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Abstract. This paper introduces a hierarchical traffic model for spread measurement of network
traffic flows. The hierarchical model, which aggregates lower level flows into higher-level flows in
a hierarchical structure, will allow us to measure network traffic at different granularities at once
to support diverse traffic analysis from a grand view to fine-grained details. The spread of a flow
is the number of distinct elements (under measurement) in the flow, where the flow label (that
identifies packets belonging to the flow) and the elements (which are defined based on application
need) can be found in packet headers or payload. Traditional flow spread estimators are designed
without hierarchical traffic modeling in mind, and incur high overhead when they are applied to
each level of the traffic hierarchy. In this paper, we propose a new Hierarchical Virtual bitmap
Estimator (HVE) that performs simultaneous multi-level traffic measurement, at the same cost
of a traditional estimator, without degrading measurement accuracy. We implement the proposed
solution and perform experiments based on real traffic traces. The experimental results demonstrate
that HVE improves measurement throughput by 43% to 155%, thanks to the reduction of per-
packet processing overhead. For small to medium flows, its measurement accuracy is largely similar
to traditional estimators that work at one level at a time. For large aggregate and base flows, its
accuracy is better, with up to 97% smaller error in our experiments.

1 Introduction

Traffic measurement is critical in supporting modern network functions [1], [2], [3],
[4], [5], [6],][7]. Accurate information about current traffic loads is needed for rout-
ing optimization and load balancing among middleboxes that provide web proxing,
firewalling and other functions [4], [5]. Network statistics are widely used to estab-
lish normal traffic patterns and detect anomalies that deviate from the normal [8].
Flow-level measurement provides fine-grained data to assess the behavior of indi-
vidual hosts or subnets for performance or cybersecurity analysis [9]. While packet
forwarding is the key function for any high-speed switch or router, auxiliary func-
tions such as traffic measurement should be made as space-time efficient as possible,
not only to avoid becoming a throughput bottleneck but also to save resources (e.g.,
cache memory and hardware circuits) for other important functions.
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NetFlow [10] is a commonly used traffic measurement tool. It provides statistics
such as number of packets and number of bytes for each TCP flow. A flow is a set of
packets identified by common user-defined characteristics, such as source and des-
tination IP addresses, source and destination ports, and protocol types. This paper
extends the measurement function in two ways. First, we consider a hierarchical
flow model, which we explain through an example where a cloud provider allocates
vitual machines (VMs), racks of physical machines or whole pods to its clients,
where each pod contains multiple racks. Suppose the provider wants to implement
a measurement function at its datacenter gateway to monitor traffic between its
clients and the Internet. Flows can be defined at the level of VMs, where each VM
flow consists of all packets from a VM to the Internet (or from the Internet to a
VM). They can also be defined at the rack level, where each rack flow consists of
all packets from a rack to the Internet or vice versa. They can even be defined at
the pod level, where a pod flow consists of all packets from a pod to the Internet
or vice versa. These flows are organized in a three-level hierarchy, where each pod
flow contains multiple rack flows, each rack flow consists of multiple VM flows, and
each packet belongs to one flow at each level. Measuring the flow spread, which is
the number of distinct elements (under measurement) in a flow, at different levels
provide information with different granularities for traffic analysis.

Second, instead of the simple metric of packet number, we can measure any
elements that are defined according to an application’s requirements and carried in
the packet headers or payload. Use the previous cloud example. The provider may
monitor its clients’ outbound traffic for suspicious activities, where each VM (rack
or pod) flow consists of all packets from the VM (rack or pod) to the Internet. In
particular, it may measure the number of distinct destinations in each flow. For
instance, if a VM flow contacts too many destination addresses than it normally
does, the VM may be used as a bot for scanning. If a rack or pod flow contains too
many destination addresses than normal, even though its individual VMs appear
to behave within bound, the overall aggressive behavior at the pod level may signal
a botnet activity or a worm activity with many VMs in the pod compromised for
stealthy worm propagation, where each infected host restrains its scanning rate from
being too high to avoid detection.

