
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing 
https://doi.org/10.1007/s11554-021-01132-9

SPECIAL ISSUE PAPER

EfficientHRNet

Efficient and scalable high-resolution networks for real-time multi-person 2D human pose 
estimation

Christopher Neff1   · Aneri Sheth1 · Steven Furgurson1 · John Middleton1 · Hamed Tabkhi1

Received: 6 January 2021 / Accepted: 13 May 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
There is an increasing demand for lightweight multi-person pose estimation for many emerging smart IoT applications. 
However, the existing algorithms tend to have large model sizes and intense computational requirements, making them ill-
suited for real-time applications and deployment on resource-constrained hardware. Lightweight and real-time approaches are 
exceedingly rare and come at the cost of inferior accuracy. In this paper, we present EfficientHRNet, a family of lightweight 
multi-person human pose estimators that are able to perform in real-time on resource-constrained devices. By unifying recent 
advances in model scaling with high-resolution feature representations, EfficientHRNet creates highly accurate models while 
reducing computation enough to achieve real-time performance. The largest model is able to come within 4.4% accuracy of 
the current state-of-the-art, while having 1/3 the model size and 1/6 the computation, achieving 23 FPS on Nvidia Jetson 
Xavier. Compared to the top real-time approach, EfficientHRNet increases accuracy by 22% while achieving similar FPS 
with 1

3
 the power. At every level, EfficientHRNet proves to be more computationally efficient than other bottom-up 2D human 

pose estimation approaches, while achieving highly competitive accuracy.
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1  Introduction

Two-dimensional human pose estimation is a common 
task used in many popular smart applications and has 
made substantial progress in recent years. There are two 

primary approaches to 2D human pose estimation. The first 
is a top-down approach, where cropped images of humans 
are provided and the network uses those cropped images 
to produce human keypoints. Top-down approaches rely on 
object detectors to provide initial human crops, thus they 
often come with relatively higher computation cost, and are 
not truly end-to-end. The second is a bottom-up approach, 
where a network works off the original image and produces 
human keypoints for all people in the image. While these 
methods often do not quite reach the accuracy that is pos-
sible with state-of-the-art (SotA) top-down approaches, they 
come with relatively lower model size and computational 
overhead. Even so, SotA bottom-up approaches are still quite 
large and computationally expensive. The current SotA [13] 
having 63.8 million parameters and requiring 154.3 billion 
floating-point operations.

Many emerging Internet-of-Things (IoT) applications 
require lightweight real-time multi-person pose estimation 
at the edge, next to the cameras. This is more pronounced 
in a broad range of smart and connected applications 
with demands for continuous human activity analysis and 
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behavioral monitoring. Few examples are video surveillance, 
patient monitoring, and public safety [6, 18, 38]. These 
applications demand agile but highly accurate human pose 
estimation that can run next to the cameras on the IoT edge 
devices. Despite this, there has been a dearth of attention 
towards developing lightweight bottom-up methods capa-
ble of real-time execution under constrained computational 
resources. To address the gap, there is a need for a family 
of lightweight real-time human pose estimation models that 
achieves accuracy comparable to SotA.

In this paper, we present EfficientHRNet,1 a family of 
lightweight scalable networks for high-resolution and effi-
cient real-time bottom-up multi-person pose estimation. Effi-
cientHRNet unifies the principles of SotA EfficientNet [56] 
and HRNet [54], and presents a new formulation that enables 
near SotA human pose estimation while being more compu-
tationally efficient than all other bottom-up methods. Simi-
lar to HRNet, EfficientHRNet uses multiple resolutions of 
features to generate keypoints, but in a much more efficient 
manner. At the same time, it uses EfficientNet as a back-
bone and adapts its scaling methodology to be better suited 
for human pose estimation. To enable lightweight real-time 
execution, EfficientHRNet further expands the EfficientNet 
formulation to not only scale below the baseline, but also 
jointly scale down the input resolution, High-Resolution 
Network, and Heatmap Prediction Network. Through this, 
we create a family of networks that can address the entire 
domain of real-time 2D human pose estimation while being 
flexible towards accuracy and computation requirements of 
an application.

We evaluate accuracy on the COCO dataset [37] and 
real-time performance on the Nvidia NX Xavier. Figure 1 
demonstrates how our models provide equivalent or higher 
accuracy at lower computational costs than their direct 
peers. When comparing to SotA bottom-up models, base-
line EfficientNet competes in accuracy while requiring much 
less computation, resulting in faster inference. Compared to 
HRNet2 [54], EfficientHRNet achieves 0.4% higher accu-
racy while reducing computation requirements by 34%. 
When comparing to HigherHRNet [13] and PersonLab [44], 
EfficientHRNet sees between a 1.7 and 5.1% decrease in 
accuracy, while reducing computation requirements by an 
impressive 83–93%. This results in a 3.4 × FPS increase over 
HigherHRNet. Even when comparing to models designed 
specifically for lightweight execution, such as Lightweight 
OpenPose [43], a scaled-down EfficientHRNet is able to 
achieve 10.1% higher accuracy while further reducing com-
putation by 15%, maintaining similar FPS while requiring 

1

3
 the power. In addition, the scaled-down backbone models 

have been evaluated in isolation on ImageNet. The results 
demonstrate competitive accuracies while achieving greater 
efficiency than their peers.

