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ABSTRACT
Edge computing has been gaining momentum lately as a means to
complement cloud computing for shorter response time, better user
experience, and improved data security. Traditional approaches of
edge-cloud computing take two major forms: One is to offload the
computation from an edge device to the cloud so as to take advan-
tage of the virtually unlimited resources in the cloud and reduce the
computation time. The other is to move selected computation to the
edge devices where data are produced, actions are performed and
users are located. However, in practice, it is often difficult to split
the computation tasks of an application and decide which tasks
should be performed in the cloud and which at the edge. The reason
is that, for the same computation, it may sometimes be beneficial to
execute it in the cloud while other times at the edge, depending on
run-time conditions such as the data size, the type of computation,
and the communication delay, which all varies from time to time.
This paper proposes a new edge-cloud computing model, called the
full mirror model, which provides a generic method to circumvent
the problem of dynamic decisions on the execution location. With
a two-thread implementation mechanism, the new model is able
to achieve an execution completion time approximately equal to
the smaller one between cloud execution and edge execution, re-
gardless of what run-time conditions are. We test the new model
by modifying an existing program for network traffic analysis so
that it runs at both the edge and the cloud in a coordinated fashion.
The experimental results demonstrate that the proposed model
outperforms edge-alone computing and cloud-alone computing in
reducing the execution time.
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1 INTRODUCTION
Edge cloud computing is a paradigm, which can distribute the com-
puting tasks to edge devices to utilize the increased computation
resources at the network edge. Edge cloud computing also offloads
computation tasks to the cloud server for higher processing power
[7]. In edge computing, computation is offloaded to the edge devices,
which are near to Internet users, so that the communication delay is
short. As shown in Fig. 1, edge computing has played a remarkable
role in many domains in our daily life, including vehicles, education,
market, healthcare, etc. [3]. However, because the computing capa-
bility of edge devices is often limited, some computing-intensive
tasks cannot be executed on edge devices. As such, we need to
utilize the powerful computing power of cloud servers; but it takes
longer time to transmit data to the cloud servers.

Although edge computing and cloud computing can collaborate
to execute an application, the specific location needs be determined
to execute each computation task. Considering edge computing and
cloud computing each have their own advantages and limitations,
it is often hard to determine where to place a computing task.

Recent years have witnessed great progress to improve the struc-
ture and efficiency of edge and cloud computing. In cloud comput-
ing, cloud server provides the computation services. As the cloud
computing technology matures, many business service platforms
(e.g., Amazon Web Service, GoGrid, Flexiscale, Mosso) have ap-
peared based on cloud systems [19]. In edge computing, one needs
to determine an edge device to execute computation tasks which
has enough computing capacity. A resource allocation scheme as-
signs the available resources to the appropriate computational tasks.
Al-Shuwaili et al. proposed an energy-efficient resource-allocation
scheme for augmented reality applications [4], which can reduce
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Figure 1: The Applications of Edge Computing

mobile energy consumption compared with conventional offload-
ing methods. Such a scheme increases the performance of edge
computing. However, either a cloud or edge device is selected to
execute a specific program [24]. The collaboration between the
cloud and edge devices is missing. This leads to three problems.
First, it takes extra time to evaluate the performance, delay and
resource efficiency over the edge and cloud devices. Second, such a
scheme can not fully utilize the computing resources on both ends
[16]. Lastly, determining whether a specific application should be
executed at the edge or in the cloud is difficult since the response
time can depend on both the processing capacity of devices and
data transmission delay over the Internet [11].

To solve these problems, in this paper we propose a full mirror
computation model, which adopts a joint execution mechanism to
execute an application program. The full mirror computation model
(for brevity, the full model) represents a new computing paradigm
called edge-cloud computing. Think about the high-level structure
of an edge-cloud computing system. Fig. 2 is the framework of
edge-cloud computing. In general, an edge-cloud computing sys-
tem consists of four components: users, gateways, backend cloud
platform (e.g, servers and datacenters) and edge devices (e.g., smart
mobiles and smart houses) [29]. In edge computing system, the
gateway is usually under the control of users. The users commu-
nicate with cloud servers and edge devices via gateways, through
which they can request computational tasks. Under the edge-cloud
computing model, computational tasks are assigned to both the
edge devices and a centralized server (cloud server), and both the
cloud server and edge devices are responsible for computation.
Meanwhile, all the computing devices will communicate with each
other for resource allocation and to share execution results.

