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Abstract

The use of an integrated system framework, characterized by numerous cyber/physical components

(sensor measurements, signals to actuators) connected through wired/wireless networks, has not

only increased the ability to control industrial systems, but also the vulnerabilities to cyberattacks.

State measurement cyberattacks could pose threats to process control systems since feedback control

may be lost if the attack policy is not thwarted. Motivated by this, we propose three detection con-

cepts based on Lyapunov-based economic model predictive control (LEMPC) for nonlinear systems.

The �rst approach utilizes randomized modi�cations to an LEMPC formulation online to poten-

tially detect cyberattacks. The second method detects attacks when a threshold on the di�erence

between state measurements and state predictions is exceeded. Finally, the third strategy utilizes

redundant state estimators to �ag deviations from �normal� process behavior as cyberattacks.

Key words: Control system cybersecurity, model predictive control, chemical process control,
nonlinear systems, state estimation.

Introduction

The chemical process industries are potential targets for cyberattacks, with motivations for such

attacks ranging from sabotage of equipment to intellectual property theft.1,2 Attacks on elements

of control systems have the potential to create unsafe or economically unfavorable operating condi-

tions. In light of this, attack detection has received focus in the literature (e.g.,3,4). Attack detection

methods for cyber-physical systems have included those which are data-based for applications such

as water systems5 and smart grids.6 In addition, resilient control designs based on state estimation
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have been developed for handling and detecting attacks. For example, Cardenas et al.4 proposes

cyberattack-resilient control frameworks that compare state estimates based on representative mod-

els of the physical system and (potentially corrupted) state measurements to detect an attack. In,7

the theoretical conditions for a linear system that bound the maximum number of sensors that may

provide false measurements while still allowing reconstruction of the state for a feedback controller

are de�ned.

The incorporation of cyberattack detection and resilience into control systems also has been

studied in the context of model predictive control (MPC8), an advanced control methodology that

uses optimization to determine the inputs to a plant. In the power systems domain, MPC has been

integrated with data-based detection and state reconstruction via a process model to recover perfor-

mance of the power grid in the presence of sensor attacks.9 For linear systems, MPC designs have

been explored that can guarantee exponential stability of the origin in the presence of su�ciently

short denial of service attacks,10 guarantee boundedness of the closed-loop state in an invariant

set under random cyberattacks on the sensor measurements,11 and handle replay attacks.12 For

nonlinear systems, Chen et al.13 combined a neural network-based attack detection technique de-

veloped in3 with a two-layer control architecture, where the upper layer is a Lyapunov-based MPC,

to guarantee closed-loop stability after attacks are detected. Durand14 explored several MPC tech-

niques with economics-based objective functions (known as economic MPC's (EMPC's)15,16) in the

presence of false sensor measurements to explore cyberattacks in a nonlinear systems context. The

impacts of cyberattacks on MPC's were also related to process and equipment design in.17 However,

further understanding of the interaction between cyberattack detection strategies and MPC/EMPC

formulation and stability guarantees is still needed.

This motivates our development in this work of three cyberattack detection strategies that

are integrated with a speci�c control framework known as Lyapunov-based EMPC (LEMPC),18

enabling the co-design of the control and detection frameworks to provide guarantees regarding

detection characteristics and closed-loop stability in the absence of and, under su�cient conditions

and potentially for limited timeframes, the presence of, cyberattacks. The �rst control/detection

strategy toggles between a full state feedback LEMPC and variations on that control law that are
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randomly generated over time to probe for cyberattacks. The second control/detection strategy

also utilizes full state feedback LEMPC, but the detection is based on the state prediction from

the prior state measurement to identify an attack while maintaining the closed-loop state within

a characterizable region over one sampling period after an attack that is not detected. Finally

the third control/detection concept is developed using output feedback LEMPC and comparing

multiple redundant state estimates based on the available state measurements to signal an attack

when the estimates do not agree while ensuring closed-loop stability under su�cient conditions

(which include that not all sensors can be attacked). This work extends the results presented

in.19,20 The attack type considered throughout is a sensor measurement cyberattack due to the

consistency of this attack with the attack design considered in various other works (e.g.,4) and due

to the primary goal of this paper being an exploration of what might be possible to achieve with

integrated control/detection strategies utilizing LEMPC for nonlinear systems.

Preliminaries

Notation

The notation | · | signi�es the Euclidean norm of a vector. α : [0, a) → [0,∞) is a class K

function if α(0) = 0 and the function is continuous and strictly increasing. Ωρ denotes a level set

of a scalar-valued function V (i.e., Ωρ := {x ∈ Rn : V (x) ≤ ρ}). Set subtraction is signi�ed by ′/′

(i.e., A/B := {x ∈ Rn : x ∈ A, x /∈ B}). xT is the transpose of the vector x. A sampling time is

denoted by tk := k∆, k = 0, 1, . . ., where ∆ is a sampling period.

Class of Systems

This work considers the following class of systems:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, and w ∈ W ⊂ Rz are the state, input, and disturbance vectors,

respectively, and f is locally Lipschitz on X×U×W . We de�ne W := {w ∈ Rz | |w| ≤ θw, θw > 0}

and U := {u ∈ Rm| |u| ≤ umax}. We consider that the �nominal� system of Eq. 1 (w ≡ 0)

is stabilizable such that there exists an asymptotically stabilizing feedback control law h(x), a
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su�ciently smooth Lyapunov function V , and class K functions αi(·), i = 1, 2, 3, 4, where:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (2c)

h(x) ∈ U (2d)

∀ x ∈ D ⊂ Rn (D is an open neighborhood of the origin). We de�ne Ωρ ⊂ D to be the stability

region of the nominal closed-loop system under the controller h(x) and require that it be chosen

such that x ∈ X, ∀x ∈ Ωρ. Furthermore, we consider that h(x) satis�es:

|hi(x)− hi(x̂)| ≤ Lh|x− x̂| (3)

for all x, x̂ ∈ Ωρ, with Lh > 0, where hi is the i-th component of h, i = 1, . . . ,m.

Because V is a su�ciently smooth function and f is locally Lipschitz, the following hold:

|f(x1, u1, w)− f(x2, u2, 0)| ≤ Lx|x1 − x2|+ Lu|u1 − u2|+ Lw|w| (4a)∣∣∣∣∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣∣∣∣≤ L′
x|x1 − x2|+ L′

w|w| (4b)

|f(x, u, w)| ≤Mf (5)

∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U and w ∈ W , where Lx, L
′
x, Lw, L

′
w, and Mf are positive constants.

Observability assumption

We consider that there are M sets of measurements yi ∈ Rqi , i = 1, . . . ,M , available at tk:

yi(t) = ki(x(t)) + vi(t) (6)

where ki is a vector-valued function, and vi represents the measurement noise associated with

the measurement yi. We assume that the measurement noise is bounded (i.e., vi ∈ Vi := {vi ∈

Rqi | |vi| ≤ θv,i, θv,i > 0) and that measurements of each yi are continuously available. It is

considered that for each of the M sets of measurements, a deterministic observer exists de�ned as:

żi = Fi(ϵi, zi, yi) (7)

4



where zi is the estimate of the process state from the i-th observer, i = 1, . . . ,M , Fi is a vector-

valued function, and ϵi > 0. When a controller h(zi) with Eq. 7 is used to control the closed-loop

system of Eq. 1, we make the following assumptions.

Assumption 1. 21,22 There exist positive constants θ∗w, θ
∗
v,i, such that for each pair {θw, θv,i} with

θw ≤ θ∗w, θv,i ≤ θ∗v,i, there exist 0 < ρ1,i < ρ, em0i > 0 and ϵ∗Li > 0, ϵ∗Ui > 0 such that if x(0) ∈ Ωρ1,i,

|zi(0)−x(0)| ≤ em0i and ϵi ∈ (ϵ∗Li, ϵ
∗
Ui), the trajectories of the closed-loop system are bounded in Ωρ,

∀ t ≥ 0.

Assumption 2. 21,22 There exists e∗mi > 0 such that for each emi ≥ e∗mi, there exist tbi(ϵi) such that

|zi(t)− x(t)| ≤ emi, ∀ t ≥ tbi(ϵi).

Remark 1. High-gain observers,23 which are typically analyzed for input-a�ne systems with a

speci�c structure (a sub-class of the class of systems of Eq. 1), can satisfy Assumptions 1-2 for

that class of input-a�ne systems under su�cient conditions.

Lyapunov-based Economic Model Predictive Control

LEMPC18 is de�ned by the optimization problem:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ), u(τ)) dτ (8a)

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (8b)

x̃(tk) = x(tk) (8c)

x̃(t) ∈ X, ∀ t ∈ [tk, tk+N) (8d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (8e)

V (x̃(t)) ≤ ρe,1, if x(tk) ∈ Ωρe,1 (8f)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤

∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0), if x(tk) ∈ Ωρ/Ωρe,1 (8g)

where the notation u(t) ∈ S(∆) denotes that u(t) is a piecewise-constant input vector with N pieces

(N is the prediction horizon), each held for a sampling period of length ∆. The time integral of the

stage cost Le in Eq. 8 is evaluated from tk to tk+N with predictions x̃ of the process state obtained

from Eq. 8b (which represents the �nominal� model, i.e., the model of Eq. 1 with w(t) ≡ 0). Eq. 8b
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is initialized from the measured state x(tk) at tk via Eq. 8c. Eqs. 8d-8e represent state and input

constraints, respectively. LEMPC is applied in a receding horizon fashion, with the optimal input

computed for t ∈ [tk, tk+1) implemented in a sample-and-hold fashion. Ωρe,1 ⊂ Ωρ is a level set of V

which renders Ωρ forward invariant under the LEMPC of Eq. 8.