Summarily, the contributions of this article are:

•	 We propose EfficientHRNet as the first approach to pro-
vide lightweight, scalable models for bottom-up real-time 
multi-person 2D human pose estimation that achieves 
comparable accuracy to the SotA.

•	 We propose a novel formulation integrating the scalabil-
ity of EfficientNet throughout our high-resolution net-
works to reduce the computational complexity and allow 
for real-time execution.

•	 We are the first to provide a downwards scaling formu-
lation to create compact EfficientNet models that scale 
below the baseline for embedded and edge IoT devices 
with restrained computation power.

•	 We provide comprehensive analysis on the challenging 
COCO dataset [37] to show how our models compare 
against SotA and real-time bottom-up approaches in 
accuracy, model size, computational complexity, effi-
ciency, and real-time execution.

•	 We perform extensive performance analysis on SotA 
embedded IoT GPU (Nvidia Jetson NX [28]) to demon-
strate the execution

The rest of this paper continues as follows: Sect. 2 provides 
an overview of related work in the field of human pose esti-
mation, high-resolution networks, and scalable neural net-
works. Section 3 details the EfficientHRNet architecture and 
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Fig. 1   Comparison of computational complexity and accuracy 
between bottom-up human pose estimation methods measured on 
COCO val dataset. X-axis is logarithmic in scale

1  The source code of EfficientHRNet has been provided here: https://​
github.​com/​TeCSAR-​UNCC/​Effic​ientH​RNet.
2  Bottom-up implementation reported in [13].

https://github.com/TeCSAR-UNCC/EfficientHRNet
https://github.com/TeCSAR-UNCC/EfficientHRNet
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the novel joint scaling formulation. Section 4 provides exten-
sive results and comprehensive analysis on the challenging 
COCO dataset, comparisons to other SotA and real-time 
approaches, and a qualitative assessment of EfficientHR-
Net’s scaling. Finally, Sect. 5 presents concluding remarks.

2 � Related work

2.1 � Top‑down methods

Top-down methods rely on first identifying all the persons 
in an image using a detector, and then detecting keypoints 
for a single person within a defined bounding box. These 
single person [2, 14, 27, 40, 58, 60, 64] and multi-person 
[10, 17, 24, 26, 45] pose estimation methods often generate 
person bounding boxes using object detector [11, 12, 36, 
48]. Regional Multi-Person Pose Estimation [17] adds sym-
metric spatial transformer network on top of single person 
pose estimator stacked hourglass network [40] to get high-
quality regions from inaccurate bounding boxes, then detects 
poses using parametric non-maximum suppression.

2.2 � Bottom‑up methods

Bottom-up methods [4, 5, 25, 32, 33, 39, 44, 46] detect iden-
tity-free keypoints in an image and group them into persons 
using various keypoints grouping techniques. Methods like 
[25, 46] perform grouping by integer linear program and 
non-maximum suppression. This allows for faster inference 
times compared to top-down methods with almost similar 
accuracies. Other methods further improve upon prediction 
time by using greedy grouping techniques, along with other 
optimizations, as seen in [4, 5, 33, 39, 44]. For instance, 
OpenPose [4, 5] is a multi-stage network where one branch 
detects keypoints in the form of heatmaps, while the other 
branch generates Part Affinity Fields that are used to associ-
ate keypoints with each other. Grouping is done by calcu-
lating the line integral between all keypoints and grouping 
the pair that has the highest integral. Lightweight Open-
Pose [43] replaces larger backbone with MobileNet [22] to 
achieve real-time performance with fewer parameters and 
FLOPs while compromising on accuracy. PifPaf [33] uses 
Part intensity fields to detect body parts and Part associative 
fields for associating parts with each other to form human 
poses. In [39], a stacked hourglass network [40] is used both 
for predicting heatmaps and grouping keypoints. Grouping is 
done by assigning each keypoint with an embedding, called 
a tag, and then associating those keypoints based on the L2 
distance between the tag vectors. In this paper, we mainly 
focus on a highly accurate, end-to-end multi-person pose 
estimation method as in [39].

2.3 � Top‑down vs bottom‑up

While both top-down and bottom-up approaches can be 
applied to the domain of multi-person pose estimation, the 
way they function is inherently different. While bottom-up 
methods are designed specifically for end-to-end multi-
person pose estimation, most top-down approaches require 
multiple instances and the use of external detectors, and are 
generally not end-to-end in nature. This makes direct quan-
titative comparisons between these two approaches impracti-
cal. As such, this paper focuses primarily on the domain of 
bottom-up multi-person pose estimation.

