(will be inserted by the editor)

International Journal of Data Science and Analytics manuscript No.

C-MemMAP: Clustering-driven Compact, Adaptable, and
Generalizable Meta-LSTM Models for Memory Access

Prediction

Pengmiao Zhang! - Ajitesh Srivastaval . Ta-Yang Wang' -

Cesar A. F.

De Rose? - Rajgopal Kannan® - Viktor K. Prasanna’

Received: date / Accepted: date

Abstract With the rise of Big Data, there has been a
significant effort in increasing compute power through
GPUs, TPUs, and heterogeneous architectures. As a
result, many applications are memory bound, i.e., they
are bottlenecked by the movement of data from main
memory to compute units. One way to address this is-
sue is through data prefetching, which relies on accu-
rate prediction of memory accesses. While recent deep
learning models have performed well on sequence pre-
diction problems, they are far too heavy in terms of
model size and inference latency to be practical for data
prefetching. Here, we propose clustering-driven com-
pact LSTM models that can predict the next mem-
ory access with high accuracy. We introduce a novel
clustering approach called Delegated Model that can
reliably cluster the applications. For each cluster, we
train a compact meta-LSTM model that can quickly
adapt to any application in the cluster. Prior LSTM

X< Pengmiao Zhang
E-mail: pengmiao@usc.edu

Ajitesh Srivastava
E-mail: ajiteshs@Qusc.edu

Ta-Yang Wang
E-mail: tayangwa@usc.edu

Cesar A. F. De Rose
E-mail: cesar.derose@pucrs.br

Rajgopal Kannan
E-mail: rajgopal.kannan.civ@mail.mil

Viktor K. Prasanna
E-mail: prasanna@usc.edu

1 University of Southern California, Los Angeles, CA

90089, USA

2 Pontifical Catholic University of Rio Grande do Sul, Porto
Alegre, Brazil

3 US Army Research Lab-West, Playa Vista, USA

based work on access prediction has used orders of mag-
nitude more parameters and developed one model for
each application (trace). While one (specialized) model
per application can result in more accuracy, it is not a
scalable approach. In contrast, our models can predict
for a class of applications by trading off specialization
at the cost of few retraining steps at runtime, for a
more generalizable compact meta-model. Our experi-
ments on 13 benchmark applications demonstrate that
clustering-driven ensemble compact meta-models can
obtain accuracy close to specialized models using few
batches of retraining for majority of the applications.

Keywords LSTM - Compression -
Meta-learning

Clustering -

1 Introduction

Prefetching is critical in reducing program execution
time through hiding the latency due to data movement.
Especially, with the advent of GPUs, TPUs, and het-
erogeneous architectures that accelerate computation,
the bottleneck is shifting towards memory performance.
The central aspect of prefetching is to be able to accu-
rately predict future memory accesses. Memory access
prediction problem is typically modeled as a classifi-
cation problem, targeted to predict the future mem-
ory access addresses from program history information
such as memory accesses, PC, etc. Due to the extremely
large value space of absolute memory addresses, deltas,
defined as the address difference between two consecu-
tive memory accesses, are more commonly used for both
hardware prefetchers [16] and ML-based memory access
predictors [21]. Therefore, the memory access predic-
tion task can be formulated as predicting the next delta
given a sequence of history deltas. This can be seen

Pengmiao Zhang! et al.

as a sequence prediction task, which in theory, is well-
suited for machine learning. Specifically, LSTM (Long-
Short Term Memory) based Deep Learning has shown
tremendous success in sequence prediction tasks like
text prediction [6], along with other natural language
tasks such as part of speech tagging [14] and grammar
learning [19]. Since memory accesses have an underly-
ing grammar similar to natural language, such mod-
els are naturally applicable to learning accesses. Recent
work [7,20,17] has shown that LSTM based methods
indeed lead to higher accuracy than those used in tradi-
tional prefetchers. For instance, [21] trains one LSTM
model for each application that learns the pattern of
past three address deltas and predict the coming delta.
The predicted delta can be converted back to mem-
ory address and can serve as a temporal reference for a
hardware prefetcher.

However, in reality, LSTM based prefetchers are far
from becoming practical due to their extremely high
memory and computation requirements. For instance,
the models proposed in [7] can have more than a million
parameters. Such a large number of parameters (and
thus computations) make it infeasible to implement a
prefetcher based on LSTM, as to be useful, these pre-
dictions need to be faster than accessing the sequence
of memory addresses without any prefetching. Recent
work [17] proposes an encoding method that reduces
the size of the LSTM model to few thousands of pa-
rameters. They also show that such high compression
can be achieved without any significant loss in accu-
racy. As a result, inference can be fast and models can
be retrained quickly on demand, when there is a dras-
tic change in access patterns. The drawback of this ap-
proach is that it requires training one model each for
all applications. This is not a scalable solution as the
number of applications grow, the total size of the mod-
els (storage required on the memory controller where
these models will reside) grows linearly, thus defeating
the purpose of having compact models. Further, such
models do not apply to applications that have not been
seen in training.

To address these shortcomings in making deep learn-
ing based prefetchers realistic, we proposed using a small
number of compact meta-models to predict the memory
access for a class of applications in our prior work [18].
We showed that the meta-models are sufficient to adap-
tively and accurately predict on a diverse set of appli-
cations of interest, i.e. these models can also general-
ize to applications not seen during training [18]. How-
ever, little attention is given to obtaining good cluster-
ing. In this work we propose C-MemMAP — clustering-
driven meta-LSTM models for memory access predic-
tion. It uses a novel clustering approach termed Del-

egated Model (DM) clustering. This approach uses a
trained parametric model, compact LSTM in this work,
as a delegate of the original sequence for further clus-
tering task. This ensures that similarity between traces
is defined by similarity in next access prediction, as the
LSTM models can themselves be assumed to be a rep-
resentation for trace patterns. Our approach makes the
ML-based memory access prediction more practical and
scalable for a prefetcher by reducing both the number
and size of the models. First, the number of models does
not grow when the number of applications increases. In-
stead of training one specialized model for each applica-
tion, we train a small number of meta-models based on
the application clustering. Second, we implement dou-
bly compressed LSTM (DCLSTM) [17] in our meta-
model to predict memory access. DCLSTM reduces the
number of model parameters by predicting the binary
representation of the output values, which achieves a
n/logn ratio of compression with negligible accuracy
compromise. As a result, C-MemMAP with compact
model size achieves high adaptability and generalizabil-
ity at the cost of a small loss in accuracy and need for
few retraining steps.