Our full model presents a view of edge computing from a new
angle: An application not only has its own integrated environment,
but also has a scalable virtual computing environment [17]. To
fully utilize the computation resources on both ends, in the full
model, an application program is divided into multiple independent
components, which are executed on both the cloud server and
edge devices. Each component will be executed simultaneously
at the edge and the cloud, and is synchronized through Internet
communications. As a result, computation resources on both the
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Figure 2: The Framework of Edge-Cloud Computing

edge devices and the cloud server will be consumed and the system
will always get the execution results from the device that finishes
the first.

In general, the edge devices’ processing capability is limited,
but the communication delay is very short. On the opposite, the
remote cloud server is muchmore powerful, but the communication
delay may be longer. Our full model adopts a distributed computing
structure and integrates the computation resources from both the
cloud server and the edge devices, which broadens the choice of
computation resources. Moreover, because of the parallel execution
of the application on both the edge and cloud devices, we always
get the result from the device that finishes earlier [23].

The contributions of our paper are multifold:
• We design a full mirror computation model, which does not
require any pre-computation to determine the execution
location of an application in advance.

• We integrate the computation resources from both the edge
devices and cloud server. By parallel execution of the appli-
cation on both the edge and cloud devices, the execution
time is guaranteed to be the shorter one.

• Rather than generating the output of an application program
from a designated device that is determined in advance, our
system executes an application on both ends to fully utilize
the computation resources.

The rest of this paper is organized as follows: Section 2 presents
the system model and problem statement. Section 3 presents the
design of full model. In section 4, we introduce joint execution
mechanism of our full model in detail. We evaluate and compare
the performance of our full mirror computation model with the
conventional edge computing model and cloud computing model
in Section 5. Section 6 discusses additional related works. Section 7
draws conclusions for this paper.

2 SYSTEM MODEL AND PROBLEM
STATEMENT

The system model consists of edge devices and the cloud (e.g.,
a data center), which together execute an application for better
performance. In this paper, out focus is on the response time of
computation tasks issued by a user. We may either execute the
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application on an edge device.When facing computational intensive
tasks, the edge device may offload these tasks to the cloud in order
to reduce the completion time. We may also execute the application
in the cloud. When facing user-interactive or sensor-interactive
low computation tasks, the cloud may push these tasks to the edge
device for faster response.

The problem is that it is often difficult to determine which way
of executing a task will save time, in the cloud or by the edge device.
The answer depends on a large number of run-time conditions such
as data size, type of computation, communication delay, resource
availability at the edge, resource at the cloud, other concurrent
computations, etc. This paper attempts to solve the problem through
a new edge-cloud computing model that circumvent the need for
pre-determination of execution location. It is able to work under
any run-time conditions.

3 DESIGN OF THE FULL MIRROR MODEL
The full model we propose in this paper is designed under a new
computing paradigm, edge-cloud computing, based on the premise
that we have enough computation resources on both edge devices
and cloud server. The basic idea of our full model is that the same
application program will always be executed on the edge devices
and the cloud server simultaneously. Whenever either an edge
device or a cloud server completes its assigned task, it will send
out an execution cancellation signal to the other device. When
receiving a cancellation signal, the other device stops the same task
immediately. The user gets the final result from the device that
completes the computation first. If the edge device is incapable of
completing the computational task, it just drops current task and
waits for the execution result from the cloud.

The full model is different from a virtual machine or cloud offload-
ing. A virtual machine only processes data at the datacenter and
returns the execution result to the edge computers at the user side
[20]. As such, the virtual machine may require a high datacenter
processing capacity. To solve the challenge of big data processing,
today’s virtual machine resorts to remote computer cluster servers,
which have efficient and high-speed hardware. Cloud offloading is
quite the opposite, where the data and code are both processed at
the edge devices [8]. The full model is much more comprehensive.
It combines the benefits of both the virtual machine approach and
cloud offloading.

As mentioned in Section 1, determining the execution location of
an application program consumes time and resources. Many factors
need be considered, such as computation power, communication
delay, etc. [27]. In practice, edge devices have less computing capa-
bility compared with cloud servers and thus usually take more time
to complete a computational task. Executing the application pro-
gram on a cloud server may suffer a long communication delay [14],
especially when the network bandwidth is low. Therefore, edge
devices are often selected to execute small tasks, while the cloud
server is used to execute computation-intensive tasks. However, it
is sometimes hard to estimate the computational workload.