2.4 � Multi‑scale high‑resolution networks

Feature pyramid networks augmented with multi-scale rep-
resentations are widely adopted for complex and necessary 
computer vision applications like segmentation and pose 
estimation [7, 8, 10, 36, 63]. Recovering high-resolution fea-
ture maps using techniques like upsampling, dilated convo-
lution, and deconvolution are also widely popular for object 
detection [36], semantic segmentation [1, 9, 41, 49, 61, 65] 
and pose estimation [3, 10, 25, 30, 40, 46, 63]. Moreover, 
there are several works that focus on generating high-res-
olution feature maps directly [13, 23, 52, 54, 55, 59, 67]. 
HRNet [54, 55] proposes to maintain high-resolution fea-
ture maps throughout the entire network. HRNet consists of 
multiple branches with different resolutions across multiple 
stages. With multi-scale fusion, HRNet is able to generate 
high resolution feature maps and has found its application in 
object detection, semantic segmentation, and pose estima-
tion [54, 55, 59], achieving remarkable accuracy. Recently, 
DSPNet [66] is proposed for lightweight single-person pose 
estimation. EfficientNet [56] based, it has a pyramid archi-
tecture using lightweight up-sampling unit and achieves high 
accuracy, becoming the SotA top-down approach. Following 
HRNet, HigherHRNet for multi-person pose estimation [13] 
is proposed which uses HRNet as base network to generate 
high resolution feature maps, and further adds a deconvo-
lution module to predict accurate, high-quality heatmaps. 
HigherHRNet achieves SotA accuracy on the COCO data-
set [37], surpassing all existing bottom-up methods. In this 
paper, we adopt the principles of HigherHRNet [13] for gen-
erating high-resolution feature maps with multi-scale fusion 
for predicting high quality heatmaps.

2.5 � Model scaling

Previous works on bottom-up pose estimation [4, 5, 13, 39, 
40, 54] often rely on large backbone networks, like ResNet 
[21] or VGGNet [53], or large input resolutions and multi-
scale training for achieving SotA accuracy. Recent works 
[13, 54] show that increasing the channel dimension of 
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otherwise identical models can further improve accuracy. 
EfficientNet [56] and RegNet [47] show that by jointly 
scaling network width, depth, and input resolution, bet-
ter efficiency for image classification can be achieved 
compared to previous SotA networks using much larger 
models. More recently, EfficientNet’s lite models remove 
elements, such as squeeze and excite and swish layers, 
to make the network more hardware friendly. Inspired by 
EfficientNet, EfficientDet [57] proposes a compound scal-
ing method for object detection along with efficient multi-
scale feature fusion. We observe that there is a lack of an 
efficient scaling method for multi-person pose estimation, 
especially for embedded devices. Lightweight pose estima-
tion models which are scalable and comparatively accurate 
are needed for computer vision applications which focus 
on real-time performance. Our proposed compound scal-
ing, also inspired by EfficientNet, is a method that jointly 
scales the width, depth, and input resolution of Efficien-
tHRNet, as well as the repetition within the high-resolution 
modules, explained in Sect. 3. In addition, this compound 
scaling allows our EfficientNet backbone to scale below 
the baseline B0, creating even lighter weight models.

2.6 � Real‑time pose estimation

While most work in the field focuses on accuracy in isola-
tion, some recent works have been developed that shift 
the focus more to real-time inference. In [62], focus is 
placed on real-time execution using a densely connected 
residual module and high-resolution feature maps, similar 
to [54], for accurate and lightweight single person pose 
estimation able to achieve real-time performance with an 
impressive 39 FPS on an Nvidia 1080TI. In [43], Open-
Pose [4] is modified to use a MobileNet [22] backbone and 
fewer refinement stages, creating a multi-person bottom-up 
model that achieves 28 FPS using the Intel OpenVINO 
Toolkit [42] on an Intel NUC 6i7KYB. Nvidia has also 
been focusing on real-time inference, releasing trt_pose 
[29], a single person pose estimation model optimized 
with TensorRT and DeepStream [51], achieving up to 251 
FPS on the Nvidia Jetson Xavier [16].

3 � EfficientHRNet

We have developed a family of lightweight, scalable net-
works for real-time multi-person human pose estimation 
called EfficientHRNet. This section gives an overview of 
EfficientHRNet and introduces the formulation for the 
compound scaling of EfficientHRNet’s sub-networks.

3.1 � Network architecture and formulation

EfficientHRNet, shown in Fig. 2, comprises of three sub-net-
works: (1) backbone network, (2) high-resolution network, 
and (3) heatmap prediction network.

3.1.1 � Backbone network

The first stage of EfficientHRNet is the backbone, consisting 
of a modified of EfficientNet [56] altered to scale below the 
baseline, as discussed in Sect. 3.2. The backbone outputs 
four different resolution feature maps of decreasing resolu-
tions 1

4
 , 1
8
 , 1
16

 , and 1
32

 the size of the input image. These feature 
maps are passed into the main body of the network, called 
the High-Resolution Network.

3.1.2 � High‑resolution network

The high-resolution network is inspired by HRNet [54, 55] 
and HigherHRNet [13]. Borrowing the principles of these 
higher resolution networks brings two major advantages: 

1.	 By maintaining multiple high-resolution feature rep-
resentations throughout the network, heatmaps with a 
higher degree of spatial precision are generated.

2.	 Repeated multi-scale fusions allow for high-resolution 
feature representations to inform lower-resolution repre-
sentations, and vice versa, resulting in robust multi-res-
olution feature representations that are ideal for multi-
person pose estimation.

