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Abstract

There is an increasing demand for lightweight multi-person pose estimation for many emerging smart IoT applications.
However, the existing algorithms tend to have large model sizes and intense computational requirements, making them ill-
suited for real-time applications and deployment on resource-constrained hardware. Lightweight and real-time approaches are
exceedingly rare and come at the cost of inferior accuracy. In this paper, we present EfficientHRNet, a family of lightweight
multi-person human pose estimators that are able to perform in real-time on resource-constrained devices. By unifying recent
advances in model scaling with high-resolution feature representations, EfficientHRNet creates highly accurate models while
reducing computation enough to achieve real-time performance. The largest model is able to come within 4.4% accuracy of
the current state-of-the-art, while having 1/3 the model size and 1/6 the computation, achieving 23 FPS on Nvidia Jetson
Xavier. Compared to the top real-time approach, EfficientHRNet increases accuracy by 22% while achieving similar FPS
with % the power. At every level, EfficientHRNet proves to be more computationally efficient than other bottom-up 2D human
pose estimation approaches, while achieving highly competitive accuracy.

Keywords Human pose estimation - High-resolution networks - Model scaling - Real-time - Lightweight

1 Introduction primary approaches to 2D human pose estimation. The first

is a top-down approach, where cropped images of humans

Two-dimensional human pose estimation is a common
task used in many popular smart applications and has
made substantial progress in recent years. There are two
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are provided and the network uses those cropped images
to produce human keypoints. Top-down approaches rely on
object detectors to provide initial human crops, thus they
often come with relatively higher computation cost, and are
not truly end-to-end. The second is a bottom-up approach,
where a network works off the original image and produces
human keypoints for all people in the image. While these
methods often do not quite reach the accuracy that is pos-
sible with state-of-the-art (SotA) top-down approaches, they
come with relatively lower model size and computational
overhead. Even so, SotA bottom-up approaches are still quite
large and computationally expensive. The current SotA [13]
having 63.8 million parameters and requiring 154.3 billion
floating-point operations.

Many emerging Internet-of-Things (IoT) applications
require lightweight real-time multi-person pose estimation
at the edge, next to the cameras. This is more pronounced
in a broad range of smart and connected applications
with demands for continuous human activity analysis and
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behavioral monitoring. Few examples are video surveillance,
patient monitoring, and public safety [6, 18, 38]. These
applications demand agile but highly accurate human pose
estimation that can run next to the cameras on the IoT edge
devices. Despite this, there has been a dearth of attention
towards developing lightweight bottom-up methods capa-
ble of real-time execution under constrained computational
resources. To address the gap, there is a need for a family
of lightweight real-time human pose estimation models that
achieves accuracy comparable to SotA.

In this paper, we present EfficientHRNet,! a family of
lightweight scalable networks for high-resolution and effi-
cient real-time bottom-up multi-person pose estimation. Effi-
cientHRNet unifies the principles of SotA EfficientNet [56]
and HRNet [54], and presents a new formulation that enables
near SotA human pose estimation while being more compu-
tationally efficient than all other bottom-up methods. Simi-
lar to HRNet, EfficientHRNet uses multiple resolutions of
features to generate keypoints, but in a much more efficient
manner. At the same time, it uses EfficientNet as a back-
bone and adapts its scaling methodology to be better suited
for human pose estimation. To enable lightweight real-time
execution, EfficientHRNet further expands the EfficientNet
formulation to not only scale below the baseline, but also
jointly scale down the input resolution, High-Resolution
Network, and Heatmap Prediction Network. Through this,
we create a family of networks that can address the entire
domain of real-time 2D human pose estimation while being
flexible towards accuracy and computation requirements of
an application.

We evaluate accuracy on the COCO dataset [37] and
real-time performance on the Nvidia NX Xavier. Figure 1
demonstrates how our models provide equivalent or higher
accuracy at lower computational costs than their direct
peers. When comparing to SotA bottom-up models, base-
line EfficientNet competes in accuracy while requiring much
less computation, resulting in faster inference. Compared to
HRNet? [54], EfficientHRNet achieves 0.4% higher accu-
racy while reducing computation requirements by 34%.
When comparing to HigherHRNet [13] and PersonLab [44],
EfficientHRNet sees between a 1.7 and 5.1% decrease in
accuracy, while reducing computation requirements by an
impressive 83-93%. This results in a 3.4 X FPS increase over
HigherHRNet. Even when comparing to models designed
specifically for lightweight execution, such as Lightweight
OpenPose [43], a scaled-down EfficientHRNet is able to
achieve 10.1% higher accuracy while further reducing com-
putation by 15%, maintaining similar FPS while requiring

! The source code of EfficientHRNet has been provided here: https://
github.com/TeCSAR-UNCC/EfficientHRNet.