Summarizing the above discussions, the flow model in a typical datacenter is an
hierarchical model. Although hierarchical models are usually applied in a number of
multi-layer networks this paper explores the model to reduce traffic measurement
overheads in spread estimation. To this end, we proposed a new form of traffic
measurement, called hierarchical spread estimation, which is not studied before. It
estimates flows’ spreads, where all flows are organized in a hierarchical structure,
offering different granularites in traffic measurement at once.

Measuring flow spread at a single level has been studied before with two classes
of solutions: One class measures each flow separately, keeping track of all flow labels
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and assigning a separate data structure for each flow to encode its elements [11],
[12], [13]; the other class is more memory-efficient by encoding the elements from
all flows in a single compact data structure without keeping track of flow labels —
given a flow label (obtained by other means or of interest to the admin), the compact
data structure can estimate the flow spread [14],[15]. Due to its excellent space-time
efficiency, this paper will focus on the second class by extending the problem from
a flat single level of flows (such as TCP flows traditionally) to a generalized multi-
level hierarchy of flows. One may argue that the traditional single-level solutions
can be simply applied to every level of a hierarchy. The problem is that each arrival
packet will need to be processed multiple times, one at every level. [16] propose a
solution that uses counter to track sizes (number of packets) of hierarchical flows.
However, this method is unsuitable for spread estimation because counters cannot
keep track of addresses in order to remove duplicates.

The contribution of this paper is to conduct the first study on hierarchical
spread estimation, with an efficient solution that physically processes each arrival
packet only once, while logically encoding the element of the packet at all levels
for all relevant flows. It achieves the benefits of multi-grained traffic measurement
at the same cost of traditional single-level solutions. Technically, we propose a new
hierarchical virtual bitmap architecture, which shares bits not only among flows
at the same level to save cache memory, but also among flows across levels such
that encoding an element from an arrival packet at the lowest level of the hierarchy
will automatically propagate the encoded information through all levels, regard-
less of the number of levels there are. We mathematically derive the formula of
our hierarchical spread estimator, and prove that the proposed estimator is asymp-
totically unbiased. We implement the estimator both in software and hardware.
Through extensive experiments, we demonstrate that compared to the state-of-
the-art, hierarchical virtual bitmap estimator (HVE) delivers from 43% to 155%
more throughput while its accuracy is in general close and even has up to 97%
smaller error for some large upper-level flows. The rest of the paper is organized
as follows. Section 2 presents the flow model, system model and formulates our
research problem. Section 3 discusses the related works. We present the detailed
architecture of our solution (HVE) in Section 4. Section 5 extensively evaluates
HVE. Section 6 concludes the paper.

2 Flow Model, System Model and Problem Statement

2.1 Flow Model

Consider a hierarchical flow model of I levels. Flows at each level are disjoint, while
a flow f;_; at the (j — 1)th level contains multiple child flows f;th at the jth level,
forming a hierarchical structure among flows of different levels, as illustrated in
Fig. 1, where 1 < 5 < L.
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Fig.1: An example of a hierarchical flow model of [ levels.

Each packet belongs to a single flow f; at the Ith level. It also belongs to the
flow parent at the (I — 1)th level, to that flow parent at the (I — 2)th level, ..., and
all the way to a flow at the first level f1, which contains f; as a descendant in the
hierarchy. Flows at the lth level are called base flows; flows at other levels are called
aggregate flows.

2.2 System Model

Our system consists of gateway routers/switches responsible for traffic measure-
ment. When a packet arrives at a switch/router, the labels of the base/aggregate
flows that it belongs to (such as fi,..., f;) are extracted from the packet header.
For example, suppose the source address is the base flow label at the first level, the
address 24-bit prefix is the second-level flow label, and the address 16-bit prefix is
the third-level flow label. The switch can easily obtain all flow labels by extracting
the source address from the packet header and applying appropriate bit masks.
After obtaining f; through f;, the switch also extracts the element e, which are
defined based on application need and can be found in packet headers or payload
from the packet. In case that the destination address is the element, the switch will
copy it from the header.

