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3. We present a comprehensive description of the functions available through ceobiv.
A supplemental vignette provides an example application of ceopliv to the fields of
landscape ecology and biogeography.

4. ceoplv allows users to easily retrieve estimates of spatial heterogeneity for a variety
of purposes, enhancing our understanding of how environmental structure influ-
ences ecosystem processes. The package works with any continuous imagery and
may be widely applied in many fields where estimates of surface complexity are

useful.
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1 | INTRODUCTION disturbance and energy cycling (Uuemaa et al., 2009). For example,

complex landscapes may harbour higher habitat diversity, promoting
Landscape patterns shape ecosystem characteristics (Turner, 1989, higher biodiversity (Kumar et al., 2006). Landscape heterogeneity
2005; Von Humboldt & Bonpland, 2010), including biodiversity, has been explored both for illuminating ecosystem pattern-process
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relationships (Kumar et al., 2006; St-Louis et al., 2006; Walz, 2011)
and identifying temporal changes in ecosystem patterns (e.g. Stevens
et al., 2017). Numerous methods for measuring heterogeneity have
been developed and studied, with methods falling broadly into two
categories: patch and gradient metrics.

Many studies addressing relationships between landscape het-
erogeneity and ecological processes have utilized metrics from the
patch mosaic model (Turner, 2005). This model conceptualizes land-
scapes as a set of patches where each patch contains similar eco-
system characteristics (e.g. a burned area). Within this framework,
patch metrics are used to describe these patches and their surround-
ing landscapes. These metrics are derived from categorical repre-
sentations of land cover or discretized continuous variables which
have been split into patches composed of pixels of the same class
(McGarigal & Cushman, 2005). Metrics either describe individual
patch characteristics, such as edge length (Helzer & Jelinski, 1999),
or summarize the spatial configuration of patches across a landscape
(Jaeger, 2000). The patch mosaic model and associated metrics are
useful for representing categorical variables such as land cover class.
However, most landscape features, and associated ecological pro-
cesses, are continuous. Even categorical data like land cover maps
are derived from imagery with continuous values. While the patch
mosaic model excels at providing a simplified view of landscape het-
erogeneity (Turner, 2005), this approach can miss important features
of continuous surfaces such as altitudinal temperature changes or
the differences between smooth versus hilly landscapes (Cushman
et al., 2010; Lausch et al., 2015).

An alternative to the patch mosaic model, the gradient surface
model, reflects the continuous nature of landscapes (McGarigal
et al., 2009). Gradient surface metrics (GSMs) originated in the fields
of physics and materials science, and are used to describe the rough-
ness of machined surfaces. The metrics were not originally devel-
oped for use in landscape ecology, and their application to the field
is somewhat novel. Several recent papers have illustrated how these
metrics link with both patch metrics and ecological processes. For
example, average roughness, root mean square roughness and sur-

face kurtosis can align with the Normalized Landscape Shape Index

(NLSI) patch metric, a measure of patch shape complexity (Kedron
et al., 2018). The gradient surface model views landscapes at the
scale at which data are delivered (i.e. on a grid), allowing for consid-
eration of gradients across an area, or spatially complex landscapes.
In this model, GSMs represent an area's heterogeneity within the
larger landscape. These metrics are calculated from continuous val-
ues rather than discrete patches of categorical values.

Gradient surface metrics can represent more complex aspects of
the landscape surface, allowing for novel linkages between ecosys-
tem pattern and process (Kedron et al., 2018; McGarigal et al., 2009).
For example, St-Louis et al. (2006) used image texture to character-
ize habitat structure in New Mexico, explaining 76% of the variability
in bird species richness, in part by eliminating errors associated with
habitat boundary delineation. GSMs, combined with climate veloc-
ities, have also been evaluated for their use in delineating priority
conservation areas for climate change (Carroll et al., 2017). However,
despite numerous studies focused on developing and applying these
metrics, they remain more difficult to apply than patch metrics, pri-
marily due to the challenges associated with their calculation and
interpretation (Costanza et al., 2019; Kedron et al., 2018).

