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Abstract

The use of an integrated system framework, characterized by numerous cyber/physical components
(sensor measurements, signals to actuators) connected through wired/wireless networks, has not
only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks.
State measurement cyberattacks could pose threats to process control systems since feedback control
may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection con-
cepts based on Lyapunov-based economic model predictive control (LEMPC) for nonlinear systems.
The first approach utilizes randomized modifications to an LEMPC formulation online to poten-
tially detect cyberattacks. The second method detects attacks when a threshold on the difference
between state measurements and state predictions is exceeded. Finally, the third strategy utilizes

redundant state estimators to flag deviations from “normal” process behavior as cyberattacks.

Key words: Control system cybersecurity, model predictive control, chemical process control,
nonlinear systems, state estimation.

Introduction

The chemical process industries are potential targets for cyberattacks, with motivations for such
attacks ranging from sabotage of equipment to intellectual property theft.l"2 Attacks on elements
of control systems have the potential to create unsafe or economically unfavorable operating condi-
tions. In light of this, attack detection has received focus in the literature (e.g.,>*). Attack detection
methods for cyber-physical systems have included those which are data-based for applications such

as water systems® and smart grids.® In addition, resilient control designs based on state estimation
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have been developed for handling and detecting attacks. For example, Cardenas et al.* proposes
cyberattack-resilient control frameworks that compare state estimates based on representative mod-
els of the physical system and (potentially corrupted) state measurements to detect an attack. In,’
the theoretical conditions for a linear system that bound the maximum number of sensors that may
provide false measurements while still allowing reconstruction of the state for a feedback controller
are defined.

The incorporation of cyberattack detection and resilience into control systems also has been
studied in the context of model predictive control (MPC?®), an advanced control methodology that
uses optimization to determine the inputs to a plant. In the power systems domain, MPC has been
integrated with data-based detection and state reconstruction via a process model to recover perfor-
mance of the power grid in the presence of sensor attacks.” For linear systems, MPC designs have
been explored that can guarantee exponential stability of the origin in the presence of sufficiently
short denial of service attacks,!? guarantee boundedness of the closed-loop state in an invariant

1 and handle replay attacks.'? For

set under random cyberattacks on the sensor measurements,
nonlinear systems, Chen et al.!* combined a neural network-based attack detection technique de-
veloped in® with a two-layer control architecture, where the upper layer is a Lyapunov-based MPC,
to guarantee closed-loop stability after attacks are detected. Durand!* explored several MPC tech-
niques with economics-based objective functions (known as economic MPC’s (EMPC’s)'5'6) in the
presence of false sensor measurements to explore cyberattacks in a nonlinear systems context. The
impacts of cyberattacks on MPC’s were also related to process and equipment design in.'” However,
further understanding of the interaction between cyberattack detection strategies and MPC/EMPC
formulation and stability guarantees is still needed.

This motivates our development in this work of three cyberattack detection strategies that
are integrated with a specific control framework known as Lyapunov-based EMPC (LEMPC),!8
enabling the co-design of the control and detection frameworks to provide guarantees regarding
detection characteristics and closed-loop stability in the absence of and, under sufficient conditions

and potentially for limited timeframes, the presence of, cyberattacks. The first control/detection

strategy toggles between a full state feedback LEMPC and variations on that control law that are



randomly generated over time to probe for cyberattacks. The second control/detection strategy
also utilizes full state feedback LEMPC, but the detection is based on the state prediction from
the prior state measurement to identify an attack while maintaining the closed-loop state within
a characterizable region over one sampling period after an attack that is not detected. Finally
the third control/detection concept is developed using output feedback LEMPC and comparing
multiple redundant state estimates based on the available state measurements to signal an attack
when the estimates do not agree while ensuring closed-loop stability under sufficient conditions
(which include that not all sensors can be attacked). This work extends the results presented
in.!%2% The attack type considered throughout is a sensor measurement cyberattack due to the
consistency of this attack with the attack design considered in various other works (e.g.,*) and due
to the primary goal of this paper being an exploration of what might be possible to achieve with

integrated control /detection strategies utilizing LEMPC for nonlinear systems.

Preliminaries
Notation

The notation | - | signifies the Euclidean norm of a vector. « : [0,a) — [0,00) is a class K
function if a(0) = 0 and the function is continuous and strictly increasing. €2, denotes a level set
of a scalar-valued function V' (i.e., Q, := {z € R" : V(x) < p}). Set subtraction is signified by /'
(i.e., A/B:={zx € R" : v € A, v ¢ B}). 27 is the transpose of the vector z. A sampling time is
denoted by t := kA, k=0,1,..., where A is a sampling period.
Class of Systems

This work considers the following class of systems:

2(t) = fx(t), u(t), w(t)) (1)

where v € X C R", u e U C R™, and w € W C R? are the state, input, and disturbance vectors,
respectively, and f is locally Lipschitz on X x U x W. We define W := {w € R* | |w| < 0, 0, > 0}
and U := {u € R"| |u|] < u™>}. We consider that the “nominal” system of Eq. 1 (w = 0)

is stabilizable such that there exists an asymptotically stabilizing feedback control law h(z), a



sufficiently smooth Lyapunov function V', and class K functions «;(+), i = 1,2, 3, 4, where:

an(fel) < V(@) < o) (22
T2 o h(w),0) < ~as) (2b)
oV (x)

20 auth 20)
hz)eU (2d)

Vz e D C R" (D is an open neighborhood of the origin). We define €2, C D to be the stability
region of the nominal closed-loop system under the controller h(z) and require that it be chosen

such that z € X, Vo € Q,. Furthermore, we consider that h(x) satisfies:
[hi() = hi(2)| < Lz — 7] (3)

for all z,2 € Q,, with L;, > 0, where h; is the i-th component of h, i =1,...,m.

Because V' is a sufficiently smooth function and f is locally Lipschitz, the following hold:

|f(z1,ur, w) — f(22,u2,0)| < Le|zy — o] + Ly|uy — ua| + Ly|wl (4a)

oV (x oV (x , ,

P o)~ D022 oy, 0)| < Lyfor — ol + L (ab)
|f (@, u,w)| < My (5)

Yy, 29 € Q,, u,ur,up € U and w € W, where L,, L), L, L], and My are positive constants.
Observability assumption

We consider that there are M sets of measurements y; € R%, i =1,..., M, available at t;:

yi(t) = ki(x(t)) + vi(t) (6)

where k; is a vector-valued function, and v; represents the measurement noise associated with
the measurement y;. We assume that the measurement noise is bounded (i.e., v; € V; := {v; €
R% | |v;| < 044, 6,; > 0) and that measurements of each y; are continuously available. It is

considered that for each of the M sets of measurements, a deterministic observer exists defined as:

Z = Fy(ei, zi,y1) (7)



where z; is the estimate of the process state from the i-th observer, « = 1,..., M, F; is a vector-
valued function, and ¢; > 0. When a controller h(z;) with Eq. 7 is used to control the closed-loop

system of Eq. 1, we make the following assumptions.

Assumption 1. ##% There exist positive constants 0%, 0% .. such that for each pair {0,,0,,} with

v,17

Ow < 0y, 0,5 < 05, there exist 0 < p1; < p, emoi > 0 and €;; > 0, €f;; > 0 such that if (0) € Q,, ,

12;(0) —z(0)| < emo; and €; € (€}, €:), the trajectories of the closed-loop system are bounded in €2,

vVit>0.

Assumption 2. ?»#? There exists ef,; > 0 such that for each e,,; > e,;, there exist ty;(e;) such that

me?

Remark 1. High-gain observers,?®> which are typically analyzed for input-affine systems with a
specific structure (a sub-class of the class of systems of Eq. 1), can satisfy Assumptions 1-2 for
that class of input-affine systems under sufficient conditions.

Lyapunov-based Economic Model Predictive Control

LEMPC!'8 is defined by the optimization problem:

min / LG, u(r)) dr (8a)

u(t)es(A)  Jy,

s.t. #(6) = FED),ult),0) (8b)
t4) = a0 (80
1) € X, Yt € [tn, tren) (8d)
u(t) € U, Vit € [te, torn) (8e)
V(E(t) < pes, if 2(ty) € Q. (8)
WD pa ) u(t). 0) < P (), ha (1), 00, i (k) € 0,/ (82

where the notation u(t) € S(A) denotes that u(t) is a piecewise-constant input vector with N pieces
(N is the prediction horizon), each held for a sampling period of length A. The time integral of the
stage cost L. in Eq. 8 is evaluated from t; to t;. y with predictions & of the process state obtained

from Eq. 8b (which represents the “nominal” model, i.e., the model of Eq. 1 with w(t) = 0). Eq. 8b



is initialized from the measured state x(tj) at t; via Eq. 8c¢. Eqs. 8d-8e represent state and input
constraints, respectively. LEMPC is applied in a receding horizon fashion, with the optimal input
computed for ¢t € [t, tr1) implemented in a sample-and-hold fashion. Q.. C8Q,is alevel set of V

which renders €, forward invariant under the LEMPC of Eq. 8.
Combining Cyberattack Detection and Process Control

In this section, we will develop several techniques for detecting and handling cyberattacks on
controllers that have a form like that in Eq. 8. In a prior work by Wu et al.® that considered
cyberattack detection mechanisms for nonlinear systems in tandem with a variation on LEMPC, a
neural network-based detection method was designed to detect specific cyberattack scenarios (e.g., a
min-max cyberattack, in which the minimum or maximum allowable sensor measurement values are
provided to the control system), and the controller was assumed to use the state measurement from
secure /redundant sensors after an attack was detected to attempt to maintain the closed-loop state
in a bounded region of state-space. The data-based detection and control method from?® may achieve
appropriate performance for a cyberattack event, but does not guarantee that a cyberattack will be
detected. The present manuscript utilizes a control-theoretic, rather than data-based, framework
to develop three cyberattack detection methods. A goal of this is to avoid the potential limitation
of data-driven methods that they may lack guarantees on detection. The first control/detection
strategy uses a full state feedback LEMPC as the primary process controller and randomly develops
other LEMPC formulations with the contractive constraint of Eq. 8g always activated that are used
in place of the primary controller for short periods of time to potentially detect if an attack is
happening. The second control/detection strategy also uses full state feedback LEMPC, but the
detection method is based on the state prediction from the last state measurement and it maintains
the closed-loop state within the stability region over one sampling period after the attack under
sufficient conditions. Finally, the third control /detection concept uses output feedback LEMPC and
state estimates based on the available state measurements to identify an attack while guaranteeing

that the closed-loop state will not leave the stability region under sufficient conditions.