Through extensive experiments on PARSEC [1] bench-
mark, which has diverse applications, we demonstrate
that our approach leads to accurate, adaptable, and
generalizable prediction access models. Using only three
compact models of size 24K parameters each, we are
able to perform on par with specialized models for 13
applications. We envision that in a real system im-
plementation, the memory controller will run all three
models concurrently, and use the model that produces
better accuracy over last few accesses. Note that, in
this paper, our objective is not to develop a full scale
prefetcher, but to design a small set of highly accurate
and compact LSTM based access prediction model to
enable a realistic prefetcher implementation. The over-
all prefetcher architecture utilizing our model is de-
scribed in [21]. A prefetcher built on top of our approach
and its hardware implementation will be explored in fu-
ture work. Specifically, our contributions are as follows:

— We improve upon the state-of-the-art compressed
LSTM models for access predictions, eliminating its
necessity of one model per application (trace);

— We propose a clustering-driven meta-learning-based
approach to obtain more general prediction models
that can achieve high accuracy after a small num-
ber of gradient steps and can even generalize to un-
seen/new applications;

— We improve our clustering technique from previous
work with a novel Delegated Model approach to de-
tect applications with similar patterns that works
reliable as an upstream of meta-models;

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction iii

— We experimentally demonstrate that our approach
is accurate, adaptable, and generalizable — with a
reduced number of models, we can achieve the same
level of accuracy as the specialized (one model per
application) approach with a much smaller memory
footprint.

2 Related Work

Several prior works have proposed LSTM for memory
access prediction [7,20]. In [15], the authors propose
the use of logistic regression, and decision tree mod-
els to enhance prefetching. The authors in [10] evaluate
various machine learning models on their ability to im-
prove prefetching for data center applications. Neural
networks and decision trees were shown to achieve the
highest performance in this application domain. The
work in [13], [12], and [8] presents an extensive evalu-
ation of LSTM for prefetching, achieving similar per-
formance improvements as the other LSTM based ap-
proaches. Among the related work [7] has received sig-
nificant attention. Their approach is impractical to be
directly applied for prefetching, and as stated by the
authors, is only a first step towards an LSTM-based
prefetcher. They, and several state-of-the-art machine
learning based access predictors perform the training on
cache misses as it reduces the size of training. However,
an accurate prefetcher will change the the distribution
of cache misses and hence invalidate its own trained
model. Secondly, to achieve higher accuracy, some on-
line training is necessary to learn application specific
patterns. Their models are extremely large to be used
for real-time inference or online retraining. Even after
considering labels for predictions that cover 50% of the
data (leading to a compulsory accuracy loss of 50%),
the number of labels can be of the order of 10K. This,
in turn, with a small hidden layer of size 100 will lead
to a model with more than million parameters. Instead,
we propose to use a small ensemble of highly compact
LSTM models.

In [17] a compact LSTM based prediction model was
proposed. Extremely high compression of LSTM model
was achieved through encoding of the labels (jumps in
memory accesses ‘deltas’). The approach is based on the
observation that the number of parameters are domi-
nated by the output layer. Therefore, for label set of
size n, they create the output layer with logn nodes
each of which can take a 0 or 1 value. This network is
trained to predict a multi-label output with log n labels,
which is the binary representation of the delta instead
of a single label (1 out of n) representing the delta it-
self. This technique led to around 1000x compression.
On the other hand, in the process of compression, the

prediction problem is made harder due to the fact that
all the logn bits need to be predicted correctly for the
right memory access prediction. Yet, the experiments
confirm that the loss in accuracy due to 1000x com-
pression is negligible. While training one model for each
application is possible and leads to highly specialized
and accurate models [17], it is not a scalable solution.
Further a specialized model does not generalize to other
applications (see Figure 2). In this work, we apply the
same compression techniques presented in [17], but use
meta LSTM models to avoid the need for one model per
application. We also propose a clustered meta-learning-
based approach to obtain more general prediction mod-
els that can achieve comparable accuracy as previous
techniques after a small number of gradient steps and
can even generalize to unseen/new applications. This
results in a much smaller memory footprint compared
to related work, allowing its implementation in hard-
ware.

In [18] the meta-LSTM approach for memory ac-
cess prediction has been proposed. While in [18] train-
ing and testing sequences for each application are from
the same trace, a model cannot train and test on the
same trace in a practical setting. A practical approach
would learn the patterns through profiling by running
the application and then using the learned patterns in
the future reruns to accelerate the program by prefetch-
ing. Also, clustering approaches as well as their influ-
ence in supporting meta-models are not fully explored.
In this work, we extend the meta-model working scope
to the rerun of PARSEC applications. Further, we pro-
pose a Delegated Model clustering approach that can
learn the latent patterns from the whole trace. We com-
pared the model performance under different clustering
approaches. Results show that Delegated Model clus-
tering is more reliable when application configurations
change.

3 C-MemMAP Approach

We see the problem of access prediction as a sequence
prediction problem, where the task is to predict the
“delta”, i.e., the jump in address with respect to the
current address. This reduces the number of labels, i.e.,
possible outcomes for the predictions. Further, it ac-
counts for the fact that often an application has similar
jumps in addresses, even though it may start from a
different memory location. Prior work [7,17] has taken
the same approach of classifying deltas for the same rea-
sons. Next we will explain the modeling of C-MemMAP.

Figure 1 illustrates the overall framework of the pro-
posed C-MemMAP approach. The key component that
is responsible for memory access prediction is DCLSTM

Pengmiao Zhang! et al.