Figure 2 presents a detailed architecture illustration of Effi-
cientHRNet. It shows the three sub-networks: the backbone 
network, the high-resolution network, and the Heatmap 
Prediction Network. It also provides equations showing 
how the network scales the input resolution Rinput and the 
width of feature maps W

bn
 , which will be further explained 

in Sect. 3.2.
The High-Resolution Network has three stages s1 , s2 , and 

s3 containing four parallel branches b1 , b2 , b3 , and b4 of dif-
ferent resolutions. The first stage s1 starts with two branches 
b1 and b2 , with each consecutive stage adding an additional 
branch, until all four branches are present in s3 . These four 
branches each consist of high resolution modules with a 
width of W

bn
 . Each branch b

n
 contains feature representa-

tions of decreasing resolutions that mirror the resolutions 
output by the Backbone Network, as shown in Fig. 2 and the 
following expression:

(1)W
bn
×

Rinput

2n + 1
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For instance, stage 2 ( s2 ) has three branches of resolutions 1
4
 , 

1

8
 , and 1

16
 of the original input image resolution and a width 

W
bn

 . Moreover, each high resolution module is made up of a 
number of blocks, M

sn
 , each containing two residual blocks, 

of which each perform three convolution operations with a 
residual connection.

3.1.3 � Heatmap prediction network

The Heatmap prediction network is used to generate 
human keypoint predictions. To predict more accurate 
heatmaps, a DeConv block is added on top of the High-
Resolution Network, as proposed in [13]. Transposed 
convolution is used to generate high quality feature maps 
which are 1

2
 the original input resolution. The input to the 

DeConv block is the concatenation of the feature maps and 
predicted heatmaps from the High-Resolution Network, 
as shown below:

Two residual blocks are added after the deconvolution to 
refine the up-sampled feature maps. After the DeConv block, 
1 × 1 convolution is used to predict heatmaps and tagmaps 

(2)34 +W
b1
×
Rinput

4
×
Rinput

4

in a similar fashion to [39], the feature map size of each 
shown below:

The grouping process clusters keypoints into multiple per-
sons by grouping keypoints whose tags have minimum L2 
distance. Like [13], the high-resolution network is scale-
aware and uses multi-resolution supervision for heatmaps 
during training to allow the network to learn with more 
precision, even for small-scale persons. From the ground 
truth, heatmaps for different resolutions are generated to 
match the predicted keypoints of different scales. Thus, the 
final heatmaps loss is the sum of mean squared errors for all 
resolutions. However, as high resolutions tagmaps do not 
converge well, tagmaps are trained on a resolution 1

4
 of the 

original input resolution, as in [39].

3.2 � Compound scaling method

This section details the compound scaling methodology, 
which jointly scales all parts of EfficientHRNet, as seen in 

(3)
Tsize = 34 ×

Rinput

4
×
Rinput

4

Hsize = 17 ×
Rinput

2
×
Rinput

2

MBConv4

MBConv6
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Fig. 2   A detailed illustration of the EfficientHRNet architecture. Con-
sisting of a backbone EfficientNet, a high-resolution network with 
three stages and four branches (denoted by different colors), and a 

Heatmap Prediction Network. EfficinetHRNet is completely scalable, 
allowing network complexity to be customized for target applications
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Fig. 2 and Table 1. The aim of EfficientHRNet is to provide a 
family of models optimized for both accuracy and efficiency, 
which can be scaled to meet a diverse set of memory and 
compute constraints.

Previous works on bottom-up human pose estimation and 
semantic segmentation mostly scale the base network by 
using bigger backbone networks like ResNet [21] and VGG-
Net [53], using large input image sizes, or using multi-scale 
training to achieve high accuracies. However, these methods 
rely on scaling only a single dimension, which has limited 
effectiveness. Recent works [47, 56] show notable perfor-
mance on image classification by jointly scaling the width, 
depth, and input image resolution. Inspired by Efficient-
Net, EfficientDet [57] proposes a similar compound scaling 
method for object detection, which jointly scales the back-
bone network, multi-scale feature network, and the object 
detector network. We propose a heuristic-based compound 
scaling methodology for computer vision applications, spe-
cifically bottom-up human pose estimation and semantic 
segmentation, using EfficientHRNet. Based on [56], Effi-
cientHRNet’s methodology uses a scaling coefficient � to 
jointly scale the Backbone Network, the High-Resolution 
Network, and Task-Specific Head. More precisely, the Effi-
cientNet backbone is scaled below the baseline and the rest 
of EfficientHRNet is scaled down to maintain near SotA 
accuracy while creating lightweight and flexible networks.

3.2.1 � Backbone network

The same width and depth scaling coefficients are main-
tained as in EfficientNet [56]. To meet the demands of 
running models on constrained devices, a new formulation 

for scaling EfficientNet below the baseline and into a more 
compact model is provided.

Starting with the baseline EfficientNet-B0 scaling 
coefficients:

� , i.e. � = − 1, − 2, − 3, − 4, is inverted to calculate the 
scaling multipliers for the compact EfficientNet models, 
which is symbolized as B−1 , B−2 , B−3 and B−4 respectively. 
As an example, to take the baseline resolution, 224, and 
scale it down for our B−1 model, we would take r, from 
(4), with � = −1 . This would result in a resolution scaling 
coefficient of 1.15−1 , i.e. 0.87, leaving a scaled resolution 
size of ceil(224 ∗ 0.87) = 195 . This pattern repeats for B−2 
through B−4 , and can be seen in Table 2. We train these 
compact EfficientNet models ( B−1 to B−4 ) on ImageNet 
and use the resulting models for the Backbone Network in 
EfficientHRNet.