Detection Strategy 1: Randomized LEMPC Changes to Probe for Cyberattacks

In this section, a potential methodology for probing for cyberattacks is proposed that uses
random modifications of the control design in Eq. 8 in a way that should create an expected
outcome if no attack is occurring. Specifically, in the absence of an attack, if the contractive
constraint of Eq. 8g is activated, the time derivative of the Lyapunov function along the closed-loop
state trajectory under the controller h(z) is expected to be negative (this would only potentially
not occur if the closed-loop state was in a neighborhood of the steady-state), and therefore, when
Eq. 8g is activated, it would be expected that the Lyapunov function (evaluated at the state
measurements) should decrease for ¢ € [ty, tg1]. If this did not occur, the process behavior could
be considered abnormal, and could be flagged as potentially reflecting a cyberattack. However, a
stealthy attacker who knows the LEMPC control law might try to provide state measurements that
imply that the Lyapunov function decreases over the subsequent sampling period when that should
occur according to the formulation in Eq. 8, but cause rogue control actions to be computed. To
attempt to prevent this, we can consider randomly developing new control laws (here selected as
LEMPC’s) with characterizable behavior in the absence of an attack (here, a decrease in the value
of the Lyapunov function for the randomly developed LEMPC for t € [ty, tx11]), and employ them
at random times to make it harder for an attacker to provide false state measurements that would
evade probing for attacks.

We refer to the LEMPC design around the operating steady-state as the (baseline) 1-LEMPC,
which has stability region 2,,, stability region subset €2, " Lyapunov function Vi, and controller
hy used in its design. The alternative LEMPC’s will be referred to as j-LEMPC designs (for j > 1)
with stability region €2, Lyapunov function Vj, and controller h; used in the control design, and
developed around steady-states that are potentially different from the operating steady-state (the
Jj-th steady-states). We also define f; as the model of Eq. 1 rewritten to have its origin at the j-th
steady-state, and x; and u; as « and u in deviation variable form from the j-th steady-state (X; and
U, represent the state and input sets in deviation form from the j-th steady-state). Furthermore,
we assume that V; and h; satisfy Eqs. 2-5 with o,(-), p =1,2,3,4, U, L,, L, L', L}, L,, Ly, Ly,
I/

w,]?

and My replaced by oy, ;(-), p=1,2,3,4, U;, Ly, Ly, j, L

x,7?

Lu,j; L$7j, thj and Mﬁj.



The implementation strategy for cyberattack probing uses random generation of steady-states
with stability regions contained within Q,, of the (baseline) 1-LEMPC and that have steady-state
inputs within U to develop new j-LEMPC (j > 1) designs online which can drive the closed-loop
state toward the new (j-th) steady-state in the absence of a cyberattack. The LEMPC of Eq. 8
(with full state feedback) is used until a random sampling time ¢, ;, j = 2,3 ..., when z(t;) € €,,,
at which time it is desired to run a check to determine whether a cyberattack is occurring. At this
random time, a (j-th) steady-state is selected that has a stability region around it (£2,,, j > 1),
contained within €,,, that includes x(tx) (to ensure that V; can be decreased in the absence of
an attack from ¢ to ¢y n if an LEMPC with Eq. 8g is used, which can only be guaranteed if the
initial condition is within the stability region for the j-LEMPC, while being maintained within €2,
so that closed-loop stability within €2, can be maintained when the j-th LEMPC switches back to
the 1-LEMPC after probing). Furthermore, it must be ensured that the designed stability region
does not have z(tx) within a neighborhood of the origin of the new stability region within which
V; would not be guaranteed to decrease due to the sample-and-hold controller implementation and
disturbances. Once a suitable stability region is generated at t;; meeting these requirements, an
LEMPC of the form of Eq. 8, but formulated with respect to the j-th steady-state and with Eq. 8g
always activated regardless of the position of the initial state, is selected to control the system for
the next sampling period. Under the sufficient conditions to be developed in Section “Randomized
LEMPC Changes to Probe for Cyberattacks: Stability and Feasibility Analysis,” this ensures a
decrease of V; over the sampling period following ¢, ;. Then, at ¢, ;, the j-LEMPC switches back to
operation under the (baseline) 1-LEMPC. The false state measurement cyberattacks in this section
are assumed to lie within €2, to prevent detection on the basis of the state measurement being

outside of the stability region that it should not exit.

Randomized LEMPC Changes to Probe for Cyberattacks: Formulation

The following two LEMPC formulations are proposed to probe for cyberttacks by interchanging
between these LEMPC designs at random times. These have a form like that in Eq. 8, but one
does not have the constraint of Eq. 8f, and both have different steady-states and Lyapunov-based

constraint designs compared to one another. The baseline LEMPC is formulated as follows, which



isused if t. ;1 <t <ts;, j=2,..., wheret.; = 0:

min / Le(ia(r), wa(r)) dr (%)

s.t. 31(t) = fi(@ (), w (1), 0) (9b)

1 (tk) = Ty (k) (9¢)

71(t) € X1, VU € [t tran) (9d)

uy(t) € Uy, Yt € [tg, tirn) (9e)

Vi(Z1(t) < plg, VEE [ty tiyn), if Z1(tk) € Q (9f)
a%(il(tmfl(i’l(tk),ul(tk),()) < OV (21 (tk))

f1<5i'1(tk)7 hl('i'l(tk))vo)? if ‘%1<tk) € QPI/QPQJ
(98)

where Z1(t;) is used, with slight abuse of notation, to reflect the state measurement in deviation

ox ox

variable form from the operating steady-state.

The j-th LEMPC, j > 1, which is used for ¢ € [t;;, . ;), is formulated as follows:

o Ll () uy(r)) dr (10a)
s.t. 25(t) = f3(Z5(8), u;(t), 0) (10b)
Tj(tk) = T,5(tk) (10c)

(1) € X, V1 € [t trsn) (10d)

wy(t) € Uy, Vi € [th trrn) (10¢)

P g 1)y 10).0) < PXBO) ) a0, 0) a0

where Iy ;(t;) represents the state measurement in deviation variable form from the j-th steady-
state. A state measurement cyberattack on Eqgs. 9-10 could cause Z;1(t;) in Eq. 9¢ and Ty ;(¢;) in

Eq. 10c to not necessarily be reflective of the actual process state.

Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy

The implementation strategy for this detection method is as follows, and includes a region

which will be clarified in Section “Randomized LEMPC Changes to Probe for Cyberattacks:

Psamp2,17

Stability and Feasibility Analysis” and is chosen such that if the actual state is in €2 CcQ

Psamp?2,1 P11



under sufficient conditions, then the closed-loop state and the state measurement are maintained

in €2, fort>0:

1. At a sampling time tj, the I-LEMPC receives the state measurement &y ;(tx). Go to Step 2.
2. At tg, an index ( is set to a random number. If this number falls within a range that
has been selected to initiate probing for cyberattacks, randomly generate a j-th steady-state
(j > 1) with a stability region Q, C Q that has a steady-state input within the input

Psamp2,1

bounds and contains the state measurement p;(tx) (and where Z;(tx) € Q,,, C Q, C

Ph,j

Q which will be also clarified in Section “Randomized LEMPC Changes to Probe for

Psamp2,1?
Cyberattacks: Stability and Feasibility Analysis” and (2, . is selected such that if the state
measurement at ¢y is in {2, -, under sufficient conditions, then the closed-loop state and the
state measurement are maintained in ij for t > 0, with the measured value of the state not
in a neighborhood Q, . C Q,, = of the origin of the j-th steady-state). Set t,; = t;, select
te; = tr+1, and go to Step 4. Otherwise, if the value of ¢ falls in a range which has not been
selected to initiate probing for cyberattacks or the generation of a j-th steady-state meeting
the conditions above is not possible, go to Step 3.

3. If &y (ty) € preyl, go to Step 3a. Else, go to Step 3b.

(a) Compute a control action for the subsequent sampling period with Eq. 9f of the 1-LEMPC
activated. Go to Step 6.

