
International Journal of Data Science and Analytics manuscript No.
(will be inserted by the editor)

C-MemMAP: Clustering-driven Compact, Adaptable, and
Generalizable Meta-LSTM Models for Memory Access
Prediction

Pengmiao Zhang1 · Ajitesh Srivastava1 · Ta-Yang Wang1 · Cesar A. F.

De Rose2 · Rajgopal Kannan3 · Viktor K. Prasanna1

Received: date / Accepted: date

Abstract With the rise of Big Data, there has been a

significant effort in increasing compute power through

GPUs, TPUs, and heterogeneous architectures. As a

result, many applications are memory bound, i.e., they

are bottlenecked by the movement of data from main

memory to compute units. One way to address this is-

sue is through data prefetching, which relies on accu-

rate prediction of memory accesses. While recent deep

learning models have performed well on sequence pre-

diction problems, they are far too heavy in terms of

model size and inference latency to be practical for data

prefetching. Here, we propose clustering-driven com-

pact LSTM models that can predict the next mem-

ory access with high accuracy. We introduce a novel

clustering approach called Delegated Model that can

reliably cluster the applications. For each cluster, we

train a compact meta-LSTM model that can quickly

adapt to any application in the cluster. Prior LSTM

� Pengmiao Zhang
E-mail: pengmiao@usc.edu

Ajitesh Srivastava
E-mail: ajiteshs@usc.edu

Ta-Yang Wang
E-mail: tayangwa@usc.edu

Cesar A. F. De Rose
E-mail: cesar.derose@pucrs.br

Rajgopal Kannan
E-mail: rajgopal.kannan.civ@mail.mil

Viktor K. Prasanna
E-mail: prasanna@usc.edu

1 University of Southern California, Los Angeles, CA
90089, USA
2 Pontifical Catholic University of Rio Grande do Sul, Porto
Alegre, Brazil
3 US Army Research Lab-West, Playa Vista, USA

based work on access prediction has used orders of mag-

nitude more parameters and developed one model for

each application (trace). While one (specialized) model

per application can result in more accuracy, it is not a

scalable approach. In contrast, our models can predict

for a class of applications by trading off specialization

at the cost of few retraining steps at runtime, for a

more generalizable compact meta-model. Our experi-

ments on 13 benchmark applications demonstrate that

clustering-driven ensemble compact meta-models can

obtain accuracy close to specialized models using few

batches of retraining for majority of the applications.

Keywords LSTM · Compression · Clustering ·
Meta-learning

1 Introduction

Prefetching is critical in reducing program execution

time through hiding the latency due to data movement.

Especially, with the advent of GPUs, TPUs, and het-

erogeneous architectures that accelerate computation,

the bottleneck is shifting towards memory performance.

The central aspect of prefetching is to be able to accu-

rately predict future memory accesses. Memory access

prediction problem is typically modeled as a classifi-

cation problem, targeted to predict the future mem-

ory access addresses from program history information

such as memory accesses, PC, etc. Due to the extremely

large value space of absolute memory addresses, deltas,

defined as the address difference between two consecu-

tive memory accesses, are more commonly used for both

hardware prefetchers [16] and ML-based memory access

predictors [21]. Therefore, the memory access predic-

tion task can be formulated as predicting the next delta

given a sequence of history deltas. This can be seen

ii Pengmiao Zhang1 et al.

as a sequence prediction task, which in theory, is well-

suited for machine learning. Specifically, LSTM (Long-

Short Term Memory) based Deep Learning has shown

tremendous success in sequence prediction tasks like

text prediction [6], along with other natural language

tasks such as part of speech tagging [14] and grammar

learning [19]. Since memory accesses have an underly-

ing grammar similar to natural language, such mod-

els are naturally applicable to learning accesses. Recent

work [7,20,17] has shown that LSTM based methods

indeed lead to higher accuracy than those used in tradi-

tional prefetchers. For instance, [21] trains one LSTM

model for each application that learns the pattern of

past three address deltas and predict the coming delta.

The predicted delta can be converted back to mem-

ory address and can serve as a temporal reference for a

hardware prefetcher.

However, in reality, LSTM based prefetchers are far

from becoming practical due to their extremely high

memory and computation requirements. For instance,

the models proposed in [7] can have more than a million

parameters. Such a large number of parameters (and

thus computations) make it infeasible to implement a

prefetcher based on LSTM, as to be useful, these pre-

dictions need to be faster than accessing the sequence

of memory addresses without any prefetching. Recent

work [17] proposes an encoding method that reduces

the size of the LSTM model to few thousands of pa-

rameters. They also show that such high compression

can be achieved without any significant loss in accu-

racy. As a result, inference can be fast and models can

be retrained quickly on demand, when there is a dras-

tic change in access patterns. The drawback of this ap-

proach is that it requires training one model each for

all applications. This is not a scalable solution as the

number of applications grow, the total size of the mod-

els (storage required on the memory controller where

these models will reside) grows linearly, thus defeating

the purpose of having compact models. Further, such

models do not apply to applications that have not been

seen in training.

To address these shortcomings in making deep learn-

ing based prefetchers realistic, we proposed using a small

number of compact meta-models to predict the memory

access for a class of applications in our prior work [18].

