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Machine learning for alloys

Gus L. W. Hart

Machine learning (ML) has been transforming materials
science. The past two decades have been marked by a
dramatic increase in the amount of generated data, and
ML provides the essential tools to extract information'=:
software that helps in making inferences on materials
is now commonplace and often freely available™*. As a
result, there has been a widespread improvement in sci-
entists’ ability to develop fundamental understanding,
explain experimental results and conduct atomic-scale
modelling at unprecedented timescales and length
scales. It is increasingly common to automate research
by using machine-learned models to suggest new exper-
iments or simulations. The resulting machine-driven
feedback loop of data generation, model retraining and
improved prediction represents a paradigm shift in
materials research.

Applications of ML in computational alloy modelling
range from model-Hamiltonian building to data-centric
materials science’. The former typically focuses on a
single material system and requires high-fidelity char-
acterizations. The latter intelligently searches through
known results and asks broad questions across a large
set of candidates’. All applications depend on materi-
als representation, one of the most important concepts
in ML*"2 Representation, the mathematical depiction
of a material, can be a direct description of the crystal
structure or a somewhat broad and indirect description,
ignoring many details (such as a list of elements, com-
position, atomic environments or connectivity). The
representation components are commonly referred to as
features and serve as the inputs. An ideal representation
has four main desiderata.

e Invariance. A representation not respecting all the
symmetries of the system (non-invariant) requires
more training data because the model must learn
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Abstract | Alloy modelling has a history of machine-learning-like approaches, preceding

the tide of data-science-inspired work. The dawn of computational databases has made the
integration of analysis, prediction and discovery the key theme in accelerated alloy research.
Advances in machine-learning methods and enhanced data generation have created a fertile
ground for computational materials science. Pairing machine learning and alloys has proven to
be particularly instrumental in pushing progress in a wide variety of materials, including metallic
glasses, high-entropy alloys, shape-memory alloys, magnets, superalloys, catalysts and structural
materials. This Review examines the present state of machine-learning-driven alloy research,
discusses the approaches and applications in the field and summarizes theoretical predictions
and experimental validations. We foresee that the partnership between machine learning and
alloys will lead to the design of new and improved systems.

through the output what was incorrectly fed to

the input.
e Uniqueness. A unique representation guaran-
tees that no two materials have the same features.
A non-unique representation cannot be inverted to
generate structures, and the degeneracy in the rep-
resentation leads to errors in a machine-learned func-
tion for at least one of the materials with degenerate
features. Despite these problems, many successful
representations are not unique'*".
Stability. In a deformation-stable representation, two
materials that are merely minor distortions of each
other have very similar features. An unstable rep-
resentation makes the problem needlessly difficult,
essentially asking for an interpolation of a discontin-
uous quantity. Uniqueness and stability are difficult
to obtain: many well-known representations possess
neither of these properties™*'*.
Interpretability. An interpretable representation
informs the user of the reasons behind the algorithm’s
predictions>'*"'%. Interpretability helps to reveal fun-
damental insights into the problem and rationalize
design principles. Despite its importance, this char-
acteristic is often neglected, owing to implementation
difficulties'*.

Here, we provide an overview of ML concepts,
approaches and results relevant to metal alloys: atomic-
scale mixtures of two or more species, where at least
one is a metal and the global character of the mixture
is metallic**?. This Review consists of three sections.
First, the concepts of model-Hamiltonian building and
data-centric materials science are briefly summarized,
followed by an overview of computational databases,
examples of structural representations and approaches
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for searching for descriptors. Second, notable studies
are introduced, together with the applications that have
already been explored. Metallic glasses, high-entropy
alloys, shape-memory alloys, superalloys, alloys for
catalysis and alloys for magnetism are included. Third,
we discuss ML studies for metallurgical alloy process-
ing, mechanical properties (elasticity, strength, ductil-
ity, hardness, toughness, stacking faults, stress hotspots,
fatigue and cracking, wear and creep) and thermal prop-
erties. An analysis of the many ML-like studies of sem-
iconductor alloys*~ is beyond the scope of this work;
for recent reviews, see REFS>**”. For a description of ML
methods, we refer readers to REFS!>8-32,

Approaches

From model Hamiltonians to data-centric materials
science

Atomistic thermodynamic modelling yields important
materials quantities, provided the energy model is highly
accurate (energy differences for many alloy configura-
tions are just a few or a few tens of meV per atom) and
fast enough to sufficiently sample the appropriate ensem-
ble. Quantum mechanical methods such as density func-
tional theory (DFT) are accurate and generalizable, but
they are often too slow to calculate thermodynamic aver-
ages at finite temperature. Surrogate models have been
proposed to tackle the problem. Metal alloys present a
particular challenge for computational modelling because
of their tendency to form disordered solid solutions and
the need to properly account for configurational entropy.
This problem has been successfully addressed through
the use of on-lattice (such as cluster expansions®**) and
off-lattice approaches (such as Gaussian approxima-
tion potentials’ and atomic cluster expansion'?) (BOX 1).
Note that both approaches can lead to interpretable rep-
resentations. Cluster expansions provided an early prov-
ing ground for the application of ML to materials, and,
thus, much of the early work on machine-learned model
Hamiltonians was done on alloys.

Although surrogate ab initio models are effective for
probing material-specific questions, a different approach
is needed for screening a wide variety of candidates.
Even before the big-data materials science revolution,
there was a substantial body of work in the alloy com-
munity (BOX 2). Data mining — the extraction of patterns
and information from large amounts of data — is com-
monly combined with high-throughput computation’
and becomes effective in this situation. Typically, a
high-fidelity quantum approach is used to calculate
a desired target quantity over a very large number of
candidates and then the results are screened to find the
most promising materials. The best solution needs to be
experimentally realizable. Thus, it is fundamental that
all possible decompositions can be identified to deter-
mine global stability’>*. Recent approaches also try to
deal with synthesizability of metastable or disordered
phases’*® and latent-heat-driven kinetics®.

The dawn of computational databases

The growth of ML applications in materials science is
intrinsically connected to the blooming of databases —
experimental (such as the Inorganic Crystal Structure

Database’’) and computational’~** — and to readily
available descriptors. The latter are features or combi-
nations of features correlating with observables, and
they can be used to predict complicated properties®.
With efficient descriptors, the search for new materi-
als and properties within the repositories can be per-
formed with ML methods®, or even just with data
mining, depending on whether the optimum candidates
are already included in the set of calculations. In alloy
theory, the formation enthalpy (or Gibbs free energy)
is an obvious descriptor for stability. Combined with
the cluster expansion technique®>*, it led to a multitude
of successful studies. As illustrated in BOX 1, a num-
ber of algorithms were developed to choose the opti-
mal cluster configurations: cross-validation*’, genetic
algorithms* and even methods borrowed from signal
processing, such as compressive sensing”. In addition
to structural information (when available), alloys are
commonly represented by feature vectors containing
composition, often combined with properties of the
component elements, such as position in the periodic
table, electronegativity, valence electron concentra-
tions, melting and liquidus temperatures, heat capacity,
atomic radii and volumes, thermal conductivity and
diffusivity, and heat of fusion. In the case of models for
the bulk mechanical properties such as tensile strength
and hardness, processing conditions such as heat treat-
ment time and temperature, quenching type and cold
working processes are also often included as features.
Calculated properties of the material itself, such as cohe-
sive energy, density, mixing enthalpy (for example, from
the Miedema model), ideal mixing entropy, along with
atomic structure information, can also be used to predict
quantities that are computationally difficult to obtain,
such as elastic moduli***.

A strong impetus came from the rapid growth of
databases, starting in the early 2000s. Following the
spirit of high-throughout combinatorial experimental
techniques™, ab initio approaches were adapted to gen-
erate massive amounts of data* (currently, the AFLOW",
OQMD*, Materials Project”” and NOMAD" reposito-
ries contain millions of calculations with hundreds of
millions of extracted properties). Databases were used
to predict new materials and/or to optimize properties,
often with ad hoc descriptors®. For example, in 2002, a
DFT evolutionary approach able to find the most sta-
ble configurations out of quaternary fcc and bcec struc-
tures with up to four atoms per cell was proposed™. In
2003, principal component analysis (PCA) was used
to data mine missing information in ab initio libraries
of alloys versus structure prototypes™. This work also
used the eigenvalues of the PCA expansion to inform
a self-consistent thermodynamic loop converging to
the alloy convex hulls®>*. Also in 2003, a multidimen-
sional Pareto optimization was proposed to determine
alloy solutions having low compressibility, high stability
and low cost™. In 2006, Bayesian parameter estimation™
was used to predict the crystal structure of experimental
binary alloys from the Pauling File project®. Later, in
2011, a maximum-likelihood approach was proposed” to
data mine the Inorganic Crystal Structure Database®’
to discover new compounds through ionic substitutions.
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Box 1| On-lattice and off-lattice models

Lattice-based models

Lattice-based models treat the problem of modelling configurational disorder discretely (in fixed positions, not necessarily
part of a Bravais lattice). The atomic structure of an alloy can often be mapped to a single lattice (fcc, for example) whose
sites are ‘decorated’ by two or more kinds of atoms. That configuration of atoms may be a repeating pattern, resulting

in a particular crystal structure, or a randomized solid solution. In either case, the atoms are assumed to reside, at least
approximately, on the sites of the underlying lattice. The premise that each atom can be directly associated with a
corresponding lattice site is often realistic enough that accurate quantitative predictions are possible. Many lattice

models consider only interactions within local environments defined by cut-off radii. They are informed by vectors of

atomic occupations in discrete positions (for example, the partial-occupation approaches***’°), generating interpretable
descriptors that can be combined with machine learning to discover new materials'*’. Lattice models have the advantages of
speed and accuracy but the drawbacks of not providing forces and being limited to a single underlying lattice. Approaches
to building lattice models include the cluster expansion method**** and its forerunner, the cluster variation method”’**’%,
Lattice gas models are closely related to cluster expansion and have been used extensively in simulations of surfaces and
adsorbates”’*~*"*. Despite lattice models having been used for decades, innovation is continuing. A novel ‘low-rank potential’
that expresses atomic environments as tensors was recently introduced*’. Tensor-train compression reduces the number of
fitting parameters, making this approach well suited for modelling alloys with a large number of components******.

Cluster expansion became a dominant approach to alloy modelling starting in the late 1980s and is still used extensively.
The method, incorporating many concepts typically associated with data science today, identifies the most significant
terms of a linear expansion of basis functions known as cluster functions, each representing the interaction among atoms
in a ‘cluster’, or subset, of lattice sites. In the early stages, the cluster expansion coefficients were found by direct inversion
or by standard least-squares regression”’°. As the method matured, and the number of terms in the expansion (and of data
points) changed from a handful to thousands, the regression technique embraced modern data-science approaches,
including simulated annealing, genetic algorithms***/’=’°, compressive sensing*’, regularization approaches’®’, including
Bayesian methods'’***'~%%, and different approaches to both cross-validation**?** and training-set generation”*,

The cluster expansion basis is an effective representation naturally including the invariances: the representations of

two symmetrically equivalent configurations are numerically identical. In addition, the representation is stable against
small perturbations: if a small number of the atoms in a configuration is exchanged, the related features change by a small
amount. Lattice models treat configurational entropy directly and are extremely fast. They can be used in large-scale
Monte Carlo simulations to perform thermodynamic averages and search for optimal structures. Vibrational contributions
are not typically included in lattice models, owing to increased modelling difficulty?®.