2.3 Problem Statement

Given an arrival packet stream at a switch/router, the problem is to measure the
spreads of all flows in the hierarchy, including both base flows and aggregate flows.
Our goal is to design a hierarchical spread estimator that encodes each packet only
once overall, instead of once for each of [ base/aggregate flows it belongs to, yet
being able to provide accurate spread estimation for all flows. The design of such
an estimator includes two operations:
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— Online element encoding: It stores distinct elements from all flows in a compact
data structure for online operation at the same place where packet forwarding
is performed

— Offline Spread estimation: It takes the encoded data and calculates an estima-
tion for the spread of any given flow.

3 Preliminaries

In this section, we briefly review related methods of estimating a flow spread.
Suppose that an incoming flow at a switch w is represented as (f,e), where f is a
flow id and e is an element id. The spread of f is the number of distinct elements
encoded during a measurement period. Let n be the actual spread of f. In what
follows, we will discuss how n can be estimated through the methods mentioned
above.

3.1 Bitmaps

[11] propose the bitmap as a lightweight and compact data structure to estimate
the spread of a flow. In order to estimate n with a bitmap, an array B, which
contains m bits initialized to zeroes, is allocated to store distinct elements of f. For
each element e, we randomly set a location k* in B as 1, that is

Bk =1 (1)

where k* = H(e) mod m and H(-) is a hash function. Once all contacts are stored
in B, n is estimated as
n=-mlnV,, (2)

where V,,, is the fraction of bits in B that are still 0’ at the end of the measurement
period.

3.2 Opensketch(Bitmap)

A bitmap is ideal for estimating the spread of one flow. If we have to estimate the
spreads of multiple flows, then we will need to construct an independent bitmap for
each flow. Consequently, the combined size of independent bitmaps is proportional
to the number of flows monitored in a measurement period. More compact and
memory efficient spread estimators are based on an idea of memory sharing, where
all flows’ elements are encoded in a shared physical memory.

A memory sharing spread estimator based on CountMin [17] is proposed by
OpenSketch [3], which replaces counters in CountMin with uniform bitmaps. We
will refer to this estimator as opensketch(bitmap). Let B be an array of k bitmaps.
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For each data item (f,e), it hashes f to k bitmaps, then hashes e to a bit in each
bitmap, and sets that bit to one,

BIH(f)][H(e) = 1,0<i < k. (3)

Each of the £ bitmaps for f produces an estimate for the flow spread, which carries
noise from other flows due to hash collision. Final estimate for the spread of f is
the minimum estimate from the k bitmaps, since it contains the least noise.

3.3 Virtual Bitmap

Instead of constructing independent bitmaps, [14] randomly construct virtual bitmap-
s from a shared pool of physical array of bits. Let P be a shared array of m bits.
Let the size of each virtual bitmap be s. The virtual bitmap of f, denoted as Xy,
is generated in the following way:

Xylil = P[Hi(f)], 0 <@ <s, (4)

where H;, 0 <1 < s, are independent hash functions. For each arrival element e of
f, we randomly select a location £* in X; as

k* = H(e) mod s, (5)
where H(-) is a hash function. Next, we set the bit at location k* in X to 1:
Xylk*] = P[Hg-(f)] = 1. (6)

This implies that, through virtual bitmaps, all distinct elements belonging to f and
all others flows are stored in P. Unfortunately, Xy not only contains the spread of
f, but potentially contains some noise from other flows. Hence, the estimated value
of n is

n=sln(Vy) — sln(Vy), (7)

where V and V;,, are the fractions of bits that are still '0” in Xy and P, respectively,
at the end of a measurement period. The first term on the right hand side of equation
(7) is the estimated noise contained in Xy.