We showed that the meta-models are sufficient to adap-

tively and accurately predict on a diverse set of appli-

cations of interest, i.e. these models can also general-

ize to applications not seen during training [18]. How-

ever, little attention is given to obtaining good cluster-

ing. In this work we propose C-MemMAP – clustering-

driven meta-LSTM models for memory access predic-

tion. It uses a novel clustering approach termed Del-

egated Model (DM) clustering. This approach uses a

trained parametric model, compact LSTM in this work,

as a delegate of the original sequence for further clus-

tering task. This ensures that similarity between traces

is defined by similarity in next access prediction, as the

LSTM models can themselves be assumed to be a rep-

resentation for trace patterns. Our approach makes the

ML-based memory access prediction more practical and

scalable for a prefetcher by reducing both the number

and size of the models. First, the number of models does

not grow when the number of applications increases. In-

stead of training one specialized model for each applica-

tion, we train a small number of meta-models based on

the application clustering. Second, we implement dou-

bly compressed LSTM (DCLSTM) [17] in our meta-

model to predict memory access. DCLSTM reduces the

number of model parameters by predicting the binary

representation of the output values, which achieves a

n/ log n ratio of compression with negligible accuracy

compromise. As a result, C-MemMAP with compact

model size achieves high adaptability and generalizabil-

ity at the cost of a small loss in accuracy and need for

few retraining steps.

Through extensive experiments on PARSEC [1] bench-

mark, which has diverse applications, we demonstrate

that our approach leads to accurate, adaptable, and

generalizable prediction access models. Using only three

compact models of size 24K parameters each, we are

able to perform on par with specialized models for 13

applications. We envision that in a real system im-

plementation, the memory controller will run all three

models concurrently, and use the model that produces

better accuracy over last few accesses. Note that, in

this paper, our objective is not to develop a full scale

prefetcher, but to design a small set of highly accurate

and compact LSTM based access prediction model to

enable a realistic prefetcher implementation. The over-

all prefetcher architecture utilizing our model is de-

scribed in [21]. A prefetcher built on top of our approach

and its hardware implementation will be explored in fu-

ture work. Specifically, our contributions are as follows:

– We improve upon the state-of-the-art compressed

LSTM models for access predictions, eliminating its

necessity of one model per application (trace);

– We propose a clustering-driven meta-learning-based

approach to obtain more general prediction models

that can achieve high accuracy after a small num-

ber of gradient steps and can even generalize to un-

seen/new applications;

– We improve our clustering technique from previous

work with a novel Delegated Model approach to de-

tect applications with similar patterns that works

reliable as an upstream of meta-models;

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction iii

– We experimentally demonstrate that our approach

is accurate, adaptable, and generalizable – with a

reduced number of models, we can achieve the same

level of accuracy as the specialized (one model per

application) approach with a much smaller memory

footprint.

2 Related Work

Several prior works have proposed LSTM for memory

access prediction [7,20]. In [15], the authors propose

the use of logistic regression, and decision tree mod-

els to enhance prefetching. The authors in [10] evaluate

various machine learning models on their ability to im-

prove prefetching for data center applications. Neural

networks and decision trees were shown to achieve the

highest performance in this application domain. The

work in [13], [12], and [8] presents an extensive evalu-

ation of LSTM for prefetching, achieving similar per-

formance improvements as the other LSTM based ap-

proaches. Among the related work [7] has received sig-

nificant attention. Their approach is impractical to be

directly applied for prefetching, and as stated by the

authors, is only a first step towards an LSTM-based

prefetcher. They, and several state-of-the-art machine

learning based access predictors perform the training on

cache misses as it reduces the size of training. However,

an accurate prefetcher will change the the distribution

of cache misses and hence invalidate its own trained

model. Secondly, to achieve higher accuracy, some on-

line training is necessary to learn application specific

patterns. Their models are extremely large to be used

for real-time inference or online retraining. Even after

considering labels for predictions that cover 50% of the

data (leading to a compulsory accuracy loss of 50%),

the number of labels can be of the order of 10K. This,

in turn, with a small hidden layer of size 100 will lead

to a model with more than million parameters. Instead,

we propose to use a small ensemble of highly compact

LSTM models.

In [17] a compact LSTM based prediction model was

proposed. Extremely high compression of LSTM model

was achieved through encoding of the labels (jumps in

memory accesses ‘deltas’). The approach is based on the

observation that the number of parameters are domi-

nated by the output layer. Therefore, for label set of

size n, they create the output layer with log n nodes

each of which can take a 0 or 1 value. This network is

trained to predict a multi-label output with log n labels,

which is the binary representation of the delta instead

of a single label (1 out of n) representing the delta it-

self. This technique led to around 1000× compression.

On the other hand, in the process of compression, the

prediction problem is made harder due to the fact that

all the log n bits need to be predicted correctly for the

right memory access prediction. Yet, the experiments

confirm that the loss in accuracy due to 1000× com-

pression is negligible. While training one model for each

application is possible and leads to highly specialized

and accurate models [17], it is not a scalable solution.

Further a specialized model does not generalize to other

applications (see Figure 2). In this work, we apply the

same compression techniques presented in [17], but use

meta LSTM models to avoid the need for one model per

application. We also propose a clustered meta-learning-

based approach to obtain more general prediction mod-

els that can achieve comparable accuracy as previous

techniques after a small number of gradient steps and

can even generalize to unseen/new applications. This

results in a much smaller memory footprint compared

to related work, allowing its implementation in hard-

ware.