Ay Ay As, L Ay

Al —p SPecialized Model 1 \K
A2 gy Specialized Model 2 \VVL} Delegated
A3 —p Specialized Model 3 —3| Model

, =P Specialized Model i =¥ Clustering
A‘n ==y Specialized Model n "

D}, Dz, D3
A Ay Ay

Fig. 1 Overall framework of Clustering-driven Meta-LSTM
Models for Memory Access Prediction

(doubly-compressed LSTM) models that input the mem-
ory access delta sequence D; from Application A; and
output the next predicted delta A;. To compress the
model size, we applied meta-learning technique on DC-
LSTM so that one model can adapt to more than one
application. To maintain the prediction accuracy, we
design a clustering step so that each meta-model han-
dles applications with a similar pattern. We propose
Delegated Model clustering algorithm that is trained
using weights from offline-trained specialized models.
In this way, we largely reduce the model size with a
small loss in accuracy. We will introduce all the com-
ponents of the C-MemMAP framework in detail in the
following subsections.

3.1 Binary Encoding Compression

For an LSTM model to be realistically used for prefetch-
ing, it needs to have low latency and should require
small amount of computation. These factors are closely
related to the size (number of parameters) of the model.
The size (number of parameters) of the simple LSTM
model for memory access prediction is dominated by
the dense last layer. Few thousands of output layers
may lead to slowing down of inference due to a large
number of parameters in the final layer. [17] proposed a
model compressing approach that uses binary encoding
to highly reduce the dimension of the output dense layer
in a classification model, as is shown in Figure 3. Ap-
plying this idea to the memory access prediction task,
the authors in [17] proposed doubly compressed LSTM
(DCLSTM) that uses a binary representation of deltas
for both the input side and the output side, instead of
using the deltas (jumps in memory accesses) directly.

This approach converts the problem from a single label
(1 out of m) prediction problem to a multi-label pre-
diction problem (logn labels). Using this technique, we
obtained an LSTM architecture that has 23, 944 param-
eters.

3.2 Meta-learning

The other dimension of reducing the overhead of mem-
ory access prediction is to reduce the number of mod-
els required for all the applications of interest. While
training one model for each application leads to highly
specialized and accurate models [17], it is not a scal-
able solution. Further a specialized model does not gen-
eralize to other applications. To demonstrate this, we
trained specialized models as in prior work [17], and
tested them on other applications. Figure 2 shows one
such instance, where the model was trained using the
application “Swaption” and then tested on other ap-
plications of PARSEC benchmark. The results clearly
indicate that the models are not generalizable.

Algorithm 1 Doubly Compressed LSTM with MAML

1: function MAML-DCLSTM(S)

2: S: A set of applications

3 Initialize € and initial parameters a, 8
4 for k <1 to Nepoch do

5: Sample batch of applications A; ~ S
6

7

8

for all A; do
Sample a batch D of m accesses from A;
Evaluate VgL a,(fg) using D, where L 4, is the
binary cross-entropy loss

9: Compute the adapted parameters: 0] < 6 —
aVeLa,(fo)
10: Sample accesses D; from A; for the meta-
update
Update 6 <= 0 — BVo 3° 4 s La,(fo;) using each
D} and L4, ' '
11: return 0

Therefore, there is a need for creating a more gen-
eral model that can work well for a class of applications,
thus eliminating the size requirement of one model per
applications and possibly generalizing to unseen appli-
cations. From the huge variations in accuracies seen in
the plots, it is also clear that different patterns exist
in different applications. This indicates that one model
may not readily apply to all applications, and instead
may require some retraining. With the goal of obtain-
ing a general model that quickly adapts to a chosen
application, we apply Model-Agnostic Meta-Learning
(MAML) [5] to train a meta model that is prepared for
fast adaptation. There are two steps in the process of
MAML training. For the first step, the model learns an

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction v

Train With Trace Swaptions, Test With All Traces

1.0
pe ©® Specialized
| BN Train with Swaptions
0.8 PS ®]
- * | L]
[}
Cos
3
|9}
)
<
3 0.4
[}
'_
0.2

o
o

Traces

Fig. 2 Model obtained from one application do not generalize to other applications. The model was trained on the application
”swaption” and tested on all the applications in the PARSEC benchmark. The dots represent the accuracy achieved by training
on the respective applications, provided as the reference accuracy.

Binary
Encoding .

m e
O

H xlogn

Fig. 3 Using binary encoding to highly reduce the dimension
of the output dense layer in a classification model.

initial point 6 for a classifier fy and can be optimized
via gradient descent on loss L;.The update method is
shown in equation 1, where « is the learning rate and
T; refers to the sampled tasks. For the second step, the
model updates the meta-parameters using a collection
of updated model weights 6’ via gradient descent with
learning rate 3, as is shown in equation 2.

0; =0 —aVoLT,(fo) (1)
0=60-BVe > Lz(fo) (2)
Ti~p(T)

Applying MAML on our memory access prediction
task for differen applications, we samples batches from a
set of applications to train one meta-LSTM model (Al-
gorithm 1). First, we sample a set of applications and
from each we prepare a batch of memory accesses. This
batch is used to calculate loss and update adapted pa-
rameters from meta-parameters. Then from this mixed

set of applications, a batch is prepared to compute the
loss which is used to update the meta-model parame-
ters. At termination, a meta-model is obtained which
can adapt to all the tasks used in this training with few
retraining steps.

3.3 Clustering

While in the ideal scenario, we would like one meta-
model to be enough, in reality, the application traces
may vary drastically, making it difficult for one model to
adapt to all the applications. Instead, we propose to use
a small ensemble of meta-models that can cover all the
applications. Our intuition is that it is better to have
similar applications for one meta-model, and so we train
one meta-model for each set of similar applications. We
compare two clustering approaches to detect the sets of
similar applications: 1) our previous approach of soft-
DTW k-means clustering, and 2) proposed Delegated
Model clustering.

3.3.1 Soft-DTW K-means Clustering

We construct the similarity matrix of the given set of
application traces using soft-DTW [4] and then apply
k-means to cluster the memory accesses. Soft-DTW is a
differentiable approximation of DTW (Dynamic Time
Warping) as is shown in equation 3, where X is a se-
quence with length n, Y is a sequence with length m,
T = [mo, ..., Tk] is a path, where 7 = (i, ji) satisfies:

— boundary condition: 0 < ¢, <n, 0 < jp < m, mgp =
(0,0), and 7 = (n — 1,m — 1)
— monotonicity condition: ix_1 < ig, Jr—1 < Jk

Pengmiao Zhang! et al.