2 Bottom-up implementation reported in [13].
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Fig.1 Comparison of computational complexity and accuracy
between bottom-up human pose estimation methods measured on
COCO val dataset. X-axis is logarithmic in scale

% the power. In addition, the scaled-down backbone models
have been evaluated in isolation on ImageNet. The results
demonstrate competitive accuracies while achieving greater
efficiency than their peers.

Summarily, the contributions of this article are:

e We propose EfficientHRNet as the first approach to pro-
vide lightweight, scalable models for bottom-up real-time
multi-person 2D human pose estimation that achieves
comparable accuracy to the SotA.

e We propose a novel formulation integrating the scalabil-
ity of EfficientNet throughout our high-resolution net-
works to reduce the computational complexity and allow
for real-time execution.

e We are the first to provide a downwards scaling formu-
lation to create compact EfficientNet models that scale
below the baseline for embedded and edge IoT devices
with restrained computation power.

e We provide comprehensive analysis on the challenging
COCO dataset [37] to show how our models compare
against SotA and real-time bottom-up approaches in
accuracy, model size, computational complexity, effi-
ciency, and real-time execution.

e We perform extensive performance analysis on SotA
embedded IoT GPU (Nvidia Jetson NX [28]) to demon-
strate the execution

The rest of this paper continues as follows: Sect. 2 provides
an overview of related work in the field of human pose esti-
mation, high-resolution networks, and scalable neural net-
works. Section 3 details the EfficientHRNet architecture and
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the novel joint scaling formulation. Section 4 provides exten-
sive results and comprehensive analysis on the challenging
COCO dataset, comparisons to other SotA and real-time
approaches, and a qualitative assessment of EfficientHR-
Net’s scaling. Finally, Sect. 5 presents concluding remarks.

2 Related work
2.1 Top-down methods

Top-down methods rely on first identifying all the persons
in an image using a detector, and then detecting keypoints
for a single person within a defined bounding box. These
single person [2, 14, 27, 40, 58, 60, 64] and multi-person
[10, 17,24, 26, 45] pose estimation methods often generate
person bounding boxes using object detector [11, 12, 36,
48]. Regional Multi-Person Pose Estimation [17] adds sym-
metric spatial transformer network on top of single person
pose estimator stacked hourglass network [40] to get high-
quality regions from inaccurate bounding boxes, then detects
poses using parametric non-maximum suppression.

2.2 Bottom-up methods

Bottom-up methods [4, 5, 25, 32, 33, 39, 44, 46] detect iden-
tity-free keypoints in an image and group them into persons
using various keypoints grouping techniques. Methods like
[25, 46] perform grouping by integer linear program and
non-maximum suppression. This allows for faster inference
times compared to top-down methods with almost similar
accuracies. Other methods further improve upon prediction
time by using greedy grouping techniques, along with other
optimizations, as seen in [4, 5, 33, 39, 44]. For instance,
OpenPose [4, 5] is a multi-stage network where one branch
detects keypoints in the form of heatmaps, while the other
branch generates Part Affinity Fields that are used to associ-
ate keypoints with each other. Grouping is done by calcu-
lating the line integral between all keypoints and grouping
the pair that has the highest integral. Lightweight Open-
Pose [43] replaces larger backbone with MobileNet [22] to
achieve real-time performance with fewer parameters and
FLOPs while compromising on accuracy. PifPaf [33] uses
Part intensity fields to detect body parts and Part associative
fields for associating parts with each other to form human
poses. In [39], a stacked hourglass network [40] is used both
for predicting heatmaps and grouping keypoints. Grouping is
done by assigning each keypoint with an embedding, called
a tag, and then associating those keypoints based on the L,
distance between the tag vectors. In this paper, we mainly
focus on a highly accurate, end-to-end multi-person pose
estimation method as in [39].

2.3 Top-down vs bottom-up

While both top-down and bottom-up approaches can be
applied to the domain of multi-person pose estimation, the
way they function is inherently different. While bottom-up
methods are designed specifically for end-to-end multi-
person pose estimation, most top-down approaches require
multiple instances and the use of external detectors, and are
generally not end-to-end in nature. This makes direct quan-
titative comparisons between these two approaches impracti-
cal. As such, this paper focuses primarily on the domain of
bottom-up multi-person pose estimation.