In [18] the meta-LSTM approach for memory ac-

cess prediction has been proposed. While in [18] train-

ing and testing sequences for each application are from

the same trace, a model cannot train and test on the

same trace in a practical setting. A practical approach

would learn the patterns through profiling by running

the application and then using the learned patterns in

the future reruns to accelerate the program by prefetch-

ing. Also, clustering approaches as well as their influ-

ence in supporting meta-models are not fully explored.

In this work, we extend the meta-model working scope

to the rerun of PARSEC applications. Further, we pro-

pose a Delegated Model clustering approach that can

learn the latent patterns from the whole trace. We com-

pared the model performance under different clustering

approaches. Results show that Delegated Model clus-

tering is more reliable when application configurations

change.

3 C-MemMAP Approach

We see the problem of access prediction as a sequence

prediction problem, where the task is to predict the

“delta”, i.e., the jump in address with respect to the

current address. This reduces the number of labels, i.e.,

possible outcomes for the predictions. Further, it ac-

counts for the fact that often an application has similar

jumps in addresses, even though it may start from a

different memory location. Prior work [7,17] has taken

the same approach of classifying deltas for the same rea-

sons. Next we will explain the modeling of C-MemMAP.

Figure 1 illustrates the overall framework of the pro-

posed C-MemMAP approach. The key component that

is responsible for memory access prediction is DCLSTM

iv Pengmiao Zhang1 et al.

Fig. 1 Overall framework of Clustering-driven Meta-LSTM
Models for Memory Access Prediction

(doubly-compressed LSTM) models that input the mem-

ory access delta sequence Di from Application Ai and

output the next predicted delta ∆i. To compress the

model size, we applied meta-learning technique on DC-

LSTM so that one model can adapt to more than one

application. To maintain the prediction accuracy, we

design a clustering step so that each meta-model han-

dles applications with a similar pattern. We propose

Delegated Model clustering algorithm that is trained

using weights from offline-trained specialized models.

In this way, we largely reduce the model size with a

small loss in accuracy. We will introduce all the com-

ponents of the C-MemMAP framework in detail in the

following subsections.

3.1 Binary Encoding Compression

For an LSTM model to be realistically used for prefetch-

ing, it needs to have low latency and should require

small amount of computation. These factors are closely

related to the size (number of parameters) of the model.

The size (number of parameters) of the simple LSTM

model for memory access prediction is dominated by

the dense last layer. Few thousands of output layers

may lead to slowing down of inference due to a large

number of parameters in the final layer. [17] proposed a

model compressing approach that uses binary encoding

to highly reduce the dimension of the output dense layer

in a classification model, as is shown in Figure 3. Ap-

plying this idea to the memory access prediction task,

the authors in [17] proposed doubly compressed LSTM

(DCLSTM) that uses a binary representation of deltas

for both the input side and the output side, instead of

using the deltas (jumps in memory accesses) directly.

This approach converts the problem from a single label

(1 out of n) prediction problem to a multi-label pre-

diction problem (log n labels). Using this technique, we

obtained an LSTM architecture that has 23, 944 param-

eters.

3.2 Meta-learning

The other dimension of reducing the overhead of mem-

ory access prediction is to reduce the number of mod-

els required for all the applications of interest. While

training one model for each application leads to highly

specialized and accurate models [17], it is not a scal-

able solution. Further a specialized model does not gen-

eralize to other applications. To demonstrate this, we

trained specialized models as in prior work [17], and

tested them on other applications. Figure 2 shows one

such instance, where the model was trained using the

application “Swaption” and then tested on other ap-

plications of PARSEC benchmark. The results clearly

indicate that the models are not generalizable.

Algorithm 1 Doubly Compressed LSTM with MAML

1: function MAML-DCLSTM(S)
2: S: A set of applications
3: Initialize θ and initial parameters α, β
4: for k ← 1 to Nepoch do
5: Sample batch of applications Ai ∼ S
6: for all Ai do
7: Sample a batch D of m accesses from Ai
8: Evaluate ∇θLAi(fθ) using D, where LAi is the

binary cross-entropy loss
9: Compute the adapted parameters: θ′i ← θ −
α∇θLAi(fθ)

10: Sample accesses D′i from Ai for the meta-
update

Update θ ← θ − β∇θ
∑
Ai∼S LAi(fθ′i) using each

D′i and LAi
11: return θ

Therefore, there is a need for creating a more gen-

eral model that can work well for a class of applications,

thus eliminating the size requirement of one model per

applications and possibly generalizing to unseen appli-

cations. From the huge variations in accuracies seen in

the plots, it is also clear that different patterns exist

in different applications. This indicates that one model

may not readily apply to all applications, and instead

may require some retraining. With the goal of obtain-

ing a general model that quickly adapts to a chosen

application, we apply Model-Agnostic Meta-Learning

(MAML) [5] to train a meta model that is prepared for

fast adaptation. There are two steps in the process of

MAML training. For the first step, the model learns an

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction v

Fig. 2 Model obtained from one application do not generalize to other applications. The model was trained on the application
”swaption” and tested on all the applications in the PARSEC benchmark. The dots represent the accuracy achieved by training
on the respective applications, provided as the reference accuracy.