Current research focuses on distributing computational tasks to
appropriate edge devices. Some research focuses on determining
whether to execute a task on an edge device or a cloud server.
Factors of consideration in deciding the execution location include

Figure 3: Joint Execution Mechanism in the Full Model

the response time, memory space, data availability, data privacy,
etc. [15]. However, the research on selecting the execution location
is very limited and one cannot guarantee the execution time of
edge-cloud computing model. To guarantee the execution-time
performance in the edge-cloud model, we propose the full model.

4 JOINT EXECUTION MECHANISM
4.1 Joint Execution Mechanism Overview
In our full model, an application program runs in parallel on both
an edge device and a cloud server. We need to develop a mecha-
nism that synchronizes the executions. Compared with previous
computing models that adaptively decide the execution location
(edge vs. cloud), the full model eliminates the need to analyze the
prediction metrics as it executes the application on both the edge
devices and the cloud server.

To execute an application program in the full model, we trans-
form the computation tasks of the program into virtual components,
as shown in Fig. 3. These virtual components can communicate
with each other to share resources and synchronize the execution
results between the edge devices and the cloud server. We will
discuss the mechanism of how to transform a program into virtual
components in the next section. When the system gets the result
from the device that finishes the first, a cancellation signal is sent
to the slower computing device. After receiving the cancellation
signal, the slower device will stop execution immediately.

Fig. 3 illustrates the joint execution mechanism we implement
for our full model. It consists of two parts. We first extract the
computational tasks from application program and transform each
computational task into a virtual component. We install a two-
thread implementation mechanism on both the edge device and the
cloud server. One thread is responsible for executing computational
tasks and transmit execution results. The other thread uses a TCP
connection for sending/receiving cancellation signals. When either
the edge or cloud device completes the computation of a virtual
component, a cancellation signal will be sent to the other end. Upon
receiving such a signal, the device terminates the execution of the
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Figure 4: Two-thread Implementation (here, the cloud side
finishes first).

current virtual component. After completing the current virtual
component, the device will proceed to the next one until all virtual
components are completed, whichmeans the application program is
also completed. We also use a synchronization mechanism between
the edge and cloud devices to make sure that the virtual component
are executed on both ends at the same time. The execution time on
each of the devices is affected by the following factors:

• Data: The sizes of the input data and execution result can
determine the transmission time. The transmission latency
of the edge device is negligible compared with its execution
time.

• Computing Capability: The computation speed is determined
by the number and characteristics of the cores, the memory
size and IO characteristics.

• Space: If the edge device cannot allocate more memory or
the disk space is too small for the application program, the
edge will terminate the current virtual component and wait
for the result from the server.

4.2 Two-Thread Implementation for the Full
Model

In this section, we describe our two-thread implementation mecha-
nism. We use the application of network activity viewer/analyzer
(NAVA) as an example to illustrate the implementation. In order to
synchronize the execution of the NAVA software on both the edge
device and cloud server, we create a method called NetworkMan-
ager, which has two threads. One thread uses a TCP connection to
receive cancellation signals from the other end. The other thread
controls the execution of the main program.

As shown in Fig. 4, the entrance to the NetworkManager method
is denoted as E. Both the edge device and the cloud server share the
same source program. Take the program at the edge as an example.
At the start of the program, we create two threads. Thread T1 keeps
on executing the original program C, and the other thread T2 sets
up the TCP connection. If T1 completes the execution, it sends a
cancellation signal to the cloud server to terminate the execution
there. On the other hand, if T2 receives a cancellation signal, it
will terminate the execution of T1 immediately. The same setup is

also at the cloud server. Both the edge device and cloud server can
return the execution result, which ever finishes first. Considering
the limited computational resources of the edge device, if it cannot
complete the computational task, T1 terminates immediately and
T2 still waits for the cancellation signal from the cloud server.

4.3 Synchronization Mechanism between Edge
and Cloud

We use cyclicbarrier to synchronize the application program’s exe-
cution at the edge device and the cloud server [13]. The application
program is controlled by threads. Cyclicbarrier is a mechanism by
which all the threads can wait for each other to reach a common
execution point. In cyclicbarrier, a counter is used to calculate the
number of threads that have reached the common point. When
that number is equal to a preset value, cyclicbarrier permits all the
threads to execute at the same time.

In the program, we use the cyclicbarrier mechanism to make
sure the connection between the edge device and the cloud server is
set up first. After that, we begin to compute the virtual component
at the same time.