2.4 Multi-scale high-resolution networks

Feature pyramid networks augmented with multi-scale rep-
resentations are widely adopted for complex and necessary
computer vision applications like segmentation and pose
estimation [7, 8, 10, 36, 63]. Recovering high-resolution fea-
ture maps using techniques like upsampling, dilated convo-
lution, and deconvolution are also widely popular for object
detection [36], semantic segmentation [1, 9, 41, 49, 61, 65]
and pose estimation [3, 10, 25, 30, 40, 46, 63]. Moreover,
there are several works that focus on generating high-res-
olution feature maps directly [13, 23, 52, 54, 55, 59, 67].
HRNet [54, 55] proposes to maintain high-resolution fea-
ture maps throughout the entire network. HRNet consists of
multiple branches with different resolutions across multiple
stages. With multi-scale fusion, HRNet is able to generate
high resolution feature maps and has found its application in
object detection, semantic segmentation, and pose estima-
tion [54, 55, 59], achieving remarkable accuracy. Recently,
DSPNet [66] is proposed for lightweight single-person pose
estimation. EfficientNet [56] based, it has a pyramid archi-
tecture using lightweight up-sampling unit and achieves high
accuracy, becoming the SotA top-down approach. Following
HRNet, HigherHRNet for multi-person pose estimation [13]
is proposed which uses HRNet as base network to generate
high resolution feature maps, and further adds a deconvo-
lution module to predict accurate, high-quality heatmaps.
HigherHRNet achieves SotA accuracy on the COCO data-
set [37], surpassing all existing bottom-up methods. In this
paper, we adopt the principles of HigherHRNet [13] for gen-
erating high-resolution feature maps with multi-scale fusion
for predicting high quality heatmaps.

2.5 Model scaling

Previous works on bottom-up pose estimation [4, 5, 13, 39,
40, 54] often rely on large backbone networks, like ResNet
[21] or VGGNet [53], or large input resolutions and multi-
scale training for achieving SotA accuracy. Recent works
[13, 54] show that increasing the channel dimension of
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otherwise identical models can further improve accuracy.
EfficientNet [56] and RegNet [47] show that by jointly
scaling network width, depth, and input resolution, bet-
ter efficiency for image classification can be achieved
compared to previous SotA networks using much larger
models. More recently, EfficientNet’s lite models remove
elements, such as squeeze and excite and swish layers,
to make the network more hardware friendly. Inspired by
EfficientNet, EfficientDet [57] proposes a compound scal-
ing method for object detection along with efficient multi-
scale feature fusion. We observe that there is a lack of an
efficient scaling method for multi-person pose estimation,
especially for embedded devices. Lightweight pose estima-
tion models which are scalable and comparatively accurate
are needed for computer vision applications which focus
on real-time performance. Our proposed compound scal-
ing, also inspired by EfficientNet, is a method that jointly
scales the width, depth, and input resolution of Efficien-
tHRNet, as well as the repetition within the high-resolution
modules, explained in Sect. 3. In addition, this compound
scaling allows our EfficientNet backbone to scale below
the baseline BO, creating even lighter weight models.

2.6 Real-time pose estimation

While most work in the field focuses on accuracy in isola-
tion, some recent works have been developed that shift
the focus more to real-time inference. In [62], focus is
placed on real-time execution using a densely connected
residual module and high-resolution feature maps, similar
to [54], for accurate and lightweight single person pose
estimation able to achieve real-time performance with an
impressive 39 FPS on an Nvidia 1080TI. In [43], Open-
Pose [4] is modified to use a MobileNet [22] backbone and
fewer refinement stages, creating a multi-person bottom-up
model that achieves 28 FPS using the Intel OpenVINO
Toolkit [42] on an Intel NUC 6i7KYB. Nvidia has also
been focusing on real-time inference, releasing trt_pose
[29], a single person pose estimation model optimized
with TensorRT and DeepStream [51], achieving up to 251
FPS on the Nvidia Jetson Xavier [16].

3 EfficientHRNet

We have developed a family of lightweight, scalable net-
works for real-time multi-person human pose estimation
called EfficientHRNet. This section gives an overview of
EfficientHRNet and introduces the formulation for the
compound scaling of EfficientHRNet’s sub-networks.

@ Springer

3.1 Network architecture and formulation

EfficientHRNet, shown in Fig. 2, comprises of three sub-net-
works: (1) backbone network, (2) high-resolution network,
and (3) heatmap prediction network.

3.1.1 Backbone network

The first stage of EfficientHRNet is the backbone, consisting
of a modified of EfficientNet [56] altered to scale below the
baseline, as discussed in Sect. 3.2. The backbone outputs
four different resolution feature maps of decreasing resolu-
tions i, é, 1—16, and é the size of the input image. These feature
maps are passed into the main body of the network, called
the High-Resolution Network.

3.1.2 High-resolution network

The high-resolution network is inspired by HRNet [54, 55]
and HigherHRNet [13]. Borrowing the principles of these
higher resolution networks brings two major advantages:

1. By maintaining multiple high-resolution feature rep-
resentations throughout the network, heatmaps with a
higher degree of spatial precision are generated.

2. Repeated multi-scale fusions allow for high-resolution
feature representations to inform lower-resolution repre-
sentations, and vice versa, resulting in robust multi-res-
olution feature representations that are ideal for multi-
person pose estimation.

Figure 2 presents a detailed architecture illustration of Effi-
cientHRNet. It shows the three sub-networks: the backbone
network, the high-resolution network, and the Heatmap
Prediction Network. It also provides equations showing
how the network scales the input resolution Ry, and the
width of feature maps W, , which will be further explained
in Sect. 3.2.