— continuity condition: iy —ix_1 <1, jr — jrk—1 < 1

A smoothing parameter + is introduced to the orig-
inal min operation in DTW to create a generalized min
operator, as is shown in equation 4. It can acquire bet-
ter minima due to its better convexity properties in
processing time-series data. As a pre-processing step,
we convert the memory accesses into decimal values.
Then they are standardized through subtracting the
mean and dividing by the standard deviation. These
standardized trace chunks are fed into a k-means clus-
tering algorithm that uses soft-DTW to calculate the
distance.

0 2
soft-DTW, (X, Y’) = soft- min Z |1 X, Y| (3)
(i,j)em

soft- min (aq, . ..

- _ —ai/y
i L Q) ’ylogZe (4)

8.8.2 Delegated Model Clustering

We propose a novel Delegated Model (DM) clustering
approach based on the assumption that the clustering
of sequences can be achieved by the clustering of trained
parametric models (delegated models). For each appli-
cation, the trained specialized model (see Section 4.2)
has learned the patterns from the trace and the infor-
mation is stored in the model weights. Thus, the spe-
cialized DCLSTM models can serve as delegated mod-
els and they represent the original memory traces in the
further clustering step. The Delegated Model clustering
algorithm is shown in Algorithm 2. We concatenate the
different types of weights in DCLSTM models and use
Principal Component Analysis (PCA) to reduce the di-
mension. K-means is applied to cluster the dimension-
reduced model weights as the last step. DM clustering
has some advantages compared to the sequence-based
Soft-DTW K-means approach. First, for long sequences
like memory traces, DTW requires a large memory space
and a long fitting time. As a result, we need to sample
pieces of sequence from the whole trace. In contrast, our
approach is based on LSTM that processes a sequence
recurrently, which considerably saves the memory space
and thus can deal with much longer sequences. Sec-
ond, model weights directly reflect the latent attributes
of the sequence for the target task of prediction while
DTW can only compare the shape of pieces, this makes
Delegated Model method can better fit the rerun of ap-
plications under different configurations. DM approach
can be generalized to other problems and the delegated
model can also be various types of models, such as
RNN, GRU, and TCN [9,3].

Algorithm 2 Delegated Model Clustering

1: S: A set of applications

2: (' Clusters of applications

3: function DM-CLUSTERING(S)
4: for Application A; in S do

5: Train a doubly compressed LSTM as the delegated
model DM;

6: DMW,; +< model weights matrix of DM;

7 Weight dimension reduced to d: DMWEZ <+

PCA(DMW;,d)
Clustering to k sets: C < k-means(DMW, k)
return C

The parameter k (number of clusters, i.e., number of
meta-models) of k-means is chosen based on the mem-
ory available for storing the access prediction models.

3.4 Ensemble Meta-learning

We consider the meta-model obtained for each cluster
as a representative of a class of applications. In real
implementation, all k£ (one for each of the k clusters)
meta-models will work in parallel to predict the mem-
ory accesses, and as more of the memory trace is seen,
with few retraining steps, we will be able to identify
which of the k models is more accurate. That model
will be chose to continue inference, until the accuracy
drops below a desired level. In that scenario, parallel
retraining for all £ meta models will resume. We be-
lieve that such retraining and switching between meta-
models is essential as the program may go through a
drastic change in access pattern. Similar concept of on-
line retraining has been considered in [17].

Algorithm 3 Doubly Compressed LSTM with cluster
based MAML
1: function C-MAML-DCLSTM(S)

2: Clustering applications in S into a collection of sets
{Si}i

3: for i < 1 to k do

4: 0; + MAML-DCLSTM(S;)

o

return {6;}

4 Experiments
4.1 Datasets

We conducted extensive experimentation on the PAR-
SEC benchmark [1], which was specifically chosen be-
cause of its diverse set of applications. The Intel Pin
[11] tool was used to obtain memory access traces for
each application. As mentioned earlier, instead of actual

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction vii

memory locations, we transform the memory traces to
sequences of deltas by subtracting consecutive hexadec-
imal memory address and converting them to integer.
The reason for this is to allow the model to predict
memory locations for any future execution of the same
application, since the relative memory differences are
expected to stay consistent [17,7].

We evaluate the performance of all models using two
branches of memory traces generated from PARSEC
benchmark:

— Consistent configuration. Assume for a single ap-
plication, the configuration does not change during
running or when restarted. In this case, we split a
trace for model training, testing, and retraining.

— Inconsistent configuration. Assume that the configu-
ration of an application will be different during run-
ning or when restart. In this case, we generate dif-
ferent pieces of traces by rerunning the benchmark
under different configurations. The training set and
testing set are from different traces under inconsis-
tent configurations. The retraining is processed us-
ing the increasingly seen data from the testing trace.

4.2 Model Settings

We used the doubly compressed LSTM (DCLSTM) ar-
chitecture as described in [17] . It has an embedding
layer with 10 units, followed by an LSTM layer with
50 units, followed by a dense layer with 50 units, and
15 outputs to represent up to 2'® most frequent deltas.
We also used a dropout of 10%, look back window 3
(i.e., takes last three access predictions as input), 20
training epochs, a batch size 256, and 50-50 train/test
split. We used sigmoid activation function and binary
cross entropy loss function. This architecture is trained
differently by different models as described below!.

— Specialized: This is the DCLSTM model trained for
one application. Ideally, this would be the best per-
forming model, but it cannot be generalized. We
will use the accuracies obtained from the special-
ized model as reference to compare other models on
the given applications that are trained to adapt to
multiple applications.

— Concatenated: This DCLSTM model is trained by
simply concatenating the training traces from all
applications.

— MAML-DCLSTM: This is a meta-model where the
weights are learned using Algorithm 1.

I The code is available at: https://github.com/MemMAP/
C-MemMAP

— C-MAML-DCLSTM: This is a meta-model obtained
from Algorithm 3. Instead of training with all the
applications, this is trained with applications that
belong to the same cluster. Three such models were
trained based on the three clusters obtained from
PARSEC. For our experiments, we have chosen k =
3 based on the assumption that three meta-models
work in parallel in a system. We discuss two cluster-
ing approaches in Section 3.4. For consistent config-
uration traces, the two clustering approaches agree
with each other. For inconsistent configuration traces,
while the soft-DTW k-means clustering keeps the
same, Delegated Model shows a different result. The
clustering results are shown in Figure 4, where C1
refers to soft-DTW k-means clustering and C2 refers
to Delegated Model clustering.