(b) Compute a control action for the subsequent sampling period with Eq. 9g of the 1-
LEMPC activated. Go to Step 6.

4. The j-LEMPC receives the state measurement Zy ; (tx) and controls the process according to
Eq. 10. Evaluate the Lyapunov function throughout the sampling period. If V; does not
decrease over the sampling period following ¢, ;, detect that the process is potentially under
a cyberattack and mitigating actions may be applied (e.g., a backup policy such as the use of
redundant sensors or an emergency shut-down mode). Go to Step 5.

5. At t.;, switch back to operation under the 1-LEMPC. Go to Step 6.

6. Go to Step 1 (k < k+1).

10



Remark 2. Though it is possible to set t.; to a value other than ¢4, this may have several
disadvantages: 1) it would cause the process to operate under a control law that is not the desired
control law for normal operation for a longer period of time, potentially impacting profits; and 2) if
the LEMPC of Eq. 10 is applied for a sufficient number of sampling periods, the closed-loop state
would enter a neighborhood €2, , in which the value of V; is no longer guaranteed to decrease. This

could obscure the detection mechanism.

Remark 3. Both the random switching to and the generation of the j-LEMPC’s are considered
helpful. If, for example, only the time of switching was randomized (i.e., there were only a 1-LEMPC
and a 2-LEMPC which could be activated at random times), an attacker may learn which control
laws are possible and subsequently attempt to provide false state measurements that indicate that
both V; and V, decrease over time so that regardless of whether the 1 or 2-LEMPC is activated, the
attack is not detected via the probing mechanism. If the switching time was not fully randomized
(e.g., probing was only performed when it would be less impactful on the economics than probing
would be from another state), this would also add a level of determinism to the policy that has
potential to be exploited by an attacker.
Randomized LEMPC Changes to Probe for Cyberattacks: Stability and Feasibility Analysis

In this section, we prove recursive feasibility and closed-loop stability of the process of Eq. 1
under the LEMPC of Eqs. 9-10. The impacts of bounded process noise and disturbances on the
process state trajectory are characterized in Proposition 1 below, and Proposition 2 provides a

bound on the value of the Lyapunov function evaluated at different points in the stability region.

Proposition 1. ?2:?% Consider the systems below

g = fio(t), u;(t), w(t)) (11a)

By = 1@ (1), (1), 0) (11b)

with initial states |2y ;(to) — T,j(to)| < 0 withto = 0. If zy5(t), Ty (L) € Qp; fort € [0,T], then there

exists a function fw;(-,-) such that:

[26,5(t) = Zo ()] < fw,;(6, = to) (12)

11



for all zy,;(t), Ty ;(t) € Qy,,, u; € U, and w € W, with

Lw,jew

B (13)

L, ;0. _
fwi(s,7) = (s + == ) eleiT —
’ Lx’]

x,j
Proposition 2. *’ Consider the Lyapunov function V;(-) of the nominal system of Eq. 1, in deviation
variable form from the j-th steady-state, under the controller h;(-) that satisfies Eqs. 2a-2d and 3
for the model of Eq. 1 in deviation variable form from the j-th steady-state. There exists a quadratic
function fv,(-) such that:
Vi(x) < V;(@) + fy,(Jz — 7)) (14)

for all 7,7" € Q,, with

fry(s) i= auiaij(p;))s + M, ;s (15)

where M, ; is a positive constant.

The following theorem guarantees closed-loop stability of the process of Eq. 1 under the imple-
mentation strategy of Section “Randomized LEMPC Changes to Probe for Cyberattacks: Imple-
mentation Strategy” when no cyberattack occurs (i.e., with probing, but no attacks, so that the
maximum value of § in Proposition 1 would be 6/, where ¢, represents the value of 6,, for Eq. 6

when y;(t) = z(¢) (i.e., for full state measurement)).

Theorem 1. Consider the closed-loop system of Eq. 1 under the implementation strateqy of Section
“Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy” and in the
absence of a false sensor measurement cyberattack where each controller h;(-), i > 1, used in each
1-LEMPC meets the inequalities in Eqs. 2a-2d and 3 with respect to the i-th dynamic model. Let
ew, >0, A>0,N>1,Q, CQ

Psamp2,1

CQy C Xy forj>1, pj > prj> pming > Psj > Ps; >0,
where Q, - is defined as a level sel of Q. that guarantees that if Vi(Zy;(t)) < pnj, Vi(@e;(tr)) < pj,
and p1 > Psamp2,1 > Psamp,1 > p/e,l > Pmin, 1 > Ps,1 > p;,l > 07 where ()

peampa b8 defined as a level set

of Qpy where if b1 (tk) € Qpy /Qpuprs Toa(te) € /€y |, satisfy:
—agi(og] () + Lh MpaA < —eyi/A, i=1,2,... (16)

p,e,l + fV,l(fW,l((S) A)) S Psamp2,1 (17)

12



_0‘371(0‘27&(/);,1)) + ng,ljwf,lA + L;,15 + L:bu,lew < _€/w,1/A (18)

—a (g (psy)) + Lo ;M A+ L 6+ Ly 0, < —€, /A, j=1,2,3,... (19)
puing = max{Vi(zp;(t + A)) s mp(t) € Qp }, i=1,2,... (20)
Psampz1 = max{Vi(zp1(t + A)) 1 2p1(t) € Qp i /Ry } (21)

p1 = max{Vi(Zo,1(tx)) : 251 (tk) € Qpyppon } (22)
pj = max{V;(Zp1(te)) : To;(tx) € Qp, ;35 7 =2,3,... (23)
Pl < min{Vi(zy;(te)) : Toi(tr) € Qp,.}, 1=1,2,... (24)

If 74,1 (to) € Qpympons To1(t0) € Qoo and |Tyi(tr) —p(tr)] <0, k =0,1..., then the closed-loop

state is maintained in 2 and the state measurement is in ), when the 1-LEMPC' is activated

Psamp2,1
at to and for t.j—1 < t < ts;, or when the j-LEMPC is activated for ts; < t < t.; under the
implementation strategy of Section “Randomized LEMPC Changes to Probe for Cyberattacks: I'm-
plementation Strategy,” and the closed-loop state and the state measurement are maintained within

Qp, for t > 0. Furthermore, in the sampling period after ty;, if Ty ;(tx) € Q,,/Q V; decreases

Ps,j?

and x(t) € Q,, fort € [tp, try1).

Proof. The proof consists of five parts. In the first part, recursive feasibility at every sampling time
under the implementation strategy is demonstrated. In the second part, it is demonstrated that the
closed-loop state and state measurement are maintained within €2, when the 1I-LEMPC is used.
In the third part, it is shown that the closed-loop state and state measurement are maintained
within €2,, when the j-LEMPC is used under the implementation strategy of Section “Randomized
LEMPC Changes to Probe for Cyberattacks: Implementation Strategy.” In the fourth part, it is
demonstrated that the closed-loop state and state measurement are always contained within €2,
under the proposed implementation strategy. Finally, in the fifth part, it is shown that in the
sampling period after ¢, ;, V; decreases.

Part 1. Both the LEMPC of Eq. 9 and that of Eq. 10 must be feasible whenever they are
activated according to the implementation strategy of Section “Randomized LEMPC Changes to

Probe for Cyberattacks: Implementation Strategy.” For both, h; implemented in sample-and-hold

13



is a feasible input policy. Specifically, when the 1-LEMPC is activated, the closed-loop state is in
Q,,, as will be proven below (Part 2). hy meets Eq. 9e from Eq. 2d and trivially satisfies Eq. 9g.
Under the conditions in Eqgs. 16 and 20, h; satisfies Eq. 9f if 7,1 (¢x) € ©,,%* (and thereby Eq. 9d

since §,, C X;). Specifically, from Eq. 2b:

Wi () . - ) )
Therefore, for t € [ty,ty11) and p=k, ..., k+ N = Land &,1(t,) € Q. /Dy,

OVi(Tp (1))

5 Si(@oa(t), by (To,1(Ep)), 0) < —ausa (g1 (pl ) + Ly Mpa A (26)

where this inequality follows from adding and subtracting w J1(@p1(tp), ha(Tpa(tp)),0)

w f1(@p1(t), h1(Zp1(t,)),0) and applying the triangle inequality, and subsequently

to/from
using Eqs. 2a, 4b, and 5. If Eq. 16 holds, %ﬁj’l(m f1(@p1(t), ha(Zpa(tp)),0) is negative such that
Vi(t) < Vi(ty) for t € [ty,tp41) so that if Tp1(f,) € Qy , then Zp1(t) € Qy |, VT € [ty Tp1). If

instead Ty (t,) € ngﬁl, then from Eq. 20 and pf; > puing > ps1 > P, Toa(t) € Q C Qp’e,1 for

Pmin,1
t € [ty tps1), as required by the constraint of Eq. 9f.

When instead the LEMPC utilized at a sampling time is the j-LEMPC of Eq. 10, the implemen-
tation strategy of Section “Randomized LEMPC Changes to Probe for Cyberattacks: Implementa-
tion Strategy” requires that Ty ;(tx) € €, . C €, and x;;(tx) € Q,,. Through the same arguments
as for the 1-LEMPC (except that there is no constraint of the form of Eq. 9f), h; in sample-and-hold
is a feasible solution to Eq. 10.