4.4 Execution Time Analysis between Edge and
Cloud

The execution time of a virtual component usually consists of trans-
mission time and computing time [6]. The transmission time rep-
resents the time consumed to transmit the request and execution
results between edge device and cloud server. Computing time is
the time consumed to execute the computing instructions. We use
D to denote the total data size transmitted between edge device and
cloud server. We also use I to denote all the instructions executed
on a computation device for a virtual component.

The computing time can be expressed as:

Tcalc =
I

MIPS
(1)

In equation 1, computing time equals to the total instructions to
be executed divided by million instructions executed per second
(MIPS). MIPS is a parameter to evaluate the performance of a CPU.
It is determined by the number of cores and computer frequency.

MIPS =
Number of Cores ∗ Computer Frequency

CPI ∗ 1000000
(2)

Normally, a computer with higher main frequency usually com-
pletes the computation task faster.CPI refers to the average number
of clock cycles needed by per instruction. It is a definite number
for each virtual component.

The transmission data usually consists of the request from the
edge device to the cloud server and the execution results backhauled
to the edge. As such, the transmission time can be expressed as:

TTX =
D

B
(3)

In equation 3, B represents the bandwidth of the Internet.
The response time of cloud server can be expressed as:

Tserver =
D

B
+

I

MIPS of Cloud Server
(4)
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The response time of edge device can be expressed as follow:

Tedдe =
I

MIPS of Edge Device
(5)

Actually, the transmission time of edge device is negligible com-
pared with its computing time, such that we ignore the transmission
time from the response time. The transmission time of edge device
is mainly caused by hardware delay.

5 EXPERIMENTAL RESULTS AND
PERFORMANCE EVALUATION

5.1 The Application: NAVA
We use the NAVA application to evaluate the performance of our
full model. NAVA is a network analyzer that is useful for detecting

and tracking malicious activities and for investigating potential
threats in the network. In our case, it collects and analyzes the
network flow information between the University of Florida (UF)
campus and the users outside the campus. The network flow data
contains information such as the number of packets, the number of
connections, connection time, etc. The NAVA system is divided into
two parts: the server and the client. The client can send a request to
a server to obtain network information. In the full model, we set up
the server part of NAVA on both an edge device and a cloud server.
The client part of NAVA is at the edge. Whenever the client sends a
request, the request is forwarded to both the edge device and the
cloud server. As discussed earlier, we use threads to synchronize
the executions at both ends, and we get the final result from the
device that finishes the first.

NAVA is designed in a hierarchical structure [9]. The top level
shows the general network information between the seven con-
tinents and our campus network. When we move the mouse to
an icon that representing a continent, it shows the total number
of network flows between that continent and our campus. After
clicking at any of the continent icons, the next interface shows
the network information between the countries in that continent
and our campus routers. Each country usually has many Internet
Service Providers (ISPs). The next level shows the network informa-
tion between the ISPs from each country and our campus routers.
The last level contains information between the outer IPs of each
ISP and our campus routers. We can then find out specific informa-
tion (e.g. the number of packets, connection time, the number of
connections, etc.) between an individual IP and any campus router.
The information of network flow can be used to analyze network
behavior.

NAVA can be used to detect potential threats and attacks and
help identify the vulnerable points in a network, by monitoring
the activities between a specific outer IP address and our campus
network. Abnormal behaviors can be distinguished from normal
ones by analyzing the normal network flows. By summarizing the
malicious network flows, we can also easily find the characteristics
of the attackers. Tracing through the whole network, we can iden-
tify the victims and the attacking sources. Using the NAVA system,
we have successfully identified worm attacks and DDos attacks. We
can then reject the traffic from an attacking source.

5.2 Experimental Setting
For the experiments, we use a Dell Desktop and a HP Z840 server as
an edge machine and a cloud server, respectively. The Dell desktop
has a CPU of Intel(R) Core(TM) i7-2600, with 32GB RAM and a clock
rate of 3.4GHz. It has four cores. We constrain the CPU utilization of
edge device to 20% to increase the performance difference between
edge device and cloud server. The HP Z840 server has an E5-2643v4
CPU (6-Core, 20MCache, 3.4GHz), 256GBmemory and disk space of
total 9.6 TB. The bandwidth of the network between the machines
is around 92.5Mbps to 94.4Mbps.

The NAVA application program was created based on the UF’s
campus network, which has two gateways and 16 core routers. The
network flow data are saved in files. Each file records the network
flow information connecting to a core router for a 5-minute period.
The whole data set is 21.7GB, which covers a span of six months.
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We compare the performance of our full model with the conven-
tional edge computing model and conventional cloud computing
model in executing the NAVA application. We use the same desk-
top and server to simulate edge computing and cloud computing,
respectively.