4.3 Results

The goal of our experiments is to show that our cluster-
based compact meta-LSTM models are: (a) Accurate
— produce accuracy comparable to specialized models;
(b) Adaptable — quickly adapt, i.e., specialize them-
selves for the given application; and (c) Generalizable
— adapt to high accuracy even when the application
was never seen before. We evaluate the performance of
the proposed approach using two branches of traces in-
troduced in Section 4.1: consistent configuration traces
and inconsistent configuration traces.

4.3.1 Consistent Configuration

Under the same configuration, adaptability and gen-
eralizability are decoupled and can be evaluated sepa-
rately. Also, since two clustering approaches agree on
the same results, we can focus on the general improve-
ment acquired from clustering and ignore the influence
of different clustering methods.

Figure 5 shows the accuracy results of all the meth-
ods under consistent configuration. The specialized model
serves as a reference for the ideal accuracy we wish
to achieve. For concatenated model, MAML-DCLSTM
and C-MAML-DCLSTM, we compared the model per-
formance before retraining (pre-update) and after re-
training (updated) by specific trace. In the experiment
for pre-update models, we use 200K accesses for train-
ing and the next 200K for testing. For retraining, we
use unseen 200K accesses of specific trace to retrain the
existing pre-update models to get updated models for
each trace. Then, we test them with the next 200K ac-
cesses in the trace. As shown in Figure 5, the accuracies
of all pre-update models are improved after retraining.

viii

Pengmiao Zhang! et al.

deflup
streapicluster
vips
s fregfine
swapitions
rayfrace bodytrack
x26+ captieal
facesim___
fluigahimate
blackstholes
ferret

(a) C1: Soft-DTW k-means clustering

Fig. 4 Clusters obtained from PARSEC benchmarks.

*% vips
®
—20 others
10 —
- e ® fluidanimate

0
10 -30
y 2 3 -40

(b) C2: Delegated Model clustering

1.0

R
&

o
o
2

A Y

. Y
7
-
B
7 7
77
7 7
.
S B

Test Accuracy
o
~

V.

o
[N)

0.0

Concatenated
Pre-update

. Concatenated
AW Updated
MAML-DCLSTM
Pre-update
MAML-DCLSTM
Updated
C-MAML-DCLSTM
Pre-update

. C-MAML-DCLSTM
- Updated

. Specialized

A A H
&

G

V.
%

2 e 2 S o © u
& ¢ F&E
& S @0 N
& <& & o;*
"Bé

Fig. 5 Accuracy of the models pre- and post-retraining under consistent configuration

In most cases (11 out of 13), MAML-DCLSTM mod-
els achieve higher accuracy than concatenated mod-
els, even when they start with lower pre-update accu-
racy. This shows that the meta-model learns fast with a
more general initialization. C-MAML-DCLSTM models
gain a similar level of raises as MAML-DCLSTM. Due
to the higher similarity of traces in the same cluster,
C-MAML-DCLSTM models usually have higher pre-
update accuracy. As a result, in 9 traces, C-MAML-
DCLSTM outperform MAML-DCLSTM and in 3 traces
they perform similarly. Overall, C-MAML-DCLSTM re-
sults in accuracies close to the specialized models in 9
out of 13 traces. While for some applications the accu-
racy drops are notable, the performance is still better
than the non-neural-network methods (e.g., Last Access
Prediction and Nailve Bayes) explored in [17]. Besides,
with the increase of seen data and the continued retrain-

ing, the accuracy will grow and approach the specialized
models.

Figure 6 shows how retraining starting from vari-
ous models improves the accuracy as more of the trace
is seen under consistent configuration. Note that, spe-
cialized models are used for reference, and we do not
performing any retraining for them. We used 256 mem-
ory accesses for a batch of training and calculated test
accuracy on the next 10K samples in rolling windows.
Retraining is performed beginning from the weights of
the neural network from the previous training batch.
Based on the plots, although both MAML and concate-
nated models have similar result on some applications,
the accuracy per batch on other traces such as Blacksc-
holes, Ferret, and Streamcluser indicate that MAML-
DCLSTM model learns faster than concatenated model,
and C-MAML-DCLSTM performs better than MAML-
DCLSTM. One can see that the relationship between

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction ix

Blackscholes Bodytrack nneal
1.0 1.0 b 1.0 Cannea
0.8 0.8 0.8
30.6 30.6 30.6
e e I
=] =} =}
S 0.4 S 0.4 S 0.4
<™ <Y go.
0.2 0.2 0.2
0.0 — g T T T 0.0 — g T T - 0.0 — g T T -
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
Dedu F im Ferret
1.0 P 1.0 aces 1.0 erre
0.84 0.8 0.8
3 0.614 3 0.6 3 0.6
o i o o
3 J 3 3
0414 204 204
{
¢
0.2 0.2 0.2
0.0 g T T - 0.0 g T T - 0.0 g - T -
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
Fluidanimate Fregmine
1.0 10 q 10 Raytrace
0.81 0.81 0.81
3 0.6 0.6 0.6
o o o
3 3 3
8041 8 0.4l 8 0.4l
g04 o o
0.2 0.2 0.2
0.0 y T ' - 0.0 y T - < 0.0 y T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
Streamcluster Swaptions Vi
0.81 0.81 0.81
3 0.6 1 3 0.6 1 3 0.6
o I I
3 3 3
S 0.4/ S 0.4/ S04
go04 go. o R
0.2 0.2 0.2 p
0.0 0.0 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
X264
1.0
0.81
. —=— Specialized
50.61 -+-- Concatenated
—
2 - MAML-DCLSTM
o 4
< 04 —— C-MAML-DCLSTM
0.2
0.0 —

0 50 100 150 200
Memory Accesses (k)

Fig. 6 Adaptability results for our meta-models under consistent configuration.

Pengmiao Zhang! et al.