The High-Resolution Network has three stages s,, s,, and
s5 containing four parallel branches b,, b,, b5, and b, of dif-
ferent resolutions. The first stage s, starts with two branches
b, and b,, with each consecutive stage adding an additional
branch, until all four branches are present in s3. These four
branches each consist of high resolution modules with a
width of W, . Each branch b, contains feature representa-
tions of decreasing resolutions that mirror the resolutions
output by the Backbone Network, as shown in Fig. 2 and the
following expression:

Rinput

W, X ——
KT

ey
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Fig.2 A detailed illustration of the EfficientHRNet architecture. Con-
sisting of a backbone EfficientNet, a high-resolution network with
three stages and four branches (denoted by different colors), and a

For instance, stage 2 (s,) has three branches of resolutions i,
%, and % of the original input image resolution and a width
W, . Moreover, each high resolution module is made up of a
number of blocks, M, 5,0 each containing two residual blocks,
of which each perform three convolution operations with a

residual connection.
3.1.3 Heatmap prediction network

The Heatmap prediction network is used to generate
human keypoint predictions. To predict more accurate
heatmaps, a DeConv block is added on top of the High-
Resolution Network, as proposed in [13]. Transposed
convolution is used to generate high quality feature maps
which are % the original input resolution. The input to the
DeConv block is the concatenation of the feature maps and
predicted heatmaps from the High-Resolution Network,
as shown below:

input R
4 4

input

34+ W, X @
Two residual blocks are added after the deconvolution to
refine the up-sampled feature maps. After the DeConv block,
1 X 1 convolution is used to predict heatmaps and tagmaps

»
>

m

Rinput  Rinput
W, X35 X752

Heatmap Prediction Network. EfficinetHRNet is completely scalable,
allowing network complexity to be customized for target applications

in a similar fashion to [39], the feature map size of each
shown below:

Tsize =34 x izput % i:'-pl]t
Ry R 3
inpul inpu
Hsize =17x 2 b

The grouping process clusters keypoints into multiple per-
sons by grouping keypoints whose tags have minimum L,
distance. Like [13], the high-resolution network is scale-
aware and uses multi-resolution supervision for heatmaps
during training to allow the network to learn with more
precision, even for small-scale persons. From the ground
truth, heatmaps for different resolutions are generated to
match the predicted keypoints of different scales. Thus, the
final heatmaps loss is the sum of mean squared errors for all
resolutions. However, as high resolutions tagmaps do not
converge well, tagmaps are trained on a resolution i of the
original input resolution, as in [39].

3.2 Compound scaling method

This section details the compound scaling methodology,
which jointly scales all parts of EfficientHRNet, as seen in
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Table 1 Efficient scaling

. Model Input size Backbone Width per branch Blocks per stage  Tags (T;,.) Heat-
configs for EfficientHRNet (Rinpu) network Wy, Wy, Wy W) (M, M, M,) s maps
(Hyize)
H, (¢ =0) 512 B0 32, 64, 128, 256 1,4,3 128 256
H_,(¢=—1) 480 B_, 26, 52, 103, 206 1,3,3 120 240
H,(@=—2) 448 B_, 21, 42, 83, 166 1,2,3 112 224
H ;(¢=—3) 416 B_, 17,34, 67,133 1,1,3 104 208
H, ,(¢p=—4) 384 B_, 14,27, 54, 107 1,1,2 96 192
Table 2 Compact EfficientNet Model Input size FLOPs ImageNet CIFAR-100
performance on ImageNet and
CIFAR-100 datasets Params Top-1 Params Top-1
BO 224 0.4B 5.3M 75 4.1M 81.9
B_, 195 0.3B 4.5M 73.8 3.5M 81.4
B_, 170 0.2B 3.4M 71.3 2.5M 79.8
B_, 145 0.1B 2.8M 68.5 1.9M 78.2
B_, 128 0.05B 1.3M 65.6 1.3M 74.3

Fig. 2 and Table 1. The aim of EfficientHRNet is to provide a
family of models optimized for both accuracy and efficiency,
which can be scaled to meet a diverse set of memory and
compute constraints.

Previous works on bottom-up human pose estimation and
semantic segmentation mostly scale the base network by
using bigger backbone networks like ResNet [21] and VGG-
Net [53], using large input image sizes, or using multi-scale
training to achieve high accuracies. However, these methods
rely on scaling only a single dimension, which has limited
effectiveness. Recent works [47, 56] show notable perfor-
mance on image classification by jointly scaling the width,
depth, and input image resolution. Inspired by Efficient-
Net, EfficientDet [57] proposes a similar compound scaling
method for object detection, which jointly scales the back-
bone network, multi-scale feature network, and the object
detector network. We propose a heuristic-based compound
scaling methodology for computer vision applications, spe-
cifically bottom-up human pose estimation and semantic
segmentation, using EfficientHRNet. Based on [56], Effi-
cientHRNet’s methodology uses a scaling coefficient ¢ to
jointly scale the Backbone Network, the High-Resolution
Network, and Task-Specific Head. More precisely, the Effi-
cientNet backbone is scaled below the baseline and the rest
of EfficientHRNet is scaled down to maintain near SotA
accuracy while creating lightweight and flexible networks.