Fig. 3 Using binary encoding to highly reduce the dimension
of the output dense layer in a classification model.

initial point θ for a classifier fθ and can be optimized

via gradient descent on loss LTi .The update method is

shown in equation 1, where α is the learning rate and

Ti refers to the sampled tasks. For the second step, the

model updates the meta-parameters using a collection

of updated model weights θ′ via gradient descent with

learning rate β, as is shown in equation 2.

θ′i = θ − α∇θLTi(fθ) (1)

θ = θ − β∇θ
∑

Ti∼p(T)

LTi(fθ′i) (2)

Applying MAML on our memory access prediction

task for differen applications, we samples batches from a

set of applications to train one meta-LSTM model (Al-

gorithm 1). First, we sample a set of applications and

from each we prepare a batch of memory accesses. This

batch is used to calculate loss and update adapted pa-

rameters from meta-parameters. Then from this mixed

set of applications, a batch is prepared to compute the

loss which is used to update the meta-model parame-

ters. At termination, a meta-model is obtained which

can adapt to all the tasks used in this training with few

retraining steps.

3.3 Clustering

While in the ideal scenario, we would like one meta-

model to be enough, in reality, the application traces

may vary drastically, making it difficult for one model to

adapt to all the applications. Instead, we propose to use

a small ensemble of meta-models that can cover all the

applications. Our intuition is that it is better to have

similar applications for one meta-model, and so we train

one meta-model for each set of similar applications. We

compare two clustering approaches to detect the sets of

similar applications: 1) our previous approach of soft-

DTW k-means clustering, and 2) proposed Delegated

Model clustering.

3.3.1 Soft-DTW K-means Clustering

We construct the similarity matrix of the given set of

application traces using soft-DTW [4] and then apply

k-means to cluster the memory accesses. Soft-DTW is a

differentiable approximation of DTW (Dynamic Time

Warping) as is shown in equation 3, where X is a se-

quence with length n, Y is a sequence with length m,

π = [π0, ..., πK] is a path, where πk = (ik, jk) satisfies:

– boundary condition: 0 ≤ ik ≤ n, 0 ≤ jk ≤ m, π0 =

(0, 0), and πK = (n− 1,m− 1)

– monotonicity condition: ik−1 ≤ ik, jk−1 ≤ jk

vi Pengmiao Zhang1 et al.

– continuity condition: ik − ik−1 ≤ 1, jk − jk−1 ≤ 1

A smoothing parameter γ is introduced to the orig-

inal min operation in DTW to create a generalized min

operator, as is shown in equation 4. It can acquire bet-

ter minima due to its better convexity properties in

processing time-series data. As a pre-processing step,

we convert the memory accesses into decimal values.

Then they are standardized through subtracting the

mean and dividing by the standard deviation. These

standardized trace chunks are fed into a k-means clus-

tering algorithm that uses soft-DTW to calculate the

distance.

soft-DTWγ(X,Y) = soft-
γ

min
π

∑
(i,j)∈π

‖Xi, Yj‖2 (3)

soft- min
γ

(a1, . . . , an) = −γ log
∑
i

e−ai/γ (4)

3.3.2 Delegated Model Clustering

We propose a novel Delegated Model (DM) clustering

approach based on the assumption that the clustering

of sequences can be achieved by the clustering of trained

parametric models (delegated models). For each appli-

cation, the trained specialized model (see Section 4.2)

has learned the patterns from the trace and the infor-

mation is stored in the model weights. Thus, the spe-

cialized DCLSTM models can serve as delegated mod-

els and they represent the original memory traces in the

further clustering step. The Delegated Model clustering

algorithm is shown in Algorithm 2. We concatenate the
different types of weights in DCLSTM models and use

Principal Component Analysis (PCA) to reduce the di-

mension. K-means is applied to cluster the dimension-

reduced model weights as the last step. DM clustering

has some advantages compared to the sequence-based

Soft-DTW K-means approach. First, for long sequences

like memory traces, DTW requires a large memory space

and a long fitting time. As a result, we need to sample

pieces of sequence from the whole trace. In contrast, our

approach is based on LSTM that processes a sequence

recurrently, which considerably saves the memory space

and thus can deal with much longer sequences. Sec-

ond, model weights directly reflect the latent attributes

of the sequence for the target task of prediction while

DTW can only compare the shape of pieces, this makes

Delegated Model method can better fit the rerun of ap-

plications under different configurations. DM approach

can be generalized to other problems and the delegated

model can also be various types of models, such as

RNN, GRU, and TCN [9,3].

Algorithm 2 Delegated Model Clustering
1: S: A set of applications
2: C: Clusters of applications
3: function DM-Clustering(S)
4: for Application Ai in S do
5: Train a doubly compressed LSTM as the delegated

model DMi

6: DMWi ← model weights matrix of DMi

7: Weight dimension reduced to d: DMWd
i ←

PCA(DMWi, d)

8: Clustering to k sets: C ← k-means(DMW , k)
9: return C

The parameter k (number of clusters, i.e., number of

meta-models) of k-means is chosen based on the mem-

ory available for storing the access prediction models.

3.4 Ensemble Meta-learning

We consider the meta-model obtained for each cluster

as a representative of a class of applications. In real

implementation, all k (one for each of the k clusters)

meta-models will work in parallel to predict the mem-

ory accesses, and as more of the memory trace is seen,

with few retraining steps, we will be able to identify

which of the k models is more accurate. That model

will be chose to continue inference, until the accuracy

drops below a desired level. In that scenario, parallel

retraining for all k meta models will resume. We be-

lieve that such retraining and switching between meta-

models is essential as the program may go through a

drastic change in access pattern. Similar concept of on-

line retraining has been considered in [17].