3.2.2 � High‑resolution network

The high-resolution network has three stages and four 
branches with four different feature map sizes. Each branch 
n also has a different width W

bn
 and our baseline H0 model 

has a width of 32, 64, 128, and 256 for each branch respec-
tively. We selectively pick a width scaling factor of 1.25 
and scale down the width using the following equation:

(4)
depth ∶ d = 1.2�

width ∶ w = 1.1�

resolution ∶ r = 1.15�

Table 1   Efficient scaling 
configs for EfficientHRNet

Model Input size 
( Rinput)

Backbone 
network

Width per branch 
( W

b1
 , W

b2
 , W

b3
 , W

b4
)

Blocks per stage 
( M

s2
 , M

s3
 , M

s4
)

Tags ( Tsize) Heat-
maps 
( Hsize)

H
0
 ( � = 0) 512 B0 32, 64, 128, 256 1, 4, 3 128 256

H−1 ( � = − 1) 480 B−1 26, 52, 103, 206 1, 3, 3 120 240
H−2 ( � = − 2) 448 B−2 21, 42, 83, 166 1, 2, 3 112 224
H−3 ( � = − 3) 416 B−3 17, 34, 67, 133 1, 1, 3 104 208
H−4 ( � = − 4) 384 B−4 14, 27, 54, 107 1, 1, 2 96 192

Table 2   Compact EfficientNet 
performance on ImageNet and 
CIFAR-100 datasets

Model Input size FLOPs ImageNet CIFAR-100

Params Top-1 Params Top-1

B0 224 0.4B 5.3M 75 4.1M 81.9
B−1 195 0.3B 4.5M 73.8 3.5M 81.4
B−2 170 0.2B 3.4M 71.3 2.5M 79.8
B−3 145 0.1B 2.8M 68.5 1.9M 78.2
B−4 128 0.05B 1.3M 65.6 1.3M 74.3
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where n is a particular branch number and � is the com-
pound scaling coefficient.

Furthermore, within each stage, each high resolution mod-
ule has multiple blocks M

sn
 which repeat a number of times, 

as seen in Table 1. In our baseline EfficientHRNet H0 model, 
blocks within each stage repeat 1, 4, and 3 times respectively. 
We found that the number of repetitions in stage 3 had the larg-
est impact on accuracy. Therefore, the number of repetitions 
within a high resolution module M

s2
 decreases linearly as the 

models are scaled down, starting with stage 2 until reaching 
a single repetition and then moving on to stage 3, as shown 
in Table 1.

3.2.3 � Heatmap prediction network

The DeConv block is scaled in the same manner as the width 
of the high resolution network (5). The Heatmap prediction 
network outputs tags and heatmaps whose width remains fixed 
across all models.

3.2.4 � Input image resolution

The EfficientNet layers downsample the original input image 
resolution by 32 times. Thus, the input resolution of Efficien-
tHRNet must be dividable by 32, and is linearly scaled down 
as shown in the following equation:

The final result of this compound scaling methodology on 
EfficientHRNet H0 to H−4 can be seen in Table 1.

4 � Experimental results

This section evaluates our method for scaling EfficientNet 
below the baseline through classification on the popular Ima-
geNet [15] and CIFAR-100 [34] datasets. Then, an exhaus-
tive evaluation of five different EfficientHRNet models is 
conducted on the challenging COCO [37] dataset and com-
pared to SotA methods. Additional, metrics on real-time 
inference are reported using the Nvidia Jetson NX Xavier and 
compared to SotA lightwieght approaches. Finally, a qualita-
tive evaluation of EfficientHRNet is presented, illustrating 
both where the models excel and where they fall short.

4.1 � Classification for compact EfficientNet

4.1.1 � Dataset

ImageNet [15] has been a long time standard benchmark 
for object classification and detection thanks to its annual 

(5)W
bn
= (n ⋅ 32) ⋅ (1.25)�,

(6)Rinput = 512 + 32 ⋅ �.

contest, the ImageNet Large Scale Visual Recognition Chal-
lenge, that debuted in 2010. The challenge uses a subset of 
the full dataset with over a million images spread out over 
1000 object classes. For training, validating, and testing pur-
poses, the trimmed ImageNet is divided into three sets: 800 
K images will be used for training the network, 150 K will be 
used for validation after each epoch, and 50 K will be used 
for testing the fully trained model. CIFAR-100 [34] consists 
of 100 object classes each with 500 images for training, and 
100 for testing. This relatively small dataset helps illuminate 
our lightweight models, which start to struggle with the larger 
ImageNet as � decreases, designed for resource constrained 
devices that might not need to classify as many object classes.

4.1.2 � Training

We use random rotation, random scale, and random aspect 
ratio to crop the input images to the desired resolutions 
based on the current EfficientNet model. Color jitter was 
also used to randomly change the brightness, contrast, satu-
ration, and hue of the RGB channels using principle com-
ponent analysis [35]. The images are then normalized using 
per channel mean and standard deviation. Each model was 
trained using Stochastic Gradient Descent with Momentum 
[50] and a weight decay of 1e− 4. The weights were initial-
ized using the Xavier algorithm [20] and underwent five 
warm-up epochs with a learning rate of 1e− 4 that increased 
linearly until it reached 0.05. The networks were then trained 
for an additional 195 epochs and followed the step decay 
learning rate scheduler [19] that reduces the learning rate 
by a factor of 10 every 30 epochs.