Off-lattice models

Off-lattice models extend the applicability of lattice models**’ to quantities that inherently rely on the details of the atomic
coordinates, such as phonons, structural phase transitions, transport and specific heat. Like the cluster expansion, many
off-lattice models encode structural information as a set of local interactions, but they allow atoms to have a continuous
range of positions. Many concepts developed for lattice models can be extended off-lattice and then used to map structural
information to a variety of material properties'’. The most common type of off-lattice models, interatomic potentials, predict
the potential energy (typically assumed to be the electronic ground state energy) as a function of the atomic positions within
the Born—-Oppenheimer approximation. This function is generally known as the potential energy surface. The models integrate
electronic degrees of freedom by coarse graining: the forces between atoms are represented by classical interactions that
mimic quantum mechanics. Unlike in lattice models, atomic positions are treated explicitly. Two families of potentials exist:
simple, physics-based potentials often having a fixed functional form and adjustable parameters (such as the Lennard-Jones
or embedded atom potentials*”') and general, systematically improvable interatomic potentials (such as smooth overlap of
atomic positions (SOAP) or Gaussian approximation potentials®’, atomic cluster expansions'**#?°*~% and neural network
potentials®'#%?°72%%) Symbolic regression approaches?*****=** and graph networks***>*®3%=%" have characteristics that overlap
with both the physics-based and systematically improvable potentials. Off-lattice models can take advantage of additional
information in the training data, such as the first and second energy derivatives, and, in some cases, can be used in place of a
cluster expansion®®. Training does not require structures to be fully relaxed (as in cluster expansion), making the procedure
significantly faster (however, when modelling on-lattice configurational order with an off-lattice model trained on unrelaxed
structures, a full relaxation of each configuration must be performed, whereas on-lattice models directly predict the energy
of the relaxed structure)®®. The simpler the on-lattice and off-lattice models are, the more benefits they offer: they are
typically faster, require less training data and may be more interpretable than more complex models®'°. With the availability
of so many different off-lattice models, there does not seem to be a clear winner in terms of accuracy versus efficiency?****.

Macroscopic properties

Beyond merely predicting the existence of compounds,
ML can be trained to directly predict other observ-
able macroscopic properties, such as hardness, ductil-
ity, toughness and Curie temperature. In 2009, PCA
was used to show that structure maps representing
structure—property relationships (electronic features and
crystal structure parameters) can be reproduced via data
mining®. In 2018, a random forest (RF) algorithm was
used to address phonon spectral features, heat capaci-
ties, vibrational entropies and free energies™ to improve

predictions of finite-temperature thermodynamic sta-
bility. Models can include alloy processing conditions
as part of the feature vector, to predict the processing—
microstructure—property**' and composition—process—
property® relationships. The section on materials
properties describes several other examples.

Examples of representations for structures

Efficient representations are crucial for ML. For example,
in 2014, the averaged partial radial distribution function
of pairwise distances between atoms was combined with
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kernel ridge regression to predict the electronic density
of states at the Fermi level® (FIG. 1a). Representations
based on connectivity are promising. N-grams (histo-
grams of unique coordination environments and edge
sequences) are effective in predicting formation ener-
gies and electronic band gaps®. Neural networks (NNs)
have been constructed from graphs with nodes repre-
senting atoms in the unit cell and edges representing
atom connections, giving local atomic environment rep-
resentations (FIG. 1 b). This method has shown reasonable
accuracy for formation energies, electronic band gaps,
Fermi levels and elastic properties®®. Most representa-
tions are local, in real space and might be ineffective for
characterizing properties in periodic systems (such as
delocalized features coming from dispersions in recip-
rocal space). Property-labelled materials fragments are
an example of a descriptor that includes periodicity”:
after partitioning the crystal structure into atom-centred
Voronoi-Dirichlet polyhedra (capturing the local envi-
ronment), an adjacency matrix of the graph is con-
structed from the total list of connections, reflecting
the periodic global topology (FIG. 1¢). ML also includes
generative models to design materials, for example, in
the ‘variational autoencoders’ technique (FIC. 1d). These
mathematical frameworks comprise two deep networks,
an encoder and a decoder. The first maps data points to
alow-dimensional continuous vector space — the latent

space — while the second maps latent vectors back to
data points. Materials optimization, done in the highly
simplified continuous latent space, has predicted new
metastable vanadium oxides®’.

Searching for descriptors
Except in the case of physically motivated descriptors’,
the ML outcome is an ‘impenetrable box’ connecting
input and outputs with optimized internal parameters.
Given that descriptors can be combinations of features,
several directions have recently been proposed to combine
features into (possibly interpretable) functionals.
Starting from a very large set of mathematical opera-
tions and their combinations, the space of all constructi-
ble formulas can be searched with genetic programming
or deterministic optimization. The former leads to sto-
chastic optimization; it is the idea behind the Eureqa
framework approach proposed by Michael Schmidt
and Hod Lipson in 2009 (REF®) (FIC. 1e). The latter has
been explored by LASSO (least absolute shrinkage and
selection operator)® and its SISSO evolution (sure inde-
pendence screening and sparsifying operator)” (FIG. 11.
While not being deterministic, Eureqa has the advantage
of being able to span larger feature spaces. LASSO and
SISSO seem more efficient and less biased, giving the
true optimized descriptor, but the larger computational
cost hinders the size of the feature space that can be

Box 2 | When machine learning was done by hand

Alloy research, well positioned to leverage machine learning, has a

The figure shows an example of ‘hand-made machine learning’.

history of inventing and adopting computational approaches. For decades,
researchers have developed new approaches that, if they were to appear
today, would be called machine learning. For structure determination,
simple prototype clustering was performed quite early. For example,
structure maps were proposed by David Pettifor in the 1980s from analysis
of experimental databases**~"* and later extended in an automatic fashion
to computational repositories®'®. The early structure prediction work by
Pettifor®’*=*, followed by that of Alex Zunger®"/, is an illustrative example.
Simple atomic features (such as atomic radii, electronegativity, valence
electrons and atomic environments) for each element type were used as
coordinates to map each candidate material into multidimensional feature
spaces. Materials with the same crystal structure tended to cluster together
in the feature space. When the crystal structure for a material was as-yet

unknown, the proximity to other structures in the map became a prediction.

Panel a shows a phenomenological description of structure as atomic
environment: the 14 most frequently occurring atomic environment
types are shown with their names. Panel b illustrates a frequency plot
of these 14 atomic environments found in 5,086 cubic intermetallics:
octahedra, rhombic dodecahedra, icosahedra, cubooctahedra and
tetrahedra are the most commonly found environments. Panel ¢ depicts
a section of the 3D pseudopotential radius®*® versus the Martynov

and Batsanov electronegativity (square root of the average ionization
potential of the valence electrons®"’; the section is given by an averaged
number of valence electrons <2.74) for 2,486 single-environment-type
compounds (including binary, ternary and quaternary daltonide and
berthollide intermetallic compounds). Each symbol indicates a crystal
structure. Figure reprinted from REF.*?°, Copyright © 2000, John Wiley
and Sons.
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Fig. 1| Representation of structures and methods for feature selections and descriptors discovery. a| Alternative
crystal representations. Crystal unit cell indicating the Bravais vectors (thick arrows) and base (thin arrows) illustrating one
shell of the ‘partial radial distribution function’, the distribution of pairwise distances between the two atomic species (the
fraction of atoms of one type in a shell of radius r and width dr centred around an atom of the other type). b| Crystal graph
convolutional neural networks: crystals are converted to graphs with nodes representing atoms in the unit cell and edges
representing atom connections. Nodes and edges are characterized by vectors corresponding to the atoms and bonds in
the crystal, respectively. The graph is then used to train neural network layers to produce the feature vector of the crystal,
followed by the output layer to provide target property prediction. After the first set of hidden layers, a pooling function
combines features for each atom into features for the entire crystal. ¢ | Property-labelled materials fragments include
periodicity by connecting local Voronoi tessellation with global periodic graphs. d | The idea behind variable autoencoders
is that the encoder maps data points to a low-dimensional continuous vector space — the latent space —where
optimization (for example of properties and synthesizability) is performed, whereas the decoder maps the optimized
latent vectors back to data points®. e | Example of possible crossover and mutation steps used to generate new formulas

in genetic programming, in which formulas are optimized by an evolutionary algorithm that simulates natural selection.

f| The idea behind SISSO (sure independence screening and sparsifying operator): the iterative deterministic optimization
combines unified subspaces having the largest correlation with residual errors generated by sure independence screening
(SIS) with the sparsifying operator (SO) to further extract the best descriptor. The target property, P, at the beginning of
the cycle is equal to the 0D residual error, A, A is the n-dimensional residual error. ML, machine learning. Panel a reprinted
with permission from REF.**, APS; panel b reprinted with permission from REF.**, APS; panel c adapted from REF.*, CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/); panel e adapted with permission from REF.***, APS; and panel f adapted
with permission from REF.”, APS.

explored”. A more in-depth comparison related to the
application in dielectric breakdown strength prediction
can be found in REF”". Recently, there has been an effort
to use NN to accelerate the discovery of formulas. An
example is the AI Feynman project’’, combining the

predictive power of NNs with a brute-force search driven
by physically motivated heuristic constraints (such as
dimensional analysis, polynomial fit, separability and
translational invariance, if appropriate) to perform
symbolic regression on a set of pre-established features.
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The algorithm seems very promising in rediscovering
known formulas™: future extension might include more
complicated functional operations (integrals, deriva-
tives) and the capability to search for relevant features
within the input data.

Materials families

This section provides an overview of the broad range
of uses of ML in alloy research: in addition to work
described here, ML has been applied to materials such
as superconductors”””’® and phase-change memory
materials”’, but an exhaustive discussion of every
application is beyond the scope of this Review.

Metallic glasses

Metallic glasses are amorphous alloys in which the
absence of crystalline order enables unexpected proper-
ties: the lack of slip planes results in high yield strength”™
and wear resistance, whereas corrosion resistance is
enhanced by the absence of structural defects and grain
boundaries slowing ion diffusion, making these mate-
rials potentially useful for biomedical implants™. The
identification of compositions with high glass-forming
ability is a difficult task. Several different physical mod-
els have been proposed, based on atomic size difference
and packing density**, glass transition and melting
temperature®*, and the competition between ordered
phases®”*. ML methods are being applied to identify
new glass-forming compositions (TABLE 1).

Glass-forming ability. Glass formation in metal alloys
has been investigated with a variety of ML approaches,
including models based on RFs*"!, support vec-
tor machines (SVMs)??, gradient-boosted decision
trees”, PCA*, NNs**=’, support vector regression and
Gaussian process models'”, and linear regression''.
Predicted properties related to glass-forming ability
include reduced glass transition temperature’, criti-
cal cooling rate’, undercooled liquid region AT, (dif-
ference between the glass transition temperature and
the crystallization temperature)’®*'?', critical casting
diameter'”, crystallization temperature’*”* and liquidus
temperature”. Particularly important features include
the difference between the actual liquidus temperature
and that expected from a linear interpolation of the
elemental melting temperatures’, the atomic radii
difference”, a large difference between the work func-
tion and heat of fusion, few valence electrons and a low
boiling temperature'®.

Machine reading using a classifier based on gradient-
boosted trees was used to extract data from phase dia-
grams to find deep eutectics™, known to be important
for glass-forming ability. Eutectic points were character-
ized by the angle formed by the tangents of the liquidus
lines — the narrower the angle, the deeper the eutectic
— and by the difference between the liquidus temper-
ature and the temperature obtained from the common
tangent connecting the maximum temperature of the
liquidus lines. A region of high glass-forming ability
was found for compositions with a eutectic angle smaller
than 75°, where the atomic radius of the majority species
was slightly smaller than that of the minority species.

Alloy systems predicted to have a high glass-forming
ability included Ag-Yb, Mg-Eu, Be-Fe, Ag-Te and
Ag-Sm, with the composition range from Ag,,,Yb, .,
to Ag, 1,6 Yb, ¢, being particularly promising.

Out of 20 different ML methods applied to a glass
formation data set with 6,471 alloy compositions'”,
RFs were found to give the best predictions by 100-fold
cross-validation testing. The data set included the
critical casting diameter for 5,934 compositions and
674 critical transformation temperature measurements.
Key features for glass-forming ability were found to be
large difference between the work function and heat of
fusion, few valence electrons and a low boiling temper-
ature. The glass transition, crystallization and liquidus
temperatures were found to depend on the average melt-
ing temperature, and the liquidus temperature increased
with decreasing average atomic radius.

