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Abstract

Safety-critical processes are becoming increasingly automated and connected. While automation

can increase e�ciency, it brings new challenges associated with guaranteeing safety in the presence

of uncertainty especially in the presence of control system cyberattacks. One of the challenges for

developing control strategies with guaranteed safety and cybersecurity properties under su�cient

conditions is the development of appropriate detection strategies that work with control laws to

prevent undetected attacks that have immediate closed-loop stability consequences. Achieving this,

in the presence of uncertainty brought about by plant/model mismatch and process dynamics that

can change with time, requires a fundamental understanding of the characteristics of attacks that can

be detected with reasonable detection mechanisms and characterizing and verifying system safety

properties when cyberattacks and changing system behavior cannot be distinguished. Motivated

by this, this paper discusses three cyberattack detection strategies for nonlinear processes whose

dynamics change with time when these processes are operated under an optimization-based control

strategy known as Lyapunov-based economic model predictive control (LEMPC) until the closed-

loop state either leaves a characterizable region of state-space or an attack detection threshold

related to state estimates or state predictions is exceeded. Following this, the closed-loop state is

maintained within a larger region of operation under an updated cyberattack detection strategy for

a characterizable time period. A Taylor series-based model is used for making state predictions to

allow theoretical guarantees to be explicitly tied to the numerical approximation of the model used
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within the LEMPC. A process example illustrates the Taylor series-based model concept.

1. Introduction

With the move toward smart manufacturing Davis et al. (2015) and Industry 4.0 Lezzi et al.

(2018), there are increasing e�orts to update production facilities to include greater integration

of physical processes and sensor measurements with computer and communication networks to

implement and update current automated systems with more advanced capabilities. Advances in

automation of various data-gathering/analysis and control tasks has also, however, raised concerns

regarding cyberattacks on industrial systems Ren et al., including control systems Tuptuk and

Hailes (2018).

The potential for cybersecurity vulnerabilities in control systems motivates the design of method-

ologies that are capable of detecting an attack in order to maintain safe operating conditions. Re-

search e�orts have been made to identify game-theoretic frameworks for assessing security risks

associated with cyberphysical systems (CPS's) Amin et al. (2013). Additionally, other perspectives

of vulnerability identi�cation and assessment (e.g., Ani et al. (2017)), and detection mechanisms

and countermeasures to deal with cyber threats (e.g., Hoehn and Zhang (2016)) have been topics

of interest. Detection of attacks on a water distribution network was addressed in Amin et al.

(2012) where delay-di�erential observers, designed based on an analytically approximate model of

the process, were used. Stealthy attacks are considered particularly problematic and are de�ned

as attacks which are not detected by a given detection mechanism; Teixeira et al. (2012) develops

methods for changing a system's dynamics to allow attacks to be detected.

Many works providing a means of combating cyberattacks on industrial control systems have

focused on linear systems. For example, Pasqualetti et al. (2013) focuses for a class of linear

systems on mathematically characterizing attack detectability and identi�ability and the properties

of attack monitors. Other examples include handling of delay-based attacks on control signals using

a model-based maximum likelihood technique to a�rm or refute the likely presence of an attack on

a linear system under an optimization-based controller as discussed in Barboni et al. (2018), and

model-based attack detector design and detectability analysis for stochastic actuator and sensor
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attacks on a linear system with stochastic disturbances in Li et al. (2015).

Because chemical processes are often described by nonlinear dynamic models, recent e�orts in

cybersecurity for chemical process systems have focused on methods for detection and handling of

attacks on nonlinear systems. These have included cyberattack mitigation techniques, discussed in

Wu et al. (2018) which integrate a neural network (NN)-based detection method and a Lyapunov-

based model predictive controller for a certain class of nonlinear systems and Durand (2018), in

which several strategies such as randomization of control law selection are analyzed to clarify their

inability to prevent cyberattacks on control systems from causing problems, as well as Durand and

Wegener (2020); Oyama and Durand (2020), in which strategies for combining detection and model

predictive control (MPC Qin and Badgwell (2003); Ellis et al. (2014a); Rawlings et al. (2012)) for

nonlinear systems are devised that ensure that the closed-loop state does not leave a safe operating

region before a certain time period passes after an undetected attack. Another recent work which

has integrated detection and control for nonlinear systems in the presence of cyberattacks is Liu et al.