Part 2. To demonstrate the case when the 1-LEMPC is used, we divide the proof into four
cases: Case 1) the actual process state at to (23,1(fo)) is @s,1(t0) € €, | and the state measurement
at to (i.e., Tp1(to)) is Tp1(to) € Qﬂ’e,ﬁ Case 2) xp1(to) € stampm/Qp;1 and Tp1(to) € Qm/Qpé,ﬁ Case
3) p,1(t0) € Qpyups /R, DUt To1(to) € €y | and Case 4) xp,1(to) € €y | but Tp1(to) € Qp, /Qyr |-

Part 2 Case 1. If the state measurement used by the LEMPC is Ty (tg) € QP/@,I’ from Eq. 9f,

Vi(Zp,1(t1)) < pl.;. From Propositions 1 and 2, if 3, (1) € Q then:

Psamp2,1)

Vi(wpa(t)) < Vi(@pa(t)) + fua(|Zea(t) — zpa(t)]) < iy + fra(fwa(0,4)) (27)

The assumption that x;(t1) € Q then follows from Eq. 17.

Psamp2,1
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Part 2 Case 2. If Ty1(to) € Q,, /S, | is the state measurement, Eq. 9g and Eq. 2b give:

Vi (T (to))

5 f1(Zpa(to), ui(to),0) < —az 1 (|Zp1(t0)]) (28)

where uf(to) is the optimal solution of the i-LEMPC at ¢y. The time derivative of V; along the

closed-loop state trajectories of x;, from %, to ¢; satisfies:

Vi (2p(7))

e N (), uilte), w(r)) < —as(agy(pen)) + Loa MpaA + Liy6 + L, 60 (29)

which  follows from adding and  subtracting W fi(@pa(to), ui(to),0)  from

Wﬁ (p1(7),ui(to), w(r)) and using Eq. 28, the triangle inequality, the definition of % ; (o),

Eq. 5, Eq. 2a, and the fact that @;,(to) € ©,,/Q, . If Eq. 18 holds, then Vi(a,1(7)) < —€,1 /A

for 7 € [to, t1), so that Vi(zp1(t)) < Vi(zpa(to)), ¥V t € [to,t1), and thus x4 (t) € Q

Psamp2,1*

Part 2 Case 3. If xp1(ty) € Q /€, then from Eq. 21, Vi(24,1(t)) < psampe,1, ¥ T € [to, 11).

Psamp,1

Part 2 Case 4. If the actual state x1(to) € € | and the state measurement ¥y, (to) € €, /Qy |
is provided to the LEMPC, Eq. 9g is enforced. From the proof for Case 2, this causes Vj(zp1(t)) <
Vi(xpi(to)), ¥V t € [to,t1) if Eq. 18 holds and (o) € prel/st,l, such that Vi(251(t)) < Psamp2.1,

Vi€ [to,t1). If mpa(to) € Qy |, then xp,(t) € Q cQ for t € [to, 1), from Eq. 20.

Pmin,1 Psamp2,1?

Part 2 Cases 2-4 indicate that if x;,(ty) € Q then z,1(t) € Q for t € [to,t1).

Psamp2,1?

throughout the time period that the 1-LEMPC

Psamp2,1
Applying this recursively, z3,1 stays within Q, .
is used. Then, Eq. 22 indicates that the state measurement is always in €2,,.

Part 3. When the j-LEMPC is used (for j > 1) (i.e., T}(tx) must be in Q,,  CQ, C Q. .,
with xy,;(tx) € Q,, by the implementation strategy of Section “Randomized LEMPC Changes to
Probe for Cyberattacks: Implementation Strategy” and Eq. 23), if Ty ;(tx) € Q,, /Q,, ., 7 > 1 (as
required in Section ““Randomized LEMPC Changes to Probe for Cyberattacks: Implementation
Strategy”), is the state measurement used by the LEMPC according to the implementation strategy
of Section “Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy,”
Eqgs. 10f and Eq. 2b give:

OV;(Zy5(1x))

o Fi(@nj(te), w5 (), 0) < —ag ;([2;(tr)|) (30)
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Following a similar procedure as in Part 2 Case 2, the time derivative of V; along the closed-loop

state trajectory of x; ; from t; to t;4; satisfies the following:

OVj(xp (7)) i -
j ij = fi (o (1), Wl (t), w(T)) < —agj(ag(psy)) + Ly ;M A+ L 6+ L, 0, (31)
which follows from adding and subtracting W fi(@5(to), wi(tr),0) to and from

ij(xm (7),u}(tr), w(7)) and using Eq. 30, the triangle inequality, the definition of Z; ;(tx),

Eq. 5, Eq. 2a, and the fact that x;;(tx) € €, /€, with the contractive constraint of Eq. 10f
always activated and Eq. 24. If Eq. 19 holds, then Vj(z;,(7)) < —€y, /A for T € [ty tr11), so that

‘/j(ilib,j(t)) < V}(l’k), Vite [tk,tk+1), and thus SL’b,j(t) € Qp]. cQ

Psamp2,1°*

Part 4. To demonstrate that the closed-loop state is always maintained within €2 and

Psamp2,1

that the measurement is always contained in €2, under the implementation strategy of Section
“Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy,” we proceed

by induction. Consider first the conditions at to. At to, x(tg) € and Eq. 22 guarantees

Psamp2,19

that the state measurement is within Q, . Part 2 guarantees that z(t1) € Q and that the

Psamp2,1

state measurement at ¢; is within €, once again. At t;, k > 0, either the I-LEMPC (if Eq. 9 is
activated) or a j-LEMPC (if Eq. 10 is randomly selected to be activated) is used. If the 1-LEMPC

is used, Part 2 guarantees that x ;(tx41) € and that the measurement at ¢;,; is contained

Psamp2,1

in Q,,. If instead the j-LEMPC is used, then z;;(tx) € Q,, C Q or else the implementation

Psamp?2,1

strategy of Section “Randomized LEMPC Changes to Probe for Cyberattacks: Implementation

Strategy” would not have allowed the use of the j-LEMPC. When z, () € Q,, C Q (by the

Psamp2,1

conditions of the implementation strategy in Section “Randomized LEMPC Changes to Probe for

Cyberattacks: Implementation Strategy”), Part 3 above guarantees that x;;(t) € Q,, C

Psamp2,1?

V t € [to,t1] and that the measurement is in €, C Q which is also a subset of €2, by the

Psamp2,17

assumptions of the theorem. Therefore, at ty, regardless of whether the 1-LEMPC or the j-LEMPC

is activated, the closed-loop state is still within ) and the state measurement is within €2,

Psamp2,1
throughout the subsequent sampling period and at the subsequent sampling time. Applying this
recursively indicates that the closed-loop state and state measurement are contained within €2

Psamp2,1

and €, , respectively, at all times.
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Part 5. Finally, we demonstrate that V;, 7 > 1, decreases in a sampling period after i, ;
by noting that the implementation strategy of Section “Randomized LEMPC Changes to Probe
for Cyberattacks: Implementation Strategy” requires that the j-LEMPC only be activated if the
actual state is within /€0y = (i.e., the measurement is within €,  /Q,, ;, where {,_; satisfies
Eq. 24 and 2, . satisfies Eq. 23). This ensures that the actual value of the state is outside of
Q; , and within . Therefore, because Eq. 19 holds for @y ;(t) € Qy, /€y , the value of V; will

decrease for t € [ty, tri1). O

Remark 4. A number of regions are defined in the above theorem. £2,, ¢ = 1,2,... has been
described as an invariant set in which it is desired to maintain the closed-loop state and state
estimates, and (2, is a region used in differentiating between whether Eq. 9f or 9g is used in

Eq. 9). © 1 =1,2,..., is defined via Eq. 20 as the maximum value of V; evaluated for the

Pmin,i?

actual state that can be reached within a sampling period if the actual state is within €, at a

sampling time, and any input in the input bounds is applied to the system. 2 is defined as a

Psamp,1

region where, if the actual closed-loop state is within this region at a sampling time, the maximum

distance that the closed-loop state would be able to go within a sampling period is into €2, ...

Q is important to characterize due to the presence of measurement noise; specifically, in the

Psamp,1

presence of measurement noise, there may be some range of states outside of €2 | where it is still
possible that with |2y,;(tx) —p,;(tx)| < J, the measured state may be within €, . In this case, under
the 1-LEMPC, the constraint of Eq. 9f would be activated, though if the true state measurement
was known, the constraint of Eq. 9g would be activated. To prevent this discrepancy from leading

to closed-loop stability issues, €2 is defined as a region within €2, where with the bound ¢ on

Psamp,1

the difference between the actual and measured values of the state, the measured state could still

be within ©, . is then defined to be within 2, so that the maximum distance that the

Psamp2,1

closed-loop state could travel when the state measurement is within €2, ~but the actual state is
outside of it is still within €2, . Not only is the actual state then defined to be within 2, when the

actual state is within but the state measurement is then also required to be within €,

Psamp2,1°

(Eq. 22). Furthermore, because Eqs. 9g and 10f only enforce a decrease condition on Vj, j = 2,3,. .,
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when the closed-loop state is within €2,/ Qy 9 the implementation strategy of Section “Randomized
LEMPC Changes to Probe for Cyberattacks: Implementation Strategy” requires that the actual
value of the closed-loop state be outside of Qﬂé,j' First, to guarantee that the actual state at ¢ is
inside €, , we define the region p;; in Eq. 23 as a within ,, such that if the state measurement
is within €2, = at z, the actual state value is inside €2,.. However, due to measurement noise, the
measured value may be outside of Qpé,]" but the actual state may be within Qp/w_, which could
impact the ability of V; to decrease over a sampling period following the activation of the constraint
of Eq. 10f. To prevent this, we define the region €2, . in Eq. 24 such that if the state measurement
is within €, . at tj, the actual state value is still outside of {2,/ , 80 that meeting the condition of

Eq. 16 guarantees that V; will decrease in the following sampling period.