Guiding experiments. ML models have been used to
guide metallic glass synthesis®*’, with the experimen-
tal results used to enhance the training set and retrain
the models. RF-based models were developed® to
investigate glass formation in combination with sput-
tering synthesis experiments®. The original model was
trained on a set of 5,369 experimentally characterized
compositions'”, 70.8% of which were glass-forming,
and showed good agreement with experiments for
the Al-Ni-Zr system (FIC. 2a). The Co-V-Zr alloy sys-
tem was synthesized using combinatorial magnetron
co-sputtering to determine its glass-forming ability as
a function of composition, and the new experimental
data were used to retrain the model®. Glass formation
was observed in a region between Co,,Zr,,, Co,.Zr,,,
V. Zr,, and V, Zr,.. Results for original and retrained
models for Co-Ti-Zr, Co-Fe-Zr and Fe-Ti-Nb are
shown in FIC. 2b. The extra data were downsampled to
70 points so as not to bias the model based on one alloy
system; this new data had the advantage of being better
balanced with respect to the ratio of glass-forming
to non-glass-forming compositions. The accuracy of
the retrained model improved by a factor of 3 to 4. The
model was later expanded to include additional glass
formation attributes”, such as cluster packing efficiency
and distance to crystalline compounds, as well as AT,
for 621 alloys.

NNs were used to predict AT, and guide the synthe-
sis of Zr-Al-Ni-Cu glasses”. A set of Zr-Al-Ni-Cu
compositions was fabricated with arc-melting and AT,
was measured; the correlation between predictions and
experiment was R=0.9574. The model was then used to
predict AT, for the Al-La-Ni system (FIC. 2c).

Elastic properties. Multiple models were trained to pre-
dict elastic properties of metallic glasses'*>'**. Support
vector regression gave a very good linear correlation with
experimental results of up to 0.9799 and a leave-one-out
cross-validation error of 8.2898 GPa when trained on
a set of 219 elastic moduli'”’. RFs trained on bulk and
shear moduli for 278 bulk metallic glass compositions
showed linear correlations of 0.9836 and 0.9843 (REF.'");
smaller atomic volumes gave larger bulk and shear
moduli.
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Table 1 | Overview of machine learning applications for disordered alloys

Year Description Refs
Metallic glasses

2003 Linear regression for supercooled liquid region width for Mg-based alloys 101
2004 NNs to predict crystallization temperatures in Ni—P alloys o
2007-2013 NNs to predict reduced glass transition temperature, critical cooling rate and undercooled liquid 96-09

region of alloys, and to guide synthesis of Zr—-Al-Ni—Cu glasses
2015 Principal component analysis on a set of 594 bulk metallic glass compositions ot

89-91

2016,2018 RFs used to guide experimental synthesis of Co-V—-Zr glasses

2017 SVM model trained on binary alloy data to predict glass-forming ability o
2018 Delithiation in amorphous Li Si system modelled using a NN potential %7
2019 Classifier based on gradient-boosted tree to find deep eutectics in phase diagrams %
2019 Support vector regression and Gaussian process models to predict elastic moduli and critical 100

casting diameters of metallic glasses

2020 Twenty different ML models applied to glass formation data for 6,471 compositions; also predict 102
elastic moduli

High-entropy alloys

2008 NNs to investigate Hume—Rothery’s rules for solid-solution formation 1e

2014 NNs to predict structure formation (bcc, fcc or mixed phase) in high-entropy alloys w

2015 Principal component analysis to identify underlying properties determining the formation of fcc 123
or bee solid solutions in TiMnFeNi, MnFeCoNi and TiVMnNb

2017 Approach based on multidimensional tensors to extend cluster expansion to include effects of 1
relaxations from the ideal lattice in AgPt, AgPtAuPd and AgPtAuPdCuNiAl

2017 Gaussian process statistical analysis to predict solid-solution formation 19

2018 Constraint satisfaction algorithm combined with support vector domain descriptor to solve the 122
continuous constraint problem to find desired stable phases

2018 NNs to predict formation of solid solution, intermetallic or amorphous phase 1

2018 Genetic algorithms, Gaussian process statistical analysis and CALPHAD used to design 120
solid-solution hardened Al,,Co,,Fe,,Mo,Ni,, high-entropy alloy

2018 Solid-solution hardened bce Al-Cr-Mn-Mo-Ti alloys designed by a combination of genetic 128
algorithms, CALPHAD, Pareto optimization and data mining

2019 Active learning machine-trained low-rank potential to run Monte Carlo simulations for MoNbTaW 134

2019 ML spectral neighbour analysis potential to investigate strengthening mechanisms in NbMoTaW 3

2019 k-Nearest neighbours, SVMs and artificial NNs to predict formation of solid solution, intermetallic 1
or mixed solid solution and intermetallic phases

2019 NNs to find quasi-phase equilibrium for phase-field models for Al-Cu-Mg 18

2019 SVMs to predict phase formation in Co-Cr—Fe-Mn-Ni high-entropy alloys 1

2019 RFs to predict phase formation based on binary alloy phase diagram data 1

2019 MTPs to calculate vibrational energies of VNbMoTaW 132

2019 ML interatomic potential to investigate order—disorder transitions in FeNi and CoCrFeNi 13

2019 MTPs to investigate lattice distortion in CoFeNi 136

2019 Iterative feedback between ML and experiment to develop high-hardness Al-Co—Cr—Cu—Fe—Ni 138
high-entropy alloys

2019 Gradient boosting trees combined with ab initio and experiment to investigate elastic properties 139
of Al,,CoCrFeNi

2019 NNs to find the Al-Co-Cr-Fe-Mn~-Ni composition with highest hardness 10

2019 Canonical correlation analysis combined with genetic algorithms to find hard high-entropy i
alloys; hardest alloy is Co,,W,Al;;Nb,,Cr, at 1084 HV(10.63 GPa)

2020 NNs to search for eutectics in Al-Co—Cr—Fe-Ni L2

2020 Logistic regression to predict phase formation in high-entropy alloys 125

2020 Genetic algorithms to find the best combination of descriptors and ML models to predict phase 130

formation in high-entropy alloys

2020 Bayesian regression to handle underdetermined training data to develop a cluster expansion 133
model to predict configuration energies of NbMoTaW, NbMoTaWV and NbMoTaWTi

bcc, body-centred cubic; CALPHAD, CALculation of PHAse Diagrams; fcc, face-centred cubic; ML, machine learning; MTP, moment
tensor potential; NN, neural network; RF, random forest; SVM, support vector machine.
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< Fig. 2| Machine learning for disordered alloys. a | Comparison of machine learning (ML)

predictions of glass formation with experimental results for Al-Ni-Zr. b| Comparison of
first-generation and second-generation ML predictions with experiments for Co-Ti~Zr
(top row), Co—Fe—Zr (middle row) and Fe-Ti-Nb (bottom row). The first column are the
original ML predictions, the second column are predictions after retraining with new
experimental data (active learning), the third column are experimental X-ray diffraction
results and the fourth column shows a binary glass or non-glass result using a threshold
based on amorphoussilica (a-silica). Note how the agreement with the experimental data
improves going from first-generation to second-generation ML. ¢ | Predicted difference
between glass transition temperature and crystallization temperature for Al-La—Ni. Large
differences between the two temperatures, such as in the region encapsulated by the
black circles, indicate thermal stability against crystallization when the glass is heated.

d| Phase formation prediction for Co—-Cr—Mn by support vector machines. The schematic
on the right compares a perfect classification to an imperfect one. The plots on the left
depict the bee (blue) and hep (green) phase regions for the Co-Cr—Mn system. The points
that satisfy the constraints are shown in yellow and red on the top-right plot, and the
points that do not satisfy them are shown in black on the bottom-right plot. e | Molecular
dynamics simulation with spectral neighbour analysis potential for Nb—-Mo-Ta-W,
showing Nb segregating to the grain boundaries, while W is enriched in the bulk (bcc).

f| Ashby plot for total elongation against ultimate tensile strength for eutectic Al-Co-Cr—
Fe-Ni alloys, which overcome the strength—ductility trade-off. AC, partially amorphous
ribbon formation; AM, fully amorphous ribbon; bce, body-centred cubic; CR,
compositions with no appreciable formation of amorphous phase; EHEA, eutectic
high-entropy alloy; fcc: face-centred cubic; FSDP, first sharp diffraction peak; FWHM,

full width at half maximum; GFR, glass-forming region; SVDD, support vector domain
description. Panel a reprinted from REF*, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/); panel b reprinted with permission of AAAS from REF.%, © The Authors,
some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 4.0 License
(http://creativecommons.org/licenses/by-nc/4.0/); panel c adapted with permission
from REF*, Elsevier; panel d reprinted with permission from REF.'%, Elsevier; panel e
reprinted from REF"*/, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/);

and panel f adapted with permission from REF.'*, Elsevier.

High-entropy alloys

High-entropy alloys typically have at least four principle
elements and can form single-phase solid solutions'**-'*°.
This atomic structure gives them unique properties
that have applications in a variety of technologies. For
example, high-entropy alloys demonstrate improved
fracture resistance at cryogenic temperatures''!, and the
formation of ordered precipitates can be engineered to
optimize mechanical properties such as the strength—
ductility ratio'*"'>'"*, The complexity of these materials
poses a challenge for computational researchers, pro-
viding promising opportunities for the application of
ML (TABLE 1).

Phase formation. Phase (for example, solid solution)
formation in high-entropy alloys has been investigated
using NNs'*"'"%, Gaussian process statistical analysis''*'*,
k-nearest neighbours'’, SVMs!''>"?1122 (FIG. 24d),
PCA'#, RFs"** and logistic regression'”. These studies
revealed that valence electron concentration'!*!'>!212,
electronegativity''*''°, atomic radius'>''* and mixing
enthalpy'” are all important features in determining phase
formation. By contrast, the mixing entropy, as obtained
from the ideal configuration entropy S= Y, x; log x;, was
found to be relatively insignificant''#!'>!%, possibly due to
ordering effects at finite temperature reducing the actual
entropy of the material '*'**'’. A structural parameter
based on the crystal system and the unit cell size and shape
was also found to not be important'', and even counter-
productive for low-solubility/low-concentration systems.
Valence electron concentration was found to determine

the atomic stacking character (fcc or bec)''”'*. In general,
a major limitation to this approach is the accuracy of the
input data: the atomic radius, in particular, is not always
well defined'’®. RFs were used to predict the formation of
single-phase high-entropy carbides'”. The models were
trained on spectral descriptors for high-entropy mate-
rials obtained with ab initio calculations®. Several new
Cr-containing compositions were predicted; experimen-
tal synthesis by arc melting and characterization by X-ray
diffraction confirmed single-phase formation.

Genetic algorithms were used to determine which
combinations of features and ML models were most
effective in predicting phase formation'*. A total of
70 descriptors were investigated and model improve-
ment was found to saturate for ~4 descriptors. SVMs
with a radial basis kernel performed best at classifying
solid solution formation or non-formation, whereas the
NN approach performed best at classifying the type of
solid solution formed. The genetic algorithm approach
outperformed other methods for reducing the feature
space, such as LASSO, RFs, sequential forward selection
and gradient tree boosting. 12,647 compositions form-
ing high-entropy alloys were predicted: 845 based on an
fec lattice, 9,302 based on bee and 2,500 with dual bec/fec
phase structure. Ten compositions with high classifica-
tion uncertainty were chosen for synthesis: eight were
found to be forming non-solid solutions, one formed
a bee phase and one a dual bee/fec phase. The classifi-
ers were retrained using the new data (active learning),
improving classification accuracy.