(2016), which focuses on a class of discrete-time nonlinear systems with random sensor measurement

attacks and develops a �lter with a bound on error covariance over time.

Cyberattacks pose a challenge for ensuring safety of an automated system. Safety assurance

for autonomous systems has received a good deal of attention, with techniques for guaranteeing

safety ranging from barrier functions, as described, for example, in Xu et al. (2015), to reachability

analysis, as described in works such as Xiang and Johnson (2018). Conditions for safety in the

presence of changing dynamics have been developed in Durand (2020b). Our recent work Durand

(2020a); Oyama et al. has begun an exploration into the topic of how to handle cyberattacks when

changes in the dynamics may also occur. As demonstrated in Oyama et al., there may be situations

in which a cyberattack detection mechanism could �ag dynamics changes as attacks because the

dynamics change could lead data to no longer appear �expected.� A two-tier strategy for cyberattack

detection and handling was proposed in Oyama et al. in which a cyberattack detection strategy

could be tuned to recognize attacks before a change in the dynamics, but then not de�nitively

call detection of abnormality via this �rst strategy an attack or a model change. Subsequently,

model re-identi�cation could occur as long as a secondary detection strategy that should only
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detect attacks if the dynamics have not changed signi�cantly does not detect an abnormality.

However, the simulation-based study of this concept in Oyama et al. indicated that this method

may be di�cult to tune in a way that does not leave vulnerabilities without theoretical analysis

of whether the resulting tuning is guaranteed to eliminate such vulnerabilities. The �rst step in

moving toward trying to address this issue is to develop theoretical conditions. This work addresses

this by providing theoretical conditions for preventing a model change or an undetected attack from

driving the closed-loop state out of a safe operating region before a certain amount of time passes

after the attack or model change using a two-tier detection strategy, focused on the time period

before model re-identi�cation. Furthermore, while Oyama et al. only provides simulation studies

for one integrated detection and control strategy, this work discusses how all three detection and

control strategies from Oyama and Durand (2020) could be updated to account for attacks as well

as changes in dynamics.

Motivated by this, cyberattack detection strategies from Oyama and Durand (2020) are ex-

tended, in this work, to examine their capabilities for detecting cyberattacks and allowing the

attacks to be handled with safety guarantees for some period of time after the attack when the pro-

cess dynamics can change over time. These strategies are examined when the controller utilized is

an LEMPC that incorporates a truncated Taylor series version of the solution to an empirical model

to allow connections between numerical error in the controller and one of the detection strategies to

be explicitly correlated with the guarantees that are made. The detection strategies are based on

triggering mechanisms when the state of the system breaches certain thresholds implemented based

on the model developed from empirical data. However, as changes in the underlying process dy-

namics are considered, we elucidate the challenges encountered in di�erentiating cyberattacks from

a change in the process dynamics, and our main contribution is to provide detection and control

techniques with su�cient conditions under which falsi�ed state measurements cannot cause safety

problems within a certain timeframe even when model changes and attacks may both occur. This

paper is an extension of Rangan and Durand (2020); Durand (2020a). It incorporates the Taylor

series analysis in Rangan and Durand (2020) into a cyberattack analysis framework with changing

dynamics, and updates the model change framework in Durand (2020a) to include analysis of how
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to handle cyberattacks simultaneously.