Remark 5. According to the proof above, the LEMPC formulation is designed to account for suffi-
ciently small disturbances and measurement noise. Therefore, the lack of a decrease in the Lyapunov
function under the proposed control /detection strategy would not be due to plant/model mismatch
or sensor noise if the conditions of Theorem 1 are met. Furthermore, if V; does not decrease over a
sampling period after ¢, ; when computed using the sensor measurements, this strategy detects the

attack even if all sensors are compromised.

Remark 6. If the control law is changed at a sampling period, the attacker may try to detect
this and determine which control law a given control action throughout a sampling period could
have been derived from to attempt to ensure that the false state measurement that they provide
at the beginning of the next sampling period causes the expected behavior of V;. However, since
the control action is being implemented in sample-and-hold over the sampling period, there is not
much data on the control law available from u; for the attacker then to work from. If the LEMPC
is computing set-points for regulatory controllers, these controllers would not be providing more
information on what control law (i.e., Lyapunov function) the LEMPC used. When measurements
of the state are available more frequently than every sampling period, an attacker may not be able
to falsify all of the measurements immediately after ¢, ; until they are aware of the change in the
control law, which has potential to reveal the attack if V; does not decrease for any fraction of

the sampling period after t,; due to this. However, Detection Strategy 1 has no guarantees that
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it will detect an attack. When an attack occurs, the sensor measurements are falsified, and that
can compromise closed-loop stability before that attack is detected, and may also result in a false
sensor measurement trajectory that happens to decrease V. There is no guarantee that a probing
maneuver will be activated at a time when it could reveal an attack. The concept of the method
is that it could be used to flag a false sensor measurement cyberattack if it does not cause V; to

decrease when it should be.

Remark 7. The worst-case rate at which V; will decrease over a sampling period following activation
of the j-LEMPC could be slow, in which case a practical sensor may not register the decrease in
the value of the Lyapunov function even if it is occurring. Therefore, from a practical perspective,
there could be cases where a sufficiently long period of time might be needed for the decrease in
the Lyapunov function to be registered by a practical sensing device, and that amount of time may

or may not be equivalent to one sampling period after the probing mechanism is triggered.

Randomized LEMPC Changes to Probe for Cyberattacks: Chemical Process Example

In this section, a chemical process example is used to demonstrate the implementation of Detec-
tion Strategy 1, as well as to highlight the limitation of this method in that it is not guaranteed to
detect attacks. The nonlinear process model consists of a continuous stirred tank reactor (CSTR)

with a second-order, exothermic, irreversible reaction of the form A — B with the following process

dynamics:
) F B,
CA = v(cAo — CA) — ]{?06 RgT CA (32)
. F AHky __E_ Q
T=—(Ty,-T) - e RT(C?4 4+ —— 33
P (To=T) = Z ot MG+ (33)

where the states are the reactant concentration of species A and temperature in the reactor (Cx
and T, respectively). The manipulated inputs are Cyo (the reactant feed concentration of species
A) and the heat rate Q. The values of the parameters of the CSTR model (F, V, ko, E, R,
To, pr, AH, and C,) are taken from.?> The vectors of deviation variables for the states and
inputs from their operating steady-state values, z1, = [Cas T3]7 = [1.22 kmol/m® 438.2 K7,
[Claos Qs]” = [4.0 kmol/m® 0 kJ/h]”, respectively, are 2, = [x1; x12]T = [C4 — Cas T — T,]T and

uyp = [uy ULQ]T = [Ca0—Ca0s Q—Q,)T. The process model represented by Eqs. 32-33 is numerically
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integrated using the explicit Euler method with integration step of 10~* h. The economic stage
cost is selected to be L. = koe £/ (RT)C%. Despite the simplicity of this case study, it is illustrative
for the cyberattack detection methods without convoluting the results through a more complex
example, and the theoretical results of this work hold in the case of more complex processes.

The controller receives a state measurement subject to bounded measurement noise and the pro-
cess is subject to bounded disturbances. The noise is represented by a standard normal distribution
with mean zero, standard deviations of 0.002 kmol/m? and 0.5 K, and bounds of 0.002 kmol/m?® and
0.5 K for the concentration of the reactant and reactor temperature, respectively. Process distur-
bances were added to the right-hand side of the differential equations describing the rates of change
of C'y and T with zero mean and standard deviations of 0.5 kmol/m® h and 2 K/h, and bounds of 2
kmol/m? h and 5 K/h, respectively. The baseline LEMPC formulation used Lyapunov-based stabil-
ity constraints were designed using a Lyapunov function Vi = af, Pxy,1, where P = [1200 5;5 0.1].
In the selected Lyapunov-based controller hy(zp1) = [hi1(xp1) hia(xp1)]”, hii(zp1) was set to 0
kmol/m? for simplicity and hy (1) was designed via Sontag’s control law.?6 The stability region
was defined with p; = 300 (ie., Q, = {z1 € R*: Vi(ap1) < p1}), and p.q = 225. N and A were
set to 10 and 0.01 h, respectively.

The process was simulated for 0.1 h of operation, initialized at i = [211(t0) z12(t0)]T =
[—0.21 kmol/m? 28.89 K|” in MATLAB R2016b using fmincon. In the LEMPC, the value of the
decision variable corresponding to @ was scaled down by 10°, and probing was initialized at .
Four simulations were performed: two in which the original steady-state and stability region were
utilized for probing (i.e., a constraint of the form of Eq. 10f was enforced at the end of the first
sampling period, and no constraint of the form in Eq. 9f was used), and two in which a modified
steady-state and stability region were utilized for probing. The modified steady-state (xo5) has a
stability region in €2, and includes x; ;. Specifically, the new steady-state was selected to be
T9s = [1.22 kmol/m?® 450 K]T. The stability region around this new steady-state is defined using
Va(z) = 2 Py, where 19 = 21 + 215 — T9,, with P, = [2100 10;10 0.25], and py = 100 (i.e.,
Q,, = {x2 € R?: Va(x2) < p2}). The modified LEMPC design was formulated with respect to @

and designed using a Lyapunov-based controller with hs1(z2) = 0 kmol/m? and hg s (zp2) selected
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Figure 1: Vi (top plots) and V5 (bottom plots) profiles over 0.1 h of operation for the process example in the presence
of different cyberattack policies.
using Sontag’s control law with respect to V().

Two cyberattacks were simulated on the two different probing formulations: 1) Attack 1: A
constant false state measurement z;; = 0.1 kmol/mS, z12 = 10 K is provided to the LEMPC’s
starting at to; 2) Attack 2: A false state measurement of the form z;; = —0.17 kmol/m?, x5 =
8.0 + 0.1r K, with r increasing by one from 1 to 9 at each sampling time until the 9th sampling
time and then keeping r at 9, is provided to the controller starting at to. The Vi(Zp1) and Va(Zp2)
profiles that result when the attacks and probing are both initialized at ¢, are presented in Fig. 1.
It can be seen that under Attack 1, whether the value of V; or V5 is monitored over time, the attack
would be detected, whereas if the probing was only undertaken for a sampling period as suggested
in the theory (it is applied for the entire 0.1 h simulation in Fig. 1), Attack 2 would not be detected

with either probing strategy.

Remark 8. In general with the proposed method, until the probing starts, an LEMPC may not be
driving a process toward the steady-state so that there would not necessarily be a decrease in the

Lyapunov function expected over a sampling period before a probing maneuver.
Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC

Detection Strategy 1 described in Section “Detection Strategy 1: Randomized LEMPC Changes
to Probe for Cyberattacks” may identify a cyberattack by taking advantage of LEMPC’s properties,
but it does not guarantee closed-loop stability in the presence of an attack (and as shown in the
example of the prior section, there can be many cases in which the method fails to detect attacks). A

20,17

strategy suggested in could be used instead to give a detection strategy that provides short-term
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guarantees that the closed-loop state is maintained in a bounded region of operation after an attack
on the sensor measurements (even, potentially, all of the measurements). Specifically, this second
detection strategy uses state predictions from the process model from the last state measurement to
identify an attack if the predictions deviate too significantly from the measurements. When the norm
of the difference between the state measurement and the state prediction is above a threshold, the
measurement is flagged as a possible sensor attack. When the difference is below a threshold, then
even if the measurement was falsified, the closed-loop state can be maintained in €2, for a sampling
period after the attack if the process is operated under an LEMPC with a sufficiently conservative
design (if the attack is not detected at tx, an auxiliary detection mechanism (e.g., machine learning
detection methods®) could be used in addition to attempt to identify a cyberattack on the sensor
measurements to avoid the potential that the closed-loop state may leave Q,, after t;41). The
developments below will focus on the case that the 1-LEMPC of Eq. 9 is used to control the process
at all times.
Cyberattack-Mitigating State Feedback LEMPC: Implementation Strategy