3.2.1 Backbone network
The same width and depth scaling coefficients are main-

tained as in EfficientNet [56]. To meet the demands of
running models on constrained devices, a new formulation
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for scaling EfficientNet below the baseline and into a more
compact model is provided.

Starting with the baseline EfficientNet-BO scaling
coefficients:

depth : d = 1.2¢

width : w=1.1¢ 4)
resolution : r = 1.15%
¢,ie.p=—1,—2,—3,— 4, is inverted to calculate the

scaling multipliers for the compact EfficientNet models,
which is symbolized as B_,, B_,, B_; and B_, respectively.
As an example, to take the baseline resolution, 224, and
scale it down for our B_; model, we would take r, from
(4), with ¢ = —1. This would result in a resolution scaling
coefficient of 1.1571, i.e. 0.87, leaving a scaled resolution
size of ceil(224 * 0.87) = 195. This pattern repeats for B_,
through B_,, and can be seen in Table 2. We train these
compact EfficientNet models (B_; to B_,) on ImageNet
and use the resulting models for the Backbone Network in
EfficientHRNet.

3.2.2 High-resolution network

The high-resolution network has three stages and four
branches with four different feature map sizes. Each branch
n also has a different width W, and our baseline H model
has a width of 32, 64, 128, and 256 for each branch respec-
tively. We selectively pick a width scaling factor of 1.25
and scale down the width using the following equation:
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W, =(n-32)-(1.25)°, ©)

where n is a particular branch number and ¢ is the com-
pound scaling coefficient.

Furthermore, within each stage, each high resolution mod-
ule has multiple blocks M, which repeat a number of times,
as seen in Table 1. In our baseline EfficientHRNet H, model,
blocks within each stage repeat 1, 4, and 3 times respectively.
We found that the number of repetitions in stage 3 had the larg-
est impact on accuracy. Therefore, the number of repetitions
within a high resolution module M, decreases linearly as the
models are scaled down, starting with stage 2 until reaching
a single repetition and then moving on to stage 3, as shown
in Table 1.

3.2.3 Heatmap prediction network

The DeConv block is scaled in the same manner as the width
of the high resolution network (5). The Heatmap prediction
network outputs tags and heatmaps whose width remains fixed
across all models.

3.2.4 Inputimage resolution

The EfficientNet layers downsample the original input image
resolution by 32 times. Thus, the input resolution of Efficien-
tHRNet must be dividable by 32, and is linearly scaled down
as shown in the following equation:

Rinput =512+4+32-¢. (6)

The final result of this compound scaling methodology on
EfficientHRNet H, to H_, can be seen in Table 1.

4 Experimental results

This section evaluates our method for scaling EfficientNet
below the baseline through classification on the popular Ima-
geNet [15] and CIFAR-100 [34] datasets. Then, an exhaus-
tive evaluation of five different EfficientHRNet models is
conducted on the challenging COCO [37] dataset and com-
pared to SotA methods. Additional, metrics on real-time
inference are reported using the Nvidia Jetson NX Xavier and
compared to SotA lightwieght approaches. Finally, a qualita-
tive evaluation of EfficientHRNet is presented, illustrating
both where the models excel and where they fall short.

4.1 Classification for compact EfficientNet
4.1.1 Dataset

ImageNet [15] has been a long time standard benchmark
for object classification and detection thanks to its annual

contest, the ImageNet Large Scale Visual Recognition Chal-
lenge, that debuted in 2010. The challenge uses a subset of
the full dataset with over a million images spread out over
1000 object classes. For training, validating, and testing pur-
poses, the trimmed ImageNet is divided into three sets: 800
K images will be used for training the network, 150 K will be
used for validation after each epoch, and 50 K will be used
for testing the fully trained model. CIFAR-100 [34] consists
of 100 object classes each with 500 images for training, and
100 for testing. This relatively small dataset helps illuminate
our lightweight models, which start to struggle with the larger
ImageNet as ¢ decreases, designed for resource constrained
devices that might not need to classify as many object classes.

4.1.2 Training

We use random rotation, random scale, and random aspect
ratio to crop the input images to the desired resolutions
based on the current EfficientNet model. Color jitter was
also used to randomly change the brightness, contrast, satu-
ration, and hue of the RGB channels using principle com-
ponent analysis [35]. The images are then normalized using
per channel mean and standard deviation. Each model was
trained using Stochastic Gradient Descent with Momentum
[50] and a weight decay of 1e—4. The weights were initial-
ized using the Xavier algorithm [20] and underwent five
warm-up epochs with a learning rate of 1e—4 that increased
linearly until it reached 0.05. The networks were then trained
for an additional 195 epochs and followed the step decay
learning rate scheduler [19] that reduces the learning rate
by a factor of 10 every 30 epochs.