With regard to GSM calculation, while several software pro-
grams exist for calculating these metrics (Table 1), these programs
(e.g. Scanning Probe Image Processor software (SPIP™: Image
Metrology, 2019)) are proprietary and/or expensive. As a result,
they remain out of reach for many researchers. Additionally, while
formulas for GSMs are published, code is not, making it diffi-
cult to determine the exact methods behind the metric calcula-
tions and hindering data provenance. We note that FRAGSTATS
(McGarigal, 1995) is expected to implement a subset of metrics
in an upcoming open-source release where calculation will be
possible through a graphical user interface (Costanza et al., 2019;
Kedron et al.,, 2018). However, the ability to implement a wide
range of surface metrics via the command line where scripts can
document their calculation is still lacking. Bringing GSMs into an
open access platform that implements more reproducible cal-
culations, such as the widely used R statistical software (R Core
Team, 2020), is an essential next step (Table 1). Many of the

TABLE 1 Characteristics of FRAGSTATS, Image Metrology SPIP™ and r packages LanpscapemETRICs and Geopiv. Modified from Table 1 of
the study by Hesselbarth et al. (2019). Note that patch metrics apply to categorical data, whereas gradient metrics apply to continuous data

Characteristics FRAGSTATS

Metrics for patch or gradient model

Open source No

Easy integration into scripted workflows No

Utility functions Sampling

Local application of functions over moving NA’
windows

Integrated parallel processing No

Compatible across operating systems No

*NA = not applicable in this context.

Patch (gradient in progress)

Image Metrology
SPIP™

LANDSCAPEMETRICS GEODIV
Gradient Patch Gradient
No Yes Yes

No Yes Yes
Various Various Various
No NA Yes

No No Yes

No Yes Yes
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FRAGSTATS patch-based calculations were recently adapted to
an r package (LaNDscaPeMETRICS; Hesselbarth et al., 2019), demon-
strating the importance of adopting open-source, command line
approaches. However, LANDSCAPEMETRICS was developed indepen-
dent of FRAGSTATS, and it is unclear whether it will incorporate
GSMs in the future.

We introduce a new R package, Geopiv, which is available on R's
CRAN server and calculates GSMs from gridded data. This package
provides functions for calculating both single-value, global, metrics
over images, as well as applying metrics locally using moving win-
dows. We introduce functions that calculate GSMs and also provide
a tutorial to demonstrate patterns of, and relationships among, met-
rics in Oregon, USA in a supplemental vignette. This new r package
allows researchers to take full advantage of the benefits of more com-
plex heterogeneity metrics. Its ability to work with both rasters and
matrices, compatibility across operating systems and capacity to run
calculations in parallel to increase computational efficiency enables
numerous applications. We also quantify function runtimes and
provide suggestions for trade-offs to consider when computational
resources are limited. By providing these metrics in an open-source
and transparent way, written in a commonly used programming lan-
guage designed to work both locally and in parallel computing envi-
ronments, Gceoplv includes many critical improvements over available
software and will be an important tool for openly reproducible ecolog-
ical analysis of continuous surfaces from local to global spatial extents.

2 | FUNCTIONS

ceopiv functions include: (a) metric functions, (b) wrapper func-

tions for applying metrics via moving window analysis and (c) utility

TABLE 2 Descriptions for a subset of gradient surface metric (GSM) functions. Most of the equations for the metrics are from the SPI

functions necessary for metric calculations. Metric functions may
either be calculated globally, resulting in a single value for an entire
raster, or locally, creating a texture image by applying the function

over moving windows.

2.1 | Surface metrics

Geoblv includes functions to calculate all metrics (Table 2) discussed
in the studies by Kedron et al. (2018) and McGarigal et al. (2009),

P™ software. These

wherein GSMs were derived using the SPI
metrics cluster into four categories based on behavioural similar-
ity: surface roughness, surface value distribution shape, and angu-
lar and radial surface texture (McGarigal et al., 2009; Table 2). The
variables represent surface heterogeneity, and correlate well with
several patch metrics (McGarigal et al., 2009). Metrics represent-
ing the surface value distribution are aspatial and represent how
the surface value distribution within a defined area differs from a
Gaussian distribution. Angular texture metrics describe the direc-
tion and magnitude of surface value autocorrelation. Radial surface
metrics describe the level of repetition in values radiating out from
any location on the surface. Both angular and radial texture metrics
are spatial (McGarigal et al., 2009).