4.1.3 � Testing

Compact EfficientNet models were tested for accuracy based 
on their respective test sets. For a fair comparison, the num-
ber of ImageNet test samples were reduced to 10,000 to 
match the test set of CIFAR-100, where the batch size is 1. 
These results can be seen in Table 2.

4.1.4 � Results on ImageNet and CIFAR‑100

Looking at B−1 there is a 15% reduction in parameters and 
25% reduction in operations, yet an accuracy drop of only 
1.2% and 0.5% on ImageNet and CIFAR-100 respectively. 
More impressively, B−2 sees a 35–40% reduction in param-
eters and a 50% reduction in operations, yet only a 3.7% and 
2.1% drop in accuracy. This minor accuracy loss is negli-
gible compared to the massive reduction in model size and 
computation, allowing for much faster inference and deploy-
ment on low-power and resource constrained devices. In the 
most extreme, B−4 shows a parameter reduction of 68–75% 
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and a 87.5% decrease in operations while having an accu-
racy drop of 9.4% and 7.6% on ImageNet and CIFAR-100. 
While the accuracy drop is a bit more significant here, the 
massive reduction in computation allows for much more 
flexibility when it comes to deployment in systems where a 
lightweight approach is needed. This gives us a solid founda-
tion on which to build EfficientHRNet.

4.2 � 2D human pose estimation for EfficientHRNet

4.2.1 � Dataset

COCO [37] consists of over 200 K images with 250 K per-
son instances, each annotated with 17 keypoints. COCO is 
divided into three sets, train, val, and test, which have 57 K, 
5 K, and 40 K images respectively. Additionally, test-dev is 
a subset of test with 20 K images and is used for fair com-
parison with other works, where possible. COCO evaluation 
metrics use mean average precision (AP) and are detailed on 
the COCO website.3

4.2.2 � Training

We use random rotation, random scale, and random trans-
lation for data augmentation. Following [13], we generate 
two ground truth heatmaps of different sizes, 1

2
 and 1

4
 of the 

original input size respectively. Each EfficientHRNet model 
is trained using Adam optimizer [31] and weight decay of 
1e− 4. While we saw little difference in accuracy between 
using Adam and SGD with momentum in our initial testing, 
Adam was selected for its higher speed of convergence and 
overall effect on training time. All models from H0 to H−4 
are trained for a total of 300 epochs with a base learning rate 
of 1e− 3, decreasing to 1e− 4 and 1e− 5 at 200th and 260th 
epochs respectively. To maintain balance between heatmap 
loss and grouping loss, we weight the losses at 1 and 1e− 3 
respectively.

4.2.3 � Testing

Models are tested using both single scale and multi-scale 
heatmaps, as is common. Following [39], the output detec-
tion heatmaps across different scales are averaged and the 
tags concatenated into higher dimension tags, making the 
models considerably more scale-invariant.

4.2.4 � Results on COCO2017 test‑dev

Table 3 compares EfficientHRNet with other works on 
COCO test-dev set. As explained in Sect. 2.3, top-down 

methods, such as [17, 54, 68], are inherently not end-to-
end. As such, we limit our comparisons to the domain of 
bottom-up multi-person human pose estimation. The base-
line H0 model with single-scale testing serves as an efficient 
and accurate model for bottom-up methods as it is almost 
comparable to HRNet [13] in accuracy, losing by only 0.1%, 
while having 18% less parameter and 34% fewer FLOPs. H0 
outperforms Hourglass [40] in both single-scale and multi-
scale testing by 7.4% and 1.6% respectively, with H0 remark-
ably having about 1

10
 the model size and number of FLOPs as 

Hourglass. The highest performing of all models on COCO 
test-dev, HigherHRNet [13], beats H0 in accuracy by 4.4%, 
but at the cost of nearly triple the model size and more than 
6x the computation. In all cases where H0 loses in accuracy, 
it more than makes up for it in a reduction in parameters 
and operations. Additionally, our H−1 model, with only 16M 
parameters and 14.2B FLOPs, outperforms both OpenPose 
[4, 5] and Hourglass [40], demonstrating EfficientHRNet’s 

Table 3   Comparisons with SotA bottom-up methods on COCO2017 
test-dev dataset

Numbers for HRNet come from a bottom-up approach outlined in 
[13]

Method Backbone Input size # Params FLOPs AP

w/o multi-scale test
  OpenPose – – 25.94M 160B 61.8
  Hourglass Hourglass 512 277.8M 206.9B 56.6
  PersonLab ResNet-152 1401 68.7M 405.5B 66.5
  PifPaf ResNet-152 – – – 66.7
  HRNet HRNet-W32 512 28.5M 38.9B 64.1
  HigherHRNet HRNet-W32 512 28.6M 47.9B 66.4
  HigherHRNet HRNet-W48 640 63.8M 154.3B 68.4
  H 