Combining Cyberattack Detection and Process Control

In this section, we will develop several techniques for detecting and handling cyberattacks on

controllers that have a form like that in Eq. 8. In a prior work by Wu et al.3 that considered

cyberattack detection mechanisms for nonlinear systems in tandem with a variation on LEMPC, a

neural network-based detection method was designed to detect speci�c cyberattack scenarios (e.g., a

min-max cyberattack, in which the minimum or maximum allowable sensor measurement values are

provided to the control system), and the controller was assumed to use the state measurement from

secure/redundant sensors after an attack was detected to attempt to maintain the closed-loop state

in a bounded region of state-space. The data-based detection and control method from3 may achieve

appropriate performance for a cyberattack event, but does not guarantee that a cyberattack will be

detected. The present manuscript utilizes a control-theoretic, rather than data-based, framework

to develop three cyberattack detection methods. A goal of this is to avoid the potential limitation

of data-driven methods that they may lack guarantees on detection. The �rst control/detection

strategy uses a full state feedback LEMPC as the primary process controller and randomly develops

other LEMPC formulations with the contractive constraint of Eq. 8g always activated that are used

in place of the primary controller for short periods of time to potentially detect if an attack is

happening. The second control/detection strategy also uses full state feedback LEMPC, but the

detection method is based on the state prediction from the last state measurement and it maintains

the closed-loop state within the stability region over one sampling period after the attack under

su�cient conditions. Finally, the third control/detection concept uses output feedback LEMPC and

state estimates based on the available state measurements to identify an attack while guaranteeing

that the closed-loop state will not leave the stability region under su�cient conditions.
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Detection Strategy 1: Randomized LEMPC Changes to Probe for Cyberattacks

In this section, a potential methodology for probing for cyberattacks is proposed that uses

random modi�cations of the control design in Eq. 8 in a way that should create an expected

outcome if no attack is occurring. Speci�cally, in the absence of an attack, if the contractive

constraint of Eq. 8g is activated, the time derivative of the Lyapunov function along the closed-loop

state trajectory under the controller h(x) is expected to be negative (this would only potentially

not occur if the closed-loop state was in a neighborhood of the steady-state), and therefore, when

Eq. 8g is activated, it would be expected that the Lyapunov function (evaluated at the state

measurements) should decrease for t ∈ [tk, tk+1]. If this did not occur, the process behavior could

be considered abnormal, and could be �agged as potentially re�ecting a cyberattack. However, a

stealthy attacker who knows the LEMPC control law might try to provide state measurements that

imply that the Lyapunov function decreases over the subsequent sampling period when that should

occur according to the formulation in Eq. 8, but cause rogue control actions to be computed. To

attempt to prevent this, we can consider randomly developing new control laws (here selected as

LEMPC's) with characterizable behavior in the absence of an attack (here, a decrease in the value

of the Lyapunov function for the randomly developed LEMPC for t ∈ [tk, tk+1]), and employ them

at random times to make it harder for an attacker to provide false state measurements that would

evade probing for attacks.

We refer to the LEMPC design around the operating steady-state as the (baseline) 1-LEMPC,

which has stability region Ωρ1 , stability region subset Ωρ′e,1
, Lyapunov function V1, and controller

h1 used in its design. The alternative LEMPC's will be referred to as j-LEMPC designs (for j > 1)

with stability region Ωρj , Lyapunov function Vj, and controller hj used in the control design, and

developed around steady-states that are potentially di�erent from the operating steady-state (the

j-th steady-states). We also de�ne fj as the model of Eq. 1 rewritten to have its origin at the j-th

steady-state, and xj and uj as x and u in deviation variable form from the j-th steady-state (Xj and

Uj represent the state and input sets in deviation form from the j-th steady-state). Furthermore,

we assume that Vj and hj satisfy Eqs. 2-5 with αp(·), p = 1, 2, 3, 4, U , Lx, Lw, L
′
x, L

′
w, Lu, Lx, Lh

and Mf replaced by αp,j(·), p = 1, 2, 3, 4, Uj, Lx,j, Lw,j, L
′
x,j, L

′
w,j, Lu,j, Lx,j, Lh,j and Mf,j.
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The implementation strategy for cyberattack probing uses random generation of steady-states

with stability regions contained within Ωρ1 of the (baseline) 1-LEMPC and that have steady-state

inputs within U to develop new j-LEMPC (j > 1) designs online which can drive the closed-loop

state toward the new (j-th) steady-state in the absence of a cyberattack. The LEMPC of Eq. 8

(with full state feedback) is used until a random sampling time ts,j, j = 2, 3 . . ., when x(tk) ∈ Ωρ1 ,

at which time it is desired to run a check to determine whether a cyberattack is occurring. At this

random time, a (j-th) steady-state is selected that has a stability region around it (Ωρj , j > 1),

contained within Ωρ1 , that includes x(tk) (to ensure that Vj can be decreased in the absence of

an attack from tk to tk+N if an LEMPC with Eq. 8g is used, which can only be guaranteed if the

initial condition is within the stability region for the j-LEMPC, while being maintained within Ωρ1

so that closed-loop stability within Ωρ1 can be maintained when the j-th LEMPC switches back to

the 1-LEMPC after probing). Furthermore, it must be ensured that the designed stability region

does not have x(tk) within a neighborhood of the origin of the new stability region within which

Vj would not be guaranteed to decrease due to the sample-and-hold controller implementation and

disturbances. Once a suitable stability region is generated at ts,j meeting these requirements, an

LEMPC of the form of Eq. 8, but formulated with respect to the j-th steady-state and with Eq. 8g

always activated regardless of the position of the initial state, is selected to control the system for

the next sampling period. Under the su�cient conditions to be developed in Section �Randomized

LEMPC Changes to Probe for Cyberattacks: Stability and Feasibility Analysis,� this ensures a

decrease of Vj over the sampling period following ts,j. Then, at te,j, the j-LEMPC switches back to

operation under the (baseline) 1-LEMPC. The false state measurement cyberattacks in this section

are assumed to lie within Ωρ1 to prevent detection on the basis of the state measurement being

outside of the stability region that it should not exit.

Randomized LEMPC Changes to Probe for Cyberattacks: Formulation

The following two LEMPC formulations are proposed to probe for cyberttacks by interchanging

between these LEMPC designs at random times. These have a form like that in Eq. 8, but one

does not have the constraint of Eq. 8f, and both have di�erent steady-states and Lyapunov-based

constraint designs compared to one another. The baseline LEMPC is formulated as follows, which
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is used if te,j−1 ≤ t < ts,j, j = 2, . . ., where te,1 = 0:

min
u1(t)∈S(∆)

∫ tk+N

tk

Le(x̃1(τ), u1(τ)) dτ (9a)

s.t. ˙̃x1(t) = f1(x̃1(t), u1(t), 0) (9b)

x̃1(tk) = x̃b,1(tk) (9c)

x̃1(t) ∈ X1, ∀ t ∈ [tk, tk+N) (9d)

u1(t) ∈ U1, ∀ t ∈ [tk, tk+N) (9e)

V1(x̃1(t)) ≤ ρ′e,1, ∀ t ∈ [tk, tk+N), if x̃1(tk) ∈ Ωρ′e,1
(9f)

∂V1(x̃1(tk))

∂x
f1(x̃1(tk), u1(tk), 0) ≤

∂V1(x̃1(tk))

∂x
f1(x̃1(tk), h1(x̃1(tk)), 0), if x̃1(tk) ∈ Ωρ1/Ωρ′e,1

(9g)

where x̃b,1(tk) is used, with slight abuse of notation, to re�ect the state measurement in deviation

variable form from the operating steady-state.

The j-th LEMPC, j > 1, which is used for t ∈ [ts,j, te,j), is formulated as follows:

min
uj(t)∈S(∆)

∫ tk+N

tk

Le(x̃j(τ), uj(τ)) dτ (10a)

s.t. ˙̃xj(t) = fj(x̃j(t), uj(t), 0) (10b)

x̃j(tk) = x̃b,j(tk) (10c)

x̃j(t) ∈ Xj, ∀ t ∈ [tk, tk+N) (10d)

uj(t) ∈ Uj, ∀ t ∈ [tk, tk+N) (10e)

∂Vj(x̃j(tk))

∂x
fj(x̃j(tk), uj(tk), 0) ≤

∂Vj(x̃j(tk))

∂x
fj(x̃j(tk), hj(x̃j(tk)), 0) (10f)

where x̃b,j(tk) represents the state measurement in deviation variable form from the j-th steady-

state. A state measurement cyberattack on Eqs. 9-10 could cause x̃b,1(tk) in Eq. 9c and x̃b,j(tk) in

Eq. 10c to not necessarily be re�ective of the actual process state.

Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy

The implementation strategy for this detection method is as follows, and includes a region

Ωρsamp2,1 , which will be clari�ed in Section �Randomized LEMPC Changes to Probe for Cyberattacks:

Stability and Feasibility Analysis� and is chosen such that if the actual state is in Ωρsamp2,1 ⊂ Ωρ1 ,
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under su�cient conditions, then the closed-loop state and the state measurement are maintained

in Ωρ1 for t ≥ 0:

1. At a sampling time tk, the 1-LEMPC receives the state measurement x̃b,j(tk). Go to Step 2.

2. At tk, an index ζ is set to a random number. If this number falls within a range that

has been selected to initiate probing for cyberattacks, randomly generate a j-th steady-state

(j > 1) with a stability region Ωρj ⊂ Ωρsamp2,1 that has a steady-state input within the input

bounds and contains the state measurement x̃b,j(tk) (and where x̃b,j(tk) ∈ Ωρh,j ⊂ Ωρj ⊂

Ωρsamp2,1 , which will be also clari�ed in Section �Randomized LEMPC Changes to Probe for

Cyberattacks: Stability and Feasibility Analysis� and Ωρh,j is selected such that if the state

measurement at tk is in Ωρh,j , under su�cient conditions, then the closed-loop state and the

state measurement are maintained in Ωρj for t ≥ 0, with the measured value of the state not

in a neighborhood Ωρs,j ⊂ Ωρh,j of the origin of the j-th steady-state). Set ts,j = tk, select

te,j = tk+1, and go to Step 4. Otherwise, if the value of ζ falls in a range which has not been

selected to initiate probing for cyberattacks or the generation of a j-th steady-state meeting

the conditions above is not possible, go to Step 3.

3. If x̃b,j(tk) ∈ Ωρ′e,1
, go to Step 3a. Else, go to Step 3b.

(a) Compute a control action for the subsequent sampling period with Eq. 9f of the 1-LEMPC

activated. Go to Step 6.

(b) Compute a control action for the subsequent sampling period with Eq. 9g of the 1-

LEMPC activated. Go to Step 6.

4. The j-LEMPC receives the state measurement x̃b,j(tk) and controls the process according to

Eq. 10. Evaluate the Lyapunov function throughout the sampling period. If Vj does not

decrease over the sampling period following ts,j, detect that the process is potentially under

a cyberattack and mitigating actions may be applied (e.g., a backup policy such as the use of

redundant sensors or an emergency shut-down mode). Go to Step 5.