3.4 Other Related Works

Our focus in this paper is on estimation of flow spread. Past solutions use hash-
based compact data structures called sketches [11], [12], [13], [18], [14], [15], [19],
[20], [21], [3], [22], [23], [24]. These solutions can be divided into three categories.
The first category compactly estimates the spread of a single flow [11], [12], [13],
[18], [25]. As a result, the total memory allocation is proportional to the number
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of flows being monitored. The second category estimates the spreads of multiple
flows by using a shared pool of resources, either bits or counters [14], [15], [19],
[20], [21]. This is done by constructing virtual sketches from the shared memory.
The third category introduces universal and adaptive sketches. This category not
only estimates flow spread, but can also be used to perform other tasks such as
identification of heavy hitters and detection of traffic changes [3], [22], [23], [24],
[25].

4 Hierarchical Virtual Bitmap Estimator (HVE)

There are two main operations in our Hierarchical Virtual bitmap Estimator (HVE).
The first operation deals with online data encoding. The second operation is spread
estimation, which is carried out either by the control plane of the switch/router that
performs online encoding or by a centralized controller.

4.1 Virtual Arrays

The data structure for HVE is simply an array B of m bits, which are initialized to
zeros at the beginning of each measurement period. A bit in the array is denoted
as B[k], 0 < k < m. Our approach is to pseudo-randomly allocate a virtual array
of bits from B to each base/aggregate flow to encode its elements.

Without lose of generality, consider an arbitrary packet, carrying an element e
and belonging to a base flow f;, whose parent chain is f1, ..., fi_1. Fig. 2 illustrates
how bits are allocated for the virtual arrays of f; through fi, which are denoted
as By;, 1 < j <. Because flows are dependent, we do not independently assign
physical bits to flows. Rather, each flow takes some bits from its parent’s virtual
array to form its own virtual array. Since first-level flows have no parents, they
pseudo-randomly select bits from the physical array B.

Let 55,1 < j <1 be the pre-defined length for the virtual array of any flow at
the jth level, where s; < s;_1, 1 < j < 1. We first describe how an arbitrary base
flow f; will select s; bits for its virtual array, and then describe how an arbitrary
Jjth-level aggregate flow f; will select s; bits from its parent f;_i’s virtual array,
1 < j < I. The bits in By, are pseudo-randomly selected from B as follows in
equation 8.

Bfl[k} :B[Hk(fl)]v 0<k<si, (8)

where Hy, 0 < k < s1, is an independent hash function. We can replace the s; hash
functions in (8) with a single master hash function Hj, as follows:

Hy(f1) = Hy(f1 @ Ri[k]), 0 <k < sq, 9)

where R; is a set of s; random numbers and @ is the XOR operator. By substituting
(9) into (8), we have

By, [K] = B{Hy(f1 @ Ru[k])], 0 <k < 5. (10)
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Fig. 2: Bits allocation in hierarchical virtual bitmaps.

Generalizing in equation (11), the bits in By, are pseudo-randomly selected from
By, ,, where By, is the virtual array of flow f; at the jth level and By, , is the
virtual array of the parent flow f;_; at the (j — 1)th level.

ij[k] :ij71[HM(fj®Rj[k])]7 0§k<3j' (11)

These are virtual constructions that are not actually carried out online.

4.2 Online Encoding

A switch that receives an arrival packet, which belongs to fi,...,f;, will pseudo-
randomly select a bit from the virtual array By, of the highest-level flow f; and
encode the element by setting the bit to one. Recall that this bit is taken from
its parent’s virtual array By, . Hence, by setting the bit, we have also encoded
the element for the parent flow. As this argument repeats, by setting just one bit,
we have actually encoded the elements for all flows f; through f; in their virtual
arrays.