Algorithm 3 Doubly Compressed LSTM with cluster

based MAML
1: function C-MAML-DCLSTM(S)
2: Clustering applications in S into a collection of sets
{Si}ki=1

3: for i← 1 to k do
4: θi ← MAML-DCLSTM(Si)

5: return {θi}

4 Experiments

4.1 Datasets

We conducted extensive experimentation on the PAR-

SEC benchmark [1], which was specifically chosen be-

cause of its diverse set of applications. The Intel Pin

[11] tool was used to obtain memory access traces for

each application. As mentioned earlier, instead of actual

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction vii

memory locations, we transform the memory traces to

sequences of deltas by subtracting consecutive hexadec-

imal memory address and converting them to integer.

The reason for this is to allow the model to predict

memory locations for any future execution of the same

application, since the relative memory differences are

expected to stay consistent [17,7].

We evaluate the performance of all models using two

branches of memory traces generated from PARSEC

benchmark:

– Consistent configuration. Assume for a single ap-

plication, the configuration does not change during

running or when restarted. In this case, we split a

trace for model training, testing, and retraining.

– Inconsistent configuration. Assume that the configu-

ration of an application will be different during run-

ning or when restart. In this case, we generate dif-

ferent pieces of traces by rerunning the benchmark

under different configurations. The training set and

testing set are from different traces under inconsis-

tent configurations. The retraining is processed us-

ing the increasingly seen data from the testing trace.

4.2 Model Settings

We used the doubly compressed LSTM (DCLSTM) ar-

chitecture as described in [17] . It has an embedding

layer with 10 units, followed by an LSTM layer with

50 units, followed by a dense layer with 50 units, and

15 outputs to represent up to 215 most frequent deltas.

We also used a dropout of 10%, look back window 3

(i.e., takes last three access predictions as input), 20
training epochs, a batch size 256, and 50-50 train/test

split. We used sigmoid activation function and binary

cross entropy loss function. This architecture is trained

differently by different models as described below1.

– Specialized: This is the DCLSTM model trained for

one application. Ideally, this would be the best per-

forming model, but it cannot be generalized. We

will use the accuracies obtained from the special-

ized model as reference to compare other models on

the given applications that are trained to adapt to

multiple applications.

– Concatenated: This DCLSTM model is trained by

simply concatenating the training traces from all

applications.

– MAML-DCLSTM: This is a meta-model where the

weights are learned using Algorithm 1.

1 The code is available at: https://github.com/MemMAP/

C-MemMAP

– C-MAML-DCLSTM: This is a meta-model obtained

from Algorithm 3. Instead of training with all the

applications, this is trained with applications that

belong to the same cluster. Three such models were

trained based on the three clusters obtained from

PARSEC. For our experiments, we have chosen k =

3 based on the assumption that three meta-models

work in parallel in a system. We discuss two cluster-

ing approaches in Section 3.4. For consistent config-

uration traces, the two clustering approaches agree

with each other. For inconsistent configuration traces,

while the soft-DTW k-means clustering keeps the

same, Delegated Model shows a different result. The

clustering results are shown in Figure 4, where C1

refers to soft-DTW k-means clustering and C2 refers

to Delegated Model clustering.

4.3 Results

The goal of our experiments is to show that our cluster-

based compact meta-LSTM models are: (a) Accurate

– produce accuracy comparable to specialized models;

(b) Adaptable – quickly adapt, i.e., specialize them-

selves for the given application; and (c) Generalizable

– adapt to high accuracy even when the application

was never seen before. We evaluate the performance of

the proposed approach using two branches of traces in-

troduced in Section 4.1: consistent configuration traces

and inconsistent configuration traces.

4.3.1 Consistent Configuration

Under the same configuration, adaptability and gen-

eralizability are decoupled and can be evaluated sepa-

rately. Also, since two clustering approaches agree on

the same results, we can focus on the general improve-

ment acquired from clustering and ignore the influence

of different clustering methods.

Figure 5 shows the accuracy results of all the meth-

ods under consistent configuration. The specialized model

serves as a reference for the ideal accuracy we wish

to achieve. For concatenated model, MAML-DCLSTM

and C-MAML-DCLSTM, we compared the model per-

formance before retraining (pre-update) and after re-

training (updated) by specific trace. In the experiment

for pre-update models, we use 200K accesses for train-

ing and the next 200K for testing. For retraining, we

use unseen 200K accesses of specific trace to retrain the

existing pre-update models to get updated models for

each trace. Then, we test them with the next 200K ac-

cesses in the trace. As shown in Figure 5, the accuracies

of all pre-update models are improved after retraining.

viii Pengmiao Zhang1 et al.

(a) C1: Soft-DTW k-means clustering (b) C2: Delegated Model clustering

Fig. 4 Clusters obtained from PARSEC benchmarks.

