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Abstract—This article, for the first time, demonstrates an 
efficient circuit-level countermeasure to prevent deep-learning 
based side-channel analysis (DLSCA) attacks on encryption 
devices. Machine learning (ML) SCA, particularly DLSCA 
attacks have been shown to be extremely effective as it can 
potentially reveal the secret key of the cryptographic device with 
as low as a single trace, by offloading the heavy-lifting on the 
profiling phase where the model learns the correlated leakage 
patterns of the key. This work presents a current-domain 
signature attenuation (CDSA) hardware embedding an AES256 
engine fabricated in 65nm CMOS technology to suppress the 
current signature by >350× before it reaches the power supply pin 
accessible to an attacker. Measurement results show that a 256-
class deep neural network (DNN) model for DLSCA attack can be 
fully trained (>99.9% test accuracy) using only <5K power traces 
from the unprotected AES256, while the DNN model for the 
protected CDSA-AES256 cannot be trained even with 10M traces. 

Keywords—Current Domain Signature Attenuation; Machine 
Learning Power Side-Channel Attack; Security; Deep Neural 
Network; Countermeasure; Cryptography. 

I. INTRODUCTION 

Cryptographic algorithms are integral to today’s internet-
connected devices to provide security and integrity of data. 
Although these algorithms cannot be broken using brute-force 
cryptanalytic attacks, they are implemented on a physical 
platform which leak critical information in the form of power 
consumption, electromagnetic radiation, timing, and so on. This 
work focuses on the power SCA attacks, specifically profiling 
attacks, and demonstrates a physical countermeasure to prevent 
deep-learning based power SCA.  

Non-profiled attacks include differential and correlational 
power analysis (DPA/CPA) which directly attack a target device 
utilizing statistical correlation, while profiling SCA attacks 
comprise of building an offline template (model) using an 
identical device and the attack is performed on a similar device 
with much fewer traces [1], [2]. 

A. Motivation 

DLSCA utilizes a DNN model for each key byte (of 
AES256) by training it on traces collected by varying the key 
byte [1]. As shown in Fig. 1(a), power traces for profiling 
(training) the 256-class DNN are captured from the test chip 
running AES256 (protected/unprotected mode) with a fixed 
plaintext (PT) and varying the 1st key byte and labeling each 
trace with the corresponding key byte value. During the DLSCA 
attack phase, unseen traces (for the same PT used in training) are 
fed to the trained DNN to predict the correct key byte. Fig. 1(b, 

c) shows an overview of the DLSCA, where most of the heavy-
lifting is done during the training phase as it takes few thousands 
of traces to train the DNN, while an attack becomes feasible in 
a single trace, increasing the threat surface significantly [2]. 

Fig. 1(d, e) shows an overview of the proposed CDSA 
circuit, which suppresses the correlated current signature 
significantly, motivated by the fact that the minimum traces to 
disclosure (MTD) is inversely proportional to the square of the 
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Figure 1: (a) DL SCA attack set-up on the AES256 with the 65nm test chip; (b,
c) Overview of DLSCA attack showing the feasibility of a single-trace attack [2]
on an unprotected crypto implementation. (d, e) Concept of the CDSA hardware.
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signal to noise ratio (SNR): ܦܶܯ ∝
ଵ

ௌேோమ
 [3]. By reducing the 

SNR drastically, CDSA ensures that the ML model does not 
learn the leakage pattern within a reasonable number of traces. 

B. Contribution 

The key contributions of this work are:  
 This work, for the first time, utilizes CDSA hardware 

involving a high output impedance current source (CS) 
embedding a crypto engine to demonstrate high DLSCA 
resilience, by providing >350× signature attenuation in 
65nm CMOS. 

 DLSCA attack is demonstrated on an unprotected AES256 
engine using only <5K measured power traces to train the 
256-class DNN. 

 Measured results from the CDSA-AES show that the DNN 
could not be trained even with 10M traces, thwarting 
DLSCA attack. Moreover, it is a generic low area/power 
overhead SCA countermeasure and can be extended to any 
crypto algorithm without any performance degradation. 

II. BACKGROUND & RELATED WORK 

 Existing logical and architectural countermeasures 
involving time-domain or clock-jitter based obfuscations have 
been shown to be defeated using convolutional neural network 
(CNN) which learns the side-channel leakage even in presence 
of trace misalignments [4]. Also recently, masking-based 
countermeasures have been shown to be ineffective against 
DLSCA attacks [5], [6]. 

Circuit-level on-chip power SCA countermeasures include 
charge recovery logic [7], switched capacitor current equalizer 
[8], [9], integrated voltage regulator (IVR) [10], and all-digital 
low-dropout (LDO) regulator [11], which suffer from 
performance degradation, high power/area overheads because of 
large embedded passives, as well as EM leakage from large 

metal-insulator-metal (MIM) capacitor top plates. Simulations 
of shunt LDO based regulators have been shown to be effective 
for power SCA resistance [3]. None of these have been 
evaluated against DLSCA attacks yet.  