The implementation strategy for this detection /control method is as follows, where Zp 1 (¢ |tr—1)
denotes the prediction of the state Z,; at t; evaluated by integrating the dynamic model of Eq. 9b

from a measurement at t,_; until ¢:

1. At sampling time ty, if |Zp1(tk|tk—1) — Tp1(tk|te)| > v, detect that a cyberattack is occurring
and go to Step la. Else, go to Step 1b.
(a) Apply a backup strategy or enter an emergency shut-down mode.
(b) Operate the process under the LEMPC of Eq. 9 while employing an auxiliary detection
mechanism to attempt to flag any un-detected attack at tx. tx < txr1. Go to Step 1.
Cyberattack-Mitigating State Feedback LEMPC: Stability and Feasibility Analysis
The following theorem guarantees that in the presence of bounded measurement noise and distur-
bances, the implementation strategy of Section “Cyberattack-Mitigating State Feedback LEMPC:
Implementation Strategy” maintains the closed-loop state within €2, before an attack occurs and

for at least one sampling period after the attack.
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Theorem 2. ?° Consider the system of Eq. 1 in closed-loop under the implementation strategy
of Section “Cyberattack-Mitigating State Feedback LEMPC: Implementation Strategy” based on a
controller hi(-) that satisfies the assumptions of FEqs. 2a-2d and 3. Let the conditions of Theorem 1

hold with ts; = oo, j = 2,3,..., and 0 > fwq1(0,,A) +v. If Tp1(ty) € Q C Q, and

Psamp2,1

xp1(ty) € Q then xp1(t) € Q and the state measurement at each sampling time is in

Psamp2,17 Psamp2,1

Q,, for all times before a sampling time ta that a cyberattack falsifies a state measurement, and

Ty 1(t) € Qpupen for t € [ta,ta + A), if the attack is not detected at t4.

Proof. Theorem 1 guarantees that Ty 1(t) € Q,, and x;:(t) € Q for t < ts. To prove that

Psamp2,1

xp1(t) € Q for t € [ta,ta + A), consider the measurements Zp1(tg—1|tr—1) and Ty (tk|ts),

Psamp2,1

and the predicted state T (t|tx—1) from the nominal model of Eq. 9b for t € [tx_1,t;]. From the

bounded measurement noise assumption, |Zp1(t5—1|ts—1) — 2p1(tk—1)| < 6. Proposition 1 gives:
25,1 (tk) — Toa (Erltr-1)] < fwa(0,, A) (34)

If an attack is not flagged at #j:

\p1 (tr) — Toa (telte)| < |zpa(tr) — Toa(telte—1) + Toa (te|ti—1) — Toa (telts)]
(35)
< fwa(0, A) + |Zp1 (trlte—1) — Toa(teltr)| < fwa (0, A) +v

where the last inequality follows from the fact that the implementation strategy would have flagged
the attack at tg if |Zp1(tk|te—1) — Tp1(tk|tx)|] > v. Finally, when ¢ in Theorem 1 satisfies 6 >

fwa(0,,, A)+v, then the closed-loop state is maintained within €2 over the subsequent sampling

Psamp2,1

period according to the proof of Theorem 1 if there is an attack at t. O

Remark 9. One could consider employing Detection Strategy 1 as an auxiliary detection mechanism
with Detection Strategy 2 if the j-LEMPC is activated at the beginning of one of the sampling
periods over which closed-loop stability is still maintained after an attack (but Detection Strategy

1 is not guaranteed to detect the attack).

Remark 10. The value of the threshold v is a design decision that should be specified considering
Eq. 35 and the conditions of Theorem 1. Specifically, larger values of v require a more conservative
stability region. However, overly conservative values could cause false alarms, since there is some

difference between the state measurement and state prediction due to noise and disturbances.
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Detection Strategy 3: Cyberattack-Resilient Qutput Feedback LEMPC

Detection Strategy 2 ensures that the closed-loop state is maintained in €2, for only one sampling
period after an attack occurs. Detection Strategy 3, which guarantees that the closed-loop state is
maintained in a bounded region of operation for all time, uses multiple redundant state estimators
(where at least one cannot be impacted by the false sensor measurements) coupled with an output
feedback LEMPC. This method extends the results in'® by considering that multiple state estimators
may be impacted by a cyberattack.

Cyberattack-Resilient Output Feedback LEMPC: Formulation

The output feedback LEMPC design used for this detection strategy is formulated to receive a
state estimate z; from one of the redundant state estimators (the estimator used to provide state
estimates to the LEMPC will be denoted as the ¢ = 1 estimator) at ¢;. The notation follows that
of Eq. 8 with Eq. 8¢ replaced by Z(tx) = 2z1(tx); we will subsequently refer to this LEMPC as the
output feedback LEMPC of Eq. 8.

Detection Strategy 3 guarantees that any cyberattacks which would drive the closed-loop state
out of 2, will be detected before this occurs. It recognizes cyberattacks by flagging deviations of the
state estimates from “normal” behavior; however, as “normal” behavior includes both measurement
noise and disturbances (Egs. 1 and 6), care must be taken in setting the threshold on the state
estimate deviation from a “normal” value to avoid false detections. With slight abuse of notation
compared to that used in describing Detection Strategies 1 and 2, we here revert to the use of x(t)
(rather than z3;(¢))) to denote the actual state at time t. We consider that at least one of the
M state estimators is not affected by false state measurements (i.e., up to M — 1 state estimators
are receiving measurements for which at least some subset of them are falsified). To determine a

threshold, we note that the bounds in Assumption 2 imply that the following holds:

[2:(8) = 2 ()] = [2(1) = 2(t) + 2(t) = 2 ()] < [2:(t) = 2(O)] + [2(t) — 2(1)]
(36)

< €ij = (e:m' + eq*nj) < €max 1= maX{EZ‘j}
forall i # j,i=1,...,M, j =1,...,M, as long as t > t, = max{ty,...,tenm}. Therefore,

abnormal behavior can be detected if |2;(tx) — 2;(tx)| > €max if tx > t, (this avoids false detections).

*

In practice, it may not be possible to know the numbers e, and e}, as they can only be known
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by knowing an upper bound on how far off each z;(¢) is from z(t), which may not be known since
full state feedback may not be available. By using Eq. 36 with data from an attack-free scenario,
a bound may be able to be placed on the possible value of €., based on how far apart z;(t) and
z;(t) are over time. In the following, we will assume that the upper bound €y.x can be determined.
Cyberattack-Resilient Qutput Feedback LEMPC: Implementation Strategy

This implementation strategy assumes that the process has already been run successfully in the
absence of attacks under the output feedback LEMPC of Eq. 8 for some time such that |z;(t)—z(t)| <
e foralli=1,..., M before an attack:

1. At sampling time ¢y, if |2;(tx) — 2;(tk)] > €max, @ = 1,..., M, 7 = 1,..., M, or z(t;) ¢
Q, (where z; is the state estimate used in the EMPC design), detect that a cyberattack is
occurring and go to Step la. Else, go to Step 1b.

(a) Enter an emergency shut-down mode that no longer operates the process under the

output feedback LEMPC of Eq. 8.
(b) Operate using the output feedback LEMPC of Eq. 8. ) < tx+1. Go to Step 1.

Cyberattack-Resilient Output Feedback LEMPC: Stability and Feasibility Analysis

This section details feasibility and closed-loop stability results for systems of Eq. 1 under the
implementation strategy of Section “Cyberattack-Resilient Output Feedback LEMPC: Implemen-
tation Strategy.” We first present a proposition that bounds the worst-case difference between the
state estimate used by the output feedback LEMPC of Eq. 8 and the actual value of the process

state under the implementation strategy when an attack is not flagged.

Proposition 3. Consider the system of Eq. 1 under the implementation strategy of Section
“Cyberattack-Resilient Output Feedback LEMPC: Implementation Strateqy” where M > 1 state es-
timators develop independent estimates of the process state and at least one of these estimators is
not impacted by false state measurements being provided to the estimators (and the attacks do not
begin until after t,). If a false sensor measurement cyberattack is not flagged at t according to
the implementation strategy, then the worst-case difference between z; and the actual state x(ty) is
given by:

|21(tk) — x(tr)] < €}y = €max + max{efnj}, j=1,....M (37)
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Proof. Two cases must be considered: Case 1) z; is not impacted by the attack; Case 2) z; is
impacted by the attack.
Case 1. When z; is not impacted by an attack, |z1(tx) — z(tx)| is given by Assumption 2 for

tp > t,. Specifically, Eq. 37 holds since:
|21(tk) — o (tk)] < €51 < €max + max(ey,;) = €y (38)

Case 2. When z is impacted by an attack but at least one of the other estimators (with its

estimate denoted as z3) is not, the following upper bound can be developed:

21 (tk) — 2 (te)] = [21(t) — za(tr) + 22(t) — 2(t)| < |21(tk) — 22(te)] + |22(t) — 2 (ti))|
(39)
< emax +max(ey,;) =€y, j=1,...,M
where the last inequality follows from the fact that the detection algorithm was not activated (i.e.,

|21(tk) — 22(tk)| < €max) and the assumption that the estimator producing zs is not impacted by the

false sensor measurements (i.e., |z2(tx) — x(tx)| < max(ey,;)), according to Assumption 2). O

Theorem 3 below summarizes the stability properties of the system of Eq. 1 operated under the
proposed implementation strategy in Section “Cyberattack-Resilient Output Feedback LEMPC: Im-
plementation Strategy.” This theorem re-purposes a bound on the allowable error in a state estimate
supplied to an output feedback-based LEMPC in the absence of cyberattacks from.?22! Specifically,
the proposed cyberattack detection method enables the bound in Eq. 37 to be defined, which allows
cyberattacks to be treated in the framework previously developed in?%2! for guaranteeing closed-
loop stability of output feedback LEMPC in the presence of measurement noise and disturbances,
and thereby allows the combined detection and control framework to guarantee closed-loop stability

when a cyberattack is not flagged according to the proposed methodology.

