side metrics
(16% gain in Tab. 2 compared to 109% in Tab. 3).

4.4. Comparison with the state-of-the-art

We compare our model to the approaches in the “Auto-
matic Understanding of Visual Advertisements” challenge
and other recent works. VSE trained by [52] uses only the
image-level feature to represent the ad and triplet loss to op-
timize the model. ADNET [11] is similar but uses ResNet
as the network backbone. ADVISE [52] aggregates pro-
posal feature vectors to get the image representation, and
incorporates knowledge from a pre-trained dense caption-

Methods Accuracy (%)
VSE [52] 62.0
ADNET [11] 65.0
ADVISE [52] 69.0
CYBERAGENT [33] 82.0
RHETORIC [53] 83.3
OURS 87.3

Table 4: Accuracy(%) on the 2018 Ads challenge. We
compared our method to state-of-the-art models.

ing model [19] and a symbol classifier. CYBERAGENT [33]
is the first model that uses slogan texts embedded in the im-
age. RHETORIC [53] is a hybrid model of both ADVISE
and CYBERAGENT; it uses pointwise addition to integrate
image and slogan, and is the current state-of-the-art.

Tab. 4 shows the comparison to these approaches. Our
model outperforms even the strongest baseline RHETORIC
by 4.8% in terms of accuracy (87.3% v.s. 83.3%). While
RHETORIC also incorporates both image and slogan infor-
mation, our method represents this information in a more
fine-grained manner using the graph. Besides, our method
uses external knowledge from DBPedia.

We did not adapt and compare to more general VQA
methods for two reasons: (1) our goal is to make exter-
nal knowledge utilization effective for a simple method,
not achieve state-of-the-art, and (2) many VQA methods
are not applicable in our setting. The ads understanding
requires in-depth understanding of the visual and the em-
bedded textual features, as well as background information.
Thus, general vision-language methods (e.g. VSE, ADNET)
may perform poorly. Note however that our basic technique
(Sec. 3.3) does incorporate ideas from well-known VQA
work. Our method is an advanced version of bottom-up at-
tention [3] in that the proposed graph also captures atten-
tion among knowledge, visual regions, and slogans. Like
BERT-based [56, 27, 6] methods, we use attention to select
relevant relationships. Diagnosing knowledge utilization in
the BERT architecture is complex (e.g. due to many layers)
so we use a simpler message passing structure and focus on
effective knowledge usage.

5. Conclusion

Visual reasoning has attracted much attention, although
the “reasoning” process is usually hidden behind a mixed
or decoupled evaluation protocol. We proposed an effec-
tive method to incorporate external knowledge, and evalu-
ated the gap between answering questions well and using
the correct external knowledge and thus, the correct reason-
ing. Our masking strategy improved knowledge utilization
on a challenging ads understanding task. Next we will learn
how to mask and apply the strategy on additional datasets.
Acknowledgement: This material is based upon work sup-
ported by the National Science Foundation under Grant No.
1718262. We thank the reviewers and AC for their insight-
ful feedback.
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