Functions are provided to calculate GSMs across different spa-
tial extents and with different computational resources. Individual
metric functions calculate metrics globally to generate a single
value for the entire raster and provide information on overall land-
scape heterogeneity. Alternatively, the ‘texture_image’ and ‘focal_
metrics’ functions calculate metrics locally at a specified spatial
grain to quantify spatial heterogeneity across a raster. The ‘tex-
ture_image’ function is faster than the ‘focal_metrics’ function,

pT™

user guide (Image Metrology, 2019). Functions take rasters and matrices as inputs. For a complete list of GSM functions, benchmarking
results and corresponding equations, see Table S1, and Figures S1 and S2. Metric categories are from the study by McGarigal et al. (2009)

Metric Function name Description Category

Average roughness Sa Absolute deviation of values from the mean value Roughness

Root mean square roughness Sq Standard deviation of surface values relative to the mean Roughness
value

Ten-point height 510z Average height above the mean surface for the five highest Roughness
local maxima plus the average height below the mean
surface for the five lowest local minima

Root mean square slope Sdq Root mean square slope using the two-point method Roughness

Area root mean square slope Sdqé Root mean square slope using the seven-point method Roughness

Surface area ratio Sdr Ratio of a flat surface to the actual surface Roughness

Surface bearing index Sbi Ratio of root mean square roughness (Sq) to height at 5% of Distribution
the bearing area curve

Fractal dimension Sfd 3D fractal dimension, calculated using the triangular prism Radial
surface area method.

Dominant texture direction Std Angle of dominating texture as found from the Fourier Angular
spectrum image

Texture direction index Stdi Relative dominance of Std Angular
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but uses more memory because data are loaded onto multiple
cores for processing (Table S3). As a result, ‘texture_image’ is bet-
ter for users with access to high-memory machines, or users who
require circular windows, which are more complex to calculate.
The ‘focal_metrics’ function is better for users with computational
limitations, or for calculations over smaller images with square
windows, and is based on the LanDscaPEMETRICS ‘window_Ism’ func-
tion (Hesselbarth et al., 2019).

Several utility functions that manipulate rasters and matrices
to calculate GSMs are also included for transparency and for their
general utility. These utility functions (Table S2) include methods for
directionally shifting matrix values, fitting and removing best-fit sur-
faces; calculating surface area; and estimating and plotting summary
functions of raster values.

Pre-Fire NDVI

47.38°N

47.36°N

47.34°N

47.32°N

47.3°N

Pre-Fire Sa
47.38°N
47.36°N
47.34°N
47.32°N

47.3°N

Pre-Fire Sfd
47.38°N
47.36°N
47.34°N
47.32°N

47.3°N

3 | ASIMPLE WORKFLOW FOR
GENERATING GSMs FROM RASTERS

Here, we demonstrate how to apply ceopiv functions, using NAIP-
derived Normalized Difference Vegetation Index (NDVI) at 15-m
resolution covering the 2017 Jolly Mountain fire in Washington state
(Figure 1). As described above, there are two application methods:
(a) global:functions applied to get a single value representing overall
raster heterogeneity, or (b) local: functions applied within moving
windows over the raster.

An optional pre-processing step is to remove any overall trend
in the raster using the ‘remove_plane’ function (Box 1). Removing
the trend allows local heterogeneity to stand out; otherwise, this
heterogeneity might be masked by larger spatial trends in the data.

0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Post-Fire Sfd

2.016
2.014
2.012
2.010
2.008
2.006
2.004
2.002

T T T T T
121.05°W  121°W  120.95°W 120.9°W

121.05°W  121°W  120.95°W 120.9°W

FIGURE 1 Pre- and post-fire Normalized Difference Vegetation Index (NDVI) for the 2017 Jolly Mountain fire in Washington (top panel),
and texture images of average roughness (Sa; middle panel) and fractal dimension (Sfd; bottom panel) created from NDVI. Texture images

were created using 30 x 30 pixel (450 m x 450 m) square windows
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BOX 1 Code forimporting NDVI and removing
the best-fit surface. The ‘remove_plane’ function
takes input gridded data and returns a grid as well
as the polynomial order (between 0 and 3) that
minimizes mean absolute error (MAE) between the
best-fit surface and original image. However,
removing the surface may not be suitable for all
applications and users should consider this before
applying the function.