0
B0 512 23.3M 25.6B 64.0

  H −1 B−1 480 16M 14.2B 59.1
  H −2 B−2 448 10.3M 7.7B 52.8
  H −3 B−3 416 6.9M 4.2B 44.5
  H −4 B−4 384 3.7M 2.1B 35.5

w/ multi-scale test
  Hourglass Hourglass 512 277.8M 206.9B 63.0
  Hourglass Hourglass 512 277.8M 206.9B 65.5
  PersonLab ResNet-152 1401 68.7M 405.5B 68.7
  HigherHRNet HRNet-W48 640 63.8M 154.3B 70.5
  H 

0
B0 512 23.3M 25.6B 67.1

  H −1 B−1 480 16M 14.2B 62.3
  H −2 B−2 448 10.3M 7.7B 55.0
  H −3 B−3 416 6.9M 4.2B 45.5
  H −4 B−4 384 3.7M 2.1B 39.7

3  http://​cocod​ataset.​org/#​keypo​ints-​eval.

http://cocodataset.org/#keypoints-eval
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efficiency and suitability for low-power and resource con-
strained devices.

As EfficientHRNet is scaled down using the compound 
scaling method mentioned in Sect. 3.2, we see somewhat 
minor drops in accuracy with significant drops parameters 
and FLOPs as compared to the baseline H0 model. H−1 has 
31.3% less parameters and 44.5% less FLOPs as compared to 
H0 while only being 4.9% less accurate. Similarly, our light-
est model H−4 is 84% smaller and has 91.7% less FLOPs, 
with a less than 45% drop in accuracy. Interestingly, Effi-
cientHRNet is the only bottom-up pose estimator that is 
able to provide such lightweight models while still having 
accuracies that are comparable to SotA bottom-up meth-
ods, as illustrated by both Table 3 and Fig. 1. These results 
nicely show the validity of our approach to scalability and 
efficiency in EfficientHRNet.

4.2.5 � Results on COCO2017 val

We report EfficientHRNet accuracy on COCO val, noting 
the number of parameters and FLOPs, and compare it with 
other bottom-up methods. In addition, to accurately assess 
suitability for real-time performance on embedded devices, 
we inference our models as well as one of our closest com-
petitors, HigherHRnet [13], on the Jetson NX Xavier, first 
converting the models to ONNX and then inferencing in 
TensorRT. FPS results for Lightweight OpenPose are on an 
Intel NUC 6i7KYB as reported in [43]. Looking at Table 4, 
we can see that PersonLab is a very large network. With 
nearly 3 × as many parameters and 16 × as many operations 

as our most complex model H0 it is too large to even run 
on the NX Xavier, despite an improvement of less than 2% 
accuracy. Still, the baseline H0 model outperforms HRNet 
[54] with 0.4% more accuracy, 18% fewer parameters and 
34% fewer FLOPs. H−2 and H−3 models outperform Light-
weight OpenPose [43] in accuracy while having fewer 
FLOPs. H−4 has the worst accuracy of any model in Table 4. 
However, it boasts both the smallest model size and fewest 
number of operations, seeing an over 75% reduction from 
its lightest weight competitor. When looking at FPS, High-
erHRNet becomes much less desirable, being the only model 
unable to achieve at least 20 FPS. H0 is 3.4 × faster while 
only being 2.3% less accurate. Comparing to Lightweight 
OpenPose, H0 is 22% more accurate while only being 2 FPS 
slower. Scaling down to H−3 reduces EfficientHRNet’s accu-
racy lead by to only 2%, but increases throughput to be 1.3 
× greater than Lightweight OpenPose. Our smallest model 
H−4 achieves an impressive 50 FPS, but at a substantial cost 
in accuracy. Note that we see an unusually high FPS drop in 
H−1 . This is due to H−1 ’s input resolution and intermediate 
feature map sizes resulting in memory tiles that map poorly 
to the NX Xavier’s Tensor Core architecture. In the follow-
ing subsection, we provide further analysis and comparison 
regarding real-time execution on NX Xavier.

4.3 � Real‑time execution analysis on edge

Since real-time inference is highly dependent on the hard-
ware utilized, we must account for more than just accuracy 
and throughput in our comparisons. To best compare accu-
racy and efficiency across differing platforms, we adopt the 
Accuracy · Efficiency (Æ) metric from [38]. Æ is simply the 
product of accuracy (measured in AP) and efficiency (meas-
ured in FPS per Watt). Table 5 shows how EfficientHRNet 

Table 4   Comparisons with bottom-up methods on COCO2017 val 
dataset

Metrics and accuracy for HRNet come from a bottom-up approach 
outlined in [13] (FPS not reported). Lightweight OpenPose numbers 
were reported on the Intel NUC 6i7KYB. All other FPS results were 
preformed on the Nvidia Jetson NX Xavier [28]

Model Input size AP # Params FLOPs FPS

PersonLab 1401 66.5 68.7M 405.5B –
HRNet 512 64.4 28.5M 38.9B –
HigherHRNet 512 67.1 28.6M 47.9B 6.68
Lightweight OpenPose 368 42.8 4.1M 9.0B 26
H