2. Preliminaries

2.1. Notation

The vector Euclidean norm is denoted by | · |. A class K function α : [0, a) → [0,∞) has

α(0) = 0 and is strictly increasing. xT denotes the transpose of a vector x. The notation � / �

signi�es set subtraction such that x ∈ A/B := {x ∈ Rn : x ∈ A, x /∈ B}. A level set of a positive

de�nite function V is denoted by Ωρ := {x ∈ Rn : V (x) ≤ ρ}. R+ signi�es the set of non-negative

real numbers. It is assumed that a measurement of the process state is available to a controller at

synchronous time instants separated by sampling periods of length ∆ (i.e., a state measurement is

available to a controller at every tk := k∆, k = 0, 1, . . .).

A function f̄s : I → R, where I ⊂ R is an open set, is said to be real analytic on I if, for any

c ∈ I there is a neighborhood J of c in which the function can be expressed as a convergent Taylor

series Krantz and Parks (2002):

f̄s(t) = f̄s(c) +
∞∑
n=1

(
f̄n
s,deriv(c)

(t− c)n

n!

)
∀ t ∈ J (1)

where f̄n
s,deriv(c) = dnf̄s

dtn
(c) and t ∈ R. In other words, a function is said to be analytic if in the

neighborhood of some point c within the domain J the Taylor series converges to the function f̄s.

A function ḡm : V̄ → R, where V̄ ⊂ Rb is an open set, is said to be real analytic on C if, for any

α ∈ V̄ the function ḡm may be represented by a convergent power series in some neighborhood C of

α Krantz and Parks (2002):

ḡm(y) =
∑

µ∈Λ(b)

βµ (y − α)µ , ∀ y ∈ C (2)

where µ = (µ1, µ2, . . . , µb) ∈ Λ(b) is a multi-index (i.e., a b-tuple of non-negative integers) such that

the following holds with y = (y1, y2, . . . , yb) ∈ Rb:

|µ| = µ1 + µ2 + . . .+ µb (3)

yµ = yµ1

1 yµ2

2 . . . yµb

b (4)
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∂µ

∂yµ
=

∂µ1

∂yµ1

1

∂µ2

∂yµ2

2

. . .
∂µb

∂yµb

b

(5)

µ! = µ1!µ2! . . . µb! (6)

βµ =
1

µ!

∂µ

∂yµ
ḡm(α) (7)

diag(·) denotes a diagonal matrix with the arguments of this function as the diagonal elements.

2.2. Class of Systems

This work considers nonlinear process systems of the form:

ẋa,i = fi(xa,i(t), u(t), wi(t)) (8)

where fi is a locally Lipschitz nonlinear vector function of its arguments, xa,i ∈ X ⊂ Rn is the

state vector, u ∈ U ⊂ Rm is the input vector with u = [u1, . . . , um]
T , and wi ∈ Wi ⊂ Rz is the

disturbance vector (Wi := {wi ∈ Rz : |wi| ≤ θ, θ > 0}, for i = 1, 2, . . .). The i-th model is used

for t ∈ [ts,i, ts,i+1), where xa,i(ts,i+1) = xa,i+1(ts,i+1) and ts,1 = t0. It is considered that the origin is

the equilibrium of the system of Eq. 8 (i.e., fi(0, 0, 0) = 0 and fi(xa,i,s, ui,s, 0) = 0 for i > 1 such

that the steady-state of the models after they update when wi = 0 is 0 at xa,i = xa,i,s, u = ui,s).

When wi ≡ 0, the system of Eq. 8 is termed the �nominal� system. Measurements are assumed

to be continuously available but provided to a controller at every tk = k∆, k = 0, 1, . . .. It is not

required for ts,i, i = 1, 2, . . ., to be an integer multiple of tk. The deviation variable x̄a,i is de�ned

as xa,i − xa,i,s = x̄a,i, ūi = u − ui,s, and f̄i is fi rewritten to have its origin at x̄a,i = 0 and ūi = 0

with wi = 0. Ui is the set U in deviation variable form from ui,s, and Xi is X in deviation variable

form from xa,i,s.