Theorem 3. Consider the system of Fq. 1 in closed-loop under the LEMPC of Eq. 8 based on an
observer and controller pair satisfying Assumptions 1-2 and formulated with respect to the i = 1
measurement vector, and formulated with respect to a controller h(-) that meets Eqs. 2a-2d and 3.
Let the conditions of Proposition 3 hold, and 0, < 0, 0,; < 0 ;, €; € (€1, €1;), and |z;(to) —x(to)] <

emoi, fori=1,...,M. Also, let ew1 >0, A >0, Q, C X, and p > pmax > P1,1 > Pe,1 > Prmin,1 >
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ps1 > 0, satisfy:

Pt < prax — max{ fu(fw(eys, A)), My max{t.i, Atau(ar (pmax))} (40)
per < p = fv(fwler, D)) — fv(en) (41)

—ag(ag ' (psn)) + Ly (MpA + €4) + Ly < —ewa /A (42)

pming = max{V (z(t + A))[V(x(t)) < ps1} (43)

pmina + fv(fw (e, A) < p (44)

Pmax + fv(€x) < p (45)

where t,1 is the first sampling time after ty, and fy and fw are defined as in Propositions 1 and 2

but with the subscripts dropped. Then, if x(ty) € Q,,,, z(t) € Qp., for allt >0 and z.(t,) € Q,

Pmax
for t, > max{A t.1} until a cyberattack is detected according to the implementation strategy in

Section “Cyberattack-Resilient Output Feedback LEMPC: Implementation Strategy,” if the attack

occurs after t,.

Proof. The proof consists of four parts. In Part 1, feasibility of the output feedback LEMPC of
Eq. 8 is proven when z(t;) € ©,. In Part 2, we prove that the closed-loop state trajectory is

contained in € for t € [to, max{A,t,;}). In Part 3, we prove that for ¢ > max{A,t.;} but

Pmax

before an attack occurs, z(t) is bounded within and z(t) is bounded within €,. In Part 4,

Pmax

we prove that if there is an attack at ¢, but it is not detected using the proposed methodology (i.e.,

|2i(t) — 2j(t)| < €max, for all e =1,..., M, j =1,...,M), z(t) is bounded in 2 and 2z (t) is

Prmax
bounded in €2,,.

Part 1. The Lyapunov-based controller h(x) implemented in sample-and-hold is a feasible so-
lution to the output feedback LEMPC of Eq. 8 when Z(t;) = 21(tx) € Q,. Specifically, h(z(t,)),
p=Fk,...,k+N—1,t¢€ [t,t,1), is a feasible solution to the output feedback LEMPC of Eq. 8
because it meets the input constraints of Eq. 8e according to Eq. 2, it meets the state constraints

of Eq. 8d when Z(t) € Q, C X, it trivially satisfies Eq. 8g, and it satisfies Eq. 8f because the region

., is forward invariant under h implemented in a sample-and-hold fashion when pe1 > puin,1, due
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to the closed-loop stability properties of the Lyapunov-based controller (as noted in the proof of
Part 1 for Theorem 1).

Part 2. To demonstrate boundedness of the closed-loop state in Q, . for ¢ € [to, max{A,t.1}),

Pmax
the Lyapunov function value can be evaluated as follows:

Via(t) = Viatt) + [ D i = Vst + [ FE i ar

0 to

(46)
S Pe,1 + Mf HlaX{A, tzl}a4(a;1(pnlax>)
for all t € [to,max{A,t,1}), where the latter inequality follows from Eq. 2, Eq. 5, and z(ty) €

Q,., CQ,, CQ If pe1 is defined as in Eq. 40, then V(2(t)) < pmax, Vt € [to, max{A,t,1}), so

Pe,1 P1,1 Pmax *

that z(t) € Q... for all t € [to, max{A,t,1}).

Prna

Part 3. We now consider the case that t > max{A,t,;} and the process is not experiencing a
cyberattack (i.e., |z;(ty) —x(ty)| < max(e;,;), forall j = 1,..., M). In this case, either z(ty) € §,,,
so that the constraint of Eq. 8f is activated, or z;(tx) € €,/Q,, , so that the constraint of Eq. 8g is
activated. Consider first the case that 21 (tx) € €2, ,. Eq. 8f ensures that Z(¢) is maintained within

Q,., throughout the prediction horizon, so we must demonstrate that x(t) € and z(t) € Q,

Pmax

for t € [tg,tr41). From Proposition 1, we have the following:
2(t) — z()] < fw(lz1(te) — z(te)], A) < fw(eh, D) (47)

for t € [ty,tgr1), where the last inequality follows from Assumption 2 (i.e., when ¢t > max{A,t,,}

and before an attack, |z1(tx) — x(tx)| < el < €}y). From Proposition 2:

V() < V(@) + fol2(t) — 2(®)]) < per + fv(fwler, D)) (48)

for t € [ty, tg+1), where the second inequality follows from Eq. 8f and Eq. 47. If Eq. 40 holds, then

if 7 is maintained in €, ,, the actual state x(t) is ensured to be inside € for t € [ty tgs1). To

Pmax

ensure that the estimate for t € [t, 54 1) is also within 2,, Eq. 48 and Proposition 2 give:

V(ai(t) < V(@) + fr(le(t) = 210)]) < peq + fv(fwlen, A)) + frlen) (49)

for t € [tk,trt1). When Eq. 41 holds, Eq. 49 gives that 2 (t) € Q, for t € [ts, tx41). Therefore, when

21 (ty) € Q. ,, 2(t) is maintained within and z;(t) is maintained in €2, for ¢ € [ty, t5y1) if the

Pmax

conditions of Theorem 3 hold.
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Next, we evaluate the case that z(t;) € Q,/Q, , (i.e., Eq. 8g is activated). Considering
Egs. 8g, 2, and 4b, the bound on w, and adding and subtracting the term %:ff’“))f(f(tk), u(tx),0)

to/from V (z(t)) = %f(x(t), u(ty), w(t)) and using the triangle inequality, we obtain:

V((t) < —as(|Z(t)]) + Lyl () — &(t)| + Liyb (50)
for all z € Q,. From |z(t) — #(t)| < |2(t) — 2(te)] + |#(ty) — F(t)], we obtain that:
|(t) — Z(te)] < [2(t) — 2(te)| + €y (51)
From Egs. 5, 51, and 50:
V((t) < —as(ag ' (pon)) + Ly (MpA + €3y) + Ly, (52)

for all z € Q,/€,, ,. If the condition of Eq. 42 is satisfied, Eq. 52 gives:

ewa(t —tr)

Vie(t) = Vie(tn) — ——x

) t e [tkathrl) (53)

Thus, when 21 (t;) € Q,/Q,, ., if 2(tp) € Qpon /Do, 1, T(ths1) € Q If instead x(t,) € Q,, ,, Eq. 43

Pmax *

guarantees that x(t) € Q C Qe for t € [t tpr1). From Eq. 49, V(z1(2)) < V(x(t)) + fu(€y).

Pmin, 1 Pmax

When z(t) € Q this gives that V' (z1(¢)) < p if Eq. 45 holds. Applying this recursively indicates

Pmax ?

that the closed-loop state is contained within €2 for all times and that the closed-loop state

Prmax
estimate is inside Q, when ¢ > max{A,t,;}.

Part 4. Finally, we consider the case that at some ¢ > max{A,t,}, the process is under a false
sensor measurement cyberattack, but it is not detected by the proposed approach (i.e., |z;(tx) —
2i(tr)] < €mag for alli =1,...,M and j = 1,..., M). Since |z (tx) — z(tx)| < €, and the state
estimate is inside €2, by the implementation strategy, boundedness of the closed-loop state in (2

Pmax

and state estimate in €}, are again ensured by Part 3. [

Remark 11. Although, the detection conditions have been derived for |z;(t;) — 2z;(ty)], i =1,..., M
and j = 1,..., M, if full state feedback is available, it is possible that one of the redundant estimators
could be replaced by full state feedback (and/or that the resulting full state feedback could be used

in place of z; in the output feedback LEMPC of Eq. 8). When this is done, the results of this
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section would continue to hold. Specifically, following similar steps to those in Section “Cyberattack-

Resilient Output Feedback LEMPC: Formulation,” we obtain that:

() — 25 ()| < [z(te) + 0, — 2 ()| < l2(te) — 25 ()| + 6, (54)
for j =2,..., M (if the full state measurement takes the place of z1). Defining €y, for this case as
max[max{ey, .} + 0, max{e; . + e}, i =2,...,M and j = 2,..., M allows the control-theoretic

guarantees of Theorem 3 to hold with this modified €.