4.1.3 Testing

Compact EfficientNet models were tested for accuracy based
on their respective test sets. For a fair comparison, the num-
ber of ImageNet test samples were reduced to 10,000 to
match the test set of CIFAR-100, where the batch size is 1.
These results can be seen in Table 2.

4.1.4 Results on ImageNet and CIFAR-100

Looking at B_, there is a 15% reduction in parameters and
25% reduction in operations, yet an accuracy drop of only
1.2% and 0.5% on ImageNet and CIFAR-100 respectively.
More impressively, B_, sees a 35-40% reduction in param-
eters and a 50% reduction in operations, yet only a 3.7% and
2.1% drop in accuracy. This minor accuracy loss is negli-
gible compared to the massive reduction in model size and
computation, allowing for much faster inference and deploy-
ment on low-power and resource constrained devices. In the
most extreme, B_, shows a parameter reduction of 68-75%
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and a 87.5% decrease in operations while having an accu-
racy drop of 9.4% and 7.6% on ImageNet and CIFAR-100.
While the accuracy drop is a bit more significant here, the
massive reduction in computation allows for much more
flexibility when it comes to deployment in systems where a
lightweight approach is needed. This gives us a solid founda-
tion on which to build EfficientHRNet.

4.2 2D human pose estimation for EfficientHRNet
4.2.1 Dataset

COCO [37] consists of over 200 K images with 250 K per-
son instances, each annotated with 17 keypoints. COCO is
divided into three sets, train, val, and test, which have 57 K,
5 K, and 40 K images respectively. Additionally, test-dev is
a subset of test with 20 K images and is used for fair com-
parison with other works, where possible. COCO evaluation
metrics use mean average precision (AP) and are detailed on
the COCO website.?

4.2.2 Training

We use random rotation, random scale, and random trans-
lation for data augmentation. Following [13], we generate
two ground truth heatmaps of different sizes, % and 2 of the
original input size respectively. Each EfficientHRNet model
is trained using Adam optimizer [31] and weight decay of
le—4. While we saw little difference in accuracy between
using Adam and SGD with momentum in our initial testing,
Adam was selected for its higher speed of convergence and
overall effect on training time. All models from H, to H_,
are trained for a total of 300 epochs with a base learning rate
of 1e—3, decreasing to le—4 and le—5 at 200th and 260th
epochs respectively. To maintain balance between heatmap
loss and grouping loss, we weight the losses at 1 and le—3
respectively.

4.2.3 Testing

Models are tested using both single scale and multi-scale
heatmaps, as is common. Following [39], the output detec-
tion heatmaps across different scales are averaged and the
tags concatenated into higher dimension tags, making the
models considerably more scale-invariant.

4.2.4 Results on C0C02017 test-dev

Table 3 compares EfficientHRNet with other works on
COCO test-dev set. As explained in Sect. 2.3, top-down

3 http://cocodataset.org/#keypoints-eval.
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Table 3 Comparisons with SotA bottom-up methods on COCO2017
test-dev dataset

Method Backbone Input size # Params FLOPs AP

w/o multi-scale test

OpenPose - - 2594M 160B  61.8
Hourglass Hourglass 512 277.8M  206.9B 56.6
PersonLab ResNet-152 1401 68.7M 405.5B 66.5
PifPaf ResNet-152 - - - 66.7
HRNet HRNet-W32 512 28.5M 389B 64.1
HigherHRNet HRNet-W32 512 28.6M 479B  66.4
HigherHRNet HRNet-W48 640 63.8M 154.3B 68.4
H, BO 512 23.3M 25.6B  64.0
H_, B_, 480 16M 142B  59.1
H_, B_, 448 10.3M 7.7B 52.8
H_, B_, 416 6.9M 4.2B 44.5
H_, B_, 384 3.7M 2.1B 355
w/ multi-scale test
Hourglass Hourglass 512 277.8M  2069B 63.0
Hourglass Hourglass 512 277.8M  2069B 65.5
PersonLab ResNet-152 1401 68.7M 405.5B 68.7
HigherHRNet HRNet-W48 640 63.8M 154.3B 70.5
H, BO 512 23.3M 25.6B  67.1
H_, B_, 480 16M 142B 623
H_, B_, 448 10.3M 7.7B 55.0
H_, B_, 416 6.9M 4.2B 455
H_, B_, 384 3.7M 2.1B 39.7