It is assumed that the system of Eq. 8 is stabilizable in the sense that there exists an in�nitely

di�erentiable positive de�nite Lyapunov function Vi : R
n → R+, as well as class K functions αj,i(·),

j = 1, . . . , 4, and a controller hi(x̄a,i) = [hi,1(x̄a,i) . . . hi,m(x̄a,i)]
T that asymptotically stabilizes the

origin of the nominal closed-loop system of Eq. 8 such that:

α1,i(|x̄a,i|) ≤ Vi(x̄a,i) ≤ α2,i(|x̄a,i|) (9a)

∂Vi(x̄a,i)

∂x̄a,i

f̄i(x̄a,i, hi(x̄a,i), 0) ≤ −α3,i(|x̄a,i|) (9b)
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∣∣∣∣∂Vi(x̄a,i)

∂x̄a,i

∣∣∣∣ ≤ α4,i(|x̄a,i|) (9c)

hi(x̄a,i) ∈ Ui (9d)

for all x̄a,i ∈ Di ⊆ Rn and i = 1, 2, . . ., where Di is an open neighborhood of the origin of f̄i.

Ωρi ⊂ Di denotes a level set of Vi and is referred to as the stability region of the system of Eq. 8

under the control action hi(x̄a,i). It is assumed to be chosen such that it is contained within Xi.

When u(t) is �xed/constant for the nominal (wi(t) ≡ 0) system of Eq. 8, the resulting function is

considered to be analytic in x̄a,i on Di and to have a solution x̄a,i(t) that is analytic in t.

From the Lipschitz continuity of f̄i and the boundedness of x̄i, ūi, and wi, there exist positive

constants Mi, Lx,i, Lw,i, L
′
x,i, and L′

w,i such that:

|f̄i(x̄i, ūi, wi)− f̄i(x̄
′
i, ūi, 0)| ≤ Lx,i|x̄i − x̄′

i|+ Lw,i|wi| (10a)∣∣∣∣∂Vi(x̄i)

∂x̄i

f̄i(x̄i, ūi, wi)−
∂Vi(x̄

′
i)

∂x̄′
i

f̄i(x̄
′
i, ū, 0)

∣∣∣∣ ≤ L′
x,i|x̄i − x̄′

i|+ L′
w,i|wi|+ L′

u,i|ūi − ū| (10b)

|f̄i(x̄i, ū, wi)| ≤Mi (10c)

∀ x̄i, x̄
′
i ∈ Ωρi , ūi, ū ∈ Ui, and wi ∈ Wi.

Finally, the Lyapunov-based controller is assumed to be locally Lipschitz continuous such that

the following inequalities hold:

|hi,j(x̄i)− hi,j(x̄
′
i)| ≤ Lh,i|x̄i − x̄′

i| (11)

for a positive constant Lh,i for all x̄i, x̄
′
i ∈ Ωρi , Lh,i > 0 and i = 1, 2, . . ., with j = 1, 2, . . . ,m. We

assume that there exists Mi,N1 > 0 such that for any ū ∈ Ui and x̄ ∈ Ωρi :

|f̄N1+1
i (x̄, ū, wi)| ≤Mi,N1 (12)

for all N1 = 0, 1, 2, . . . and that Mi,0 > 0 bounds |f̄i(x̄, ū, wi)| for all |wi| ≤ θ, where f̄n
i =

dnx̄a,i

dtn
.

2.3. Empirical Model

This work considers that the model of Eq. 8 is not available, and instead an empirical model

with the following form may be available:

ẋb,q(t) = fNL,q(xb,q(t), u(t)) (13)