However, we cannot operate directly on the virtual arrays, which are virtual
after all. The bit we are setting is a physical bit, which is taken in the virtual
arrays. Below we show how to select a bit from By, to set and how this bit is
translated into a physical bit in B for setting. In equation (12), the selection of a
bit is done by hashing the element e for an index.

kE* = Hps(e) mod s (12)

From equation (11), the virtual bit of By, at index k* is the following bit in at the
(I — 1)th level as in equation (13):

By, [k*] = By, [Hu(fi & Ri[k™])], (13)
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which is in turn the following bit at the (I — 2)th level as in equation (14):
By [Hu(fi ® Ri[k*])] = By, [Hyu (fier ® Ria[Hu (fr © Ri[K]))]. (14)

Repeating the above process, we eventually reach a bit in the physical array B as
in equation (15):

By [k'] = BHy(fr ® Ba[Hy (fo @ Rol- - Hy (fi © Ry k*])])])] (15)

The only encoding action taken by the switch after receiving a packet is to set the
above physical bit to one, as done in equation (16),

B[Hpy(f1r © Ra[Hy(f2 © Rl - Hy(fi @ Ry[K* )] = 1 (16)

This assignment automatically encodes the element in all [ virtual arrays, By, , By,,
.-+ By,, for the flows that the packet belongs to, with [ + 1 hashes and one memory
access. These hash computations can be pipelined in hardware implementation [16],
which is very efficient as we observe in our GPU implementation. The full pipeline
implementation encodes each packet in one clock cycle.

4.3 Spread Estimation

At the end of each measurement period, the physical array B is offloaded to the
switch’s control plane or to a centralized controller, where spread estimation is
performed. Given an arbitrary flow label f; at an arbitrary level 1 < j <[, we first
derive the labels on its parent chain, f;_; through fi. We then construct its virtual
array By, by copying its s; bits from the physical array B as in equation (17):

BlHuy(f1 ® Ra[Hum(f2 © Ro--- Hu(f; © B[k, 0 < k < sj, (17)

where f1 is the parent flow to fo, which is in turn the parent flow to f3, and
all the way to f;. We stress that this construction happens during offline spread
estimation, whereas no virtual array is constructed during the online operation of
element encoding. We similarly construct the virtual arrays of By, ; through By,.
Our proposed spread estimator, HVE, is derived in Theorem 1:

Theorem 1. Let n be the total number of distinct elements from all flows and ny,
be the actual spread of flow f;, where 1 < i < j. Let Uy, be the number of ‘0’ bits
in B and Uy, be the number of ‘07 bits in the virtual array By,. We define Vy, as

m Uy, o
Vfoz% andei:S—]?,lgzgj. (18)

Then HVE for ny, is

fip; 2 55In(Vy, ) — s In(Vy,), (19)
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when 1 < 3 <1 and
ng ~s1In(Vy) — s1In(Vy,), (20)
when j = 1.

Proof. Before we derive our estimator, we first estimate the In(E(V},)) in equation
(21):

In(B(Vy) = - = "L 2. T (21)

Let A(f;, k) be an event that the bit at an arbitrary index k in the virtual array By,
remains ‘0" at the end of a measurement period. Let I(f;, k) be a binary indicator,
which is 1 if A(f;, k) happens, or 0 otherwise. Let k be the index of the physical
bit in B that is selected for the bit at index k in By,. Event A(f;, k) occurs if, and
only if, none of the arrival packets sets the bit at index k in B to 1.

Let b be the bit at index k in By,. Each of the ny, elements from flow f; has a
probability of é to set the bit b as 1; each of the ny,_, —ny; elements in its parent

% to set the bit b as 1.
j—1

flow but not in f; has a probability of
Continuing this line of reasoning, each of the n — ny elements not in f; has a

probability of % to set the bit b in B. Hence, the probability for A(f;, k) to happen
is stated in equation (22):

1\" "1 1\ 17" 1\
Prob(A(f;, k)) = <1—m) (1—> "'(1_) , 0 <k <s;—1.