Numbers for HRNet come from a bottom-up approach outlined in
(13]

methods, such as [17, 54, 68], are inherently not end-to-
end. As such, we limit our comparisons to the domain of
bottom-up multi-person human pose estimation. The base-
line H, model with single-scale testing serves as an efficient
and accurate model for bottom-up methods as it is almost
comparable to HRNet [13] in accuracy, losing by only 0.1%,
while having 18% less parameter and 34% fewer FLOPs. H,
outperforms Hourglass [40] in both single-scale and multi-
scale testing by 7.4% and 1.6% respectively, with H, remark-
ably having about % the model size and number of FLOPs as
Hourglass. The highest performing of all models on COCO
test-dev, HigherHRNet [13], beats H,, in accuracy by 4.4%,
but at the cost of nearly triple the model size and more than
6x the computation. In all cases where H|, loses in accuracy,
it more than makes up for it in a reduction in parameters
and operations. Additionally, our H_; model, with only 16M
parameters and 14.2B FLOPs, outperforms both OpenPose
[4, 5] and Hourglass [40], demonstrating EfficientHRNet’s
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Table 4 Comparisons with bottom-up methods on COCO2017 val
dataset

Model Input size AP  #Params FLOPs FPS
PersonLab 1401 66.5 68.7M 405.5B -
HRNet 512 644 28.5M 389B -
HigherHRNet 512 67.1 28.6M 479B  6.68
Lightweight OpenPose 368 42.8 4.1M 9.0B 26
Hy (¢=0) 512 64.8 23.3M 25.6B  22.95
H_(¢=—1) 480 59.2 16M 142B 2043
H,(@=—2) 448 529 10.3M 7.7B 24.53
H ;(¢=—3) 416 44.8 6.9M 4.2B 33.78
H_ (¢=—4) 384 35.7 3.M 2.1B 50.96

Metrics and accuracy for HRNet come from a bottom-up approach
outlined in [13] (FPS not reported). Lightweight OpenPose numbers
were reported on the Intel NUC 6i7KYB. All other FPS results were
preformed on the Nvidia Jetson NX Xavier [28]

efficiency and suitability for low-power and resource con-
strained devices.

As EfficientHRNet is scaled down using the compound
scaling method mentioned in Sect. 3.2, we see somewhat
minor drops in accuracy with significant drops parameters
and FLOPs as compared to the baseline H, model. H_, has
31.3% less parameters and 44.5% less FLOPs as compared to
H,, while only being 4.9% less accurate. Similarly, our light-
est model H_, is 84% smaller and has 91.7% less FLOPs,
with a less than 45% drop in accuracy. Interestingly, Effi-
cientHRNet is the only bottom-up pose estimator that is
able to provide such lightweight models while still having
accuracies that are comparable to SotA bottom-up meth-
ods, as illustrated by both Table 3 and Fig. 1. These results
nicely show the validity of our approach to scalability and
efficiency in EfficientHRNet.

4.2.5 Results on C0OC02017 val

We report EfficientHRNet accuracy on COCO val, noting
the number of parameters and FLOPs, and compare it with
other bottom-up methods. In addition, to accurately assess
suitability for real-time performance on embedded devices,
we inference our models as well as one of our closest com-
petitors, HigherHRnet [13], on the Jetson NX Xavier, first
converting the models to ONNX and then inferencing in
TensorRT. FPS results for Lightweight OpenPose are on an
Intel NUC 6i7KYB as reported in [43]. Looking at Table 4,
we can see that PersonLab is a very large network. With
nearly 3 X as many parameters and 16 X as many operations

Table 5 Z comparisons with lightweight bottom-up approaches

Model AP FPS Efficiency A
HigherHRNet 67.1 6.68 0.445 29.850
Lightweight OpenPose 42.8 26 0.578 24.738
H, (¢=0) 64.8 22.95 1.530 99.144
H,(¢=—1) 59.2 20.43 1.362 80.630
H,(@=72) 529 24.53 1.635 86.492
H_;(¢=-3) 44.8 33.78 2.252 100.89
H ,(d=—4) 35.7 50.96 3.397 121.273

Lightweight OpenPose reported on Intel NUC 6i7KYB (45W). All
others Nvidia Jetson NX Xavier (15W)

as our most complex model H,, it is too large to even run
on the NX Xavier, despite an improvement of less than 2%
accuracy. Still, the baseline H, model outperforms HRNet
[54] with 0.4% more accuracy, 18% fewer parameters and
34% fewer FLOPs. H_, and H_; models outperform Light-
weight OpenPose [43] in accuracy while having fewer
FLOPs. H_, has the worst accuracy of any model in Table 4.
However, it boasts both the smallest model size and fewest
number of operations, seeing an over 75% reduction from
its lightest weight competitor. When looking at FPS, High-
erHRNet becomes much less desirable, being the only model
unable to achieve at least 20 FPS. H,, is 3.4 X faster while
only being 2.3% less accurate. Comparing to Lightweight
OpenPose, H,, is 22% more accurate while only being 2 FPS
slower. Scaling down to H_; reduces EfficientHRNet’s accu-
racy lead by to only 2%, but increases throughput to be 1.3
x greater than Lightweight OpenPose. Our smallest model
H_, achieves an impressive 50 FPS, but at a substantial cost
in accuracy. Note that we see an unusually high FPS drop in
H_,. This is due to H_,’s input resolution and intermediate
feature map sizes resulting in memory tiles that map poorly
to the NX Xavier’s Tensor Core architecture. In the follow-
ing subsection, we provide further analysis and comparison
regarding real-time execution on NX Xavier.