5. At te,j, switch back to operation under the 1-LEMPC. Go to Step 6.

6. Go to Step 1 (k ← k + 1).
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Remark 2. Though it is possible to set te,j to a value other than tk+1, this may have several

disadvantages: 1) it would cause the process to operate under a control law that is not the desired

control law for normal operation for a longer period of time, potentially impacting pro�ts; and 2) if

the LEMPC of Eq. 10 is applied for a su�cient number of sampling periods, the closed-loop state

would enter a neighborhood Ωρ′s,j
in which the value of Vj is no longer guaranteed to decrease. This

could obscure the detection mechanism.

Remark 3. Both the random switching to and the generation of the j-LEMPC's are considered

helpful. If, for example, only the time of switching was randomized (i.e., there were only a 1-LEMPC

and a 2-LEMPC which could be activated at random times), an attacker may learn which control

laws are possible and subsequently attempt to provide false state measurements that indicate that

both V1 and V2 decrease over time so that regardless of whether the 1 or 2-LEMPC is activated, the

attack is not detected via the probing mechanism. If the switching time was not fully randomized

(e.g., probing was only performed when it would be less impactful on the economics than probing

would be from another state), this would also add a level of determinism to the policy that has

potential to be exploited by an attacker.

Randomized LEMPC Changes to Probe for Cyberattacks: Stability and Feasibility Analysis

In this section, we prove recursive feasibility and closed-loop stability of the process of Eq. 1

under the LEMPC of Eqs. 9-10. The impacts of bounded process noise and disturbances on the

process state trajectory are characterized in Proposition 1 below, and Proposition 2 provides a

bound on the value of the Lyapunov function evaluated at di�erent points in the stability region.

Proposition 1. 21,20 Consider the systems below

ẋb,j = fj(xb,j(t), uj(t), w(t)) (11a)

˙̃xb,j = fj(x̃b,j(t), uj(t), 0) (11b)

with initial states |xb,j(t0)− x̃b,j(t0)| ≤ δ with t0 = 0. If xb,j(t), x̃b,j(t) ∈ Ωρj for t ∈ [0, T ], then there

exists a function fW,j(·, ·) such that:

|xb,j(t)− x̃b,j(t)| ≤ fW,j(δ, t− t0) (12)
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for all xb,j(t), x̃b,j(t) ∈ Ωρj , uj ∈ Uj, and w ∈ W , with

fW,j(s, τ) :=

(
s+

Lw,jθw
Lx,j

)
eLx,jτ − Lw,jθw

Lx,j
(13)

Proposition 2. 21Consider the Lyapunov function Vj(·) of the nominal system of Eq. 1, in deviation

variable form from the j-th steady-state, under the controller hj(·) that satis�es Eqs. 2a-2d and 3

for the model of Eq. 1 in deviation variable form from the j-th steady-state. There exists a quadratic

function fVj
(·) such that:

Vj(x̄) ≤ Vj(x̄
′) + fVj

(|x̄− x̄′|) (14)

for all x̄, x̄′ ∈ Ωρj with

fVj
(s) := α4,j(α

−1
1,j (ρj))s+Mv,js

2 (15)

where Mv,j is a positive constant.

The following theorem guarantees closed-loop stability of the process of Eq. 1 under the imple-

mentation strategy of Section �Randomized LEMPC Changes to Probe for Cyberattacks: Imple-

mentation Strategy� when no cyberattack occurs (i.e., with probing, but no attacks, so that the

maximum value of δ in Proposition 1 would be θ′v, where θ′v represents the value of θv,i for Eq. 6

when yi(t) = x(t) (i.e., for full state measurement)).

Theorem 1. Consider the closed-loop system of Eq. 1 under the implementation strategy of Section

�Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy� and in the

absence of a false sensor measurement cyberattack where each controller hi(·), i ≥ 1, used in each

i-LEMPC meets the inequalities in Eqs. 2a-2d and 3 with respect to the i-th dynamic model. Let

ϵWi
> 0, ∆ > 0, N ≥ 1, Ωρj ⊂ Ωρsamp2,1 ⊂ Ωρ1 ⊂ X1 for j > 1, ρj > ρh,j > ρmin,j > ρs,j > ρ′s,j > 0,

where Ωρh,j is de�ned as a level set of Ωρj that guarantees that if Vj(x̃b,j(tk)) ≤ ρh,j, Vj(xb,j(tk)) ≤ ρj,

and ρ1 > ρsamp2,1 > ρsamp,1 > ρ′e,1 > ρmin,1 > ρs,1 > ρ′s,1 > 0, where Ωρsamp,1 is de�ned as a level set

of Ωρ1 where if xb,1(tk) ∈ Ωρ1/Ωρsamp,1, x̃b,1(tk) ∈ Ωρ1/Ωρ′e,1
, satisfy:

−α3,i(α
−1
2,i (ρ

′
s,i)) + L′

x,iMf,i∆ ≤ −ϵw,i/∆, i = 1, 2, . . . (16)

ρ′e,1 + fV,1(fW,1(δ,∆)) ≤ ρsamp2,1 (17)
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−α3,1(α
−1
2,1(ρ

′
e,1)) + L′

x,1Mf,1∆+ L′
x,1δ + L′

w,1θw ≤ −ϵ′w,1/∆ (18)

−α3,j(α
−1
2,j (ρs,j)) + L′

x,jMf,j∆+ L′
x,jδ + L′

w,jθw ≤ −ϵ′w,j/∆, j = 1, 2, 3, . . . (19)

ρmin,i = max{Vi(xb,i(t+∆)) : xb,i(t) ∈ Ωρ′s,i
}, i = 1, 2, . . . (20)

ρsamp2,1 ≥ max{V1(xb,1(t+∆)) : xb,1(t) ∈ Ωρsamp,1/Ωρ′e,1
} (21)

ρ1 ≥ max{V1(x̃b,1(tk)) : xb,1(tk) ∈ Ωρsamp2,1} (22)

ρj ≥ max{Vj(x̃b,1(tk)) : x̃b,j(tk) ∈ Ωρh,j}, j = 2, 3, . . . (23)

ρ′s,i < min{Vi(xb,i(tk)) : x̃b,i(tk) ∈ Ωρs,i}, i = 1, 2, . . . (24)

If x̃b,1(t0) ∈ Ωρsamp2,1, xb,1(t0) ∈ Ωρsamp2,1, and |x̃b,i(tk)−xb,i(tk)| ≤ δ, k = 0, 1 . . ., then the closed-loop

state is maintained in Ωρsamp2,1 and the state measurement is in Ωρ1 when the 1-LEMPC is activated

at t0 and for te,j−1 ≤ t < ts,j, or when the j-LEMPC is activated for ts,j ≤ t < te,j under the

implementation strategy of Section �Randomized LEMPC Changes to Probe for Cyberattacks: Im-

plementation Strategy,� and the closed-loop state and the state measurement are maintained within

Ωρ1 for t ≥ 0. Furthermore, in the sampling period after ts,j, if x̃b,j(tk) ∈ Ωρj/Ωρs,j , Vj decreases

and x(t) ∈ Ωρj for t ∈ [tk, tk+1).

Proof. The proof consists of �ve parts. In the �rst part, recursive feasibility at every sampling time

under the implementation strategy is demonstrated. In the second part, it is demonstrated that the

closed-loop state and state measurement are maintained within Ωρ1 when the 1-LEMPC is used.

In the third part, it is shown that the closed-loop state and state measurement are maintained

within Ωρj when the j-LEMPC is used under the implementation strategy of Section �Randomized

LEMPC Changes to Probe for Cyberattacks: Implementation Strategy.� In the fourth part, it is

demonstrated that the closed-loop state and state measurement are always contained within Ωρ1

under the proposed implementation strategy. Finally, in the �fth part, it is shown that in the

sampling period after ts,j, Vj decreases.

Part 1. Both the LEMPC of Eq. 9 and that of Eq. 10 must be feasible whenever they are

activated according to the implementation strategy of Section �Randomized LEMPC Changes to

Probe for Cyberattacks: Implementation Strategy.� For both, hj implemented in sample-and-hold
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is a feasible input policy. Speci�cally, when the 1-LEMPC is activated, the closed-loop state is in

Ωρ1 , as will be proven below (Part 2). h1 meets Eq. 9e from Eq. 2d and trivially satis�es Eq. 9g.

Under the conditions in Eqs. 16 and 20, h1 satis�es Eq. 9f if x̃b,1(tk) ∈ Ωρ1
24 (and thereby Eq. 9d

since Ωρ1 ⊂ X1). Speci�cally, from Eq. 2b:

∂V1(x̃b,1(tp))

∂x
f1(x̃b,1(tp), h1(x̃b,1(tp)), 0) ≤ −α3,1(|x̃b,1(tp)|), p = k, . . . , k +N − 1 (25)

Therefore, for t ∈ [tp, tp+1) and p = k, . . . , k +N − 1 and x̃b,1(tp) ∈ Ωρ′e,1
/Ωρ′s,1

:

∂V1(x̃b,1(t))

∂x
f1(x̃b,1(t), h1(x̃b,1(tp)), 0) ≤ −α3,1(α

−1
2,1(ρ

′
s,1)) + L′

x,1Mf,1∆ (26)

where this inequality follows from adding and subtracting
∂V1(x̃b,1(tp))

∂x
f1(x̃b,1(tp), h1(x̃b,1(tp)), 0)

to/from
∂V1(x̃b,1(t))

∂x
f1(x̃b,1(t), h1(x̃b,1(tp)), 0) and applying the triangle inequality, and subsequently

using Eqs. 2a, 4b, and 5. If Eq. 16 holds,
∂V1(x̃b,1(t))

∂x
f1(x̃b,1(t), h1(x̃b,1(tp)), 0) is negative such that

V1(t) ≤ V1(tp) for t ∈ [tp, tp+1) so that if x̃b,1(tp) ∈ Ωρ′e,1
, then x̃b,1(t) ∈ Ωρ′e,1

, ∀ t ∈ [tp, tp+1). If

instead x̃b,1(tp) ∈ Ωρ′s,1
, then from Eq. 20 and ρ′e,1 > ρmin,1 > ρs,1 > ρ′s,1, x̃b,1(t) ∈ Ωρmin,1

⊂ Ωρ′e,1
for

t ∈ [tp, tp+1), as required by the constraint of Eq. 9f.

When instead the LEMPC utilized at a sampling time is the j-LEMPC of Eq. 10, the implemen-

tation strategy of Section �Randomized LEMPC Changes to Probe for Cyberattacks: Implementa-

tion Strategy� requires that x̃b,j(tk) ∈ Ωρh,j ⊂ Ωρj and xb,j(tk) ∈ Ωρj . Through the same arguments

as for the 1-LEMPC (except that there is no constraint of the form of Eq. 9f), hj in sample-and-hold

is a feasible solution to Eq. 10.

