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1  | INTRODUC TION

Landscape patterns shape ecosystem characteristics (Turner, 1989, 
2005; Von Humboldt & Bonpland,  2010), including biodiversity, 

disturbance and energy cycling (Uuemaa et al., 2009). For example, 
complex landscapes may harbour higher habitat diversity, promoting 
higher biodiversity (Kumar et  al.,  2006). Landscape heterogeneity 
has been explored both for illuminating ecosystem pattern–process 
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Abstract
1.	 The geodiv r package calculates gradient surface metrics from imagery and other 

gridded datasets to provide continuous measures of landscape heterogeneity for 
landscape pattern analysis.

2.	 geodiv is the first open-source, command line toolbox for calculating many gradi-
ent surface metrics and easily integrates parallel computing for applications with 
large images or rasters (e.g. remotely sensed data). All functions may be applied 
either globally to derive a single metric for an entire image or locally to create a 
texture image over moving windows of a user-defined extent.

3.	 We present a comprehensive description of the functions available through geodiv. 
A supplemental vignette provides an example application of geodiv to the fields of 
landscape ecology and biogeography.

4.	 geodiv allows users to easily retrieve estimates of spatial heterogeneity for a variety 
of purposes, enhancing our understanding of how environmental structure influ-
ences ecosystem processes. The package works with any continuous imagery and 
may be widely applied in many fields where estimates of surface complexity are 
useful.
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relationships (Kumar et al., 2006; St-Louis et al., 2006; Walz, 2011) 
and identifying temporal changes in ecosystem patterns (e.g. Stevens 
et al., 2017). Numerous methods for measuring heterogeneity have 
been developed and studied, with methods falling broadly into two 
categories: patch and gradient metrics.

Many studies addressing relationships between landscape het-
erogeneity and ecological processes have utilized metrics from the 
patch mosaic model (Turner, 2005). This model conceptualizes land-
scapes as a set of patches where each patch contains similar eco-
system characteristics (e.g. a burned area). Within this framework, 
patch metrics are used to describe these patches and their surround-
ing landscapes. These metrics are derived from categorical repre-
sentations of land cover or discretized continuous variables which 
have been split into patches composed of pixels of the same class 
(McGarigal & Cushman,  2005). Metrics either describe individual 
patch characteristics, such as edge length (Helzer & Jelinski, 1999), 
or summarize the spatial configuration of patches across a landscape 
(Jaeger, 2000). The patch mosaic model and associated metrics are 
useful for representing categorical variables such as land cover class. 
However, most landscape features, and associated ecological pro-
cesses, are continuous. Even categorical data like land cover maps 
are derived from imagery with continuous values. While the patch 
mosaic model excels at providing a simplified view of landscape het-
erogeneity (Turner, 2005), this approach can miss important features 
of continuous surfaces such as altitudinal temperature changes or 
the differences between smooth versus hilly landscapes (Cushman 
et al., 2010; Lausch et al., 2015).

An alternative to the patch mosaic model, the gradient surface 
model, reflects the continuous nature of landscapes (McGarigal 
et al., 2009). Gradient surface metrics (GSMs) originated in the fields 
of physics and materials science, and are used to describe the rough-
ness of machined surfaces. The metrics were not originally devel-
oped for use in landscape ecology, and their application to the field 
is somewhat novel. Several recent papers have illustrated how these 
metrics link with both patch metrics and ecological processes. For 
example, average roughness, root mean square roughness and sur-
face kurtosis can align with the Normalized Landscape Shape Index 

(NLSI) patch metric, a measure of patch shape complexity (Kedron 
et  al.,  2018). The gradient surface model views landscapes at the 
scale at which data are delivered (i.e. on a grid), allowing for consid-
eration of gradients across an area, or spatially complex landscapes. 
In this model, GSMs represent an area's heterogeneity within the 
larger landscape. These metrics are calculated from continuous val-
ues rather than discrete patches of categorical values.