Fig. 5 Accuracy of the models pre- and post-retraining under consistent configuration

In most cases (11 out of 13), MAML-DCLSTM mod-

els achieve higher accuracy than concatenated mod-

els, even when they start with lower pre-update accu-

racy. This shows that the meta-model learns fast with a

more general initialization. C-MAML-DCLSTM models

gain a similar level of raises as MAML-DCLSTM. Due

to the higher similarity of traces in the same cluster,

C-MAML-DCLSTM models usually have higher pre-

update accuracy. As a result, in 9 traces, C-MAML-

DCLSTM outperform MAML-DCLSTM and in 3 traces

they perform similarly. Overall, C-MAML-DCLSTM re-

sults in accuracies close to the specialized models in 9

out of 13 traces. While for some applications the accu-

racy drops are notable, the performance is still better

than the non-neural-network methods (e.g., Last Access

Prediction and Näıve Bayes) explored in [17]. Besides,

with the increase of seen data and the continued retrain-

ing, the accuracy will grow and approach the specialized

models.

Figure 6 shows how retraining starting from vari-

ous models improves the accuracy as more of the trace

is seen under consistent configuration. Note that, spe-

cialized models are used for reference, and we do not

performing any retraining for them. We used 256 mem-

ory accesses for a batch of training and calculated test

accuracy on the next 10K samples in rolling windows.

Retraining is performed beginning from the weights of

the neural network from the previous training batch.

Based on the plots, although both MAML and concate-

nated models have similar result on some applications,

the accuracy per batch on other traces such as Blacksc-

holes, Ferret, and Streamcluser indicate that MAML-

DCLSTM model learns faster than concatenated model,

and C-MAML-DCLSTM performs better than MAML-

DCLSTM. One can see that the relationship between

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction ix

Fig. 6 Adaptability results for our meta-models under consistent configuration.

x Pengmiao Zhang1 et al.

Fig. 7 Generalizability results for our meta-models.

these three models is clear for stable applications, while

the others fluctuate a little. It seems that both C-MAML-

DCLSTM and MAML-DCLSTM model can adapt to

the stable applications rapidly and C-MAML-DCLSTM

has the best adaptability. There are some challenging

traces such as Vips and X264 on which even specialized

model failed to achieve high accuracy. It is possible that

the memory accesses of these applications vary consid-

erably, and so prediction is extremely hard. In four out

of 13 applications, the accuracy of C-MAML-DCLSTM

is significantly less than specialized model. Improved

clustering and more meta-models may be necessary for

improving on these traces.

Figure 7 shows the comparison of how generaliz-

able the models are. We split the applications in the

same cluster into the training (Bodytrack, Canneal,

Dedup, Facesim, Fluidanimate, Freqmine, Swaptions,

Vips) and test sets (Raytrace and Streamcluster), the

training set was used to build the meta-model using C-

DCLSTM-MAML and concatenated model, and then

we tested on the test applicaitons to compare the per-

formance of these two models for generalizability. We

collected batches of 256 memory accesses for training

and calculated test accuracy on next 10K samples in

rolling windows. We performed retraining starting from

the weights of the neural network from the previous

training batch. The performance of C-MAML-DCLSTM

improved after several memory accesses for both Ray-

trace and Streamcluster, which demonstrates that it

can quickly generalize to unseen applications in the

same cluster.Although the test accuracy for concate-

nated model did increase after several memory accesses

in the case of Raytrace, it performed poorly in the case

of Streamcluser. Furthermore, the C-MAML-DCLSTM

model can obtain accuracy close to specialized models

using only a small number of batches.

4.3.2 Inconsistent Configuration

Each application rerun three times under different con-

figurations and generate traces T1, T2, and T3. We use

T1 and T2 as training traces and T3 as the testing

trace. The performance of a model under inconsistent

configuration reveals both its adaptability and general-

izability. Due to the clustering difference between the

two approaches (Section 3.4), the influence of clustering

approach can be explored under this set of experiments.

Figure 8 shows the accuracy results of all the meth-

ods under inconsistent configuration traces. Though a

specialized model is still trained and tested by a single

application, the training and testing traces are different.

The inconsistency leads to generally lower accuracies

than the consistent configuration results. For the con-

catenated model, 2 training traces of all applications,

each with 100k deltas, are concatenated as the train-

ing data. For MAML-DCLSTM, all training traces are

fed into one meta-model as different tasks. For C1/C2-

MAML-DCLSTM, there are k (k = 3) meta-models

and the training traces under the same cluster are fed

into the corresponding models. C1 means the clusters

acquired from the sequence-based soft-DTW k-means

approach and C2 means the clusters acquired from the

Delegated Model approach. We compared the model

performance before retraining (pre-update) and after

retraining (updated) by testing trace. we show the ge-

ometric mean of all the model performance in GM.

GM shows that C2-MAML-DCLSM has the best per-

formance for both pre- and post- updated while the con-

catenated model has the lowest mean accuracy. How-

ever, there is a flaw in using the geometric mean of

all applications to compare the performance of mod-

els.The two clustering results (C1 and C2) have dif-

ferent minor clusters (application member < 3) that

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction xi

Fig. 8 Accuracy of the models pre- and post-retraining under inconsistent configuration.

achieve high accuracies. This results in higher influence

of these applications in computing mean. Therefore, we

show the geometric mean of only the common applica-

tions in the largest cluster for both C1 and C2 in GM-C.

CM-C shows that C2-MAML-DCLSTM achieves 15%

higher accuracy than C1-MAML-DCLSTM, who even

shows lower accuracy than MAML-DCLSTM without

clustering. This result demonstrates that the clustering

approach is vital in C-MAML-DCLSTM performance

and an inappropriate clustering even hinders the meta-

model training. Delegated Model clustering (C2) ex-

tracts abstract information from the whole trace and is

more reliable to cluster rerun traces under inconsistent

configuration.