Raytrace

Streamcluster

1.0 1.0
—a— Specialized —&— Specialized
—e— Concatenated —e— Concatenated
—4— C-MAML-DCLSTM —4&— C-MAML-DCLSTM
0.8 0.8
0.6 0.6
> >
e 1°)
e e
=1 3
el o
))
< <
0.4 0.4
0.2 0.2 ¢
|
0.0 0.0

0 50 100
Memory Accesses (k)

150 200

Fig. 7 Generalizability results for our meta-models.

these three models is clear for stable applications, while
the others fluctuate a little. It seems that both C-MAML-
DCLSTM and MAML-DCLSTM model can adapt to
the stable applications rapidly and C-MAML-DCLSTM
has the best adaptability. There are some challenging
traces such as Vips and X264 on which even specialized
model failed to achieve high accuracy. It is possible that
the memory accesses of these applications vary consid-
erably, and so prediction is extremely hard. In four out
of 13 applications, the accuracy of C-MAML-DCLSTM
is significantly less than specialized model. Improved
clustering and more meta-models may be necessary for
improving on these traces.

Figure 7 shows the comparison of how generaliz-
able the models are. We split the applications in the
same cluster into the training (Bodytrack, Canneal,
Dedup, Facesim, Fluidanimate, Freqmine, Swaptions,
Vips) and test sets (Raytrace and Streamcluster), the
training set was used to build the meta-model using C-
DCLSTM-MAML and concatenated model, and then
we tested on the test applicaitons to compare the per-
formance of these two models for generalizability. We
collected batches of 256 memory accesses for training
and calculated test accuracy on next 10K samples in
rolling windows. We performed retraining starting from
the weights of the neural network from the previous
training batch. The performance of C-MAML-DCLSTM
improved after several memory accesses for both Ray-
trace and Streamcluster, which demonstrates that it
can quickly generalize to unseen applications in the
same cluster.Although the test accuracy for concate-
nated model did increase after several memory accesses
in the case of Raytrace, it performed poorly in the case
of Streamcluser. Furthermore, the C-MAML-DCLSTM
model can obtain accuracy close to specialized models
using only a small number of batches.

100
Memory Accesses (k)

0 50 150 200

4.3.2 Inconsistent Configuration

Each application rerun three times under different con-
figurations and generate traces T'1,72, and T3. We use
T1 and T2 as training traces and 73 as the testing
trace. The performance of a model under inconsistent
configuration reveals both its adaptability and general-
izability. Due to the clustering difference between the
two approaches (Section 3.4), the influence of clustering
approach can be explored under this set of experiments.

Figure 8 shows the accuracy results of all the meth-
ods under inconsistent configuration traces. Though a
specialized model is still trained and tested by a single
application, the training and testing traces are different.
The inconsistency leads to generally lower accuracies
than the consistent configuration results. For the con-
catenated model, 2 training traces of all applications,
each with 100k deltas, are concatenated as the train-
ing data. For MAML-DCLSTM, all training traces are
fed into one meta-model as different tasks. For C1/C2-
MAML-DCLSTM, there are k (k = 3) meta-models
and the training traces under the same cluster are fed
into the corresponding models. C1 means the clusters
acquired from the sequence-based soft-DTW k-means
approach and C2 means the clusters acquired from the
Delegated Model approach. We compared the model
performance before retraining (pre-update) and after
retraining (updated) by testing trace. we show the ge-
ometric mean of all the model performance in GM.
GM shows that C2-MAML-DCLSM has the best per-
formance for both pre- and post- updated while the con-
catenated model has the lowest mean accuracy. How-
ever, there is a flaw in using the geometric mean of
all applications to compare the performance of mod-
els.The two clustering results (C1 and C2) have dif-
ferent minor clusters (application member < 3) that

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction xi

0.8
> \
[9) N
©0.6 \
5 N
3 \
S04 \ "
7] 8 X
g \
N N
N 8 N
02 \ b ’
N § N
N
00 AN\ N\ AN N\ N
o ol > X
& & & S e;‘,-\& N
& K S P & @ S
NG ¢ < &
C) R
X <

N Specialized

mmm Concatenated Pre-updated
W Concatenated Updated
MAML-DCLSTM Pre-updated
MAML-DCLSTM Updated
C1-MAML-DCLSTM Pre-updated
N C1-MAML-DCLSTM Updated
C2-MAML-DCLSTM Pre-updated
N\ C2-MAML-DCLSTM Updated

A N
i \ N
S Y Y WA)
\ N v
\
N N AN RX N N
& (b& c}?} . \o‘\" 4@" _p’bb‘ ol <
S ©
® S
<
s

Traces

Fig. 8 Accuracy of the models pre- and post-retraining under inconsistent configuration.

achieve high accuracies. This results in higher influence
of these applications in computing mean. Therefore, we
show the geometric mean of only the common applica-
tions in the largest cluster for both C1 and C2 in GM-C.
CM-C shows that C2-MAML-DCLSTM achieves 15%
higher accuracy than C1-MAML-DCLSTM, who even
shows lower accuracy than MAML-DCLSTM without
clustering. This result demonstrates that the clustering
approach is vital in C-MAML-DCLSTM performance
and an inappropriate clustering even hinders the meta-
model training. Delegated Model clustering (C2) ex-
tracts abstract information from the whole trace and is
more reliable to cluster rerun traces under inconsistent
configuration.

Figure 9 shows one epoch retraining using unseen
traces under inconsistent configurations. The retrain-
ing batch size and other settings are the same as con-
sistent configuration experiments. Specialized models
are still used for reference. From the plots, we can ob-
serve that, in many cases, C2-MAML-DCLSM shows
higher starting points (Dedup, Facesim, and Freqmine)
or achieves higher accuracies more quickly (Blacksc-
holes, Bodytrack, Canneal, Ferret, and Raytrace) than
concatenated models. This illustrates that C2-MAML-
DCLSM adapts faster than concatenated models. C1-
MAML-DCLSTM performs best only for X264. In some
cases (Fluidanimate and Freqmine) it performs even
worse than MAML-DCLSTM without clustering. This
performance drop caused by inappropriate clustering
is also observed and discussed in the accuracy evalua-
tion shown in Figure 8. We can also observe that the
adaptability process of the concatenated model is much
slower from the curves of Canneal, Fluidanimate, Ray-
trace, and Vips. After 50-100 batches of retraining, the
curves of different models converge to similar patterns,

which shows that the advantage of C-MAML-DCLSTM
is more significant at the beginning stage of retraining
due to its high adaptability and generalizability.