S1

By definition, Uy, = o _01 I(f;, k). Therefore,

_ <1 _ ;)”‘”“ <1 _ :j)’ (23)

E(Vy,;) in (23) can be approximated as in equation (24)

neng M T B S S B

E(Vi)~e "m e 1 e WTloe (24)
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when m, s1, ..., 8j, n —ng, ngp — Ny, ..., ng, are sufficiently large. Assume the
spread of a child flow is much smaller than the spread of a parent flow (which
contains many child flows), i.e., ny, < n, ng, < ny, ..., ng; < nj—1. We have

E(Vy)~e ™ = il % (25)

np i T
In(E(Vy,) >~ —— — — .. — —— — =L, 26
(B(V) =~ = Sl B (26)
Because (26) holds for any j € (1,1], it holds for j — 1 as well, which means that
In(E(Vy;_,)) is approximated in equation (27):
n_nn Nfj—o T
In(E(Vy, ~ - == s 27
(V) )= e B T (27)
Combining (26) and (27), the approximate value of In(E(V},)) s given in equation
(28):

ny.
In(B(V;) ~ W(B(V,, ) ~ 2. (28)
J
From (28), ny, is solved in equation (29):
ng = 8j ln(E(ija)) -5 ln(E(ij))' (29)

By replacing E(Vy,) and E(Vy,_,) with the instance values of Vy, and Vy,_, that are
directly obtained from the constructed virtual arrays, By, and By, ,, respectively,
our hierarchical virtual bitmap estimator (HVE) is given in equation (30):

fug; = s510(Vy; 1) — 55 In(Vy), (30)

where 71, refers to the estimate of true spread ny,. When j = 1, we have the spread
of f1 given in equation (31):

g~ s1In(Vy,) — s1In(Vy,), (31)

which is consistent with the non-hierarchical estimator of (7).

5 Performance Evaluation

In this section we evaluate the performance of the proposed Hierarchical Virtual
bitmap Estimator (HVE) in comparism with prior art, through simulations on CPU
and GPU implements.
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We use real Internet traces from CAIDA [26] to simulate a two-level hierarchical
traffic model. A second-level (base) flow consist of all packets to a destination
address in downloaded traces. The spread of base flows are from the range [1, 5000].
Aggregate flows are identified by 16-bit prefix of the destination addresses. This
classification results in about 4000 aggregate flows whose spreads are in a range
[1,15000].

The most related and state-of-art compact spread estimators that we compare
our work with are the virtual bitmaps (VB) [14] and opensketch(bitmap) [3] (check
Section 3 for brief descriptions), which are flat single-level spread estimators. All the
estimators [HVE, VB and opensketch(bitmap)] attempt to estimate a flow spread in
a tight memory but their design goals are somewhat different. The main goal of the
VB and opensketch(bitmap) is compact and accurate spread estimation for all types
of flows, whether independent or otherwise, through sharing of memory among all
flows. On the other hand, HVE tries to increase throughput (which is the number
of packets processed per seconds) of hierarchical flows, while at the same time
delivering compact spread estimations whose accuracy is comparable to the state-
of-art. We implement VB and opsketch(bitmap) in two ways. All aggregate and
base flows share the whole available physical memory in the first implementation.
However, in the second implementation, one half of the physical memory is allocated
to encode aggregate flows, while the other half is allocated to encode base flows.
We denote the second implementation as VB* and opensketch(bitmap)*.

We will first compare the throughput of HVE with VB and opensketch(bitmap)
for the setup above on CPU and GPU implementations. Afterward, we will compare
the accuracy of the three estimators. Our goal is to examine whether our multi-level
etimator delivers a superior throughput at the same costs of single-level estimators,
that is if HVE is at least as accurate as VB and opensketch(bitmap).

Throughput of HVE: We compare the throughput of HVE with VB and opens-
ketch(bitmap) on CPU and GPU implementations, whose specifications are the
following:

CPU Implementation: We implement all the three estimators in Java, version 9, on
a multi-core CPU, running Intel(R) Xeon processor @ 3.7GHz. The machine has
32GB of RAM with 2TB HDD and 512 SSD.

GPU Implementation: We use CUDA 10 toolkit to program an NVIDIA GTX 1070
GPU, with 8GB GDDR5 memory @ 1506MHz. The GPU has 1920 cuda cores.
We utilize parallel processing to speed up the online encoding on GPU implemen-
tation.