5.3 Performance Evaluation
Tables I, II and III show the time to execute certain tasks using NAVA
under the three computing models. The first column in the tables
contains the computation tasks we use in the experiments. The
second, third and fourth columns contain the execution time of the
programs under the edge computing model, the cloud computing
model and our full model (edge-cloud computing), respectively.
The symbol ‘(C)’ in the last column indicates that the result is
obtained from a cloud device, and the symbol ‘(E)’ indicates that
the result is obtained from an edge device. For each computing
device, we list the response time (R-time), transmission time (T-
time) and computing time (C-time). These concrete displays can
help evaluate the performance of edge device and cloud server.
They also show how the transmission delay influences the final
response time.

Table I shows the execution time of using NAVA to get the net-
work flow information between UF and different countries. The
workload of processing a country’s information depends on the
number of Internet service providers (ISPs) operating in that coun-
try. From the table, we see that in our full model, the execution
results are obtained from the cloud server for some countries such
as the United States. This is because U.S. has many ISPs and it re-
quires more time for the edge device to calculate the network flow
information, whereas the cloud device is much more powerful and
the execution is faster. However, for the other countries, under our
full model, the execution is faster on the edge device because the
computation requirement is not high. If we compare the execution
time of the three models, we see that our full model outperforms
the cloud computing model on tasks with small computation re-
quirement. The performance of the full model is better than the
edge computing model on computation-intensive tasks.

Table II shows the execution time of using NAVA to get the net-
work information between UF and different companies. We select
several well-known large companies, which have many internal
IPs connected to the UF routers. From this table, we see that our
full model outperforms the edge computing model and it performs
similarly to the cloud computing model. We also select several small
companies with limited internal IPs connected to UF router. At this
time, the full model performs similarly to edge computing model,
which is better than cloud computing model.

Table III shows the execution time of scanning different anomaly
activities including scanning, worm attacks and DDoS. There is a
threshold that limits how frequent an outer IP can connect to the
UF routers during a period of time. If an outer IP connects to the
UF routers too many times (over the threshold), it is deemed as
an attacker. We combine the properties of scanning, worm attacks
and DDoS to classify the attacks. In this table, we set the threshold
to be 10, which means an outer IP will be regraded as malicious
if it connects to the UF routers more than 10 times over a pre-
defined time interval. The cloud computing model shows superior

performance in finding out all three types of attacks compared with
the edge computing model. Our full model always maintains a good
performance level similar to that of the cloud computing model.

When we analyze the transmission time and computing time of
edge device and cloud server, we can detect that the transmission
time of edge device is very trivial, which is mainly delayed by
hardware response. The transmission time of cloud server accounts
for an important proportion, such that the cloud server proves to
be superior only when processing computing-intensive tasks. Since
we reduce the performance of edge device, the computing time
consumed by edge device is obviously longer than cloud server.
This design is based on the premise that we usually select smart
phones and IoT sensors as the edge devices which have limited
computational resource.

We also notify that the computing time of full model is a little
longer than either edge alone computing or cloud alone computing.
We have added two-thread implementation mechanism to the full
model, which spends time in synchronizing the execution of edge
device and cloud server. The communication between edge device
and cloud server also consumes some time. Through optimization,
we have reduced the delay of two-thread implementation mecha-
nism to a low point, such that the execution time of full model is
close to the computing device completes faster.

To sum up, we observe that both the edge computing model
and the cloud computing model can have bad performance under
certain circumstances, while our full model is always in line with
the better one of them, which demonstrates the superiority of our
design.

6 RELATEDWORK
Edge computing system has gained rapid and significant improve-
ment due to technological development and research progress [26].
The increase in network bandwidth has greatly reduced the commu-
nication delay between computation resources [10]. The advance-
ment of microprocessors and GPUs has increased the processing
capacity of computers [5]. In addition to technological progress, new
research results have also led to more efficient management and
resource utilization of edge and cloud computing systems. These
research results mainly concentrate on specifying data format, op-
timizing the edge computing structure and modifying the edge
computing model [28].