Configuration energies. Machine-learned models
have been used to predict energies for different atomic
configurations'”'~'**, as an extension or alternative to
using cluster expansions. A new way to construct lattice
models based on a low-rank ‘tensor train’ representa-
tion was shown to be particularly effective for alloys
with a large number of components'*'. The intera-
tomic potential was trained and validated on ab initio
calculations for 32-atom cubic cells on the fcc lattice.
Validation accuracies of 3meV per atom were achieved
for the AgPt, AgPtAuPd and AgPtAuPdCuNiAl alloy
systems. The error depended on the number of differ-
ent columns in the periodic table that the elements came
from, because replacing an element with one with the
same number of valence electrons created a more local
perturbation, making it easier to fit by a short-range
interatomic potential. The model was fitted to predict
the formation energies of alloys with up to 23 elements
on a training set of 1,600 configurations and showed sig-
nificantly lower errors than for a cluster expansion con-
taining nearest-neighbour pairs and triples trained using
compressive sensing.

Thermo-mechanical properties. Machine-learned
interatomic potentials have been used to study the
thermodynamic'*>"**"** and mechanical properties**'*
of high-entropy alloys. A machine-learned low-rank
potential, trained using active learning on ab initio calcu-
lations for 200 randomly generated configurations, was
used to run Monte Carlo simulations for the MoNbTaW
alloy'**. The vibrational contribution to the formation
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energy was found to be negligible (<0.1 meV per atom)
and phase transitions were observed to the B2 structure
(Mo,W;Nb,Ta) at ~600K and then to B2 (Mo;Ta) and
B32 (Nb;W) at ~600K. The model’s energy predictions
agreed well with ab initio calculations for the ground,
semiordered and disordered states, deviating by 0.1, 1.7
and 0.4 meV per atom, respectively.

Machine-learned interatomic moment tensor poten-
tials, which describe the atomic environments with
moment tensor descriptors, were used to investigate
lattice distortion in the ternary alloy CoFeNi (REF.'*).
Heating and quenching produced a mixture of static and
dynamic distortions that reduced the elastic moduli. No
short-range order correlations were found for Co and
Ni, but some ordering was found for Fe-Fe and Ni-Fe
atom pairs. The asymmetry of moment tensor potentials
enabled them to capture anharmonic contributions to
the vibrational energy of VNbMoTaW (REF.'*).

A machine-learned ‘spectral neighbour analysis
potential’ was used to investigate the strengthening
mechanisms in NbMoTaW (REF.'*"). The potential was
trained on DFT calculations of a combination of special
quasi-random, ground state and molecular dynamics
structures. After equilibration, Nb segregates to the grain
boundaries, whereas W is enriched in the bulk (FIG. 2e).
The equilibrated alloy has higher strength than the ran-
dom alloy, similar to that of W, the strongest element,
owing to the Nb enrichment at the grain boundaries
reducing the von Mises strain.

ML models and data mining have been combined
with experiment to investigate the mechanical prop-
erties, and, in particular, to optimize the hardness, of
high-entropy alloys'?*"**-"*°_ An iterative feedback pro-
cedure between ML predictions and experiments was
used to develop high-hardness high-entropy alloys in
the Al-Co-Cr-Cu-Fe-Ni family'**. The lowest root-
mean-square errors were found for support vector
regression with a radial kernel, back-propagation NNs
and k-nearest neighbours. After iterating between ML
and experiment, the composition Al,;Co,,Cr,,Fe Ni,
was found, with Vickers hardness of 865HYV (8.48 GPa).
Introducing materials descriptors, along with mechanical
properties such as shear modulus and lattice distortion
energy, reduced the cross-validation error to 54.4 HV
(0.53 GPa). The highest-hardness composition was
Al,.Co,,Cr ,Cu,FeNi,, with 883 HV (8.66 GPa), which
formed a bec solid solution with a NiAl B2 ordered phase.

A gradient boosting trees approach using weak learn-
ers was combined with ab initio calculations and experi-
mental measurements to investigate the elastic properties
of Al ,CoCrFeNi (REF'*). Shapley additive explanations
showed that the bulk modulus depends on the electron-
egativity of the most electronegative element, whereas
the shear modulus depends on the least electronegative
element. The high-entropy alloy was observed to have
a wide spread of interatomic distances even between
atoms of the same type. In particular, Cr-Cr distances
varied based on the other neighbouring atoms, owing
to magnetic interactions, demonstrating that magnetic
frustration can drive lattice distortion in these systems.

A NN was trained to find the composition with the
highest hardness in the AICoCrFeMnNi high-entropy

alloy system'*. The training set consisted of 91 hard-
ness measurements for binary to hexenary composi-
tions, prepared with vacuum arc melting. Simulated
annealing was used to find the optimum composition of
Al,,Co,,Cr,.Fe, Mn, Ni. , with a predicted hardness
of 670+98 HV (6.57 +£0.96 GPa) and a measured hard-
ness of 650+ 12HV (6.37 £0.12 GPa), exceeding the
highest value in the literature for this system of 539 HV
(5.29 GPa). The high hardness is due to bce/B2 precipi-
tates forming, owing to high Al content. Solid-solution
hardened bcc alloys were designed by a combination of
genetic algorithms, CALPHAD (CALculation of PHAse
Diagrams), Pareto optimization and data mining'*.

Compositions formed from a set of 16 elements were
generated with elemental concentrations varying from
5at% to 35at% in steps of 1at%. 3,155 Pareto-optimal
alloys were found, and experimental synthesis and charac-
terization of a selected composition indicated a Vickers
hardness of 6.45 GPa (658 HV), one of the hardest
reported for a metal alloy with such a low density.

Canonical correlation analysis was combined with
genetic algorithms to design hard high-entropy alloys'"'.
Input data consisted of the Vickers hardness for 82 sys-
tems. Multiple regression was performed with canonical
correlation analysis to predict the presence of bee or fec
solid solutions or of intermetallic phases, and to predict
the Vickers hardness. Hardness was found to increase
with ideal mixing entropy and decrease with valence
electron concentration and mixing enthalpy. Canonical
correlation analysis was used to construct a fitness func-
tion for a genetic algorithm search in a composition
space of 16 metallic elements. Seven of the predicted
alloys were synthesized: hardnesses ranged from 277 HV
(2.72GPa) to 1,084 HV (10.63 GPa); five of the alloys had
hardness greater than 700 HV (6.87 GPa).

Identifying eutectics. An artificial NN was used to search
for eutectics in the Al-Co-Cr-Fe-Ni high-entropy
alloy system*. It was found that eutectic points were
most common for compositions with Cr concentration
lower than 25% and Al concentration between 15%
and 20%, whereas the distribution was similar across
concentrations of the other three elements. Increasing
the Ni concentration resulted in fcc formation, whereas
more Fe resulted in bce formation, owing to changes
in the valence electron concentration. The resulting
eutectic alloys had improved mechanical properties;
in particular, they overcame the strength-ductility
trade-off (FIC. 21.

Catalysts. The IrPdPtRhRu high-entropy alloy was
used as a discovery platform for catalysts for the oxy-
gen reduction reaction'*. Sequential least-squares pro-
gramming was used to find compositions giving optimal
adsorption energies, according to the Sabatier model for
catalytic activity. The optimum five-component compo-
sition was found to be Ir,,Pd,,Pt, ,Rh , Ru,, ., whereas
relaxing the restriction on the number of elements gave
the optimum composition of Ir, . Pt,, ., with a predicted
activity 28 times higher than Pt. Adjusting the adsorp-
tion energies to account for strain gave an optimum
composition of Ir, , Pt, .
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Shape-memory alloys
Shape-memory alloys are systems that undergo simul-
taneous size and shape changes during a phase transfor-
mation. Their applications include sensors, actuators and
biomedical implants, such as stents. Relevant properties
include the transformation temperature, shape-memory
recovery ratio, superelasticity and hysteresis due to
differences in the heating and cooling transformation
temperatures, which can lead to fatigue. ML has been
incorporated into experimental design to find alloys with
low thermal hysteresis'*, to simultaneously optimize
thermal hysteresis and transition temperatures'*, and to
develop precipitation-strengthened NiTi shape-memory
alloys'*®. Models have also been constructed to predict
transition temperatures®>'*’ and to investigate laser
powder-bed fusion fabrication'*’. An overview of ML
works on shape-memory alloys is provided in TABLE 2.
ML and adaptive design have been used to inves-
tigate and optimize shape-memory behaviour in the
Ti,Niy,_,, Cu Fe Pd, alloy system'**"*>'*” (FIG. 3a). This
system undergoes cubic to rhombohedral (B2 to R)
or cubic to orthorhombic monoclinic (B19, B19’) phase
transitions. To find compositions with minimum ther-
mal hysteresis (AT), Gaussian process models and
support vector regression with linear and radial basis
function kernels were fitted to data obtained by synthe-
sizing and characterizing 22 compositions'*. Efficient
global optimization, knowledge gradient and pure
exploitation ‘min’ algorithms were used to propose new
compositions. A combination of support vector regres-
sion with radial basis functions and knowledge gradient
was found to work best, finding a new alloy, Ni,, . Ti, Cu,,
Fe,,Pd,,, with AT=1.84K. Ab initio calculations were
performed to check the energetics of transformations,
indicating that the low AT for this composition was due
to a low activation barrier and small energy difference
between the phases. Models were also constructed for the
transition temperatures of this system using linear and
polynomial regression, and support vector regression'".
Polynomial regression (linear in valence electron num-
ber and Pauling electronegativity, and quadratic in
Waber-Cromer’s pseudopotential radii) gave a good
mix of accuracy and interpretability, and worked well
for 23 other test systems from the literature. The model
was used in combination with efficient global optimi-
zation, knowledge gradient and maximum exploitation
algorithms to find the composition with the highest tran-
sition temperature. The best candidate was Ti, Ni,.Pd,,
with a predicted transition temperature of 189.56°C and
a measured value of 182.89°C. The Pareto front (FIG. 3b)
for transition temperatures versus thermal hysteresis was
investigated for this system, to minimize both properties
simultaneously'*. Gaussian process regression and sup-
port vector regression with a radial basis function kernel
were fitted to experimental data. Maximin and centroid
exploration algorithms were more effective than ran-
dom, pure exploitation or pure exploration approaches
at finding the Pareto front in as few cycles as possible.
A 2D time-dependent Ginzburg-Landau model for
the austenite to martensite phase transition and elasti-
city was developed for alloy systems such as FePd and
InT1 (REF'*). The model describes the free energy as a

function of stress and strain, whereas the dilational
stresses due to dopants are modelled by Gaussian dis-
tributions centred on the impurity. The model was used
to search for materials with low energy dissipation,
modelled as a function of dopant potency, distribution
and concentration.

Bayesian optimal experimental design was applied to
Ni, Ti, precipitation-strengthened NiTi shape-memory
alloys'*. Stress-strain equations were solved using finite
element modelling, using elastic constants of B2 auste-
nitic and Ni,Ti, rhombohedral structures obtained from
first-principles calculations, and the results were used
to train a Gaussian process regression surrogate model.
Selection of test compositions was based on expected
hypervolume improvement and pure exploitation. The
method was used to search for an alloy with an austenitic
finish temperature of 30 °C and a specific hysteresis tem-
perature of 40 °C. No composition was found satisfying
these criteria, so the Pareto front was generated to find the
compositions closest to the target. The search efficiency
was optimized by using the algorithm from the very
start to choose the initial training data points, instead of
initializing with multiple randomly chosen points.

Laser powder-bed fusion was investigated for the
additive manufacturing of shape-memory alloys'*. NiTi
is difficult to machine and very sensitive to composition:
small variations in Ni content can change the transfor-
mation temperature by 100 °C. Fabrication success using
laser fusion of powder was evaluated as a function of
linear, surface and volume power density, which are
functions of laser power, scan speed and hatch spacing.
Linear discriminant analysis revealed that high values
of linear power density led to high printability, whereas
hatch spacing made little difference. Linear power den-
sity had little effect on transition temperatures, but the
volume power density did have an effect. Hatch spacing
affected microstructure and transition temperature, but
not printability.