Throughput indicates the processing speed of the three estimators. We compare
throughput in Table 1. Clearly, on CPU, HVE processes up to 155% more packets
than VB and opensketch(bitmap). Table 1 also shows that HVE processes at least
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43% more packets than VB and opensketch(bitmap) on GPU.

Table 1: The throughput (in million packets per second) of HVE, opens-
ketch(bitmap) and VB.

Estimatord Software GPU
(Mpkt/sec) | (Mpkt/sec)
HVE 4.44 696
opensketch(bitmap) 1.74 445
opensketch(bitmap)* 1.94 423
VB 2.65 487
VB* 2.66 462

Accuracy of HVE: In the previous section, we show that HVE significantly im-
prove throughput compared to state-of-the-art. Here, we will show that this advan-
tage does not degrade its accuracy. In fact, we show that HVE’s accuracy is up to
that of VB and opensketch(bitmap) and even better for some flows.

We evaluate the accuracy of the three estimators when we allocate m = 0.25MB,
1MB, 2MB and 4MB. In our implementation of HVE, we set the lengths of virtual
arrays for aggregate and base flows as sy = 64000 bits and sz, = 8000 bits,
respectively. These parameters are chosen to ensure that the average relative error
of estimated spread of the flow in the data set above under HVE is less than
5%. However, we obtain a large average relative error when the same parameters
are used under virtual bitmap and opensketch(bitmap). This because the larger a
virtual bitmap is the more error it accumulates. On the other hand, we calculate the
length of (virtual) bitmaps sufficient to estimate the largest spread. Consequently,
the length of virtual bitmaps used to estimate the spread of aggregate and base
flows under VB and VB* are 3000 bits and 1000 bits, respective. Also, the length of
bitmaps used in opensketch(bitmap) and opensketch(bitmap)* is 3000 bits. In our
evaluation, the spread of a large flow is at least 1000, while the spread of a small
(to medium) flow is less than 1000.

We present our estimation results in Fig. 3 and 4 for aggregate and base flows,
respectively, when m =2M. In Plots (a) - (e) of each figure, x—axis represents
the actual spread of a flow and y—axis represents the corresponding estimated
spread value. Each point on the plots represents a flow and line y = x is shown for
reference, such that the closer a point is to the line, the more accurate the estimation
represented by the point. Plot (f) in the figures compares standard error of HVE
to that of VB, VB*, opensketch(bitmap) and opensketch(bitmap)*. In the plot,
the z—axis represents the actual flow spread while the y—axis represents standard
error of the estimations
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Fig. 3: Accuracy of HVE (plot (a)) vs. opensketch(bitmap) (plots (b) and (c)) vs.
VB (plots (d) and (e)) for aggregate flows

Plot (a) in Fig. 3 and 4 shows that HVE accurately estimate the spread of
aggregate and base flows, respectively, since the points cluster more closely around
the equality line. For aggregate flows, Fig. 3 compares (a) HVE with (b) opens-
ketch(bitmap), (c) opensketch(bitmap)*, (d) VB, and (e) VB* and their relative
errors in Fig. 3(f). We see that HVE is significantly more accurate for large ag-
gregate flows. We further confirm these results in Table 2, which compares the
accuracy of the estimators for aggregate flows when m = 0.25MB, 1MB, 2MB and
4MB. The average relative error of large aggregate flows under HVE is at least 77%
smaller than other estimators.

Fig. 4 compares the accuracy of base flows under (a) HVE with (b) opens-
ketch(bitmap), (c¢) opensketch(bitmap)*, (d) VB, and (e) VB* and their relative er-
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Table 2: Comparison of average relative error of estimated spreads of large ag-
gregate flows (whose spreads are greater than 1000) under HVE, VB and opens-
ketch(bitmap). Additionally, we also compare the average absolute error of esti-
mated spreads of small aggregate flows (whose spread is less than 1000) under the
estimations.