Text following ‘#’ are comments in R code and function

outputs are italicized.

# Import post-fire NDVI

naip2017 <- raster('naip ndvi2017.tif'")

# Remove the best-fit surface

newdata201l7 <- remove plane(naip2017)

<i>"Order</i> <i>of polynomial that mini-

mizes errors: 1"</i>

# Calculate average roughness
a(newdata2017)

<1>0.2966012</1i>

# Calculate surface bearing index
sbi(newdata2017)

<1>0.6522381</i>

# Calculate dominant texture direction
std(newdata2017, option=l)

<i>0</i>

# Calculate fractal dimension
sfd(newdata2017)

<i>2.000481</i>

# Create a texture image of post-fire av-

erage roughness calculated with a square

moving window with 30-pixel edges.

texture image(newdata2017, window

type='square', size=30, metric='sa')

Box 1 demonstrates the global calculation of four metrics (Sa,
Sbi, Std and Sfd), representing each of the categories described in
the study by McGarigal et al. (2009), and the windowed, local, cal-
culation of Sa using ‘texture_image’. Texture image creation can
be time-intensive, so the ‘texture_image’ function has a logical
argument ‘parallel’, which allows users to perform the calculations in
parallel across a specified number of cores (R Core Team, 2020). See
Tables S1 and S3 for the computational requirements for all ceobiv
functions.

The texture images for average roughness (Sa) and fractal
dimension (Sfd; Figure 1) highlight the utility of GSMs for ecolog-
ical applications. Disturbed areas are important for increasing
variation in otherwise homogeneous landscapes, and disturbance-
induced changes in landscape heterogeneity can be assessed to de-

termine impacts on ecosystem services (Turner et al., 2013). In this

example, the boundaries of higher severity areas post-fire are clearly
delineated with average roughness. Average roughness is the stan-
dard deviation of values (Table S1), and highlights these regions with
values above ~0.35. Fractal dimension measures the complexity of a
self-similar pattern, and here highlights areas with finer scale hetero-
geneity both pre- and post-fire. Sa and Sfd provide complementary
information on how fire impacted the landscape, showing that mul-
tiple metrics may be useful to researchers.

4 | AN ADVANCED VIGNETTE

By assessing heterogeneity using a variety of metrics, research-
ers can gain a more complete picture of heterogeneity than they
would with a single metric (Dahlin, 2016). To more fully dem-
onstrate the utility of ceobiv for this common application, the
vignette contains an advanced tutorial that applies all surface
metric functions to images across Oregon, USA and examines the
patterns of, and relationships among, metrics. The vignette cal-
culates metrics for both elevation data from the Shuttle Radar
Topography Mission (SRTM) and a measure of canopy greenness,
the Enhanced Vegetation Index (EVI). The vignette shows how to
visualize metrics over Oregon to capture different aspects of land-
scape heterogeneity.

The vignette also examines the correlations among metrics along
a transect crossing the state and determines how the metrics cluster
using two methods—hierarchical clustering and principal component
analysis (PCA). The vignette, associated data and intermediate out-
puts generated by the vignette are available on figshare (https://doi.
org/10.6084/m9.figshare.12834896.v5) and GitHub (https://github.
com/bioXgeo/geodiv).

5 | CONCLUSION

Here, we introduced ceoblv, an r package for calculating gradient
surface metrics. We provided a brief overview of the package, as
well as a simple example of its use. A more detailed example is
available in the vignette. The range and simplicity of functions
included in ceopiv will allow for a wider application of GSMs in
landscape ecology and beyond. As large volumes of imagery
become more available and computational limits are reduced,
tools like ceopiv will allow ecologists to analyse landscapes in new,
open and reproducible ways.
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