Recently, CDSA has been shown to be extremely resilient 
shown against traditional non-profiled CPA/CEMA attacks 
[12]. This work, for the first time, evaluates the efficacy of the 
CDSA hardware against DLSCA attacks on AES-256. 

III. DLSCA ATTACK ON THE UNPROTECTED AES256 CORE 

The 65nm test chip contains both unprotected and protected 
(CDSA) implementations of AES256 (refer Fig. 7(a)). For 
profiling, we capture power traces from the unprotected core 
and build the DNN model. Once the training is completed, the 
DNN model can then be used to attack (classify unseen traces). 

 
Figure 3: DLSCA attack on the unprotected AES256: (a-c) Effect of the hyperparameters (number of hidden layers, hidden neurons in each layer, learning rate) on the
test accuracy of the fully-connected DNN for 5K training traces. (d) Training/Validation accuracy reaches 99.9% within 10 epochs with 5K training traces. (e) Test 
accuracy of the DNN reaches ~99.9% with <5K training traces with 10 epochs. (f) Confusion plot of the test traces showing >99.9% test accuracy of the DLSCA. 

Figure 2: 256-class DNN Architecture for the DLSCA attack on the unprotected 
AES256 and CDSA-AES256. The input layer consists of 250 neurons (number 
of time samples in each power trace), followed by the 3 hidden layers with 1K
neurons each and finally the 256-neuron output layer to predict the correct key 
byte. This work uses a fully-connected DNN as the captured traces are time-
aligned (synchronized with a trigger pulse for the end of encryption). 
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A. DNN Architecture 

Fig. 2 shows the DNN architecture for the DLSCA attack. 
The input layer consists of 250 neurons (number of time samples 
in each measured power trace), followed by three hidden layers, 
each with Rectified Linear Unit (ReLU) non-linear activation, 
batch normalization, a dropout layer (20%), and L2 
regularization to prevent overfitting and finally the output layer 
with 256 neurons, which predicts the correct key byte in a single 
trace utilizing the softmax function.  

B. Choice of Hyper-parameters 

Fig. 3(a-c) shows the effect of the hyperparameters on the 
DNN test set accuracy. Three hidden layers with 1K neurons 
each and a learning rate of 0.001 is the most optimal choice for 
the unprotected AES256 traces.  

C. Performance Analysis  

Fig. 3(d, e) shows that the training and validation accuracy 
of the DNN reaches >99.9% within 10 epochs, and the test 
accuracy on the unseen traces reaches ~99.9% with only <5K 
training traces. The test confusion plot (Fig. 3(f)) reveals that 
only 1 key byte value (marked in red) out of the 256 was 
misclassified by the DNN, demonstrating a successful DLSCA 
attack on the 1st key byte of the unprotected AES256. 

IV. CURRENT DOMAIN SIGNATURE ATTENUATION HARDWARE 

The main idea of the countermeasure is to embed the crypto 
core within the CDSA, such that the correlated current signature 
is significantly suppressed, and the supply current becomes 
almost constant (independent of the crypto current).  

A. Design of the CDSA 

 The CDSA circuit (Fig. 4) utilizes digitally-tunable cascode 
current source (CS) with high output impedance to power the 
AES. The goal of the CDSA circuit is to provide an average load 
(AES) current plus a small delta current that leaks through the 
bypass PMOS bleed path to ground, providing local negative 
feedback leading to the ability to support any IAESavg in between 
two quantized current levels of the CS (i.e. aids in analog 
regulation without a high-power shunt-loop). The CS consists of 
32 PMOS slices, 16 of which are turned on nominally. The unit 
current (~94µA) of the CS is chosen to be higher than the key-
dependent variation in IAESavg (~72µA), so that the key-
dependent information in average DC current is not transferred 
to supply current (DC regulation) and is leaked by the bleed 
PMOS, making the design highly secure from an information-

theoretic viewpoint. A slow digital switched-mode control 
(SMC) LDO tracks and regulates the voltage across the AES 
(VDIG between VTARGET+∆+ and VTARGET-∆-) by turning on or off 
the required number of PMOS CS slices. It should be noted that 
the SMC LDO is a low-BW loop and has a dead band of 50mV, 
such that it remains disengaged during steady-state operation of 
the CDSA-AES circuit. Two dynamic comparators compare 
VDIG with VTARGET+∆+ and VTARGET-∆- respectively, and a 32-bit 
up-down counter with averaging (to control the loop frequency) 
controls the appropriate number of CS slices to be turned on. 