Gradient surface metrics can represent more complex aspects of 
the landscape surface, allowing for novel linkages between ecosys-
tem pattern and process (Kedron et al., 2018; McGarigal et al., 2009). 
For example, St-Louis et al. (2006) used image texture to character-
ize habitat structure in New Mexico, explaining 76% of the variability 
in bird species richness, in part by eliminating errors associated with 
habitat boundary delineation. GSMs, combined with climate veloc-
ities, have also been evaluated for their use in delineating priority 
conservation areas for climate change (Carroll et al., 2017). However, 
despite numerous studies focused on developing and applying these 
metrics, they remain more difficult to apply than patch metrics, pri-
marily due to the challenges associated with their calculation and 
interpretation (Costanza et al., 2019; Kedron et al., 2018).

With regard to GSM calculation, while several software pro-
grams exist for calculating these metrics (Table 1), these programs 
(e.g. Scanning Probe Image Processor software (SPIPTM; Image 
Metrology,  2019)) are proprietary and/or expensive. As a result, 
they remain out of reach for many researchers. Additionally, while 
formulas for GSMs are published, code is not, making it diffi-
cult to determine the exact methods behind the metric calcula-
tions and hindering data provenance. We note that FRAGSTATS 
(McGarigal,  1995) is expected to implement a subset of metrics 
in an upcoming open-source release where calculation will be 
possible through a graphical user interface (Costanza et al., 2019; 
Kedron et  al.,  2018). However, the ability to implement a wide 
range of surface metrics via the command line where scripts can 
document their calculation is still lacking. Bringing GSMs into an 
open access platform that implements more reproducible cal-
culations, such as the widely used R statistical software (R Core 
Team,  2020), is an essential next step (Table  1). Many of the 

TA B L E  1   Characteristics of FRAGSTATS, Image Metrology SPIPTM and r packages landscapemetrics and geodiv. Modified from Table 1 of 
the study by Hesselbarth et al. (2019). Note that patch metrics apply to categorical data, whereas gradient metrics apply to continuous data

Characteristics FRAGSTATS
Image Metrology 
SPIPTM landscapemetrics geodiv

Metrics for patch or gradient model Patch (gradient in progress) Gradient Patch Gradient

Open source No No Yes Yes

Easy integration into scripted workflows No No Yes Yes

Utility functions Sampling Various Various Various

Local application of functions over moving 
windows

NA* No NA Yes

Integrated parallel processing No No No Yes

Compatible across operating systems No No Yes Yes

*NA = not applicable in this context.
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FRAGSTATS patch-based calculations were recently adapted to 
an r package (landscapemetrics; Hesselbarth et al., 2019), demon-
strating the importance of adopting open-source, command line 
approaches. However, landscapemetrics was developed indepen-
dent of FRAGSTATS, and it is unclear whether it will incorporate 
GSMs in the future.

We introduce a new r package, geodiv, which is available on R's 
CRAN server and calculates GSMs from gridded data. This package 
provides functions for calculating both single-value, global, metrics 
over images, as well as applying metrics locally using moving win-
dows. We introduce functions that calculate GSMs and also provide 
a tutorial to demonstrate patterns of, and relationships among, met-
rics in Oregon, USA in a supplemental vignette. This new r package 
allows researchers to take full advantage of the benefits of more com-
plex heterogeneity metrics. Its ability to work with both rasters and 
matrices, compatibility across operating systems and capacity to run 
calculations in parallel to increase computational efficiency enables 
numerous applications. We also quantify function runtimes and 
provide suggestions for trade-offs to consider when computational 
resources are limited. By providing these metrics in an open-source 
and transparent way, written in a commonly used programming lan-
guage designed to work both locally and in parallel computing envi-
ronments, geodiv includes many critical improvements over available 
software and will be an important tool for openly reproducible ecolog-
ical analysis of continuous surfaces from local to global spatial extents.

2  | FUNC TIONS

geodiv functions include: (a) metric functions, (b) wrapper func-
tions for applying metrics via moving window analysis and (c) utility 

functions necessary for metric calculations. Metric functions may 
either be calculated globally, resulting in a single value for an entire 
raster, or locally, creating a texture image by applying the function 
over moving windows.