Support vector regression, RFs and Gaussian pro-
cess regression were trained to predict the transition
temperatures and hysteresis of NiTiHf shape-memory
alloys as a function of composition and heat treatment
processing®. Owing to the nature of the dependence of
the phase transformation rate on the processing con-
ditions, the models were more accurate when the heat
treatment time and temperature were represented by
logarithmic and sigmoid functions. The models worked
reasonably well for transition temperatures but were
unreliable for predicting hysteresis values.

Superalloys

Ni single-crystal superalloys display high creep resist-
ance due to precipitation of the L1, y’ intermetallic phase
in the austenitic fcc y solid-solution matrix with coher-
ent {100} interfaces'". ML has been used to design new
alloy compositions with optimized properties'>'~"** and
to model the lattice misfits'*”'** and interfaces'*° of the y
and y’ phases (TABLE 2).

Superalloy design. Gaussian processes were combined
with CALPHAD and genetic algorithms to design
Ni-based superalloys'”"'*>. Thermodynamic phase
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Table 2 | Overview of machine-learning applications for shape-memory alloys, superalloys, catalysts and

magnets

Year Description Refs

Shape-memory alloys

2016-2018 ML and adaptive design to optimize thermal hysteresis and transition temperatures in the SASRELY
TisoNigg_,,Cu,Fe Pd, alloy system

2017 2D time-dependent Ginzburg—Landau model for austenite to martensite phase transition and 19
elasticity in alloy systems such as FePd and InTl

2018 Bayesian optimal experimental design for Ni,Ti, precipitation-strengthened NiTi shape-memory 146
alloys

2018 Linear discriminant analysis to optimize laser powder-bed fusion for additive manufacturing L=
of NiTi alloys

2021 Support vector regression, RFs and Gaussian process regression to predict composition— 2
process—property relationship for NiTiHf alloys

Superalloys

1998 NNs to model lattice parameters for y and y” phases as function of composition and temperature 195

2013,2016 Gaussian processes combined with CALPHAD and genetic algorithms to design Ni-based REREr
superalloys

2017 NNs combined with CALPHAD to find Ni-based compositions optimizing fatigue life, yield stress, 13
tensile strength, y’ fraction and Cr activity

2018 ML models to predict the misfit between the y and y’ phases 0

2018 NNs combined with genetic algorithms to design Ni-based superalloys for ultra-critical 1
steam plants

2019 ML models to predict the energy of different configurations to model y—y’ interfaces 190

Catalysis and alloys

2012-2019 Cluster expansions to predict the structures and properties of alloy nanocatalysts 1767185

2014,2015 NN potentials to identify structures and properties of Au-Cu alloy nanocatalysts LS

2015,2017 NNs to predict adsorption energies on alloys as a function of physical properties of the surface 166-168
and the local environment of the adsorption site

2015,2019 Bayesian cluster expansions to predict equilibrium surface structures and catalytic activities R
of bulk Pt-Ni alloys

2017 ‘Bootstrapped projected gradient descent’ to identify relevant descriptors for CO binding 169
energies on alloy surfaces

2017 NNs to predict surface segregation in the Au-Pd alloys s

2017 SOAP descriptors to predict the structures and activities of Rh—Au nanoparticles 11

2018 Multiple types of regression evaluated for predicting adsorption energies on embedded 1o
single-atom catalysts

2018 NN potential to study atomic order in icosahedral Cu-Ni—Pt nanoparticles 189

2018 SOAP descriptor to predict hydrogen adsorption energies on small Au-Cu clusters 192

2018,2020 ML to predict adsorption energies based on the local environment of the adsorption site Lz
to guide discovery of new catalysts for CO, reduction and hydrogen evolution

2019 Lattice pair potential to calculate adsorption energies and optimize the composition B
of a high-entropy alloy for catalysing oxygen reduction

2019 Graph NNs to predict adsorption energies on a variety of surfaces 173

2019 SISSO algorithm to identify descriptors for binding energies for representative adsorbates e

on alloy surfaces

2019 NN potentials to accelerate searches for low-energy structures for small bimetallic and 190
trimetallic clusters

Magnetism and alloys

2014 On-the-fly ML to analyse XRD data for Fe—Co—X (X = Mo, W, Ta, Zr, Hf, V) films to find phases 199
with strong magnetic anisotropy

2017 NNs to extract order parameters corresponding to phase transitions from Monte Carlo 193
configuration data for ferromagnetic Ising model

2017 NNs to find topological phase transitions in the Kitaev chain, phase transitions in the Ising model 1o

and many-body localization transitions in disordered quantum spin chains

2018 CALPHAD and k-nearest neighbours to find processing—structure-property linkages in soft 19

magnetic alloys, such as FINEMET alloys forming Fe,Si precipitates
2019 RFs, NNs, ridge regression and kernel ridge regression to predict the Curie temperature 17

CALPHAD, CALculation of PHAse Diagrams; ML, machine learning; NN, neural network; RF, random forest; SISSO, sure independence
screening and sparsifying operator; SOAP, smooth overlap of atomic positions; XRD, X-ray diffraction.
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stability was predicted using the Thermo-Calc software
with the TTNi database. Acceptable microstructures
were restricted to those containing only y, y" and M,,C,
phases, avoiding Laves and other deleterious phases.
Gaussian process regression was trained on experimental
data to predict ultimate tensile stress, yield stress, creep
rupture stress, and the y and y’ lattice parameters. Input
features included composition and processing history
(forging, cold deformation and treatment temperature)
and the output was creep rupture stress. The optimal
alloy minimizing the creep rupture stress per unit
cost had a y’ content of 24.8% at 750 °C: low enough to
be easily weldable and avoid strain-age cracking''.
To find an alloy realistic for high-temperature struc-
tural applications, the ultimate tensile strength, yield
stress and creep rupture stress were maximized, while
the y—y’ misfit parameter and brittle temperature range
were minimized'?. 5,669 alloys were predicted on
the Pareto front. A slightly cheaper and more weldable
alternative to Inconel 740H (In740H) and Haynes 282
was proposed, where more y’ phase due to increased Al
content offset the loss of strength due to lack of Nb. An
alternative to Alloy 263 was proposed that avoided the
formation of # platelets due to lower Ti content.

NNs and CALPHAD were used to find Ni-based
superalloy compositions that optimize fatigue life, yield
stress, tensile strength, y’ fraction and Cr activity (for
corrosion resistance)'*®. The models were trained on
experimental data for properties as a function of com-
position and heat treatment, and were combined with
an optimizer incorporating error estimates (Bayesian
bootstrap approach) to search for an alloy with a yield
strength exceeding 752 MPa at high temperatures.
Experimental verification was performed on the opti-
mal alloy: the y’ fractional volume was 51% and the yield
stress was 765 MPa.

NNs and genetic algorithms were combined to design
Ni-based superalloys for ultra-critical steam plants
that improved on In740H (REF.""). Training data were
extracted from the literature for 580 instances: model
inputs included the concentrations of 14 elements, and
y and y’ contents; outputs included the y-y" mismatch,
yield stress and creep rupture life. Experimental valida-
tion indicated that the new alloy had a yield strength
of 597 MPa at 750°C and a creep life exceeding 3,691h
(with a prediction of 5,800 h at 150 MPa), extrapolated to
9,100h at 135 MPa, compared with In740H, which has a
yield strength of about 580 MPa at 750°C and a creep life
of about 10,000h at 150 MPa stress.

y and y' phase properties. NNs were used to model the
lattice parameters for the y and y’ phases as a function
of composition and temperature already in 1998 (REF.'*).
The lattice mismatch between the y and y’ phases in Ni
superalloys controls the coarsening behaviour and the
dislocation glide at the y—y" interface. Composition and
temperature were used as input for the model, and the
lattice constants were the output. Al was found to be
most important for the lattice constant of the y phase
and Ti most important for the y’ phase. Lattice constants
for y were sensitive to Mo content and for y’ to Nb con-
tent. The lattice constant of the y phase was generally

more sensitive than that of the y” phase to composition
changes.

ML models including support vector regression,
sequential minimal optimization regression and multi-
layer perceptron were used to predict the misfit between
the y and y’ phases'”. The training set consisted of data
for 136 alloys extracted from the literature, with features
including composition, dendrite positions, specimen
thickness and temperature. Multilayer perceptron had
the lowest mean average error and root-mean-square
error. The model was validated against experimentally
measured misfits, where it outperformed empirical
models from the literature.

The y-y’ interface in the Ni 617 superalloy was inves-
tigated using linear regression, ridge regression, kernel
ridge regression, LASSO, support vector regression and
Bayesian ridge regression to predict the energy of differ-
ent configurations'*. All methods outperformed cluster
expansion, with kernel ridge regression giving the lowest
errors'™.

Catalysis and alloys

ML is increasingly being used to discover or design new
catalysts (TABLE 2). Here, we focus on alloy catalysts. For
a more general discussion of the use of ML in catalysis,
we refer the reader to other reviews'”-'*°.

Computational searches have long made use of
simple descriptors to predict catalytic activity without
the need to explicitly model all steps of the chemical
reaction. Adsorbate binding energies are particularly
effective descriptors, as they can be used to estimate the
activation energy through the Brensted-Evans—Polanyi
principle'®"'*2. This is a perfect scenario for ML deploy-
ment. For example, a model equivalent to a pairwise
cluster expansion was constructed to predict adsorption
energies for O and OH on different sites in IrPdPtRhRu
high-entropy alloys, with an estimated prediction error
of less than 0.1 eV (REF.'*). However, material-specific
surrogate models are generally not well suited for high-
throughput screening, owing to the computational
expense of enforcing compatibility with each of the
candidate materials.

An alternative approach, generally less accurate but
more amenable to high-throughput screening, is to
predict adsorption energies based on the physical des-
criptors of the bare surface. For example, physical and
chemical reasoning was used to identify the surface
electronic d-band centre as a descriptor of adsorption
energies'**'**. ML can extend the formalism by identify-
ing additional descriptors and more complicated models
for adsorption energies’>'*'”*. Some of the early work
focused on developing NN models to predict adsorption
energies as a function of properties of the surface and
the atoms near the adsorption site'*~'**. These models
were used to screen alloy surfaces for CO, reduction’®
and methanol electro-oxidation'””. Similarly, ML mod-
els were developed for predicting adsorbate binding
energies based on the properties of the adsorption site
(such as the coordination number) and neighbouring
elements (such as Pauling electronegativities)'””. These
models were used to guide high-throughput ab ini-
tio calculations of adsorbate binding energies on ideal
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intermetallic surfaces, leading to 100 promising catalysts
for CO, reduction or hydrogen evolution. Following
these predictions, Cu-Al alloy catalysts have recently
been developed that reduce CO, to ethylene with very
high selectivity'”* (FIC. 3c). Finally, adsorption energies
on a variety of surfaces can be predicted using graph
NN, in which the nodes of the network are mapped to
atoms and the edges are mapped to connections between
neighbouring atoms'”.