7



where fNL,q is a locally Lipschitz (and analytic in xb,q for �xed u with a solution xb,q(t) assumed

to be analytic in t) nonlinear vector function in xb,q ∈ Rn and in the input u ∈ Rm. While

fNL,1(0, 0) = 0, the steady-state of the updated models is at xb,q = xb,q,s = 0 and u = uq,s so that

fNL,q(xb,q,s, uq,s) = 0 for q > 1. The index q = 1, 2, . . ., re�ects the index for the empirical model

used at a given time, which is not necessarily the same as i in Eq. 8 because the empirical model

may not update at the same time as the process dynamics change. Eq. 13 is updated at the time

ts,NL,q and xb,q(ts,NL,q) = xb,q+1(ts,NL,q). The deviation variable x̄b,q is de�ned as xb,q − xb,q,s = x̄b,q,

ūq = u−uq,s, and f̄NL,q is fNL,q rewritten to have its origin at x̄b,q = 0, ūq = 0, giving the following:

˙̄xb,q(t) = f̄NL,q(x̄b,q(t), ūq(t)) (14)

Uq is the set U in deviation variable form from uq,s, andXq is the set X in deviation variable form

from xb,q,s. We consider that there exist locally Lipschitz explicit stabilizing controllers hNL,q(x̄b,q)

that can render the origin of the empirical models in Eq. 13 asymptotically stable in the sense that:

α̂1,q(|x̄b,q|) ≤ V̂q(x̄b,q) ≤ α̂2,q(|x̄b,q|) (15a)

∂V̂q(x̄b,q)

∂x̄b,q

f̄NL,q(x̄b,q, hNL,q(x̄b,q)) ≤ −α̂3,q(|x̄b,q|) (15b)∣∣∣∣∂V̂q(x̄b,q)

∂x̄b,q

∣∣∣∣≤ α̂4,q(|x̄b,q|) (15c)

hNL,q(x̄b,q) ∈ Uq (15d)

for all x̄b,q ∈ DNL,q, where DNL,q is a neighborhood of the origin of f̄NL,q contained in X. The

function V̂q : Rn → R+ is an in�nitely di�erentiable Lyapunov function and is assumed to be the

same as Vi for the underlying dynamics at the time V̂q is used (i.e., the Vi and V̂q are assumed to

be the same at all times). The functions α̂ī,q, ī = 1, 2, 3, 4, are class K functions with q = 1, 2, . . ..

The set Ωρ̂q ⊂ DNL,q is de�ned to be the stability region of the system of Eq. 13 under hNL,q,

and Ωρ̂safe,q is a superset of Ωρ̂q contained in both DNL,q and X. Lipschitz continuity of fNL,q and

su�cient smoothness of V̂q imply that there exist ML,q > 0 and LL,q > 0 such that:

|f̄NL,q(x, u)| ≤ML,q (16a)
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∣∣∣∣∂V̂q(x1)

∂x
f̄NL,q(x1, u)−

∂V̂q(x2)

∂x
f̄NL,q(x2, u)

∣∣∣∣≤ LL,q|x1 − x2| (16b)

∀x, x1, x2 ∈ Ωρ̂q , u ∈ Uq, and q = 1, 2, . . ..

We assume that xb,q,s and xa,i,s do not change over time and that xb,q,s = xa,i,s even after

the empirical and process models change, though the steady-state inputs required to maintain the

closed-loop state at these conditions change as the models update. It is assumed that for any i-th

process model which describes that dynamics when the q-th empirical model is used, Ωρ̂safe,q ∈ Ωρi .

We consider that:

|f̄n
NL,q(x̄b,q, ūq)− f̄n

NL,q(x̄
′
b,q, ū

′
q)| ≤ Lx,n,q|x̄b,q − x̄′

b,q| (17a)∣∣∣∣∣∂V̂q(x̄b,q)

∂x̄b,q

f̄n
NL,q(x̄b,q, ūq)−

∂V̂q(x̄
′
b,q)

∂x̄b,q

f̄n
NL,q(x̄

′
b,q, ū

′
q)

∣∣∣∣∣ ≤ L′
x,n,q|x̄b,q − x̄′

b,q|+ L′
u,n,q|ūq − ū′

q| (17b)

for all x̄b,q, x̄
′
b,q ∈ Ωρ̂q and ūq, ū

′
q ∈ Uq, where Lx,n,q, L

′
x,n,q, Lu,n,q, and L′

u,n,q are positive constants.