Part 2. To demonstrate the case when the 1-LEMPC is used, we divide the proof into four

cases: Case 1) the actual process state at t0 (xb,1(t0)) is xb,1(t0) ∈ Ωρ′e,1
and the state measurement

at t0 (i.e., x̃b,1(t0)) is x̃b,1(t0) ∈ Ωρ′e,1
; Case 2) xb,1(t0) ∈ Ωρsamp2,1/Ωρ′e,1

and x̃b,1(t0) ∈ Ωρ1/Ωρ′e,1
; Case

3) xb,1(t0) ∈ Ωρsamp,1/Ωρ′e,1
but x̃b,1(t0) ∈ Ωρ′e,1

; and Case 4) xb,1(t0) ∈ Ωρ′e,1
but x̃b,1(t0) ∈ Ωρ1/Ωρ′e,1

.

Part 2 Case 1. If the state measurement used by the LEMPC is x̃b,1(t0) ∈ Ωρ′e,1
, from Eq. 9f,

V1(x̃b,1(t1)) ≤ ρ′e,1. From Propositions 1 and 2, if xb,1(t1) ∈ Ωρsamp2,1 , then:

V1(xb,1(t1)) ≤ V1(x̃b,1(t1)) + fV,1(|x̃b,1(t1)− xb,1(t1)|) ≤ ρ′e,1 + fV,1(fW,1(δ,∆)) (27)

The assumption that xb,1(t1) ∈ Ωρsamp2,1 then follows from Eq. 17.
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Part 2 Case 2. If x̃b,1(t0) ∈ Ωρ1/Ωρ′e,1
is the state measurement, Eq. 9g and Eq. 2b give:

∂V1(x̃b,1(t0))

∂x
f1(x̃b,1(t0), u

∗
1(t0), 0) ≤ −α3,1(|x̃b,1(t0)|) (28)

where u∗
i (t0) is the optimal solution of the i-LEMPC at t0. The time derivative of V1 along the

closed-loop state trajectories of xb,1 from t0 to t1 satis�es:

∂V1(xb,1(τ))

∂x
f1(xb,1(τ), u

∗
1(t0), w(τ)) ≤ −α3,1(α

−1
2,1(ρ

′
e,1)) + L′

x,1Mf,1∆+ L′
x,1δ + L′

w,1θw (29)

which follows from adding and subtracting
∂V1(x̃b,1(t0))

∂x
f1(x̃b,1(t0), u

∗
1(t0), 0) from

∂V1(xb,1(τ))

∂x
f1(xb,1(τ), u

∗
1(t0), w(τ)) and using Eq. 28, the triangle inequality, the de�nition of x̃b,1(t0),

Eq. 5, Eq. 2a, and the fact that x̃b,1(t0) ∈ Ωρ1/Ωρ′e,1
. If Eq. 18 holds, then V̇1(xb,1(τ)) ≤ −ϵ′w,1/∆

for τ ∈ [t0, t1), so that V1(xb,1(t)) ≤ V1(xb,1(t0)), ∀ t ∈ [t0, t1), and thus xb,1(t) ∈ Ωρsamp2,1 .

Part 2 Case 3. If xb,1(t0) ∈ Ωρsamp,1/Ωρ′e,1
, then from Eq. 21, V1(xb,1(t)) ≤ ρsamp2,1, ∀ t ∈ [t0, t1).

Part 2 Case 4. If the actual state xb,1(t0) ∈ Ωρ′e,1
and the state measurement x̃b,1(t0) ∈ Ωρ1/Ωρ′e,1

is provided to the LEMPC, Eq. 9g is enforced. From the proof for Case 2, this causes V1(xb,1(t)) ≤

V1(xb,1(t0)), ∀ t ∈ [t0, t1) if Eq. 18 holds and xb,1(t0) ∈ Ωρ′e,1
/Ωρs,1 , such that V1(xb,1(t)) ≤ ρsamp2,1,

∀ t ∈ [t0, t1). If xb,1(t0) ∈ Ωρ′s,1
, then xb,1(t) ∈ Ωρmin,1

⊂ Ωρsamp2,1 , for t ∈ [t0, t1), from Eq. 20.

Part 2 Cases 2-4 indicate that if xb,1(t0) ∈ Ωρsamp2,1 , then xb,1(t) ∈ Ωρsamp2,1 for t ∈ [t0, t1).

Applying this recursively, xb,1 stays within Ωρsamp2,1 throughout the time period that the 1-LEMPC

is used. Then, Eq. 22 indicates that the state measurement is always in Ωρ1 .

Part 3. When the j-LEMPC is used (for j > 1) (i.e., x̃b,j(tk) must be in Ωρh,j ⊂ Ωρj ⊂ Ωρsamp2,1

with xb,j(tk) ∈ Ωρj by the implementation strategy of Section �Randomized LEMPC Changes to

Probe for Cyberattacks: Implementation Strategy� and Eq. 23), if x̃b,j(tk) ∈ Ωρh,j/Ωρs,j , j > 1 (as

required in Section ��Randomized LEMPC Changes to Probe for Cyberattacks: Implementation

Strategy�), is the state measurement used by the LEMPC according to the implementation strategy

of Section �Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy,�

Eqs. 10f and Eq. 2b give:

∂Vj(x̃b,j(tk))

∂x
fj(x̃b,j(tk), u

∗
j(tk), 0) ≤ −α3,j(|x̃b,j(tk)|) (30)
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Following a similar procedure as in Part 2 Case 2, the time derivative of Vj along the closed-loop

state trajectory of xb,j from tk to tk+1 satis�es the following:

∂Vj(xb,j(τ))

∂x
fj(xb,j(τ), u

∗
j(tk), w(τ)) ≤ −α3,j(α

−1
2,j (ρs,j)) + L′

x,jMf,j∆+ L′
x,jδ + L′

w,jθw (31)

which follows from adding and subtracting
∂Vj(x̃b,j(tk))

∂x
fj(x̃b,j(t0), u

∗
j(tk), 0) to and from

∂Vj(xb,j(τ))

∂x
fj(xb,j(τ), u

∗
j(tk), w(τ)) and using Eq. 30, the triangle inequality, the de�nition of x̃b,j(tk),

Eq. 5, Eq. 2a, and the fact that xb,j(tk) ∈ Ωρh,j/Ωρs,j with the contractive constraint of Eq. 10f

always activated and Eq. 24. If Eq. 19 holds, then V̇j(xb,j(τ)) ≤ −ϵ′w,j/∆ for τ ∈ [tk, tk+1), so that

Vj(xb,j(t)) ≤ Vj(xk), ∀ t ∈ [tk, tk+1), and thus xb,j(t) ∈ Ωρj ⊂ Ωρsamp2,1 .

Part 4. To demonstrate that the closed-loop state is always maintained within Ωρsamp2,1 and

that the measurement is always contained in Ωρ1 under the implementation strategy of Section

�Randomized LEMPC Changes to Probe for Cyberattacks: Implementation Strategy,� we proceed

by induction. Consider �rst the conditions at t0. At t0, x(t0) ∈ Ωρsamp2,1 , and Eq. 22 guarantees

that the state measurement is within Ωρ1 . Part 2 guarantees that x(t1) ∈ Ωρsamp2,1 and that the

state measurement at t1 is within Ωρ1 once again. At tk, k > 0, either the 1-LEMPC (if Eq. 9 is

activated) or a j-LEMPC (if Eq. 10 is randomly selected to be activated) is used. If the 1-LEMPC

is used, Part 2 guarantees that xb,j(tk+1) ∈ Ωρsamp2,1 and that the measurement at tk+1 is contained

in Ωρ1 . If instead the j-LEMPC is used, then xb,j(tk) ∈ Ωρj ⊂ Ωρsamp2,1 or else the implementation

strategy of Section �Randomized LEMPC Changes to Probe for Cyberattacks: Implementation

Strategy� would not have allowed the use of the j-LEMPC. When xb,j(tk) ∈ Ωρj ⊂ Ωρsamp2,1 (by the

conditions of the implementation strategy in Section �Randomized LEMPC Changes to Probe for

Cyberattacks: Implementation Strategy�), Part 3 above guarantees that xb,j(t) ∈ Ωρj ⊂ Ωρsamp2,1 ,

∀ t ∈ [t0, t1] and that the measurement is in Ωρj ⊂ Ωρsamp2,1 , which is also a subset of Ωρ1 by the

assumptions of the theorem. Therefore, at t0, regardless of whether the 1-LEMPC or the j-LEMPC

is activated, the closed-loop state is still within Ωρsamp2,1 and the state measurement is within Ωρ1

throughout the subsequent sampling period and at the subsequent sampling time. Applying this

recursively indicates that the closed-loop state and state measurement are contained within Ωρsamp2,1

and Ωρ1 , respectively, at all times.
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Part 5. Finally, we demonstrate that Vj, j > 1, decreases in a sampling period after ts,j

by noting that the implementation strategy of Section �Randomized LEMPC Changes to Probe

for Cyberattacks: Implementation Strategy� requires that the j-LEMPC only be activated if the

actual state is within Ωρj/Ωρ′s,j
(i.e., the measurement is within Ωρh,j/Ωρs,j , where Ωρs,j satis�es

Eq. 24 and Ωρh,j satis�es Eq. 23). This ensures that the actual value of the state is outside of

Ωρ′s,j
and within Ωρj . Therefore, because Eq. 19 holds for xb,j(tk) ∈ Ωρj/Ωρ′s,j

, the value of Vj will

decrease for t ∈ [tk, tk+1).

Remark 4. A number of regions are de�ned in the above theorem. Ωρi , i = 1, 2, . . . has been

described as an invariant set in which it is desired to maintain the closed-loop state and state

estimates, and Ωρ′e,1
is a region used in di�erentiating between whether Eq. 9f or 9g is used in

Eq. 9). Ωρmin,i
, i = 1, 2, . . ., is de�ned via Eq. 20 as the maximum value of Vi evaluated for the

actual state that can be reached within a sampling period if the actual state is within Ωρ′s,i
at a

sampling time, and any input in the input bounds is applied to the system. Ωρsamp,1 is de�ned as a

region where, if the actual closed-loop state is within this region at a sampling time, the maximum

distance that the closed-loop state would be able to go within a sampling period is into Ωρsamp2,1 .