Models that relate physical descriptors to adsorbate
binding energies can also be used to identify the most
relevant descriptors. For example, the relative importance

1.0

08 06 04 02 O

Atomic fraction Co

of different physical descriptors was determined through
sensitivity analysis of the developed NN models'*”'*, and
bootstrapped projected gradient descent'® was used to
identify relevant descriptors for CO binding energies
on some of the same alloys'®”'*. It was found that, in
addition to characteristics of the electronic d-band,
the work function is also a relevant descriptor'®. Sub-
sequent work using multiple regression trees to predict
the CH, adsorption energy on single-atom catalysts
embedded in Cu surfaces found that the group and the
surface energy of the doped element are the most pre-
dictive descriptors out of a dozen evaluated'”’. Later on,
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< Fig. 3| Machine learning for shape-memory alloys, catalysts and magnets. a| Adaptive

design workflow for the optimization of the shape-memory alloy Ti,(Niy, , , ,Cu,Fe Pd,.

b | Pareto front (PF) for optimal combination of thermal hysteresis and transition
temperature for shape-memory alloys generated using adaptive design. c | t-Distributed
stochastic neighbour embedding (t-SNE) representation of how the CO adsorption energy
varies among adsorption sites on Cu alloys based on local environment and composition.
Sites that are close to each other tend to have similar features. Labels 1-5 indicate
different types of sites for Al-Cu alloys: Al-heavy Cus sites, Cu-heavy Cu—Cu sites, balanced
Al-Cus sites, Al-heavy Al-Al sites and Al-heavy Al sites, respectively. d | The current density
(i) of (111) surfaces of Pt-Ni alloys in the Pt-rich region of the phase diagram, relative to
that of Pt(111) (i,,), as predicted using a Bayesian cluster expansion. e | Magnetic and
coercive field maps and structural property maps for a Co-Fe-Mo system generated

by experiments guided by on-the-fly machine learning. Out-of-plane (OOP) hysteresis
loops are shown for different compositions (left), along with typical OOP and in-plane (IP)
hysteresis loops (top right). The coercive field map as a function of composition is shown
on the centre right and the clustering results on the bottom right. Clustering techniques
were used to group structurally similar regions together, with similar compositions shown
by same-coloured dots in the bottom-right plot. f | Predicted Curie temperatures, T,

for Al-Co—Fe. Crosses and circles indicate experimental data included and not included in
the training set, respectively; numbers 1, 2 and 3 correspond to the known stoichiometric
phases Co,FeAl, Fe,CoAl and Fe,Al. AE.,, DFT-calculated change in energy upon CO
adsorption; AT, thermal hysteresis; DFT, density functional theory. Panel a adapted from
REF.'**, CCBY 4.0 (https://creativecommons.org/licenses/by/4.0/); panel b adapted

from REF.***, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/); panel ¢

reprinted from REF.""*, Springer Nature Limited; panel d adapted with permission

from REF.'7%, PNAS; panel e reprinted from REF.'*, Springer Nature Limited; and panel f
reprinted with permission from REF."/, APS.

the SISSO algorithm” was used to obtain descriptors
for binding energies for six different representative
adsorbates'”". Using this approach, the d-band centre
was rediscovered as the best simple descriptor, and more
complex descriptors that had significantly lower errors
on the alloy surfaces in the validation set were identified.

A great challenge in developing alloy catalysts is that
adsorbate binding energies (and, hence, catalytic acti-
vity) can be highly sensitive to the atomic structure of
the surface, often quite different from that of the under-
lying bulk material. Some degree of surface segregation
is common in substitutional alloys (the concentration of
one species is higher near the surface than in the bulk).
Likewise, atomic order near the surface can be signifi-
cantly different than in the bulk: an ordered intermetallic
phase may have increasing disorder near the surface or
a disordered solid solution may be covered by a mono-
layer skin consisting nearly entirely of a single element.
Predicting the atomic structure of alloys’ surfaces can be
accomplished with ML energy models'”>"”°. When com-
bined with descriptors of catalytic activity, this approach
helps rational design of new catalysts. Bayesian cluster
expansion and Sabatier volcano plots were used to pre-
dict the activities for the oxygen reduction reaction on
(111) surfaces of ordered Pt,Ni (REF.'””). The work was
extended to Pt-Ni alloys in the entire Pt-rich portion
of the temperature-composition phase diagram'”®
(FIC. 3d). It was found that slightly Pt-rich Pt,Ni should
have the maximum activity, in good agreement with
experimental results.

Alloy nanoparticles are of particular interest, owing
to their high surface-to-volume ratios and the ability to
adjust the catalytic properties by tuning particle shape.
The size and complexity of these catalysts limits the
extent to which ab initio methods can be used to directly
model them, but this problem can be overcome through

the use of ML surrogate models. For example, cluster
expansion has been used to predict equilibrium!’”7*-*¢!
and non-equilibrium alloy nanoparticle structures'*>'*,
surface d-band centres'”” and adsorbate binding
energies'*'%"1%, Behler-Parrinello NN potentials were
used'** to identify equilibrium structures of Au-Cu alloy
nanoparticles in vacuum'*” and aqueous environments'**.
Coupling these potentials with ab initio calculations
of adsorbate binding energies on small nanoparticles
provided insights into solvation’s effects on nanoparti-
cle activity. NN potentials were similarly used to study
surface segregation in icosahedral Cu-Ni-Pt nanoparti-
cles and to identify design guidelines for oxygen reduc-
tion catalysts'®. NN potentials have also been used to
accelerate searches for low-energy structures for small
bimetallic and trimetallic clusters'”. Gaussian approxi-
mation potentials’ with the SOAP descriptor® were used
to model adsorption of N, O and NO on Rh-Au alloy
surfaces'". This method could predict turnover frequen-
cies for NO decomposition at different surface sites on
cubooctahedral Rh-Au nanoparticles of varying size,
composition and atomic order. The SOAP descriptor
was generally found to perform at least as well as other
leading descriptors in predicting hydrogen adsorption
energies on small Au-Cu clusters'”.

Magnetism and alloys

ML has been used to model magnetic properties, with
applications ranging from investigating phase transi-
tions in Ising-type models'*>"** to analysing experimen-
tal phase diagrams of specific magnetic alloys'*, as well
as modelling processing-structure—property linkages'*
and predicting Curie temperatures, T, (REF.'") (TABLE 2).

NNs were used to extract order parameters corre-
sponding to phase transitions (such as T./J) from raw
Monte Carlo configuration data for a ferromagnetic
square-lattice Ising model, H:—]zij aiza]‘f‘ (REF.13).
The models were also applied to the 2D square ice
Hamiltonian and the Ising lattice gauge theory. The
ordinary NNs had an accuracy of only 50% for the lat-
ter system, so a convolutional NN was used instead,
which had accuracy of 100% at T=0 and T'=eo, with
T*/J=1/log +/(N),where T* is the crossing temperature
and N is thgeegl/lnn_ber of spins in the systen%. ’

NNs were used to find topological phase transi-
tions in the Kitaev chain, phase transitions in the Ising
model and the many-body localization transition in
a disordered quantum spin chain'*’. Supervised and
unsupervised methods were combined, by bootstrap-
ping the supervised model to unsupervised groups,
finding patterns in the data and letting the user
decide if changes corresponded to phase transitions.
The method was successfully applied to the Ising
model and the many-body localization transition:
HZIZ,-L=1 S+ St Z(x:x,}/,z ZiL=1 h{S}.

CALPHAD was combined with k-nearest neighbours
models to find processing-structure—property link-
ages in soft magnetic alloys'*, particularly FINEMET
systems'” that form Fe,Si precipitates. Metamodels to
describe the crystallization of Fe,Si domains and to pre-
dict mean particle radius and volume fraction as a func-
tion of composition, temperature and holding time were

744| AUGUST 2021 | VOLUME 6

www.nature.com/natrevmats


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

© MACHINE LEARNING

trained on CALPHAD data as an alternative to compu-
tationally more expensive Thermo-Calc modelling. The
standard FINEMET composition was varied according
to Fe,, 4. Sij6,,_BesoNb,Cu,, with =3 <x < 3. Errors rela-
tive to Thermo-Calc were generally small (<1%), with
the largest errors occurring for volume fraction for short
annealing times (~15%), owing to the small volume
fraction leading to large relative errors.

On-the-fly ML was used to analyse X-ray diffraction
data from combinatorial synthesis of Fe-Co-X (X =
Mo, W, Ta, Zr, Hf, V) films to find phases with strong
magnetic anisotropy'®. Mean shift theory, a clustering
method based on non-parametric density estimation, was
used to group X-ray diffraction data into similar phase
regions. Non-negative matrix factorization was used to
identify the fraction of different phases present in multi-
phase X-ray diffraction spectra and, thus, build phase
diagrams. The Fe,,Co,,Mo,, composition was found
to have an increased coercive field (FIG. 3¢): a genetic
algorithm search found a low-energy P4/m tetragonal
structure with a matching X-ray diffraction pattern.

The Curie temperatures of magnetic materials
were predicted using RFs, NNs, ridge and kernel ridge
regressions'”’. RFs were found to work best, with R?
of 0.81 for cross-validation and 0.87 for testing. The
absolute error was 57 K and the models were generally
more accurate for T.>300K. The model accurately
predicted trends for the Co-Mn, Fe-Ni and Ni-Rh sys-
tems. When applied to the Al-Co-Fe system (FIC. 3f),
the model underestimated the T, of the ternary Heusler
compounds but ordered them correctly.

Materials properties

This section illustrates the uses of ML for research in
alloy processing, and mechanical and thermal properties
(TABLE 3).

Metallurgical alloy processing
Supervised learning algorithms can be used to construct
phenomenological processing—property relationships
that, in many cases, have greater predictive accuracy than
commonly used physical approximations. Some of the
earliest examples of the application of ML to alloys are in
predicting flow stress as a function of temperature, strain
and strain rate. A multilayer NN was used to predict the
flow stress of medium carbon steel, and its predictions
were more accurate than those of a semi-empirical
constitutive model'”’. At around the same time, a NN
approach was developed to predict the cold rolling force
for steel based on the Bland-Ford-Ellis model*™. Several
groups have subsequently successfully applied NN
methods to construct relationships between processing
parameters and physical properties for other alloys™'~*”
(for example, hot deformation behaviour of the A356 alu-
minium alloy; FIC. 4a). The success of the NN approach
can be attributed to its ability to flexibly interpolate a
curve, which allows it to account for phenomena that
show up empirically (in the training data) but may not be
well captured by simplified physical models.

ML has also been successfully used to predict the
phase evolution and distribution in alloys as a function
of processing parameters. A NN model was developed

that could accurately predict the volume fractions of the
o and f3 phases in Ti alloys as a function of heat treat-
ment temperature and composition®”*. NNs were used
to model time-temperature-transformation diagrams
for Ti alloys®*®', particularly for the « (hcp) to 8 (bcc)
phase transition, to predict the processing-micro-
structure—property relationship. Inputs were chemical
compositions and the outputs were time—temperature—
transformation diagrams and the martensite start
temperature. Sn, Cr and V were observed to increase
martensite start time and reduce the start temperature,
whereas Al increased start temperature and reduced start
time, and the effect of Mo was not systematic. A model
was trained to predict mechanical properties®, includ-
ing tensile strength, elongation, reduction in area, fatigue
strength and fracture toughness, where the inputs were
composition and heat treatment type. Increased temper-
ature reduced tensile strength and increased elongation,
and hardness increased with Al content.

Bayesian NNs**” and Gaussian processes”'’ were used
to model austenite formation in steel. Model inputs con-
sisted of the heating rate and the fractions of different
elements, and the outputs were the austenite onset and
completion temperatures. A maximum in the ratio of
onset/completion temperature to heating rate was attrib-
uted to the presence of retained austenite: high heating
rates cause the austenite onset temperature to be reached
before the retained austenite has time to transition to fer-
rite. The austenite onset temperature falls with increas-
ing carbon content and the completion temperature
goes through a minimum at the eutectoid temperature.
The onset and completion temperatures increase with
Mo, Nb, Ti and V concentration and decrease with Mn
and Cu concentration, whereas the effects of Co, W, B,
N and P are small. The NN erroneously predicted that
Ni would increase the onset temperature, but this was
corrected by the Gaussian process models. The best
NN had a better root-mean-square error than Gaussian
processes, but this network was selected from a set of
models that were generally worse.

NN were trained to predict the martensite start tem-
perature and austenite stabilization in steels as a func-
tion of composition and austenite grain size’'"*'*. Models
were tested on 12Cr-1Mo and 9Cr-Mo high-alloy steels*!
and high-strength low-alloy steels?'~. The martensite
start temperature was predicted to decrease with Mn, Ni
and C concentration and to increase with Co, Mo, V and
Nb concentration; these results were generally consistent
with MTDATA thermodynamic modelling””’. W inclu-
sion was predicted to increase the start temperature, in
contrast with experiments. Martensite start temperature
increased with increasing austenite grain size. Low car-
bon content resulted in a higher austenite temperature
to get the same grain size, resulting in fewer defects and,
thus, easier martensite transitions.