4.4 Discussion
4.4.1 Sensitivity of Hidden Dimension

In the experiments above, we set the hyper-parameter
of the hidden dimension of LSTM as 50. This config-
uration is inherited from work [17] because the LSTM
layer with 50 units is enough for the LSTM models
to achieve high performance while keeping a compact
size. This configuration is suitable for the updated mod-
els because the retrained C-MemMAP will converge to
the specialized model after retraining from our obser-
vation from Figure 6. However, the sensitivity of pre-
updated C-MemMAP models influences more to the
adaptability process since it determines the initial state
of retraining.

Figure 10 illustrates the predicting accuracy of the
pre-updated meta-models at various hidden dimensions.
Hidden dimension size at 10, 20, 30, 40, 50, 60, and 70
are tested. Results show that the predicting accuracy
increases fast from dimension 10 to dimension 50, then
the curves are significantly flattened at the dimension
of 60 and 70. This result demonstrates that hidden di-
mension at 50 not only guarantees a satisfactory final
accuracy but also provides a high initial point for model
adapting from retraining.

4.4.2 LSTM vs GRU

In the proposed C-MemMAP model, we used LSTM
as the recurrent layer. Gated recurrent units (GRUS)

xii Pengmiao Zhang! et al.

Blackschol B track nneal
0.8 ackscholes 0.8 odytrac 0.8 Cannea
0.6 0.6 0.6
> > >
o O O
© © ©
é 0.4 é 0.4 T é 0.4
§ | g N /] g
0.2 0.2 ’ e 0.2
W
0.0 T T " T 0.0+ T T " T 0.0 T T " T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
D F im Ferret
08 edup 08 aces 08 erre
0.6 0.6 0.6
> > >
o e O
© © ©
504 504 50.4
o 1S 1S
19 19 19
< < <
0.2 0.2 0.2
..I"‘"""""""""' Ay by, Y g
& P 0w "
0.0 v v LAV et et oo i 0.0 | | | | 0.0 1+ | | | |
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
08 Fluidanimate 08 Fregmine 08 Raytrace
7""-;
0.6 0.6 —] 0.6
1
> > r >
1e) O O
© © i ©
::-:'J 0.4 é 0.4 ’;‘i é 0.41 W
< < - g L
0.2 0.2 0.21 | —
0.0~ " T " T 0.0~ ... " " 0.0~ " r " T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
treamcluster waption Vi
08 Streamcluste 08 Swaptions 08 ps
0.6 0.6 - ‘ﬁ‘h- 0.6
g I g
504 504 504
3 3]
< < <
0.2 0.2 0.2 = E ’,’*fﬁ‘y :
0.0 - 0.0 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Memory Accesses (k) Memory Accesses (k) Memory Accesses (k)
X264
0.8
0.6 o
--=-- Specialized
>
o Concatenated
304 e MAML-DCLSTM
1e)
< —+— C1-MAML-DCLSTM
0.2 —+— C2-MAML-DCLSTM
0.0

0 50 100 150 200
Memory Accesses (k)

Fig. 9 Adaptability results for our meta-models under inconsistent configuration.

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction xiii

0.4

0.35

e
N o
a w

Accuracy
=)
N

=]
=
«

°
-

o
1=}
a

0 !
10 20 30 40 50 60 70

Hidden Dimension

—=Blackscholes ==Bodytrack Canneal Dedup

—=Facesim —Ferret ==Fluidanimate ==Freqgmine

——=Raytrace ==Streamcluster==Swaptions ==Vips

X264

Fig. 10 Pre-updated accuracy of C-MemMAP model at var-
ious hidden dimension of LSTM.

= MAML-DCLSTM: Pre-updated
N = MAML-DCLSTM:Updated
B MAML-DCGRU: Pre-updated
0.8 N MAML-DCGRU:Updated
N
N
N\
>0.6
8 N
g N N
o
2
- N
704 -
< X
) N
N
) I i
0.0 > X X O >
& @C" & oon 0‘,’,\@ <& & ((-\\oq’ @é” \)‘j@ O pb
S L <« Q & N
&,0 08\ & 9O & -S"(\\ Q@Q Q@* N {@Q
& N &L 9

&
Traces

Fig. 11 GRU version of C-MemMAP models acquire similar
performance compared to LSTM version.

is another commonly used variation of recurrent neu-
ral networks, introduced in 2014 by Kyunghyun Cho et
al [2], which can also be applied to our approach replac-
ing the LSTM layer. Figure 11 illustrates the effect of
replacing the LSTM layer with a GRU layer. We found
that the two versions produce nearly identical results.

4.4.3 Partial Accuracy

The prediction output of our approach is in the format
of encoded 16-bit binary values. An advantage of this
format is that we are allowed to use only upper n bits
of the predictions if that part provides higher accuracy.
From the hardware point of view, memory fetching is
executed in the unit of cache lines so the lower bits
of a memory access address are naturally ignored in
prefetching. Figure 12 shows a case study of how the
partial accuracy and confidence decrease with the in-
crease of prediction bits. The result is based on the

. @

e a
v e
0.9
> Mean Confidence
£ o0s Q ® o5
é 0.6
< 0.7
0.8
0.7 c 0.9
L]
0.6
>
2 4 6 8 10 12 14 16
Upper Bits

Fig. 12 Prediction accuracy and confidence decrease with
the increase of prediction bits for application Blackscholes.

application Blacksholes and we define the confidence of
upper n bits as equation 5:

n

Confidence(n) = H P (Yprea(b) = yrest(b) | X, M) (5)
b=1

where P (Ypred (D) = Ytest (b) | X, M) is the probability
of correct prediction at bit b given the input X and
model M.

From Figure 12 we observe that the accuracy and
prediction confidence is high in the upper 8 bits but
both drop rapidly for bits longer than 10. This feature
supports our hypothesis that by using only upper bits
of the prediction, the predictor can achieve higher ac-
curacy, which will lead to more useful prefetches in a
practical system.