Ωρsamp,1 is important to characterize due to the presence of measurement noise; speci�cally, in the

presence of measurement noise, there may be some range of states outside of Ωρ′e,1
where it is still

possible that with |x̃b,j(tk)−xb,j(tk)| < δ, the measured state may be within Ωρ′e,1
. In this case, under

the 1-LEMPC, the constraint of Eq. 9f would be activated, though if the true state measurement

was known, the constraint of Eq. 9g would be activated. To prevent this discrepancy from leading

to closed-loop stability issues, Ωρsamp,1 is de�ned as a region within Ωρ1 where with the bound δ on

the di�erence between the actual and measured values of the state, the measured state could still

be within Ωρ′e,1
. Ωρsamp2,1 is then de�ned to be within Ωρ1 so that the maximum distance that the

closed-loop state could travel when the state measurement is within Ωρ′e,1
but the actual state is

outside of it is still within Ωρ1 . Not only is the actual state then de�ned to be within Ωρ1 when the

actual state is within Ωρsamp2,1 , but the state measurement is then also required to be within Ωρ1

(Eq. 22). Furthermore, because Eqs. 9g and 10f only enforce a decrease condition on Vj, j = 2, 3, . . .,
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when the closed-loop state is within Ωρj/Ωρ′s,j
, the implementation strategy of Section �Randomized

LEMPC Changes to Probe for Cyberattacks: Implementation Strategy� requires that the actual

value of the closed-loop state be outside of Ωρ′s,j
. First, to guarantee that the actual state at tk is

inside Ωρj , we de�ne the region ρh,j in Eq. 23 as a within Ωρj such that if the state measurement

is within Ωρh,j at tk, the actual state value is inside Ωρj . However, due to measurement noise, the

measured value may be outside of Ωρ′s,j
, but the actual state may be within Ωρ′s,j

, which could

impact the ability of Vj to decrease over a sampling period following the activation of the constraint

of Eq. 10f. To prevent this, we de�ne the region Ωρs,j in Eq. 24 such that if the state measurement

is within Ωρs,j at tk, the actual state value is still outside of Ωρ′s,j
so that meeting the condition of

Eq. 16 guarantees that Vj will decrease in the following sampling period.

Remark 5. According to the proof above, the LEMPC formulation is designed to account for su�-

ciently small disturbances and measurement noise. Therefore, the lack of a decrease in the Lyapunov

function under the proposed control/detection strategy would not be due to plant/model mismatch

or sensor noise if the conditions of Theorem 1 are met. Furthermore, if Vj does not decrease over a

sampling period after ts,j when computed using the sensor measurements, this strategy detects the

attack even if all sensors are compromised.

Remark 6. If the control law is changed at a sampling period, the attacker may try to detect

this and determine which control law a given control action throughout a sampling period could

have been derived from to attempt to ensure that the false state measurement that they provide

at the beginning of the next sampling period causes the expected behavior of Vj. However, since

the control action is being implemented in sample-and-hold over the sampling period, there is not

much data on the control law available from u∗
i for the attacker then to work from. If the LEMPC

is computing set-points for regulatory controllers, these controllers would not be providing more

information on what control law (i.e., Lyapunov function) the LEMPC used. When measurements

of the state are available more frequently than every sampling period, an attacker may not be able

to falsify all of the measurements immediately after ts,j until they are aware of the change in the

control law, which has potential to reveal the attack if Vj does not decrease for any fraction of

the sampling period after ts,j due to this. However, Detection Strategy 1 has no guarantees that
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it will detect an attack. When an attack occurs, the sensor measurements are falsi�ed, and that

can compromise closed-loop stability before that attack is detected, and may also result in a false

sensor measurement trajectory that happens to decrease Vj. There is no guarantee that a probing

maneuver will be activated at a time when it could reveal an attack. The concept of the method

is that it could be used to �ag a false sensor measurement cyberattack if it does not cause Vj to

decrease when it should be.

Remark 7. The worst-case rate at which Vj will decrease over a sampling period following activation

of the j-LEMPC could be slow, in which case a practical sensor may not register the decrease in

the value of the Lyapunov function even if it is occurring. Therefore, from a practical perspective,

there could be cases where a su�ciently long period of time might be needed for the decrease in

the Lyapunov function to be registered by a practical sensing device, and that amount of time may

or may not be equivalent to one sampling period after the probing mechanism is triggered.

Randomized LEMPC Changes to Probe for Cyberattacks: Chemical Process Example

In this section, a chemical process example is used to demonstrate the implementation of Detec-

tion Strategy 1, as well as to highlight the limitation of this method in that it is not guaranteed to

detect attacks. The nonlinear process model consists of a continuous stirred tank reactor (CSTR)

with a second-order, exothermic, irreversible reaction of the form A→ B with the following process

dynamics:

ĊA =
F

V
(CA0 − CA)− k0e

− E
RgT C2

A (32)

Ṫ =
F

V
(T0 − T )− ∆Hk0

ρLCp

e
− E

RgT C2
A +

Q

ρLCpV
(33)

where the states are the reactant concentration of species A and temperature in the reactor (CA

and T , respectively). The manipulated inputs are CA0 (the reactant feed concentration of species

A) and the heat rate Q. The values of the parameters of the CSTR model (F , V , k0, E, Rg,

T0, ρL, ∆H, and Cp) are taken from.25 The vectors of deviation variables for the states and

inputs from their operating steady-state values, x1s = [CAs Ts]
T = [1.22 kmol/m3 438.2 K]T ,

[CA0s Qs]
T = [4.0 kmol/m3 0 kJ/h]T , respectively, are x1 = [x1,1 x1,2]

T = [CA − CAs T − Ts]
T and

u1 = [u1,1 u1,2]
T = [CA0−CA0s Q−Qs]

T . The process model represented by Eqs. 32-33 is numerically
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integrated using the explicit Euler method with integration step of 10−4 h. The economic stage

cost is selected to be Le = k0e
−E/(RT )C2

A. Despite the simplicity of this case study, it is illustrative

for the cyberattack detection methods without convoluting the results through a more complex

example, and the theoretical results of this work hold in the case of more complex processes.

The controller receives a state measurement subject to bounded measurement noise and the pro-

cess is subject to bounded disturbances. The noise is represented by a standard normal distribution

with mean zero, standard deviations of 0.002 kmol/m3 and 0.5 K, and bounds of 0.002 kmol/m3 and

0.5 K for the concentration of the reactant and reactor temperature, respectively. Process distur-

bances were added to the right-hand side of the di�erential equations describing the rates of change

of CA and T with zero mean and standard deviations of 0.5 kmol/m3 h and 2 K/h, and bounds of 2

kmol/m3 h and 5 K/h, respectively. The baseline LEMPC formulation used Lyapunov-based stabil-

ity constraints were designed using a Lyapunov function V1 = xT
b,1Pxb,1, where P = [1200 5; 5 0.1].

In the selected Lyapunov-based controller h1(xb,1) = [h1,1(xb,1) h1,2(xb,1)]
T , h1,1(xb,1) was set to 0

kmol/m3 for simplicity and h1,2(xb,1) was designed via Sontag's control law.26 The stability region

was de�ned with ρ1 = 300 (i.e., Ωρ1 = {x1 ∈ R2 : V1(xb,1) ≤ ρ1}), and ρ′e,1 = 225. N and ∆ were

set to 10 and 0.01 h, respectively.

The process was simulated for 0.1 h of operation, initialized at x1,init = [x1,1(t0) x1,2(t0)]
T =

[−0.21 kmol/m3 28.89 K]T in MATLAB R2016b using fmincon. In the LEMPC, the value of the

decision variable corresponding to Q was scaled down by 105, and probing was initialized at t0.

Four simulations were performed: two in which the original steady-state and stability region were

utilized for probing (i.e., a constraint of the form of Eq. 10f was enforced at the end of the �rst

sampling period, and no constraint of the form in Eq. 9f was used), and two in which a modi�ed

steady-state and stability region were utilized for probing. The modi�ed steady-state (x2s) has a

stability region in Ωρ1 and includes x1,init. Speci�cally, the new steady-state was selected to be

x2s = [1.22 kmol/m3 450 K]T . The stability region around this new steady-state is de�ned using

V2(x) = xT
2 P2x2, where x2 = x1 + x1s − x2s, with P2 = [2100 10; 10 0.25], and ρ2 = 100 (i.e.,

Ωρ2 = {x2 ∈ R2 : V2(x2) ≤ ρ2}). The modi�ed LEMPC design was formulated with respect to x2

and designed using a Lyapunov-based controller with h2,1(xb,2) = 0 kmol/m3 and h2,2(xb,2) selected
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Figure 1: V1 (top plots) and V2 (bottom plots) pro�les over 0.1 h of operation for the process example in the presence
of di�erent cyberattack policies.

using Sontag's control law with respect to V2(xb,2).

Two cyberattacks were simulated on the two di�erent probing formulations: 1) Attack 1: A

constant false state measurement x1,1 = 0.1 kmol/m3, x1,2 = 10 K is provided to the LEMPC's

starting at t0; 2) Attack 2: A false state measurement of the form x1,1 = −0.17 kmol/m3, x1,2 =

8.0 + 0.1r K, with r increasing by one from 1 to 9 at each sampling time until the 9th sampling

time and then keeping r at 9, is provided to the controller starting at t0. The V1(x̃b,1) and V2(x̃b,2)

pro�les that result when the attacks and probing are both initialized at t0 are presented in Fig. 1.

It can be seen that under Attack 1, whether the value of V1 or V2 is monitored over time, the attack

would be detected, whereas if the probing was only undertaken for a sampling period as suggested

in the theory (it is applied for the entire 0.1 h simulation in Fig. 1), Attack 2 would not be detected

with either probing strategy.

Remark 8. In general with the proposed method, until the probing starts, an LEMPC may not be

driving a process toward the steady-state so that there would not necessarily be a decrease in the

Lyapunov function expected over a sampling period before a probing maneuver.

Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC

Detection Strategy 1 described in Section �Detection Strategy 1: Randomized LEMPC Changes

to Probe for Cyberattacks� may identify a cyberattack by taking advantage of LEMPC's properties,

but it does not guarantee closed-loop stability in the presence of an attack (and as shown in the

example of the prior section, there can be many cases in which the method fails to detect attacks). A

strategy suggested in20,17 could be used instead to give a detection strategy that provides short-term
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guarantees that the closed-loop state is maintained in a bounded region of operation after an attack

on the sensor measurements (even, potentially, all of the measurements). Speci�cally, this second

detection strategy uses state predictions from the process model from the last state measurement to

identify an attack if the predictions deviate too signi�cantly from the measurements. When the norm

of the di�erence between the state measurement and the state prediction is above a threshold, the

measurement is �agged as a possible sensor attack. When the di�erence is below a threshold, then

even if the measurement was falsi�ed, the closed-loop state can be maintained in Ωρ1 for a sampling

period after the attack if the process is operated under an LEMPC with a su�ciently conservative

design (if the attack is not detected at tk, an auxiliary detection mechanism (e.g., machine learning

detection methods3) could be used in addition to attempt to identify a cyberattack on the sensor

measurements to avoid the potential that the closed-loop state may leave Ωρ1 after tk+1). The

developments below will focus on the case that the 1-LEMPC of Eq. 9 is used to control the process

at all times.