Remark 12. Ultimate boundedness of the closed-loop state of Eq. 1 within €, ., can also be
achieved under the LEMPC of Eq. 8 even in the presence of an attack by Part 3 of the proof of
Theorem 3 if the constraint of Eq. 8g begins to be always enforced after a certain time (whereas
this would not be guaranteed in the presence of an attack in Detection Strategies 1 and 2). This is
because not all sensors can be attacked for Detection Strategy 3, so that they effectively act like a
check of one another to prevent a significant enough deviation of the actual state from the estimate
(i.e., that would prevent stability goals from being achieved) from occurring without detection. The
value of puin1, however, is impacted by the size of p. 1 (specifically, it must be less than p. 1), which
is impacted by €}, according to the conditions of Theorem 3, so that if the value of €}, becomes
too large (allowing attacks that cause z;, ¢ = 1,..., M to deviate more significantly from z to
be allowed), it may become more difficult to find a value of puyin1 that meets the conditions of

Theorem 3.

Remark 13. To determine the number of sensors (and which) that could be attacked while closed-
loop stability is still guaranteed under the implementation strategy until the attack is detected, it
first must be determined what redundant estimators will be used, and then different scenarios with
different sensors that could be attacked to cause at least one estimator to not be impacted could
be developed.
Cyberattack-Resilient Output Feedback LEMPC: Chemical Process Example

In this section, a chemical process example is used to illustrate Detection Strategy 3. As in
Section “Randomized LEMPC Changes to Probe for Cyberattacks: Chemical Process Example,”

we use a nonlinear process model of a CSTR that follows the process dynamics of Eqgs. 32-33. The
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process states are the reactant concentration of species A (C4) and temperature in the reactor (7).
The manipulated input is the reactant feed concentration (Csg). The values of the parameters of
the CSTR model are taken from.?” The vectors of deviation variables for the states and input
from their steady-state values, Cy; = 2 kmol/m?, T, = 350 K, C49s = 4.0 kmol/m?, respectively,
are © = |17 x9]T = [Cg — Cus T — T]7 and u = Cy9 — Cags. The process model represented by
Eqs. 32-33 is numerically integrated using the explicit Euler method with integration step of 1073
h. The economic stage cost L. = koe ®/FT)02 was utilized for this proposed control/detection
scheme.

Lyapunov-based stability constraints in Eqs. 8f-8g were designed using a quadratic Lyapunov
function V = 27 Pz, where P = [110.11 0;0 0.12]. The Lyapunov-based controller utilized was
a proportional controller of the form h(x) = —1.6z; — 0.01zy (*7) subject to input constraints
(Ju| < 3.5 kmol/m?). The stability region was set to p = 440 (i.e., Q, = {x € R? : V(z) < p})
and p. = 330. The LEMPC receives full state feedback (Remark 11) with the full system state
x = |1 azg]T which is measured and sent to the LEMPC at synchronous time instants ¢5. A high-
gain observer is used as the redundant estimator to estimate the reactant concentration of species A
from continuously available temperature measurements (z2). The design of this high-gain observer
follows?” with respect to a transformed system state obtained via input-output linearization. The

observer equation using the set of new coordinates is as follows:
F=A:4 Ly —C3) (55)

where Z is the state estimate vector in the new coordinate, y is the output measurement, A =
[01;00],C =[10],and L = [100 10000]". To obtain the state estimate of the system z, the inverse
transformation T—!(2) is applied.

For the detection conditions of Eq. 36, data from an attack-free scenario is gathered by simulating
the process under the proposed LEMPC described above. We simulate this attack-free event over
1 h of operation with the system state initialized off steady-state at x;;; = [Ca — Cas T — Ts|[—0.7
kmol/m? -30 K] in MATLAB R2017b, with the function tolerance set to 10~". A constraint of the

form of Eq. 8f was enforced at the end of each sampling period both when the constraint of Eq. 8g
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was activated and when it was not. The controller receives a state measurement subject to bounded
measurement noise and the process is subject to bounded disturbances. Specifically, the noise is
represented by a standard normal distribution with mean zero, standard deviations of 0.01 kmol /m?
and 0.5 K, and bounds of 0.02 kmol/m? and 0.5 K for the concentration of the reactant and reactor
temperature, respectively. In addition, process disturbances was added to the right-hand side of
the differential equations describing the rates of change of C'4 and T with zero mean and standard
deviations of 0.5 kmol/m® h and 2 K/h, and bounds of 2 kmol/m?® h and 5 K/h, respectively. The
norm |Z(t;) — z(tx)| was bounded after 0.2 h under an attack-free simulation below 0.9520 (which
was taken to be €y, and used to flag attacks in the remainder of the example).

To ensure that not all estimators are impacted by attacks as required, the control system under
state feedback LEMPC is subjected to false state measurements of reactant concentration (which
have the form x; + 0.1 kmol/m? h; i.e., the temperature measurements are intact and only the
full state feedback measurements are impacted with the high gain observer not impacted as it
only uses measurements of the un-attacked sensor, the temperature). These false measurements
are always provided to the controller after 0.3 h of operation. We simulate the process under the
proposed control design over 1 h of operation with the process state initialized off steady-state
again from x;,; = [—0.7 kmol/m? -30 K] in MATLAB R2017b using fmincon. The measurement
noise and disturbances follow the same standard normal distribution described above. To solve
the optimization problem of Eq. 8, we use the following initial guess: at the first sampling time
the value of the Lyapunov-based controller h(z) is used while for the subsequent sampling times,
a shifted version of the optimal solution of the previous sampling time is utilized and the guess of
the last entry of the optimal input vector is based on h(x). Fig. 2 depicts the closed-loop state
trajectory in contrast with the closed-loop state estimate trajectory after 0.2 h of operation. As
soon as the cyberattack policy was implemented at 0.3 h, the control/detection strategy promptly
flagged abnormal behavior at the subsequent sampling time, when the closed-loop state was still
within the stability region, which could allow a backup policy to be employed.

We can also explore a case where an attack happens but the proposed detection mechanism does

not flag it during process operation. Specifically, we consider that the false state measurements for
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Figure 2: Comparison between the closed-loop state trajectory under attack (solid line) and the closed-loop state
estimate trajectory (dashed lines) after 0.2 h of operation under the state feedback LEMPC.

reactant concentration above now have the form z; + 0.01 kmol/m® h (which follows an attack
trajectory with similarities to that in Fig. 2 but a better match between the measurement and
estimate trajectories for Cy) and are always provided to the controller after 0.3 h of operation.
In this case, although the attack was not flagged during the simulation, the closed-loop state was
maintained in €2, under the proposed control design for the time period simulated, demonstrating
the concept that with the process subject to sufficiently small measurement noise and disturbances,
the closed-loop state can be maintained in €2,.

The proposed control /detection approach may also identify an attack if both state measurements
are attacked as long as the condition |Z(tx) — z(tx)| < €max to flag an attack still holds (despite
that attack detection if all measurements are attacked is not guaranteed in Section “Cyberattack-
Resilient Output Feedback LEMPC: Stability and Feasibility Analysis” to be flagged). To show this,
we consider the case where false state measurements of both reactant concentration and temperature
of the form z; +0.01 kmol/m?® and x5+ 1 K, respectively, are provided to the sensors after 0.3 h. As
soon as this attack was implemented (at 0.3 h), an attack was detected since the norm |Z(tx) — z(¢y)|
was larger than the threshold (again with the closed-loop state still in the stability region at the

detection time).
Conclusions

In light of the difficulty of guaranteeing cyberattack-resilience using LEMPC design only, as was
analyzed in our prior work,'* this work aimed to investigate how the control-theoretic guarantees of

LEMPC might be leveraged with detection techniques to attempt to prevent false sensor measure-

33



ments from causing closed-loop stability issues in a chemical plant. Three cyberattack detection
concepts using LEMPC design were explored. The first strategy focused on the use of random
designs of LEMPC’s around alternative steady-states within the stability region to check whether
the theoretical property of the randomly generated LEMPC’s (i.e., that the value of the Lyapunov
function that the LEMPC is designed with respect to should decrease over the sampling period
following the activation of this LEMPC) is met by the process state measurements. The second
strategy focused on a state prediction, detection, and control framework that guarantees that the
closed-loop state is maintained in a stability region for one sampling period after an undetected
attack. Finally, the third strategy focused on a state estimation, detection, and control framework
that assumed that multiple state estimators were available for the process and that at least one
could be compromised by a false sensor measurement attack. A key challenge for future work is
better understanding the limits of what can be achieved, theoretically and fundamentally, in terms
of securing control systems against cyberattacks on their various components. This work focused
only on sensor attacks; however, there are many possible routes by which an attack may be per-
formed on a cyberphysical system, and when the attacks are too extensive (e.g., the attacker gains
control of many aspects of the control loop) it may be difficult to provide guarantees on process

behavior during the attack.
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Figure 3: Vi (top plots) and V5 (bottom plots) profiles over 0.1 h of operation for the process example in the presence
of different cyberattack policies.
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Figure 4: Comparison between the closed-loop state trajectory under attack (solid line) and the closed-loop state
estimate trajectory (dashed lines) after 0.2 h of operation under the state feedback LEMPC.
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