Relative error of large flows | Absolute error of small flows

Estimators (spread > 1000) (spread < 1000)
m = 0.25MB|m = 1IMB|m = 4MB|m = 0.25MB|m = 1IMB|m = 4MB
HVE 0.048 0.029 0.022 61.45 31.62 16.49
opensketch(bitmap) 0.766 0.171 0.156 1875.09 361.64 66.14
opensketch(bitmap)* 0.312 0.214 0.212 744.99 43.72 11.88
VB 0.220 0.219 0.217 25.95 17.66 13.80
VB* 0.217 0.215 0.214 22.30 16.55 13.91

rors in Fig. 4(f). Clearly, the accuracy of HVE is up to VB and opensketch(bitmap).
In particular, as shown in Table 3, which compares the accuracy of the estimators
for base flows when m = 0.25MB, 1MB, 2MB and 4MB, the average relative error
of HVE for large base flows is at least 63% and up to 97% smaller than opens-
ketch(bitmap), while its accuracy is similar to VB (in the worst case).

Although the average absolute error for small base and aggregate flows is larger
for HVE compared with VB and VB*, it is still very small relative to actual spreads
(about 1.7% on average, when m = 4MB). Note that for large aggregate and base
flows, the accuracy of HVE is up to (or surpass in certain cases) the other estimators.
This is important because accurate estimation of large spreads is needed for essential
network management tasks, such as superspreader identification.

Table 3: Comparison of average relative error of estimated spreads of large base flows
(whose spread is greater than 1000) under the HVE, VB and opensketch(bitmap).
Additionally, we also compare the average absolute error of estimated spreads of
small base flows (whose spread is less than 1000) the estimators.

Relative error of large flows | Absolute error of small flows

Estimators (spread > 1000) (spread < 1000)
m = 0.25MB|m = 1IMB|m = 4MB|m = 0.25MB|m = 1IMB|m = 4MB
HVE 0.021 0.018 0.013 27.41 19.77 16.59
opensketch(bitmap) 0.974 0.197 0.036 1883.84 370.48 70.031
opensketch(bitmap)* 0.431 0.142 0.081 939.26 204.91 39.74
VB 0.027 0.017 0.015 17.97 9.97 5.29
VB* 0.038 0.032 0.031 13.43 6.87 3.67




236 Computer Science & Information Technology (CS & IT)

2 4
£3 £3
175] 1%5]
92 92 X
ER ER
E HVE x 5 opensketch(bitmap) X
= I 2 34 5 = I 2 3 4 5
Actual Spread (10°) Actual Spread (10°)
(a) (b)
-4 o4
3 X 3
£3 X 23
172] 175]
92 2
3 1 3 I
E opensketch(bitmap)* X £ VB x
= 2 3 _ 4 5 = I 2 3. 4 5
Actual Spread (103) Actual Spread (103)
(c) (d)
N 5 X 1 T T
2, cogh L HVE —=— |
g g I opensketch(bitmap) -—e-—
g3 = 0.6 i opensketch(bitmap)* -—a— 1
4 E = VB
32 2 04 :
ER Z020 L VB*
* 1 n U.ar O . —a—" -
E ‘ ‘ ‘VB ‘ A 0 SR S atyy SR,
1 2 3 4 5 1 2 3 4 5
Actual Spread (103) Flow Spread (103)
(e) (f)

Fig. 4: Accuracy of HVE (plot (a)) vs. opensketch(bitmap) (plots (b) and (c)) vs.
VB (plots (d) and (e)) for base flows

6 Conclusions

This paper proposes a new hierarchical measurement architecture by introducing
hierarchical virtual bitmaps estimator, which extends the capability of existing
single-level network traffic measurement tools and enables more efficient online data
encoding of flows with hierarchical structure. We mathematically derive a hierar-
chical spread estimator that enables multi-level spread estimation at the same costs
of single-level spread estimators. Finally, through CPU and GPU implementations,
we show that our hierarchical virtual bitmap estimator’s throughput significant-
ly exceeds prior art while its accuracy is in general comparable with (or at times
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better than that of) prior art. The future works include rigorus analysis of HVE’s
accuracy, that is proving HVE unbiasness and deriving its confidence interval.
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