Cyberattack-Mitigating State Feedback LEMPC: Implementation Strategy

The implementation strategy for this detection/control method is as follows, where x̃b,1(tk|tk−1)

denotes the prediction of the state x̃b,1 at tk evaluated by integrating the dynamic model of Eq. 9b

from a measurement at tk−1 until tk:

1. At sampling time tk, if |x̃b,1(tk|tk−1)− x̃b,1(tk|tk)| > ν, detect that a cyberattack is occurring

and go to Step 1a. Else, go to Step 1b.

(a) Apply a backup strategy or enter an emergency shut-down mode.

(b) Operate the process under the LEMPC of Eq. 9 while employing an auxiliary detection

mechanism to attempt to �ag any un-detected attack at tk. tk ← tk+1. Go to Step 1.

Cyberattack-Mitigating State Feedback LEMPC: Stability and Feasibility Analysis

The following theorem guarantees that in the presence of bounded measurement noise and distur-

bances, the implementation strategy of Section �Cyberattack-Mitigating State Feedback LEMPC:

Implementation Strategy� maintains the closed-loop state within Ωρ1 before an attack occurs and

for at least one sampling period after the attack.
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Theorem 2. 20 Consider the system of Eq. 1 in closed-loop under the implementation strategy

of Section �Cyberattack-Mitigating State Feedback LEMPC: Implementation Strategy� based on a

controller h1(·) that satis�es the assumptions of Eqs. 2a-2d and 3. Let the conditions of Theorem 1

hold with ts,j = ∞, j = 2, 3, . . ., and δ ≥ fW,1(θ
′
v,∆) + ν. If x̃b,1(t0) ∈ Ωρsamp2,1 ⊂ Ωρ1 and

xb,1(t0) ∈ Ωρsamp2,1, then xb,1(t) ∈ Ωρsamp2,1 and the state measurement at each sampling time is in

Ωρ1 for all times before a sampling time tA that a cyberattack falsi�es a state measurement, and

xb,1(t) ∈ Ωρsamp2,1 for t ∈ [tA, tA +∆), if the attack is not detected at tA.

Proof. Theorem 1 guarantees that x̃b,1(t) ∈ Ωρ1 and xb,1(t) ∈ Ωρsamp2,1 for t < tA. To prove that

xb,1(t) ∈ Ωρsamp2,1 for t ∈ [tA, tA + ∆), consider the measurements x̃b,1(tk−1|tk−1) and x̃b,1(tk|tk),

and the predicted state x̃b,1(t|tk−1) from the nominal model of Eq. 9b for t ∈ [tk−1, tk]. From the

bounded measurement noise assumption, |x̃b,1(tk−1|tk−1)− xb,1(tk−1)| ≤ θ′v. Proposition 1 gives:

|xb,1(tk)− x̃b,1(tk|tk−1)| ≤ fW,1(θ
′
v,∆) (34)

If an attack is not �agged at tk:

|xb,1(tk)− x̃b,1(tk|tk)| ≤ |xb,1(tk)− x̃b,1(tk|tk−1) + x̃b,1(tk|tk−1)− x̃b,1(tk|tk)|

≤ fW,1(θ
′
v,∆) + |x̃b,1(tk|tk−1)− x̃b,1(tk|tk)| ≤ fW,1(θ

′
v,∆) + ν

(35)

where the last inequality follows from the fact that the implementation strategy would have �agged

the attack at tk if |x̃b,1(tk|tk−1) − x̃b,1(tk|tk)| > ν. Finally, when δ in Theorem 1 satis�es δ ≥

fW,1(θ
′
v,∆)+ν, then the closed-loop state is maintained within Ωρsamp2,1 over the subsequent sampling

period according to the proof of Theorem 1 if there is an attack at tk.

Remark 9. One could consider employing Detection Strategy 1 as an auxiliary detection mechanism

with Detection Strategy 2 if the j-LEMPC is activated at the beginning of one of the sampling

periods over which closed-loop stability is still maintained after an attack (but Detection Strategy

1 is not guaranteed to detect the attack).

Remark 10. The value of the threshold ν is a design decision that should be speci�ed considering

Eq. 35 and the conditions of Theorem 1. Speci�cally, larger values of ν require a more conservative

stability region. However, overly conservative values could cause false alarms, since there is some

di�erence between the state measurement and state prediction due to noise and disturbances.
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Detection Strategy 3: Cyberattack-Resilient Output Feedback LEMPC

Detection Strategy 2 ensures that the closed-loop state is maintained in Ωρ1 for only one sampling

period after an attack occurs. Detection Strategy 3, which guarantees that the closed-loop state is

maintained in a bounded region of operation for all time, uses multiple redundant state estimators

(where at least one cannot be impacted by the false sensor measurements) coupled with an output

feedback LEMPC. This method extends the results in19 by considering that multiple state estimators

may be impacted by a cyberattack.

Cyberattack-Resilient Output Feedback LEMPC: Formulation

The output feedback LEMPC design used for this detection strategy is formulated to receive a

state estimate z1 from one of the redundant state estimators (the estimator used to provide state

estimates to the LEMPC will be denoted as the i = 1 estimator) at tk. The notation follows that

of Eq. 8 with Eq. 8c replaced by x̃(tk) = z1(tk); we will subsequently refer to this LEMPC as the

output feedback LEMPC of Eq. 8.

Detection Strategy 3 guarantees that any cyberattacks which would drive the closed-loop state

out of Ωρ will be detected before this occurs. It recognizes cyberattacks by �agging deviations of the

state estimates from �normal� behavior; however, as �normal� behavior includes both measurement

noise and disturbances (Eqs. 1 and 6), care must be taken in setting the threshold on the state

estimate deviation from a �normal� value to avoid false detections. With slight abuse of notation

compared to that used in describing Detection Strategies 1 and 2, we here revert to the use of x(t)

(rather than xb,j(t))) to denote the actual state at time t. We consider that at least one of the

M state estimators is not a�ected by false state measurements (i.e., up to M − 1 state estimators

are receiving measurements for which at least some subset of them are falsi�ed). To determine a

threshold, we note that the bounds in Assumption 2 imply that the following holds:

|zi(t)− zj(t)| = |zi(t)− x(t) + x(t)− zj(t)| ≤ |zi(t)− x(t)|+ |zj(t)− x(t)|

≤ ϵij := (e∗mi + e∗mj) ≤ ϵmax := max{ϵij}
(36)

for all i ̸= j, i = 1, . . . ,M , j = 1, . . . ,M , as long as t ≥ tq = max{tb1, . . . , tbM}. Therefore,

abnormal behavior can be detected if |zi(tk)− zj(tk)| > ϵmax if tk > tq (this avoids false detections).

In practice, it may not be possible to know the numbers e∗mi and e∗mj, as they can only be known
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by knowing an upper bound on how far o� each zi(t) is from x(t), which may not be known since

full state feedback may not be available. By using Eq. 36 with data from an attack-free scenario,

a bound may be able to be placed on the possible value of ϵmax based on how far apart zi(t) and

zj(t) are over time. In the following, we will assume that the upper bound ϵmax can be determined.

Cyberattack-Resilient Output Feedback LEMPC: Implementation Strategy

This implementation strategy assumes that the process has already been run successfully in the

absence of attacks under the output feedback LEMPC of Eq. 8 for some time such that |zi(t)−x(t)| ≤

ϵ∗mi for all i = 1, . . . ,M before an attack:

1. At sampling time tk, if |zi(tk) − zj(tk)| > ϵmax, i = 1, . . . ,M , j = 1, . . . ,M , or z1(tk) /∈

Ωρ (where z1 is the state estimate used in the EMPC design), detect that a cyberattack is

occurring and go to Step 1a. Else, go to Step 1b.

(a) Enter an emergency shut-down mode that no longer operates the process under the

output feedback LEMPC of Eq. 8.

(b) Operate using the output feedback LEMPC of Eq. 8. tk ← tk+1. Go to Step 1.

Cyberattack-Resilient Output Feedback LEMPC: Stability and Feasibility Analysis

This section details feasibility and closed-loop stability results for systems of Eq. 1 under the

implementation strategy of Section �Cyberattack-Resilient Output Feedback LEMPC: Implemen-

tation Strategy.� We �rst present a proposition that bounds the worst-case di�erence between the

state estimate used by the output feedback LEMPC of Eq. 8 and the actual value of the process

state under the implementation strategy when an attack is not �agged.

Proposition 3. Consider the system of Eq. 1 under the implementation strategy of Section

�Cyberattack-Resilient Output Feedback LEMPC: Implementation Strategy� where M > 1 state es-

timators develop independent estimates of the process state and at least one of these estimators is

not impacted by false state measurements being provided to the estimators (and the attacks do not

begin until after tq). If a false sensor measurement cyberattack is not �agged at tk according to

the implementation strategy, then the worst-case di�erence between z1 and the actual state x(tk) is

given by:

|z1(tk)− x(tk)| ≤ ϵ∗M := ϵmax +max{e∗mj}, j = 1, . . . ,M (37)
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Proof. Two cases must be considered: Case 1) z1 is not impacted by the attack; Case 2) z1 is

impacted by the attack.

Case 1. When z1 is not impacted by an attack, |z1(tk) − x(tk)| is given by Assumption 2 for

tk > tq. Speci�cally, Eq. 37 holds since:

|z1(tk)− x(tk)| ≤ e∗m1 ≤ ϵmax +max(e∗mj) = ϵ∗M (38)

Case 2. When z1 is impacted by an attack but at least one of the other estimators (with its

estimate denoted as z2) is not, the following upper bound can be developed:

|z1(tk)− x(tk)| = |z1(tk)− z2(tk) + z2(tk)− x(tk)| ≤ |z1(tk)− z2(tk)|+ |z2(tk)− x(tk)|

≤ ϵmax +max(e∗mj) = ϵ∗M , j = 1, . . . ,M
(39)

where the last inequality follows from the fact that the detection algorithm was not activated (i.e.,

|z1(tk)− z2(tk)| ≤ ϵmax) and the assumption that the estimator producing z2 is not impacted by the

false sensor measurements (i.e., |z2(tk)− x(tk)| ≤ max(e∗mj)), according to Assumption 2).