Figure 9 shows one epoch retraining using unseen
traces under inconsistent configurations. The retrain-

ing batch size and other settings are the same as con-

sistent configuration experiments. Specialized models

are still used for reference. From the plots, we can ob-

serve that, in many cases, C2-MAML-DCLSM shows

higher starting points (Dedup, Facesim, and Freqmine)

or achieves higher accuracies more quickly (Blacksc-

holes, Bodytrack, Canneal, Ferret, and Raytrace) than

concatenated models. This illustrates that C2-MAML-

DCLSM adapts faster than concatenated models. C1-

MAML-DCLSTM performs best only for X264. In some

cases (Fluidanimate and Freqmine) it performs even

worse than MAML-DCLSTM without clustering. This

performance drop caused by inappropriate clustering

is also observed and discussed in the accuracy evalua-

tion shown in Figure 8. We can also observe that the

adaptability process of the concatenated model is much

slower from the curves of Canneal, Fluidanimate, Ray-

trace, and Vips. After 50-100 batches of retraining, the

curves of different models converge to similar patterns,

which shows that the advantage of C-MAML-DCLSTM

is more significant at the beginning stage of retraining

due to its high adaptability and generalizability.

4.4 Discussion

4.4.1 Sensitivity of Hidden Dimension

In the experiments above, we set the hyper-parameter

of the hidden dimension of LSTM as 50. This config-

uration is inherited from work [17] because the LSTM

layer with 50 units is enough for the LSTM models

to achieve high performance while keeping a compact

size. This configuration is suitable for the updated mod-

els because the retrained C-MemMAP will converge to

the specialized model after retraining from our obser-

vation from Figure 6. However, the sensitivity of pre-

updated C-MemMAP models influences more to the

adaptability process since it determines the initial state

of retraining.

Figure 10 illustrates the predicting accuracy of the

pre-updated meta-models at various hidden dimensions.

Hidden dimension size at 10, 20, 30, 40, 50, 60, and 70

are tested. Results show that the predicting accuracy

increases fast from dimension 10 to dimension 50, then

the curves are significantly flattened at the dimension

of 60 and 70. This result demonstrates that hidden di-

mension at 50 not only guarantees a satisfactory final

accuracy but also provides a high initial point for model

adapting from retraining.

4.4.2 LSTM vs GRU

In the proposed C-MemMAP model, we used LSTM

as the recurrent layer. Gated recurrent units (GRUs)

xii Pengmiao Zhang1 et al.

Fig. 9 Adaptability results for our meta-models under inconsistent configuration.

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction xiii

Fig. 10 Pre-updated accuracy of C-MemMAP model at var-
ious hidden dimension of LSTM.

Fig. 11 GRU version of C-MemMAP models acquire similar
performance compared to LSTM version.

is another commonly used variation of recurrent neu-

ral networks, introduced in 2014 by Kyunghyun Cho et

al [2], which can also be applied to our approach replac-

ing the LSTM layer. Figure 11 illustrates the effect of

replacing the LSTM layer with a GRU layer. We found

that the two versions produce nearly identical results.

4.4.3 Partial Accuracy

The prediction output of our approach is in the format

of encoded 16-bit binary values. An advantage of this

format is that we are allowed to use only upper n bits

of the predictions if that part provides higher accuracy.

From the hardware point of view, memory fetching is

executed in the unit of cache lines so the lower bits

of a memory access address are naturally ignored in

prefetching. Figure 12 shows a case study of how the

partial accuracy and confidence decrease with the in-

crease of prediction bits. The result is based on the

Fig. 12 Prediction accuracy and confidence decrease with
the increase of prediction bits for application Blackscholes.

application Blacksholes and we define the confidence of

upper n bits as equation 5:

Confidence(n) =

n∏
b=1

P (ypred(b) = ytest(b) | X,M) (5)

where P (ypred(b) = ytest(b) | X,M) is the probability

of correct prediction at bit b given the input X and

model M .

From Figure 12 we observe that the accuracy and

prediction confidence is high in the upper 8 bits but

both drop rapidly for bits longer than 10. This feature

supports our hypothesis that by using only upper bits

of the prediction, the predictor can achieve higher ac-

curacy, which will lead to more useful prefetches in a

practical system.

5 Conclusions

We have proposed C-MemMAP, a clustering-driven meta-

model approach to predicting memory accesses, a cen-

tral aspect of prefetchers, necessary to improve memory

performance. We addressed the impracticality of cur-

rent deep learning models in prefetching due to their

high storage requirement. We improved upon the state-

of-the-art, which although does provide compact LSTM

models, it requires one model for each application. Such

an approach does not scale to large number of applica-

tions. It also does not generalize to applications not

seen before. While, it is possible to train one model for

all applications, the accuracy was typically lower. We

propose to use a clustering-driven meta-learning ap-

proach, where the applications are first clustered and

then a meta-model is trained for each cluster. We in-

troduce a novel Delegated Model clustering approach

that uses the weight matrices of trained LSTM models

xiv Pengmiao Zhang1 et al.

as delegates of the original traces for the further clus-

tering step. Our approach exploits the trade-offs be-

tween total model size, accuracy, and retraining steps.