In recent years, there has been an interest in using
ML to optimize additive manufacturing processes. The
additive manufacturing of stainless steel was optimized
by developing a Gaussian process model that could pre-
dict the porosity of a material as a function of selective
laser melting parameters®'* (FIG. 4b). Gaussian processes
have also been used to predict the remelted depth of
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Table 3 | Overview of machine learning applications for metallurgical processing, and mechanical and
thermal properties

Year Description Refs

Metallurgical processing

1995 NNs to predict flow stress of medium carbon steel 199

1996 NNs to predict cold rolling force for steel based on the Bland—Ford-Ellis model 200

1996,1999 Bayesian NNs and Gaussian processes to model austenite formation in steel AL

1999-2013 NN methods to construct relationships between processing parameters and physical properties 201=207
for alloys

2000,2004 NNs to model properties including time-temperature-transformation diagrams for Ti alloys sl

2002,2003 NNs to predict martensite start temperature and austenite stabilization in steels as a function of 22y
composition and austenite grain size

2015 NN model to predict volume fractions of a and 8 phases in Ti alloys as a function of heat treatment 208
temperature and composition

2016 Gaussian process model to predict porosity in stainless steel created by additive manufacturing 2

2016 ML to accelerate characterization of alloy microstructure o

2017 ML to guide choice of processing conditions to dramatically reduce number of trials a8

2018,2020 Gaussian processes to predict remelted depth of powder-bed-fused stainless steel as a function of
laser power and scan speed

2019 Deep convolutional NNs to automate microstructure image segmentation in high-carbon 220
stainless steels
Mechanical properties
1999 NNs and neurofuzzy networks to model threshold fatigue in Ni superalloys 1
1999 Bayesian framework NNs to design ferritic creep-resistant steels s
2001 NNs to predict strength, ductility, hardness and toughness for Ti alloys 202
2004 NNs to predict strength, ductility, hardness and toughness for maraging steels 203
2004 NNs to optimize Charpy-impact toughness for welds 2
2005 NN's to predict strength and ductility for alloy steels 2
2007 NN and genetic algorithms to design a transformation-induced plasticity steel with low Si content e
2008 NNs to predict strength, ductility and hardness for steels 2
2009 NNs to predict strength and ductility for Cu alloys 2
2009 NNs and orthogonal design to optimize wear resistance of chromium white cast iron 28
2013 SVMs to model wear in ‘flotation balls’ used for milling Cu ore 2
2013 NNs to model ductile damage in steel “
2016,2017 General ML models for elastic properties trained on data calculated from first principles pzs
2016 NNs, k-nearest neighbours, classification and regression trees, and SVMs to predict strength and o
ductility for cast iron
2017 NNs to predict strength and ductility for Al alloys 2
2017 ML methods including RFs, SVMs and NNs to predict stacking fault energy in austenitic steels 24
2017,2018 Bayesian networks to model crack formation and propagation in 3-Ti alloys 735230
2018 NNs to design hard Mo-based alloys for forging die applications 2
2018 Linear regression and principal component analysis to model fatigue in polycrystalline Ti alloys 250
2018 ML methods to infer the intrinsic mechanical material properties from indentation measurements 240
2018 k-Means algorithm to classify acoustic emission waveform data to detect fractures within the Al 2
2043-T3 alloy
2018 RF classification models to identify stress hotspots (grains experiencing high stress) AEAS
2019 RF nearest neighbour, linear regression and ridge regression to model creep in stainless steel alloys 3
2019 NNs to model crack formation and propagation in steel 1
Thermal properties
2014 Least-squares, partial least-squares, Gaussian process and support vector regression to predict 50
melting temperatures
2014 RFs to predict thermal conductivity of half-Heuslers 21
2014 Classification trees to identify compositions and features leading to high thermoelectric figure of 53

merit in half-Heuslers

2016 Materials recommendation engine to find promising thermoelectric materials: Heuslers TiRu,Ga, o
TiRu,ln and MnRu,|n, and ternary germanides

2017,2018 RFsto predict thermodynamic stability and vibrational energies Rz

ML, machine learning; NN, neural network; RF, random forest; SVM, support vector machine.
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powder-bed-fused stainless steel as a function of laser
power and scan speed**>*'°.

One of the most promising applications of ML to
alloy processing is in the automated synthesis, pro-
cessing and characterization of alloys. By coupling ML
algorithms with robots, a fully autonomous system can
be created that efficiently develops alloys with desired
properties’”’. ML can be used to guide the choice of the
next set of processing conditions in a way that dramat-
ically reduces the number of trials that must be con-
ducted before an optimal set of conditions is found*'*
(FIC. 4c). Similarly, characterization can be accelerated by
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Fig. 4 | Machine learning for alloy processing. a| Comparison between flow stresses
obtained experimentally, from a neural network (NN) model and from a constitutive
equation for the A356 aluminium alloy at a strain rate of 0.001 per second at different
temperatures. b | Porosity for steel materials created by additive manufacturing as
predicted by a Gaussian process model trained using only the initial set of observations
(left). The corresponding initial prediction standard error, with training data marked by
the white dots (right). Regions with relatively high standard error were identified as
those in which additional sampling would be particularly beneficial. ¢ | The number of
trials required to find the optimal candidates for different material properties using four
methods guided by machine learning, compared with random guessing (red). The steel
results include both composition and process optimization. Panel a reprinted with
permission from REF.*”, Elsevier; panel b reprinted with permission from REF.*",
Elsevier; and panel c reprinted from REF.**%, Springer Nature Limited.

using ML to minimize the number of samples that must
be collected by a microscope to accurately characterize
an alloy’s microstructure’. Characterization can also
be automated by taking advantage of the tremendous
progress that has recently been made in computer vision.
For example, a deep convolutional NN was trained to
automate microstructure segmentation in high-carbon
stainless steels?’. When combined in an automated
environment, such tools have the potential to dramat-
ically increase the efficiency of the design and discov-
ery of new alloys and the optimization of processing
conditions.

Mechanical properties

ML models have been trained to predict the mechanical
properties of metal alloys, ranging from general models
for elastic properties trained on data calculated from first
principles***>**! to models of macroscopic properties such
as hardness, toughness and strength”>*>**>=%, as well as
phenomena such as wear***%, fatigue****!, creep**>**,
hydrogen embrittlement** and crack formation and
propagation®*-**’ in specific alloy systems (TABLE 3).

Elastic properties from DFT data. Models based on gra-
dient boosting decision trees were trained on large online
databases of calculations of bulk and shear moduli***.
Features included composition-averaged properties of
the component elements*** and ab initio-calculated
properties of the actual compound, such as the cohe-
sive energy’’. The most predictive features included
the cohesive energy and the volume per atom. Models
for mechanical properties are programmatically acces-
sible through an online application programming
interface”***.

Experimental interpretation. ML models assist in
the analysis and interpretation of mechanical testing
methods. A combination of Gaussian process mod-
elling, finite element analysis, Bayesian inference and
Markov chain Monte Carlo was used to infer the intrin-
sic mechanical material properties from indentation
measurements™’. The method was applied to the A1 6061
alloy and good values were obtained for the yield stress,
but estimating hardening values would have required
much larger strains.

An unsupervised k-means algorithm was used to
classify acoustic emission waveform data to detect frac-
tures within aircraft-grade, precipitate-hardened Al
2043-T3 alloy**'. Acoustic emission data were coupled
with direct fracture observation to identify waveform
features corresponding with fracture formation. The
data were then clustered using an unsupervised k-means
ML algorithm to find waveforms that could be used to
detect the presence of fractures.

Strength, ductility, hardness, toughness. NNs*>20%22-227234242,
k-nearest neighbour”, classification and regression trees*,
X-square automatic interaction detection’”” and SVMs**
were trained to predict mechanical properties such as
tensile Strengch()Z,Z(B,ZZZ—ZZ5,234’ yleld Strengtl,lz02,203,2237225,227,234,
elongati0n202,203,222—225,234) reduction in areaZOZ,ZOS,ZZZ,ZZS)
hardness?**2**#*%2?7 fracture toughness**>*** and impact
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toughness®>** of steels”***»**»*2, cast iron’*, welds”*

and Ti-based?”?, Cu-based’*, Al-based”** and Mo-based*””
alloys. Input features included alloy compositions along
with processing and testing parameters, such as cold
deformation degree’”, ageing temperature and time””,
heat treatment temperature and time*>**, testing tem-
perature’”>*** and welding parameters, such as heat
input and interpass temperature’*. Training data were
extracted from literature sources such as the CASTI Metals
books and the ASM handbooks, or were generated by
experimental synthesis and characterization™”.

The models were used to explore the effects of com-
position and processing on the mechanical properties
of alloys and were used in conjunction with optimiza-
tion algorithms to design new materials with enhanced
properties. A model for the properties of maraging
steels”’ was able to predict the effect of Co-Mo inter-
actions on martensite start temperature and hardness,
as well as the optimum composition for the C250 alloy.
The model also predicted that Cu speeds up age hard-
ening by nucleating precipitate formation. Models to
classify the properties of nodular cast iron and austem-
pered ductile iron predicted that adding carbides would
increase the wear resistance of the materials, whereas
the ductility of austempered ductile iron would increase
with austenite content’”’; Cu, Mn and Cr would reduce
strength, whereas Ni would increase it. An ensemble of
ten NNs were trained on industrial data to predict the
strength and ductility of alloy steels as a function of com-
position and tempering temperature’”’. Multiobjective
optimization was performed to find the Pareto-optimal
solution, using the strength Pareto evolutionary algo-
rithm to simultaneously optimize the tensile strength,
the reduction in area and elongation, and their standard
deviations. For high-temperature Ti-based alloys, the
mechanical properties were predicted to be generally
stable up to around 500 °C and start to degrade above
600 °C, which was in agreement with experimental
observations, whereas the alloying elements Al and V
were predicted to increase tensile strength and reduce
elongation®”.

A transformation-induced plasticity steel with
low Si content was designed using NNs and genetic
algorithms*. The concentration of all elements except
P in the Fe-C-Mn-Si-Al-Mo-Cu alloy system was
varied, and different treatment temperatures were
investigated. Dendrites of §-ferrite were found to form,
replacing the allotriomorphic ferrite instead of retaining
austenite. Uniform elongation by 23% was observed (no
necking) by strain-induced transformation of retained
austenite to martensite.

NN models were combined with optimization algo-
rithms to maximize the Charpy impact toughness of
welds?**. When varying the Ni, Mn and C concentra-
tions, the linear optimizer failed to find the optimum,
whereas the other methods predicted a composition
with a toughness of 87 +20] (the experimental value
was measured to be 101]). Varying the concentration
of all 13 components using a local/hybrid optimizer,
which explored the composition space more thoroughly
than other methods, produced a composition with an
increased interpass temperature (300 °C), a Charpy

toughness of 86 +207] at —60 °C and a room-temperature
yield strength of 840+ 105 MPa.

NNs were used to optimize the yield stress and hard-
ness of Mo-based alloys for forging die applications*’
and were trained using CALPHAD/SSOLS6 data to pre-
dict phase stability. The logarithm of likelihood was
maximized so that the optimizer improved the least opti-
mized property, and the composition space was explored
in a random walk. The new alloy had a predicted yield
stress of 722 MPa, a hardness of 2.274 GPa (232HV) and
a cost of $42 per cycle, which is less than the current
least expensive alloy, TZC, at $52 per cycle. Synthesis
and experimental testing indicated that the alloy had
4wt% HfC, a Mo-rich matrix, was thermally stable and
had properties similar to those predicted by ML.

RFs, linear least square, k-nearest neighbour and NN
regression were used to predict fatigue strength, frac-
ture strength, tensile strength and hardness of steels*",
and symbolic regression was combined with genetic
programming to generate equations describing these
properties as a function of composition and tempering
temperature. RFs worked best for predicting fracture
strength, NN for the other properties.