Theorem 3 below summarizes the stability properties of the system of Eq. 1 operated under the

proposed implementation strategy in Section �Cyberattack-Resilient Output Feedback LEMPC: Im-

plementation Strategy.� This theorem re-purposes a bound on the allowable error in a state estimate

supplied to an output feedback-based LEMPC in the absence of cyberattacks from.22,21 Speci�cally,

the proposed cyberattack detection method enables the bound in Eq. 37 to be de�ned, which allows

cyberattacks to be treated in the framework previously developed in22,21 for guaranteeing closed-

loop stability of output feedback LEMPC in the presence of measurement noise and disturbances,

and thereby allows the combined detection and control framework to guarantee closed-loop stability

when a cyberattack is not �agged according to the proposed methodology.

Theorem 3. Consider the system of Eq. 1 in closed-loop under the LEMPC of Eq. 8 based on an

observer and controller pair satisfying Assumptions 1-2 and formulated with respect to the i = 1

measurement vector, and formulated with respect to a controller h(·) that meets Eqs. 2a-2d and 3.

Let the conditions of Proposition 3 hold, and θw ≤ θ∗w, θv,i ≤ θ∗v,i, ϵi ∈ (ϵ∗Li, ϵ
∗
Ui), and |zi(t0)−x(t0)| ≤

em0i, for i = 1, . . . ,M . Also, let ϵW,1 > 0, ∆ > 0, Ωρ ⊂ X, and ρ > ρmax > ρ1,1 > ρe,1 > ρmin,1 >
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ρs,1 > 0, satisfy:

ρe,1 ≤ ρmax −max{fV (fW (ϵ∗M ,∆)),Mf max{tz1,∆}α4(α
−1
1 (ρmax))} (40)

ρe,1 ≤ ρ− fV (fW (ϵ∗M ,∆))− fV (ϵ
∗
M) (41)

− α3(α
−1
2 (ρs,1)) + L′

x(Mf∆+ ϵ∗M) + L′
wθw ≤ −ϵW,1/∆ (42)

ρmin,1 = max{V (x(t+∆))|V (x(t)) ≤ ρs,1} (43)

ρmin,1 + fV (fW (ϵ∗M ,∆)) ≤ ρ (44)

ρmax + fV (ϵ
∗
M) ≤ ρ (45)

where tz1 is the �rst sampling time after tb1, and fV and fW are de�ned as in Propositions 1 and 2

but with the subscripts dropped. Then, if x(t0) ∈ Ωρe,1, x(t) ∈ Ωρmax for all t ≥ 0 and z1(th) ∈ Ωρ

for th ≥ max{∆, tz1} until a cyberattack is detected according to the implementation strategy in

Section �Cyberattack-Resilient Output Feedback LEMPC: Implementation Strategy,� if the attack

occurs after tq.

Proof. The proof consists of four parts. In Part 1, feasibility of the output feedback LEMPC of

Eq. 8 is proven when z1(tk) ∈ Ωρ. In Part 2, we prove that the closed-loop state trajectory is

contained in Ωρmax for t ∈ [t0,max{∆, tz1}). In Part 3, we prove that for t ≥ max{∆, tz1} but

before an attack occurs, x(t) is bounded within Ωρmax and z1(t) is bounded within Ωρ. In Part 4,

we prove that if there is an attack at tk but it is not detected using the proposed methodology (i.e.,

|zi(t) − zj(t)| ≤ ϵmax, for all i = 1, . . . ,M , j = 1, . . . ,M), x(t) is bounded in Ωρmax and z1(t) is

bounded in Ωρ.

Part 1. The Lyapunov-based controller h(x) implemented in sample-and-hold is a feasible so-

lution to the output feedback LEMPC of Eq. 8 when x̃(tk) = z1(tk) ∈ Ωρ. Speci�cally, h(x(tp)),

p = k, . . . , k + N − 1, t ∈ [tp, tp+1), is a feasible solution to the output feedback LEMPC of Eq. 8

because it meets the input constraints of Eq. 8e according to Eq. 2, it meets the state constraints

of Eq. 8d when x̃(t) ∈ Ωρ ⊂ X, it trivially satis�es Eq. 8g, and it satis�es Eq. 8f because the region

Ωρe,1 is forward invariant under h implemented in a sample-and-hold fashion when ρe,1 > ρmin,1, due
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to the closed-loop stability properties of the Lyapunov-based controller (as noted in the proof of

Part 1 for Theorem 1).

Part 2. To demonstrate boundedness of the closed-loop state in Ωρmax for t ∈ [t0,max{∆, tz1}),

the Lyapunov function value can be evaluated as follows:

V (x(t)) = V (x(t0)) +

∫ t

t0

∂V (x(τ))

∂t
dτ = V (x(t0)) +

∫ t

t0

∂V (x(τ))

∂x
ẋ(τ) dτ

≤ ρe,1 +Mf max{∆, tz1}α4(α
−1
1 (ρmax))

(46)

for all t ∈ [t0,max{∆, tz1}), where the latter inequality follows from Eq. 2, Eq. 5, and x(t0) ∈

Ωρe,1 ⊂ Ωρ1,1 ⊂ Ωρmax . If ρe,1 is de�ned as in Eq. 40, then V (x(t)) ≤ ρmax, ∀t ∈ [t0,max{∆, tz1}), so

that x(t) ∈ Ωρmax for all t ∈ [t0,max{∆, tz1}).

Part 3. We now consider the case that t ≥ max{∆, tz1} and the process is not experiencing a

cyberattack (i.e., |zj(tk)−x(tk)| ≤ max(e∗mj), for all j = 1, . . . ,M). In this case, either z1(tk) ∈ Ωρe,1

so that the constraint of Eq. 8f is activated, or z1(tk) ∈ Ωρ/Ωρe,1 so that the constraint of Eq. 8g is

activated. Consider �rst the case that z1(tk) ∈ Ωρe,1 . Eq. 8f ensures that x̃(t) is maintained within

Ωρe,1 throughout the prediction horizon, so we must demonstrate that x(t) ∈ Ωρmax and z1(t) ∈ Ωρ

for t ∈ [tk, tk+1). From Proposition 1, we have the following:

|x̃(t)− x(t)| ≤ fW (|z1(tk)− x(tk)|,∆) ≤ fW (ϵ∗M ,∆) (47)

for t ∈ [tk, tk+1), where the last inequality follows from Assumption 2 (i.e., when t ≥ max{∆, tz1}

and before an attack, |z1(tk)− x(tk)| ≤ e∗m1 ≤ ϵ∗M). From Proposition 2:

V (x(t)) ≤ V (x̃(t)) + fV (|x̃(t)− x(t)|) ≤ ρe,1 + fV (fW (ϵ∗M ,∆)) (48)

for t ∈ [tk, tk+1), where the second inequality follows from Eq. 8f and Eq. 47. If Eq. 40 holds, then

if x̃ is maintained in Ωρe,1 , the actual state x(t) is ensured to be inside Ωρmax for t ∈ [tk, tk+1). To

ensure that the estimate for t ∈ [tk, tk+1) is also within Ωρ, Eq. 48 and Proposition 2 give:

V (z1(t)) ≤ V (x(t)) + fV (|x(t)− z1(t)|) ≤ ρe,1 + fV (fW (ϵ∗M ,∆)) + fV (ϵ
∗
M) (49)

for t ∈ [tk, tk+1). When Eq. 41 holds, Eq. 49 gives that z1(t) ∈ Ωρ for t ∈ [tk, tk+1). Therefore, when

z1(tk) ∈ Ωρe,1 , x(t) is maintained within Ωρmax and z1(t) is maintained in Ωρ for t ∈ [tk, tk+1) if the

conditions of Theorem 3 hold.
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Next, we evaluate the case that z1(tk) ∈ Ωρ/Ωρe,1 (i.e., Eq. 8g is activated). Considering

Eqs. 8g, 2, and 4b, the bound on w, and adding and subtracting the term ∂V (x̃(tk))
∂x

f(x̃(tk), u(tk), 0)

to/from V̇ (x(t)) = ∂V (x(t))
∂x

f(x(t), u(tk), w(t)) and using the triangle inequality, we obtain:

V̇ (x(t)) ≤ −α3(|x̃(tk)|) + L′
x|x(t)− x̃(tk)|+ L′

wθw (50)

for all x ∈ Ωρ. From |x(t)− x̃(tk)| ≤ |x(t)− x(tk)|+ |x(tk)− x̃(tk)|, we obtain that:

|x(t)− x̃(tk)| ≤ |x(t)− x(tk)|+ ϵ∗M (51)

From Eqs. 5, 51, and 50:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs,1)) + L′

x(Mf∆+ ϵ∗M) + L′
wθw (52)

for all x̃ ∈ Ωρ/Ωρs,1 . If the condition of Eq. 42 is satis�ed, Eq. 52 gives:

V (x(t)) ≤ V (x(tk))−
ϵW,1(t− tk)

∆
, t ∈ [tk, tk+1) (53)

Thus, when z1(tk) ∈ Ωρ/Ωρe,1 , if x(tk) ∈ Ωρmax/Ωρs,1 , x(tk+1) ∈ Ωρmax . If instead x(tk) ∈ Ωρs,1 , Eq. 43

guarantees that x(t) ∈ Ωρmin,1
⊂ Ωρmax for t ∈ [tk, tk+1). From Eq. 49, V (z1(t)) ≤ V (x(t)) + fV (ϵ

∗
M).

When x(t) ∈ Ωρmax , this gives that V (z1(t)) ≤ ρ if Eq. 45 holds. Applying this recursively indicates

that the closed-loop state is contained within Ωρmax for all times and that the closed-loop state

estimate is inside Ωρ when t ≥ max{∆, tz1}.

Part 4. Finally, we consider the case that at some t ≥ max{∆, tq}, the process is under a false

sensor measurement cyberattack, but it is not detected by the proposed approach (i.e., |zi(tk) −

zj(tk)| ≤ ϵmax for all i = 1, . . . ,M and j = 1, . . . ,M). Since |z1(tk) − x(tk)| ≤ ϵ∗M and the state

estimate is inside Ωρ by the implementation strategy, boundedness of the closed-loop state in Ωρmax

and state estimate in Ωρ are again ensured by Part 3.