2.1 | Surface metrics

geodiv includes functions to calculate all metrics (Table 2) discussed 
in the studies by Kedron et al.  (2018) and McGarigal et al.  (2009), 
wherein GSMs were derived using the SPIPTM software. These 
metrics cluster into four categories based on behavioural similar-
ity: surface roughness, surface value distribution shape, and angu-
lar and radial surface texture (McGarigal et al., 2009; Table 2). The 
variables represent surface heterogeneity, and correlate well with 
several patch metrics (McGarigal et  al.,  2009). Metrics represent-
ing the surface value distribution are aspatial and represent how 
the surface value distribution within a defined area differs from a 
Gaussian distribution. Angular texture metrics describe the direc-
tion and magnitude of surface value autocorrelation. Radial surface 
metrics describe the level of repetition in values radiating out from 
any location on the surface. Both angular and radial texture metrics 
are spatial (McGarigal et al., 2009).

Functions are provided to calculate GSMs across different spa-
tial extents and with different computational resources. Individual 
metric functions calculate metrics globally to generate a single 
value for the entire raster and provide information on overall land-
scape heterogeneity. Alternatively, the ‘texture_image’ and ‘focal_
metrics’ functions calculate metrics locally at a specified spatial 
grain to quantify spatial heterogeneity across a raster. The ‘tex-
ture_image’ function is faster than the ‘focal_metrics’ function, 

TA B L E  2   Descriptions for a subset of gradient surface metric (GSM) functions. Most of the equations for the metrics are from the SPIPTM 
user guide (Image Metrology, 2019). Functions take rasters and matrices as inputs. For a complete list of GSM functions, benchmarking 
results and corresponding equations, see Table S1, and Figures S1 and S2. Metric categories are from the study by McGarigal et al. (2009)

Metric Function name Description Category

Average roughness Sa Absolute deviation of values from the mean value Roughness

Root mean square roughness Sq Standard deviation of surface values relative to the mean 
value

Roughness

Ten-point height S10z Average height above the mean surface for the five highest 
local maxima plus the average height below the mean 
surface for the five lowest local minima

Roughness

Root mean square slope Sdq Root mean square slope using the two-point method Roughness

Area root mean square slope Sdq6 Root mean square slope using the seven-point method Roughness

Surface area ratio Sdr Ratio of a flat surface to the actual surface Roughness

Surface bearing index Sbi Ratio of root mean square roughness (Sq) to height at 5% of 
the bearing area curve

Distribution

Fractal dimension Sfd 3D fractal dimension, calculated using the triangular prism 
surface area method.

Radial

Dominant texture direction Std Angle of dominating texture as found from the Fourier 
spectrum image

Angular

Texture direction index Stdi Relative dominance of Std Angular
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but uses more memory because data are loaded onto multiple 
cores for processing (Table S3). As a result, ‘texture_image’ is bet-
ter for users with access to high-memory machines, or users who 
require circular windows, which are more complex to calculate. 
The ‘focal_metrics’ function is better for users with computational 
limitations, or for calculations over smaller images with square 
windows, and is based on the landscapemetrics ‘window_lsm’ func-
tion (Hesselbarth et al., 2019).

Several utility functions that manipulate rasters and matrices 
to calculate GSMs are also included for transparency and for their 
general utility. These utility functions (Table S2) include methods for 
directionally shifting matrix values, fitting and removing best-fit sur-
faces; calculating surface area; and estimating and plotting summary 
functions of raster values.

3  | A SIMPLE WORKFLOW FOR 
GENER ATING GSMs FROM R A STERS

Here, we demonstrate how to apply geodiv functions, using NAIP-
derived Normalized Difference Vegetation Index (NDVI) at 15-m 
resolution covering the 2017 Jolly Mountain fire in Washington state 
(Figure 1). As described above, there are two application methods: 
(a) global:functions applied to get a single value representing overall 
raster heterogeneity, or (b) local: functions applied within moving 
windows over the raster.

An optional pre-processing step is to remove any overall trend 
in the raster using the ‘remove_plane’ function (Box  1). Removing 
the trend allows local heterogeneity to stand out; otherwise, this 
heterogeneity might be masked by larger spatial trends in the data.