4.3 Real-time execution analysis on edge

Since real-time inference is highly dependent on the hard-
ware utilized, we must account for more than just accuracy
and throughput in our comparisons. To best compare accu-
racy and efficiency across differing platforms, we adopt the
Accuracy - Efficiency (&) metric from [38]. £ is simply the
product of accuracy (measured in AP) and efficiency (meas-
ured in FPS per Watt). Table 5 shows how EfficientHRNet
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compares when taking this into account. Note that Light-
weight OpenPose reports results on Intel NUC 6i7KYB,
which has a TDP of 45 Watts [43], while all other methods
were measured on the Jetson NX Xavier with a maximum
power draw of 15 Watts. We use these power numbers across
all approaches in an attempt to create as fair a comparison as
possible. EfficientHRNet greatly outperforms the competi-
tion in terms of /&, with all models achieving an A& score
of over 80 while Lightweight OpenPose and HigherHRNet
achieve scores of 25 and 30 respectively.

In terms of A&, EfficientHRNet outperforms the competi-
tion between 3 X and 5 X. This is largely due to the poor
throughput of HigherHRNet and the relatively higher power
NUC that Lightweight OpenPose reports on. HigherHRNet
excels in accuracy and Lightweight OpenPose excels in FPS
and model size, while EfficientHRNet is more equally bal-
anced between accuracy, model size, throughput, and power
consumption. This gives EfficientHRNet a leg up in terms of
low-power, real-time inference, making its scalable models
the new SotA for lightweight bottom-up human pose estima-
tion for real-time edge applications.

4.4 Qualitative analysis

To further demonstrate how EfficientHRNet models per-
form in relation to one another, we present qualitative results
on COCO. Figure 3 shows simple, medium, and complex
examples for EfficientHRNet models H, to H_,. We see
that H,, can accurately detect all but the most distant and
occluded individuals. This accuracy is functionally iden-
tical to SotA models but is able to inference in real-time,
making it immensely valuable for applications that require
high accuracy but need to run in real-time or on low-power
devices. Looking at H_; we see that keypoints are accurately
detected, but in medium and complex scenarios keypoint
groupings become confused. Here, the confusion is minor
enough that it can be filtered out with additional post pro-
cessing, meaning that applications that require predicting
complex scenarios on devices that can not fit H, can use
H_, with slightly decreased accuracy. For the medium sce-
nario, there is also missed detection from the distant person
occluded by the left-most surfboard, though such missed
detections are relatively uncommon throughout the dataset.
However, for simple scenarios there is little to no differ-
ence when compared with H,,. These qualities make H_,
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a compelling model when using a device without enough
memory resources for H;, and when a minor amount of error
is acceptable, or for applications that will only deal with
simple scenarios. H_, looks a lot like H_,, but the confusion
is worse, with multiple keypoint grouping being detected
for a single person, and this even extends to simple sce-
narios. This would again require additional post process-
ing, depending on the application. H_; and H_, follow the
same pattern, with confusion continuing to get worse. Again,
we see that actual keypoint detections themselves are fairly
accurate, and the greatly reduced model size and computa-
tional complexity open up a wide range of additional devices
capable of real-time performance. This makes the smaller
models extremely compelling for real-time applications that
can afford a certain amount of error but require the use of
highly resource constrained devices, particularly in the case
of simple scenarios. This analysis helps visualize the rela-
tionship between detected keypoints and model size, and
shows the overall affect on accurate human pose prediction
as we move towards smaller models. This further validates
EfficientHRNet as a family of high accuracy and efficient
models capable of real-time 2D human pose estimation for
a variety of embedded and resource constrained devices.

5 Conclusion

In this paper, we have presented EfficientHRNet, a family of
scalable networks for high-resolution and efficient bottom-
up multi-person pose estimation made for real-time execu-
tion on low-power edge devices. EfficientHRNet unifies
the principles of SotA EfficientNet [56] and HRNet [54]
to create a network architecture for lightweight real-time
human pose estimation, and proposes a new compound scal-
ing method that jointly scales down the input resolution,
backbone network, and high-resolution feature network.
EfficientHRNet is not only more efficient than all other bot-
tom-up human pose estimation methods, but it can maintain
accuracy competitive with SotA models on the challenging
COCO dataset. Remarkably, EfficientHRNet can achieve this
near SotA accuracy with fewer parameters and less compu-
tational complexity than other bottom-up multi-person pose
estimation networks, all while being able to achieve 23 FPS
on an Nvidia Jetson NX Xavier.
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Fig. 3 Qualitative results for EfficientHRNet models on COCO2017 test. Left to right: simple, medium and complex examples
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