Unlike traditional series LDOs, the supply current in CDSA 
does not track the AES current. Instead, we choose to tolerate 
the ~30-50mV voltage droop across the AES engine (VDIG is 
guard-banded to ensure no performance degradation at the cost 
of some power overhead), and the high impedance (rds >10KΩ) 
CS on top ensures that the current fluctuation at the supply is 
attenuated by AT = ωAESCLrds, i.e. >350× (iୌ ൌ

௩ವ಺ಸ
௥೏ೞ

஽ூீݒ , ൌ
௜ಲಶೄ
ఠ஼ಽ

ܶܣ , ൌ
௜ಲಶೄ
୧ి౏

ൌ ω୅୉ୗC୐rୢୱ). The use of cascode CS biased in 

subthreshold saturation increases rds by ~10× compared to one-
stack CS, allowing 10× reduction in CL (only 150pF, iso-
attenuation) across the crypto engine. 

B.  Time-Domain Measurements & Design Space Exploration 

The shunt path PMOS bias (near-threshold operation) as 
well as number of PMOS legs ON are scan controllable to 
analyze the effect of the extra bleed current on signature 
attenuation. Time-domain measurements of the unprotected 
AES vs. CDSA-AES show a signature attenuation of >350× for 
the power traces (Fig. 5). Design space exploration of the 
CDSA-AES reveals the optimal operating point at dropout 
voltage of 0.3V across the CS stage and a bleed size of 400. The 
unprotected AES is powered with 0.8V input and consumes 
~1mA average current at 50MHz (refer Fig. 7(b)).  

V. DLSCA ATTACK ON THE PROTECTED CDSA-AES256 CORE  

The captured traces from the CDSA-AES256 are now fed to 
the 256-class DNN for profiling. Fig. 6(a) shows that the DNN 
does not train on the protected traces (even with 10M traces and 
100 epochs) as the signature remains deeply buried under the 
system noise (without any additional noise injection). Fig. 6(b) 

Figure 4: (a) System architecture showing the circuit details of the CDSA, (b)
Biased cascode current source (CS) with high output impedance helps achieve
significant crypto current signature suppression. Note that highly isolating
switches (SW1) are kept for VDIG observability. 

Figure 5: (a-c) Time-Domain Measurement Waveforms showing >350x 
signature attenuation for the CDSA-AES256 power trace. (d) Design space
exploration shows the dependence of attenuation on dropout voltage (VDS) and 
size of the PMOS bleed. 
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shows the confusion matrix for the unseen test traces from the 
CDSA-AES256. As we can expect, the DNN does not classify 
the key bytes correctly (red dots represent misclassifications) 
and the accuracy is close to random (

ଵ

ଶହ଺
~0.3%).  

A. Comparison with the State-of-the-Art Countermeasures 

 Fig. 7(c) shows a comparison with the state-of-the-art 
existing circuit-level countermeasures. While none of the 
previous countermeasures have been evaluated against DLSCA 
attacks, CDSA is the first circuit-level technique demonstrating 
DLSCA resilience.  

 Compared to the unprotected AES256 implementation, the 
DLSCA immunity is significantly improved by >2000× (>10M 
compared to 5K traces for training), at the expense of 49.8% 
power and 36.7% area overheads. It should be noted that the 
countermeasure is generic and can be used with any other crypto 
engine, or a combination of multiple crypto engines without any 
performance overheads.  

VI. REMARKS & CONCLUSION 

    The system developed in 65nm CMOS embeds the crypto 
core (AES256) within a CDSA hardware such that the critical 
signature is highly attenuated, to thwart DLSCA attacks. The 
DNN model which was trained within 5K traces for the 
unprotected AES256, could not be trained even with 10M traces 
for the CDSA-AES (Table 1). The >350× signature attenuation 
of the CDSA promises an improvement of >3502×, which 
implies protection up to >600M traces for the DNN training. 
However, being time-limited due to our trace capture 
framework for DLSCA, we could demonstrate DLSCA 
resilience up to 10M traces.  

    Note that a fully connected DNN is chosen for the DLSCA 
attack as the traces are perfectly aligned in time (using the on-
chip trigger pulses for end of encryption), and hence CNN is not 
necessary. Also, for the CDSA, signature attenuation is 
fundamental to the correlated leakage and hence CNNs would 
not provide any extra benefit over fully connected DNNs for 
low SNR scenarios. Although the assumption of a fixed 
plaintext for profiling the DNN may not be most practical for a 
real attack, it provides a methodology for fast leakage 
assessment in the machine learning domain and allows to 
evaluate the efficacy of a countermeasure.  

    Finally, CDSA is a low-overhead technique to provide high 
resiliency against DLSCA attacks (>2000×) without any 

performance degradation and can be extended to any other 
crypto algorithm. 
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Figure 6: DLSCA attack on the CDSA-AES: (a) Training/validation accuracy
does not improve even with 10M traces. (b) Test confusion matrix shows a
random trend (~0.3% test accuracy) with numerous misclassifications.  

Figure 7: (a, b) Chip Micrograph and design summary of the system. (c) 
Comparison with state-of-the-art countermeasures. 

 

Table 1: Summary of CDSA-AES256 countermeasure against DLSCA attacks.

Traces to Train Traces to Attack

Unprotected 
AES256 <5K ~1 

(Single-trace attack)

CDSA-AES256 >10M
_

(Model could not be trained)
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