Remark 11. Although, the detection conditions have been derived for |zi(tk)− zj(tk)|, i = 1, . . . ,M

and j = 1, . . . ,M , if full state feedback is available, it is possible that one of the redundant estimators

could be replaced by full state feedback (and/or that the resulting full state feedback could be used

in place of z1 in the output feedback LEMPC of Eq. 8). When this is done, the results of this

29



section would continue to hold. Speci�cally, following similar steps to those in Section �Cyberattack-

Resilient Output Feedback LEMPC: Formulation,� we obtain that:

|x̃(tk)− zj(tk)| ≤ |x(tk) + θ′v − zj(tk)| ≤ |x(tk)− zj(tk)|+ θ′v (54)

for j = 2, . . . ,M (if the full state measurement takes the place of z1). De�ning ϵmax for this case as

max[max{e∗mj} + θ′v,max{e∗mj + e∗mi}], i = 2, . . . ,M and j = 2, . . . ,M allows the control-theoretic

guarantees of Theorem 3 to hold with this modi�ed ϵmax.

Remark 12. Ultimate boundedness of the closed-loop state of Eq. 1 within Ωρmin,1
can also be

achieved under the LEMPC of Eq. 8 even in the presence of an attack by Part 3 of the proof of

Theorem 3 if the constraint of Eq. 8g begins to be always enforced after a certain time (whereas

this would not be guaranteed in the presence of an attack in Detection Strategies 1 and 2). This is

because not all sensors can be attacked for Detection Strategy 3, so that they e�ectively act like a

check of one another to prevent a signi�cant enough deviation of the actual state from the estimate

(i.e., that would prevent stability goals from being achieved) from occurring without detection. The

value of ρmin,1, however, is impacted by the size of ρe,1 (speci�cally, it must be less than ρe,1), which

is impacted by ϵ∗M according to the conditions of Theorem 3, so that if the value of ϵ∗M becomes

too large (allowing attacks that cause zi, i = 1, . . . ,M to deviate more signi�cantly from x to

be allowed), it may become more di�cult to �nd a value of ρmin,1 that meets the conditions of

Theorem 3.

Remark 13. To determine the number of sensors (and which) that could be attacked while closed-

loop stability is still guaranteed under the implementation strategy until the attack is detected, it

�rst must be determined what redundant estimators will be used, and then di�erent scenarios with

di�erent sensors that could be attacked to cause at least one estimator to not be impacted could

be developed.

Cyberattack-Resilient Output Feedback LEMPC: Chemical Process Example

In this section, a chemical process example is used to illustrate Detection Strategy 3. As in

Section �Randomized LEMPC Changes to Probe for Cyberattacks: Chemical Process Example,�

we use a nonlinear process model of a CSTR that follows the process dynamics of Eqs. 32-33. The
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process states are the reactant concentration of species A (CA) and temperature in the reactor (T ).

The manipulated input is the reactant feed concentration (CA0). The values of the parameters of

the CSTR model are taken from.27 The vectors of deviation variables for the states and input

from their steady-state values, CAs = 2 kmol/m3, Ts = 350 K, CA0s = 4.0 kmol/m3, respectively,

are x = [x1 x2]
T = [CA − CAs T − Ts]

T and u = CA0 − CA0s. The process model represented by

Eqs. 32-33 is numerically integrated using the explicit Euler method with integration step of 10−3

h. The economic stage cost Le = k0e
−E/(RT )C2

A was utilized for this proposed control/detection

scheme.

Lyapunov-based stability constraints in Eqs. 8f-8g were designed using a quadratic Lyapunov

function V = xTPx, where P = [110.11 0; 0 0.12]. The Lyapunov-based controller utilized was

a proportional controller of the form h(x) = −1.6x1 − 0.01x2 (27) subject to input constraints

(|u| ≤ 3.5 kmol/m3). The stability region was set to ρ = 440 (i.e., Ωρ = {x ∈ R2 : V (x) ≤ ρ})

and ρe = 330. The LEMPC receives full state feedback (Remark 11) with the full system state

x = [x1 x2]
T which is measured and sent to the LEMPC at synchronous time instants tk. A high-

gain observer is used as the redundant estimator to estimate the reactant concentration of species A

from continuously available temperature measurements (x2). The design of this high-gain observer

follows27 with respect to a transformed system state obtained via input-output linearization. The

observer equation using the set of new coordinates is as follows:

˙̂z = Aẑ + L(y − Cẑ) (55)

where ẑ is the state estimate vector in the new coordinate, y is the output measurement, A =

[0 1; 0 0], C = [1 0], and L = [100 10000]T . To obtain the state estimate of the system z, the inverse

transformation T−1(ẑ) is applied.

For the detection conditions of Eq. 36, data from an attack-free scenario is gathered by simulating

the process under the proposed LEMPC described above. We simulate this attack-free event over

1 h of operation with the system state initialized o� steady-state at xinit = [CA−CAs T − Ts][−0.7

kmol/m3 -30 K]T in MATLAB R2017b, with the function tolerance set to 10−7. A constraint of the

form of Eq. 8f was enforced at the end of each sampling period both when the constraint of Eq. 8g
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was activated and when it was not. The controller receives a state measurement subject to bounded

measurement noise and the process is subject to bounded disturbances. Speci�cally, the noise is

represented by a standard normal distribution with mean zero, standard deviations of 0.01 kmol/m3

and 0.5 K, and bounds of 0.02 kmol/m3 and 0.5 K for the concentration of the reactant and reactor

temperature, respectively. In addition, process disturbances was added to the right-hand side of

the di�erential equations describing the rates of change of CA and T with zero mean and standard

deviations of 0.5 kmol/m3 h and 2 K/h, and bounds of 2 kmol/m3 h and 5 K/h, respectively. The

norm |x̃(tk) − z(tk)| was bounded after 0.2 h under an attack-free simulation below 0.9520 (which

was taken to be ϵmax and used to �ag attacks in the remainder of the example).

To ensure that not all estimators are impacted by attacks as required, the control system under

state feedback LEMPC is subjected to false state measurements of reactant concentration (which

have the form x1 + 0.1 kmol/m3 h; i.e., the temperature measurements are intact and only the

full state feedback measurements are impacted with the high gain observer not impacted as it

only uses measurements of the un-attacked sensor, the temperature). These false measurements

are always provided to the controller after 0.3 h of operation. We simulate the process under the

proposed control design over 1 h of operation with the process state initialized o� steady-state

again from xinit = [−0.7 kmol/m3 -30 K]T in MATLAB R2017b using fmincon. The measurement

noise and disturbances follow the same standard normal distribution described above. To solve

the optimization problem of Eq. 8, we use the following initial guess: at the �rst sampling time

the value of the Lyapunov-based controller h(x) is used while for the subsequent sampling times,

a shifted version of the optimal solution of the previous sampling time is utilized and the guess of

the last entry of the optimal input vector is based on h(x). Fig. 2 depicts the closed-loop state

trajectory in contrast with the closed-loop state estimate trajectory after 0.2 h of operation. As

soon as the cyberattack policy was implemented at 0.3 h, the control/detection strategy promptly

�agged abnormal behavior at the subsequent sampling time, when the closed-loop state was still

within the stability region, which could allow a backup policy to be employed.

We can also explore a case where an attack happens but the proposed detection mechanism does

not �ag it during process operation. Speci�cally, we consider that the false state measurements for
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Figure 2: Comparison between the closed-loop state trajectory under attack (solid line) and the closed-loop state
estimate trajectory (dashed lines) after 0.2 h of operation under the state feedback LEMPC.

reactant concentration above now have the form x1 + 0.01 kmol/m3 h (which follows an attack

trajectory with similarities to that in Fig. 2 but a better match between the measurement and

estimate trajectories for CA) and are always provided to the controller after 0.3 h of operation.

In this case, although the attack was not �agged during the simulation, the closed-loop state was

maintained in Ωρ under the proposed control design for the time period simulated, demonstrating

the concept that with the process subject to su�ciently small measurement noise and disturbances,

the closed-loop state can be maintained in Ωρ.

The proposed control/detection approach may also identify an attack if both state measurements

are attacked as long as the condition |x̃(tk) − z(tk)| ≤ ϵmax to �ag an attack still holds (despite

that attack detection if all measurements are attacked is not guaranteed in Section �Cyberattack-

Resilient Output Feedback LEMPC: Stability and Feasibility Analysis� to be �agged). To show this,

we consider the case where false state measurements of both reactant concentration and temperature

of the form x1+0.01 kmol/m3 and x2+1 K, respectively, are provided to the sensors after 0.3 h. As

soon as this attack was implemented (at 0.3 h), an attack was detected since the norm |x̃(tk)−z(tk)|

was larger than the threshold (again with the closed-loop state still in the stability region at the

detection time).

Conclusions

In light of the di�culty of guaranteeing cyberattack-resilience using LEMPC design only, as was

analyzed in our prior work,14 this work aimed to investigate how the control-theoretic guarantees of

LEMPC might be leveraged with detection techniques to attempt to prevent false sensor measure-
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ments from causing closed-loop stability issues in a chemical plant. Three cyberattack detection

concepts using LEMPC design were explored. The �rst strategy focused on the use of random

designs of LEMPC's around alternative steady-states within the stability region to check whether

the theoretical property of the randomly generated LEMPC's (i.e., that the value of the Lyapunov

function that the LEMPC is designed with respect to should decrease over the sampling period

following the activation of this LEMPC) is met by the process state measurements. The second

strategy focused on a state prediction, detection, and control framework that guarantees that the

closed-loop state is maintained in a stability region for one sampling period after an undetected

attack. Finally, the third strategy focused on a state estimation, detection, and control framework

that assumed that multiple state estimators were available for the process and that at least one

could be compromised by a false sensor measurement attack. A key challenge for future work is

better understanding the limits of what can be achieved, theoretically and fundamentally, in terms

of securing control systems against cyberattacks on their various components. This work focused

only on sensor attacks; however, there are many possible routes by which an attack may be per-

formed on a cyberphysical system, and when the attacks are too extensive (e.g., the attacker gains

control of many aspects of the control loop) it may be di�cult to provide guarantees on process

behavior during the attack.
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Figure 3: V1 (top plots) and V2 (bottom plots) pro�les over 0.1 h of operation for the process example in the presence
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Figure 4: Comparison between the closed-loop state trajectory under attack (solid line) and the closed-loop state
estimate trajectory (dashed lines) after 0.2 h of operation under the state feedback LEMPC.
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