F I G U R E  1   Pre- and post-fire Normalized Difference Vegetation Index (NDVI) for the 2017 Jolly Mountain fire in Washington (top panel), 
and texture images of average roughness (Sa; middle panel) and fractal dimension (Sfd; bottom panel) created from NDVI. Texture images 
were created using 30 × 30 pixel (450 m × 450 m) square windows
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Box  1 demonstrates the global calculation of four metrics (Sa, 
Sbi, Std and Sfd), representing each of the categories described in 
the study by McGarigal et al. (2009), and the windowed, local, cal-
culation of Sa using ‘texture_image’. Texture image creation can 
be time-intensive, so the ‘texture_image’ function has a logical 
argument ‘parallel’, which allows users to perform the calculations in 
parallel across a specified number of cores (R Core Team, 2020). See 
Tables S1 and S3 for the computational requirements for all geodiv 
functions.

The texture images for average roughness (Sa) and fractal 
dimension (Sfd; Figure  1) highlight the utility of GSMs for ecolog-
ical applications. Disturbed areas are important for increasing 
variation in otherwise homogeneous landscapes, and disturbance-
induced changes in landscape heterogeneity can be assessed to de-
termine impacts on ecosystem services (Turner et al., 2013). In this 

example, the boundaries of higher severity areas post-fire are clearly 
delineated with average roughness. Average roughness is the stan-
dard deviation of values (Table S1), and highlights these regions with 
values above ~0.35. Fractal dimension measures the complexity of a 
self-similar pattern, and here highlights areas with finer scale hetero-
geneity both pre- and post-fire. Sa and Sfd provide complementary 
information on how fire impacted the landscape, showing that mul-
tiple metrics may be useful to researchers.

4  | AN ADVANCED VIGNET TE

By assessing heterogeneity using a variety of metrics, research-
ers can gain a more complete picture of heterogeneity than they 
would with a single metric (Dahlin,  2016). To more fully dem-
onstrate the utility of geodiv for this common application, the 
vignette contains an advanced tutorial that applies all surface 
metric functions to images across Oregon, USA and examines the 
patterns of, and relationships among, metrics. The vignette cal-
culates metrics for both elevation data from the Shuttle Radar 
Topography Mission (SRTM) and a measure of canopy greenness, 
the Enhanced Vegetation Index (EVI). The vignette shows how to 
visualize metrics over Oregon to capture different aspects of land-
scape heterogeneity.

The vignette also examines the correlations among metrics along 
a transect crossing the state and determines how the metrics cluster 
using two methods—hierarchical clustering and principal component 
analysis (PCA). The vignette, associated data and intermediate out-
puts generated by the vignette are available on figshare (https://doi.
org/10.6084/m9.figshare.12834896.v5) and GitHub (https://github.
com/bioXgeo/geodiv).

5  | CONCLUSION

Here, we introduced geodiv, an r package for calculating gradient 
surface metrics. We provided a brief overview of the package, as 
well as a simple example of its use. A more detailed example is 
available in the vignette. The range and simplicity of functions 
included in geodiv will allow for a wider application of GSMs in 
landscape ecology and beyond. As large volumes of imagery 
become more available and computational limits are reduced, 
tools like geodiv will allow ecologists to analyse landscapes in new, 
open and reproducible ways.
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BOX 1 Code for importing NDVI and removing 
the best-fit surface. The ‘remove_plane’ function 
takes input gridded data and returns a grid as well 
as the polynomial order (between 0 and 3) that 
minimizes mean absolute error (MAE) between the 
best-fit surface and original image. However, 
removing the surface may not be suitable for all 
applications and users should consider this before 
applying the function.

Text following ‘#’ are comments in R code and function 
outputs are italicized.

# Import post-fire NDVI

naip2017 <- raster('naip _ ndvi2017.tif')

# Remove the best-fit surface 

newdata2017 <- remove _ plane(naip2017)

<i>"Order</i> <i>of polynomial that mini-
mizes errors: 1"</i>
# Calculate average roughness

sa(newdata2017)

<i>0.2966012</i>
# Calculate surface bearing index

sbi(newdata2017)

<i>0.6522381</i>
# Calculate dominant texture direction

std(newdata2017, option=1)
<i>0</i>
# Calculate fractal dimension

sfd(newdata2017)

<i>2.000481</i>
# Create a texture image of post-fire av-

erage roughness calculated with a square 

moving window with 30-pixel edges. 

texture _ image(newdata2017, window _

type='square', size=30, metric='sa')

https://doi.org/10.6084/m9.figshare.12834896.v5
https://doi.org/10.6084/m9.figshare.12834896.v5
https://github.com/bioXgeo/geodiv
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