We showed that three models (with 3 × 24K parame-

ters) can achieve high accuracy quickly for 13 diverse

applications. We show that our approach is accurate for

majority of applications in the benchmarks, it adapts

quickly with retraining of only one epoch with increas-

ing number of accesses, and it can generalize to applica-

tions that were not seen during training. Experiments

under inconsistent configuration show that Delegated

Model is reliable in supporting meta-models and shows

15% higher accuracy than soft-DTW k-means. In future

work, we will explore the hardware implementation of

our approach to support a prefetcher.

Acknowledgements This work is supported by Google Fac-
ulty Research Award, Air Force Research Laboratory grant
number FA8750-18-S-7001, and National Science Foundation
award number 1912680. Cesar A. F. De Rose was supported
by CNPq PDE grant and Fapergs PRONEX project. The
authors would like to thank Dr. Angelos Lazaris for useful
discussions.

Conflict of interest

On behalf of all authors, the corresponding author states

that there is no conflict of interest.

References

1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec
benchmark suite: Characterization and architectural im-
plications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’08, pp. 72–81. ACM, New York,
NY, USA (2008). DOI 10.1145/1454115.1454128. URL
http://doi.acm.org/10.1145/1454115.1454128

2. Cho, K., Van Merriënboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 (2014)

3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empiri-
cal evaluation of gated recurrent neural networks on se-
quence modeling. arXiv preprint arXiv:1412.3555 (2014)

4. Cuturi, M., Blondel, M.: Soft-dtw: A differentiable loss
function for time-series. In: Proceedings of the 34th
International Conference on Machine Learning - Vol-
ume 70, ICML’17, pp. 894–903. JMLR.org (2017). URL
http://dl.acm.org/citation.cfm?id=3305381.3305474

5. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-
learning for fast adaptation of deep networks. In: Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126–1135. JMLR. org (2017)

6. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to
forget: Continual prediction with lstm (1999)

7. Hashemi, M., Swersky, K., Smith, J.A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., Ranganathan, P.: Learning
memory access patterns (2018)

8. Hashemi, M., Swersky, K., Smith, J.A., Ayers, G., Litz,
H., Chang, J., Kozyrakis, C., Ranganathan, P.: Learn-
ing memory access patterns. CoRR abs/1803.02329
(2018). URL http://arxiv.org/abs/1803.02329

9. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.:
Temporal convolutional networks for action segmentation
and detection. In: proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 156–165
(2017)

10. Liao, S., Hung, T., Nguyen, D., Chou, C., Tu, C., Zhou,
H.: Machine learning-based prefetch optimization for
data center applications. In: Proceedings of the Confer-
ence on High Performance Computing Networking, Stor-
age and Analysis, pp. 1–10 (2009)

11. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V.J., Hazelwood, K.:
Pin: Building customized program analysis tools with
dynamic instrumentation. SIGPLAN Not. 40(6), 190–
200 (2005). DOI 10.1145/1064978.1065034. URL http:

//doi.acm.org/10.1145/1064978.1065034

12. Narayanan, A., Verma, S., Ramadan, E., Babaie, P.,
Zhang, Z.L.: Deepcache: A deep learning based frame-
work for content caching. pp. 48–53 (2018). DOI
10.1145/3229543.3229555

13. Peled, L., Weiser, U., Etsion, Y.: A neural network mem-
ory prefetcher using semantic locality (2018)

14. Plank, B., Søgaard, A., Goldberg, Y.: Multilingual part-
of-speech tagging with bidirectional long short-term
memory models and auxiliary loss. arXiv preprint
arXiv:1604.05529 (2016)

15. Rahman, S., Burtscher, M., Zong, Z., Qasem, A.: Max-
imizing hardware prefetch effectiveness with machine
learning. In: 2015 IEEE 17th International Conference
on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, pp. 383–
389 (2015)

16. Shevgoor, M., Koladiya, S., Balasubramonian, R., Wilk-
erson, C., Pugsley, S.H., Chishti, Z.: Efficiently prefetch-
ing complex address patterns. In: 2015 48th Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 141–152. IEEE (2015)

17. Srivastava, A., Lazaris, A., Brooks, B., Kannan, R.,
Prasanna, V.K.: Predicting memory accesses: the road
to compact ml-driven prefetcher. In: Proceedings of the
International Symposium on Memory Systems, pp. 461–
470. ACM (2019)

18. Srivastava, A., Wang, T.Y., Zhang, P., De Rose, C.A.F.,
Kannan, R., Prasanna, V.K.: Memmap: Compact and
generalizable meta-lstm models for memory access pre-
diction. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 57–68. Springer (2020)

19. Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I.,
Hinton, G.: Grammar as a foreign language. In: Advances
in Neural Information Processing Systems, pp. 2773–2781
(2015)

20. Zeng, Y., Guo, X.: Long short term memory based hard-
ware prefetcher: a case study. In: Proceedings of the Inter-
national Symposium on Memory Systems, pp. 305–311.
ACM (2017)

21. Zhang, P., Srivastava, A., Brooks, B., Kannan, R.,
Prasanna, V.K.: Raop: Recurrent neural network aug-

C-MemMAP: Clustering-driven Compact Meta-LSTM Models for Memory Access Prediction xv

mented offset prefetcher. In: The International Sympo-
sium on Memory Systems (MEMSYS 2020) (2020)