5 Conclusions

We have proposed C-MemMAP, a clustering-driven meta-
model approach to predicting memory accesses, a cen-
tral aspect of prefetchers, necessary to improve memory
performance. We addressed the impracticality of cur-
rent deep learning models in prefetching due to their
high storage requirement. We improved upon the state-
of-the-art, which although does provide compact LSTM
models, it requires one model for each application. Such
an approach does not scale to large number of applica-
tions. It also does not generalize to applications not
seen before. While, it is possible to train one model for
all applications, the accuracy was typically lower. We
propose to use a clustering-driven meta-learning ap-
proach, where the applications are first clustered and
then a meta-model is trained for each cluster. We in-
troduce a novel Delegated Model clustering approach
that uses the weight matrices of trained LSTM models

Xiv

Pengmiao Zhang! et al.

as delegates of the original traces for the further clus-
tering step. Our approach exploits the trade-offs be-
tween total model size, accuracy, and retraining steps.
We showed that three models (with 3 x 24K parame-
ters) can achieve high accuracy quickly for 13 diverse
applications. We show that our approach is accurate for
majority of applications in the benchmarks, it adapts
quickly with retraining of only one epoch with increas-
ing number of accesses, and it can generalize to applica-
tions that were not seen during training. Experiments
under inconsistent configuration show that Delegated
Model is reliable in supporting meta-models and shows
15% higher accuracy than soft-DTW k-means. In future
work, we will explore the hardware implementation of
our approach to support a prefetcher.

Acknowledgements This work is supported by Google Fac-
ulty Research Award, Air Force Research Laboratory grant
number FA8750-18-S-7001, and National Science Foundation
award number 1912680. Cesar A. F. De Rose was supported
by CNPq PDE grant and Fapergs PRONEX project. The
authors would like to thank Dr. Angelos Lazaris for useful
discussions.

Conflict of interest

On behalf of all authors, the corresponding author states
that there is no conflict of interest.

References

1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec
benchmark suite: Characterization and architectural im-
plications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’08, pp. 72-81. ACM, New York,
NY, USA (2008). DOI 10.1145/1454115.1454128. URL
http://doi.acm.org/10.1145/1454115.1454128

2. Cho, K., Van Merriénboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 (2014)

3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empiri-
cal evaluation of gated recurrent neural networks on se-
quence modeling. arXiv preprint arXiv:1412.3555 (2014)

4. Cuturi, M., Blondel, M.: Soft-dtw: A differentiable loss
function for time-series. In: Proceedings of the 34th
International Conference on Machine Learning - Vol-
ume 70, ICML’17, pp. 894-903. JMLR.org (2017). URL
http://dl.acm.org/citation.cfm?id=3305381.3305474

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-
learning for fast adaptation of deep networks. In: Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126-1135. JMLR. org (2017)

6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to
forget: Continual prediction with lstm (1999)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hashemi, M., Swersky, K., Smith, J.A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., Ranganathan, P.: Learning
memory access patterns (2018)

Hashemi, M., Swersky, K., Smith, J.A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., Ranganathan, P.: Learn-
ing memory access patterns. CoRR abs/1803.02329
(2018). URL http://arxiv.org/abs/1803.02329

Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.:
Temporal convolutional networks for action segmentation
and detection. In: proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 156-165
(2017)

Liao, S., Hung, T., Nguyen, D., Chou, C., Tu, C., Zhou,
H.: Machine learning-based prefetch optimization for
data center applications. In: Proceedings of the Confer-
ence on High Performance Computing Networking, Stor-
age and Analysis, pp. 1-10 (2009)

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V.J., Hazelwood, K.:
Pin: Building customized program analysis tools with
dynamic instrumentation. SIGPLAN Not. 40(6), 190
200 (2005). DOI 10.1145/1064978.1065034. URL http:
//doi.acm.org/10.1145/1064978.1065034

Narayanan, A., Verma, S., Ramadan, E., Babaie, P.,
Zhang, Z.L.: Deepcache: A deep learning based frame-
work for content caching. pp. 48-53 (2018). DOI
10.1145/3229543.3229555

Peled, L., Weiser, U., Etsion, Y.: A neural network mem-
ory prefetcher using semantic locality (2018)

Plank, B., Sggaard, A., Goldberg, Y.: Multilingual part-
of-speech tagging with bidirectional long short-term
memory models and auxiliary loss. arXiv preprint
arXiv:1604.05529 (2016)

Rahman, S.; Burtscher, M., Zong, Z., Qasem, A.: Max-
imizing hardware prefetch effectiveness with machine
learning. In: 2015 IEEE 17th International Conference
on High Performance Computing and Communications,
2015 IEEE Tth International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, pp. 383—
389 (2015)

Shevgoor, M., Koladiya, S., Balasubramonian, R., Wilk-
erson, C., Pugsley, S.H., Chishti, Z.: Efficiently prefetch-
ing complex address patterns. In: 2015 48th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 141-152. IEEE (2015)

Srivastava, A., Lazaris, A., Brooks, B., Kannan, R.,
Prasanna, V.K.: Predicting memory accesses: the road
to compact ml-driven prefetcher. In: Proceedings of the
International Symposium on Memory Systems, pp. 461—
470. ACM (2019)

Srivastava, A., Wang, T.Y., Zhang, P., De Rose, C.A.F.,
Kannan, R., Prasanna, V.K.: Memmap: Compact and
generalizable meta-lstm models for memory access pre-
diction. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 57-68. Springer (2020)
Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I.,
Hinton, G.: Grammar as a foreign language. In: Advances
in Neural Information Processing Systems, pp. 27732781
(2015)

Zeng, Y., Guo, X.: Long short term memory based hard-
ware prefetcher: a case study. In: Proceedings of the Inter-
national Symposium on Memory Systems, pp. 305-311.
ACM (2017)

Zhang, P., Srivastava, A., Brooks, B., Kannan, R.,
Prasanna, V.K.: Raop: Recurrent neural network aug-

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction

XV

mented offset prefetcher. In: The International Sympo-
sium on Memory Systems (MEMSYS 2020) (2020)