Peng et al. [31] proposes a cloudlet mechanism to improve the
end-to-end efficiency. Cloudlet is a small-scale cloud datacenter
located at the edge of the Internet with powerful computing capa-
bility and lower latency. Current research on task placement mainly
focuses on resource allocation. Hui et al. have designed a resource-
allocation scheme for broadband network [12]. Tran et al. have
designed a joint task-offloading and resource-allocation scheme for
multi-server and edge computing networks [25]. Their algorithm
has proved to be close to the optimal solution. In [21], the authors
show that edge-cloud computing is beneficial for many applica-
tions, such as cloud offloading, video analytics, smart home/city,
and collaborative edge.

Despite the progress, there remain some problems with the cur-
rent edge-cloud computing models [22]. The current models always
fix an execution location for a program in advance [1]. The edge
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Edge(R-Time T-Time C-Time) Cloud Full Model
UF-UNITED STATES 4793 4 4789 1941 1616 325 2085(C) 1754 331

UF-CANADA 395 2 393 193 170 23 214(C) 189 25
UF-UNITED KINGDOM 442 1 441 162 143 19 173(C) 153 20

UF-BAHAMAS 10 1 9 89 88 1 10(E) 1 9
UF-SWITZERLAND 83 1 82 134 127 7 89(E) 1 88

UF-GREECE 20 1 19 62 52 10 24(E) 1 23
UF-THAILAND 47 1 46 82 75 7 52(E) 1 51
UF-MYANMAR 10 1 9 90 89 1 11(E) 2 9
UF-AUSTRALIA 90 2 88 161 148 13 101(E) 2 99
UF-ARGENTINA 90 2 88 173 161 12 98(E) 2 96

UF-EGYPT 17 1 16 54 48 6 19(E) 1 18

Table 1: Time (in milliseconds) of producing statistics from network data between UF and individual countries under edge-
alone computing, cloud-alone computing, and the full mirror model of edge-cloud computing. Under any runtime conditions,
the full mirror model always performs similar to the better one of edge-alone and cloud-alone, with a slight increase in time
for edge-cloud communication.

Edge(R-Time T-Time C-Time) Cloud Full Model
UF-Google LLC 4633 2 4631 1452 1339 113 1656(C) 1538 118
UF-Facebook Inc. 379 3 376 170 154 16 176(C) 159 17
UF-Apple Inc. 1017 2 1015 369 340 29 375(C) 342 33

UF-Amazon Technologies Inc. 6784 2 6782 2565 2292 273 2730(C) 2455 275
UF-Shells 5 1 4 45 45 0 5(E) 1 4

UF-Delta Air Lines 6 1 5 44 43 1 8(E) 1 7
UF-Ford Motor Company 9 1 8 46 45 1 12(E) 1 11

Table 2: Time (in milliseconds) of producing statistics from network data between UF and individual companies under edge-
alone computing, cloud-alone computing, and the full mirror model of edge-cloud computing. Under any runtime conditions,
the full mirror model always performs similar to the better one of edge-alone and cloud-alone, with a slight increase in time
for edge-cloud communication.

Edge(R-Time T-Time C-Time) Cloud Full Model
Scanning 13390 1 13389 7428 589 6839 7517(C) 553 6964

WormAttack 29092 1 29091 11621 1060 10561 12108(C) 828 11280
DDoS 17220 1 17219 4571 564 4007 4798(C) 666 4132

Table 3: Time (in milliseconds) of UF Scanning Malicious Hosts. These tasks require scanning and analyzing a large amount
of data, which makes cloud computing the winner.

and cloud devices lack enough cooperation [30]. Actually selecting
the execution location is very time-consuming [18]. It needs to
evaluate many factors: the performance of edge and cloud devices,
the delay due to transmit data and the disk space on two ends
[2]. On top of that, it is even impossible to know these factors in
advance sometimes, such that the evaluation can not be done in
advance. Fixing the execution location in advance can also make
the edge and cloud devices work isolated from each other, which
may waste many computation resources. Our proposed full mirror

computation model can successfully solve the problem of selecting
execution location and fully utilize the computation resources on
both edge and cloud devices.

7 CONCLUSION
In this paper, we propose and design a full mirror computation
model. In this model, the program is executed simultaneously on
the edge device and cloud device, and the system always uses the
result from the device that finishes the execution first. We use
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the application of network activity viewer/analyzer to evaluate
the new model. The full model is shown to always have excellent
performance compared with running the application on either the
edge alone or the cloud alone, since it incorporates the advantages
of both. It is guaranteed to have the execution time comparable to
the shorter one of the latter two approaches. Importantly, it achieves
this performance level without an in-advance placement algorithm
that must consider a set of complex factors such as the application’s
computing requirement, data requirement, characteristics of the
available machines, and network bandwidth.
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