Stacking fault energy. Several different methods,
including RFs, SVMs and NNs, were used to predict
the stacking fault energy in austenitic steels***. This
energy determines plastic deformation mechanisms: a
value below 20 m] m~2 results in transformation-induced
plasticity in the form of martensitic transformations, the
range 20 mJ m™ to 45mJ m gives twinning-induced
plasticity, whereas slip processes dominate for values
greater than 45 mJ m For stacking fault energy clas-
sification, RFs were found to be slightly better than the
other methods: a 10% false positive rate compared with
13% for SVMs or artificial NNs. The misclassification
was primarily between low and medium or medium and
high stacking fault energies, with the models being very
reliable at distinguishing between low and high stacking
fault energies.

Stress hotspots. Stress hotspots (grains experiencing
high stress) were identified using RF classification
models’* and different feature selection methods were
compared®**. The Schmid factor (optimal orientation
of the slip system) was found to be the most important
feature, with hotspots found in grains with low values.
Another important feature in fcc structures was found
to be the angle between the loading direction and the
<100> crystal direction, and small grains were found to
have higher stress’*. Different feature selection meth-
ods were used to select the best features to build new RF
models**. With all features, the area under the curve was
71.94%, whereas with selected features only, it was 81%,
with similar accuracy for all feature selection methods.
FeaLect (an improvement on LASSO) has advantages
over other methods: LASSO tends to arbitrarily select
one feature from a strongly correlated set, Pearson cor-
relation assumes features are independent, recursive fea-
ture elimination and correlated feature selection do not
give a quantitative ranking and RF permutation accu-
racy importance tends to eliminate strongly correlated
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features, even if they are strongly predictive. FeaLect
predicted that hcp grains oriented so that the c-axis is
perpendicular to the strain axis tend to be stress hotspots.

Fatigue and cracking. NNs**"»72* neurofuzzy net-
works>', Bayesian networks”>**® and PCA and linear
regression”’ were used to model fatigue”***!, crack for-
mation and propagation*~%, and ductile damage*" in
Ni superalloys®!, polycrystalline Ti microstructures™,
B-Ti alloys*>*** and steel”*¥".

Threshold fatigue in Ni superalloys was modelled
using neural and neurofuzzy networks™'. Large grain
sizes resulted in low yield stress but also in a high fatigue
threshold, owing to the associated closure effects. The
necklace grain structure was found to have little effect
on the models, owing to the few data points in the
original set.

Bayesian networks were used to investigate crack
front propagation in -Ti alloys*, such as VST-55531
(REF.>*). Fatigue indicator parameters were calculated
from the micromechanical force field data, represent-
ing slip systems and strains. Analysis using Bayesian
networks indicated that the different fatigue indicator
parameters had similar predictive ability, except for total
plasticity, which was significantly worse than the other
indicators. The model was found to be reliable for pre-
dicting failure close to the crack front when residual life
was low, but was untrustworthy far from the crack front.
The model for VST-55531 (REF**) was found to generally
work well for intragranular crack propagation, but had
problems predicting propagation across grain bounda-
ries and needed a minimum distance to the first grain
boundary to properly sample the analysed slip direction.

Deep NN models were developed to predict solid-
ification crack susceptibility in welds in sheet metal
stainless steel”””. Longitudinal Varestraint test data taken
from the literature included composition, welding cur-
rent, voltage and velocity, applied strain and total crack
length. PCA was used to reduce input data dimension-
ality to 15 and 10 principle components; however, this
worsened the model accuracy. Pearson correlations of
0.89, 0.89 and 0.93 were obtained for the crack length
test sets using SVMs, shallow NNs and a deep NN,
respectively. The model also predicted the effects of
Mn, Ti, N and Si on the total crack length, and a high
Cr-to-Ni ratio was found to give better crack resistance.

NN were used to determine the Gurson-Tvergaard-
Needleman ductile damage parameters during sheet
metal forming in steel’””. These parameters, based on
the void volume fractions and nucleation strains, were
used to model the elliptical bulge test and Erichsen cup-
ping test: the resulting finite element model identifies the
location of the fracture reasonably well.

Several regression models were used to investigate
the processing-composition-fatigue strength (maxi-
mum stress for a certain number of cycles before break-
ing) relationships for carbon, low-alloy, carburizing and
spring steels?****. Training data were taken from the
National Institute of Materials Science (NIMS) database
and features included composition, processing details
such as heat treatment conditions and mechanical prop-
erties such as yield strength and hardness. Tempering

temperature was found to be the most important feature,
partly owing to high temperatures being combined with
carburization steps. Other important features included
carburization time and temperature, diffusion time and
temperature, and quenching media temperature, with
the most important element in the composition being C.
An online tool has been made available for generating

predictions using the models*”.

Wear. SVM:s with radial, exponential radial and polyno-
mial basis kernels were used to model wear in flotation
balls’ used for milling Cu ore’”, with the exponential
radial basis kernels giving the lowest root-mean-square
errors. The wear rate of the flotation balls was found to
reduce both with increasing hardness and, in the case of
low-hardness compositions, with increasing Mn content.

NNs combined with orthogonal design were used
to optimize the wear resistance of chromium white cast
iron**®, Cu was found to be the most important element,
then Si, Mn and Cr. An expression for the wear rate
was obtained using quadratic regression in addition to
the NN model. For an additional data set generated for
testing, the quadratic regression model had a maximum
error of 188.2%, whereas the error for the NN was just
3.1%, indicating that the NN was much more generally
applicable when it came to predicting behaviour outside
of the training set.

Creep. Creep in stainless steel alloys was modelled using
RE, nearest neighbour, linear regression, kernel ridge
regression and Bayesian ridge regression’”’. Pearson
correlation and maximum information correlation
were used for feature selection, with stress and creep test
temperature found to be the most important. All models
except for kernel ridge regression had accuracy greater
than 90% when trained with just composition and stress.
With all features included, only RE, nearest neighbour
and Bayesian ridge regression had accuracy above 90%.
Bayesian NNs were used to design ferritic creep-
resistant steels””. Data were extracted from the literature
for Fe-2.25Cr-1Mo (a bainitic steel for use up to 565°C)
and Fe—(9-12)Cr (a martensitic steel). Input variables
included composition, heat treatment type, temperature,
duration and cooling rate, and the output was the rupture
stress as a function of time and temperature. 10CrMoW
was correctly predicted by the model to have a higher
rupture stress than 2.25Cr-1Mo. Error bars were larger
for 10CrMoW and for higher rupture times, owing to
less data availability. Co was found to increase strength,
Ni and Al to reduce it. Cuand W tend to form a Laves
phase intermetallic, weakening the material, but W with-
out Cu increases strength. Two new steel compositions
were proposed, with more W and no Cu, Ni, Al or Si.

Thermal properties

ML has been applied to predict thermal properties,
including melting temperature®’, thermal conduc-
tivity*', vibrational energy contribution to thermo-
dynamic stability***? and the thermoelectric figure of
merit (zT)*>*". Four types of regression were compared
for predicting melting temperature*’: least squares, par-
tial least squares, Gaussian process and support vector.
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Support vector regression gave the best predictions for
single-component and binary-component solids. RFs
were leveraged in 2014 (REF**°) to optimize the thermal
conductivity of half-Heuslers*'. In 2017, Natalio Mingo
and colleagues presented a very interesting compari-
son: experiments versus ab initio results*”. The authors
trained RFs to predict the stability of experimentally
reported half-Heusler compounds and compared the
results with several ab initio studies. Some inconsisten-
cies were found and were attributed to factors beyond
those considered by usual ab initio phase stability cal-
culations based on formation enthalpies. To enhance
prediction power at finite temperatures, RFs were also
used to address phonon spectral features, heat capacities,
vibrational entropies and vibrational free energies™.

ML approaches were used to search for materials with
a high thermoelectric figure of merit*****. Classification
trees were used to identify compositions and features
leading to high zT in half-Heuslers*’. Large lattice
parameters and a wide band gap (at high temperatures)
or large hole effective mass (at room temperature)
tended to produce high zT. A ML recommendation
engine (thermoelectrics.citrination.com) was used to
find materials with a high zT (REF**"). Promising can-
didates included Heusler structures with compositions
TiRu,Ga, TiRu,In and MnRu,In, as well as ternary
germanides such as materials in the Mn-Ru-Ge and
Dy-Ru-Ge systems.

Future directions

ML will play an essential role in addressing challenges
that are too difficult for traditional modelling. Going
forwards, it is particularly likely to have a large impact
in the following areas.

Autonomous materials design

Autonomous design and optimization will combine ML
with active learning to choose synthesis priorities>'**
and will include generative models for materials predic-
tion. By balancing exploration (gathering new data in
areas where data are sparse) with exploitation (search-
ing for optimal properties), automated machinery will
be capable of generating large volumes of high-quality
experimental data by running around the clock.

Complex problems

The unavoidability of disorder in systems with a large
number of species” will require the use of ML for the
development of industrial superalloys and high-entropy
systems'*»*, Similarly, ML will be the key to understand-
ing systems where direct modelling of processes and
properties is too expensive, such as glass formation® or
magnetic ordering'*>'**'*". The characterization of grain
boundary chemistry for its role in corrosion processes,
microstructure kinetics and plasticity is another very
difficult problem that is already being tackled by ML.
Methods such as symbolic regression may yield human-
interpretable models that provide new insights into the
fundamental factors governing the behaviour of com-
plex systems®***”**, Similarly, NNs such as autoencoders
may be used to find compact latent representations with
physically interpretable variables***%.

Machine-learned force fields

The development of general-purpose interatomic poten-
tials is one of the most promising applications of ML to
alloy research. These potentials can extend simulation
timescales and length scales, and, via active learning,
achieve predictive accuracy comparable with that of
ab initio calculations. We anticipate that such models
will be used to simulate increasingly realistic systems
(such as polycrystalline materials, composites, inter-
faces, microstructures, materials with defects and sur-
faces) and, eventually, to accelerate the development of
new alloy-based technologies. To such extent, contin-
ued innovation will be necessary to improve accuracy,
training and performance speeds. In particular, advances
in active learning, regularization and the identification
of compact, physically meaningful representations are
likely to have significant impact.

Quantum calculations

DFT, one of the most successful and widely used
methods in atomic-scale alloy modelling, relies on
approximations to calculate material properties from
first principles. These approximations include the use
of an approximate exchange-correlation functional
(as the exact form remains unknown) and the use of
pseudopotentials or projector-augmented waves. The
speed and accuracy of a DFT calculation depends, to
a large extent, on the quality of these approximations.
ML holds the promise of improving these methods by
systematically fitting them to highly accurate experi-
mental and/or computational data, while satisfying
known physical constraints®. The use of ML to gener-
ate exchange-correlation functionals is emerging as
a particularly active field of research?*'->*.

Data standardization and integration

ML requires large data sets of both positive and nega-
tive results for training and testing, generated using con-
sistent methodologies and distributed in standardized,
interoperable formats. To address the latter issue — the
variety of interfaces and formats used by materials data-
bases — the Open Databases Integration for Materials
Design (OPTIMADE) consortium has developed a
universal application programming interface’®, provid-
ing a common search syntax and a standardized out-
put format. The Novel Materials Discovery (NOMAD)
repository** aggregates materials data from multiple
sources to create a centralized resource.

Delta learning

Models trained on the differences between large sets
of inexpensive, low-fidelity data and small sets of
high-fidelity data (for example, using computational
methods that go beyond local density approximate/
generalized gradient approximation or experimental
means) can be used to ‘bootstrap’ the larger database
to the higher fidelity level of the smaller one. The
model learns the difference by fitting to the entries
common to both data sets. The outcome is a ML model
that can make predictions consistent with the physics
included in the more expensive method. Delta learning
has already been tested in a handful of cases and will
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23.

develop into a standard method in the toolbox of the

materials scientist*°,

Conclusions

ML is a revolutionary tool in alloy research. It is ena-
bling a metallurgical renaissance. Combined with
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problems. In this Review, we have briefly described the

state of the field and analysed several concepts, meth-
ods and applications. The partnership between ML
and alloy research will rapidly adapt to the challenges

databases and high-throughput characterization, this

approach can already solve outstanding materials
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