0
 ( � = 0) 512 64.8 23.3M 25.6B 22.95

H−1 ( � = − 1) 480 59.2 16M 14.2B 20.43
H−2 ( � = − 2) 448 52.9 10.3M 7.7B 24.53
H−3 ( � = − 3) 416 44.8 6.9M 4.2B 33.78
H−4 ( � = − 4) 384 35.7 3.7M 2.1B 50.96

Table 5   Æ comparisons with lightweight bottom-up approaches

Lightweight OpenPose reported on Intel NUC 6i7KYB (45W). All 
others Nvidia Jetson NX Xavier (15W)

Model AP FPS Efficiency Æ

HigherHRNet 67.1 6.68 0.445 29.850
Lightweight OpenPose 42.8 26 0.578 24.738
H

0
 ( � = 0) 64.8 22.95 1.530 99.144

H−1 ( � = − 1) 59.2 20.43 1.362 80.630
H−2 ( � = − 2) 52.9 24.53 1.635 86.492
H−3 ( � = − 3) 44.8 33.78 2.252 100.89
H−4 ( � = − 4) 35.7 50.96 3.397 121.273
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compares when taking this into account. Note that Light-
weight OpenPose reports results on Intel NUC 6i7KYB, 
which has a TDP of 45 Watts [43], while all other methods 
were measured on the Jetson NX Xavier with a maximum 
power draw of 15 Watts. We use these power numbers across 
all approaches in an attempt to create as fair a comparison as 
possible. EfficientHRNet greatly outperforms the competi-
tion in terms of Æ, with all models achieving an Æ score 
of over 80 while Lightweight OpenPose and HigherHRNet 
achieve scores of 25 and 30 respectively.

In terms of Æ, EfficientHRNet outperforms the competi-
tion between 3 × and 5 × . This is largely due to the poor 
throughput of HigherHRNet and the relatively higher power 
NUC that Lightweight OpenPose reports on. HigherHRNet 
excels in accuracy and Lightweight OpenPose excels in FPS 
and model size, while EfficientHRNet is more equally bal-
anced between accuracy, model size, throughput, and power 
consumption. This gives EfficientHRNet a leg up in terms of 
low-power, real-time inference, making its scalable models 
the new SotA for lightweight bottom-up human pose estima-
tion for real-time edge applications.

4.4 � Qualitative analysis

To further demonstrate how EfficientHRNet models per-
form in relation to one another, we present qualitative results 
on COCO. Figure 3 shows simple, medium, and complex 
examples for EfficientHRNet models H0 to H−4 . We see 
that H0 can accurately detect all but the most distant and 
occluded individuals. This accuracy is functionally iden-
tical to SotA models but is able to inference in real-time, 
making it immensely valuable for applications that require 
high accuracy but need to run in real-time or on low-power 
devices. Looking at H−1 we see that keypoints are accurately 
detected, but in medium and complex scenarios keypoint 
groupings become confused. Here, the confusion is minor 
enough that it can be filtered out with additional post pro-
cessing, meaning that applications that require predicting 
complex scenarios on devices that can not fit H0 can use 
H−1 with slightly decreased accuracy. For the medium sce-
nario, there is also missed detection from the distant person 
occluded by the left-most surfboard, though such missed 
detections are relatively uncommon throughout the dataset. 
However, for simple scenarios there is little to no differ-
ence when compared with H0 . These qualities make H−1 

a compelling model when using a device without enough 
memory resources for H0 and when a minor amount of error 
is acceptable, or for applications that will only deal with 
simple scenarios. H−2 looks a lot like H−1 , but the confusion 
is worse, with multiple keypoint grouping being detected 
for a single person, and this even extends to simple sce-
narios. This would again require additional post process-
ing, depending on the application. H−3 and H−4 follow the 
same pattern, with confusion continuing to get worse. Again, 
we see that actual keypoint detections themselves are fairly 
accurate, and the greatly reduced model size and computa-
tional complexity open up a wide range of additional devices 
capable of real-time performance. This makes the smaller 
models extremely compelling for real-time applications that 
can afford a certain amount of error but require the use of 
highly resource constrained devices, particularly in the case 
of simple scenarios. This analysis helps visualize the rela-
tionship between detected keypoints and model size, and 
shows the overall affect on accurate human pose prediction 
as we move towards smaller models. This further validates 
EfficientHRNet as a family of high accuracy and efficient 
models capable of real-time 2D human pose estimation for 
a variety of embedded and resource constrained devices.

5 � Conclusion

In this paper, we have presented EfficientHRNet, a family of 
scalable networks for high-resolution and efficient bottom-
up multi-person pose estimation made for real-time execu-
tion on low-power edge devices. EfficientHRNet unifies 
the principles of SotA EfficientNet [56] and HRNet [54] 
to create a network architecture for lightweight real-time 
human pose estimation, and proposes a new compound scal-
ing method that jointly scales down the input resolution, 
backbone network, and high-resolution feature network. 
EfficientHRNet is not only more efficient than all other bot-
tom-up human pose estimation methods, but it can maintain 
accuracy competitive with SotA models on the challenging 
COCO dataset. Remarkably, EfficientHRNet can achieve this 
near SotA accuracy with fewer parameters and less compu-
tational complexity than other bottom-up multi-person pose 
estimation networks, all while being able to achieve 23 FPS 
on an Nvidia Jetson NX Xavier.
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