We consider that hNL,q satis�es:

|hNL,q(x)− hNL,q(x
′)| ≤ Lh,NL|x− x′| (18)

for all x, x′ ∈ Ωρ̂safe,q with Lh,NL > 0.

2.4. Observability assumption

We assume that there are M sets of measurements yp ∈ Rqp , p = 1, . . . ,M , available continu-

ously, as follows:

yp(t) = kp,i(x̄a,i(t)) + vp(t) (19)

where yp represents the measurement vector in deviation variable form, kp,i is a vector-valued

function that enables yp to be written in deviation form from the i-th steady-state, and vp represents

bounded measurement noise (i.e., vp ∈ Vp := {vp ∈ Rqp : |vp| ≤ θv,p, θv,p > 0}). We consider

that a deterministic observer exists for each of the M sets of measurements when the q-th empirical

model is used with the form:

żq,p = Fp,q(ϵpq, zq,p, yp,q) (20)

where zq,p is the state estimate from the p-th observer, p = 1, . . . ,M , Fp,q is a vector-valued function,

and ϵpq > 0. When a controller hNL,q(zq,p) with Eq. 20 is used to control the closed-loop system of
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Eq. 8 and no change in the underlying dynamics occurs, we make the following assumptions which

are similar to Ellis et al. (2014b); Lao et al. (2015), where Merr,i,q > 0 is de�ned by:

|f̄i(x, ūi, 0)− f̄NL,q(x, ūq)| ≤Merr,i,q (21)

for all x ∈ Ωρ̂safe,q and all ūi = ūq + uq,s − ui,s in the input bounds.

Assumption 1. There exist positive constants M∗
err,i,q, θ∗, θ∗v,p, such that for each pair of

{Merr,i,q, θ, θv,p} with Merr,i,q ≤M∗
err,i,q, θ ≤ θ∗, and θv,p ≤ θ∗v,p, there exist 0 < ρ̂1,p,q < ρ̂q, em0pq > 0

and ϵ∗Lpq > 0, ϵ∗Upq > 0 such that if x(0) ∈ Ωρ̂1,p,q , |zq,p(0) − x̄a,i(0)| ≤ em0pq and ϵpq ∈ (ϵ∗Lpq, ϵ
∗
Upq),

the trajectories of the closed-loop system are bounded in Ωρ̂q , ∀ t ≥ 0 before a change in the process

dynamics.

Assumption 2. There exists e∗pq > 0 such that for each epq ≥ e∗pq, there exist tbpq(ϵpq) such that

|zq,p(t)− x̄a,i(t)| ≤ epq, ∀ t ≥ tbpq(ϵpq) before a change in the process dynamics.

Remark 1. We assume that multiple observers exist that are capable of making state estimates with

a bound on their accuracy.

2.5. Taylor Series Error Bounds

There exists an upper bound on the error when truncating the Taylor series representation of

the function f̄i(t) in Eq. 8 to N1 + 1 terms that is captured in the following proposition.

Proposition 1. Stewart (2003) The error Ei(t) from truncating the Taylor series representation

of f̄i(t) in Eq. 1 to N1 + 1 terms is given by:

Ei(t) = f̄s(t)− f̄s(c)−
N1∑
n=1

f̄n
s,deriv(c)

(t− c)n

n!
(22)

If |f̄N1+1
s,deriv| ≤ M̄N1,s for |t− c| ≤ d, then for |t− c| ≤ d:

|Ei(t)| ≤
M̄N1,s |t− c|N1+1

(N1 + 1)!
(23)
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2.6. Lyapunov-based Economic Model Predictive Control with Empirical Models

In this work, we use the optimization-based control design known as LEMPC as described in

Heidarinejad et al. (2012), to control the process described in Eq. 8. This formulation can be

developed using the empirical model of Eq. 13 Alanqar et al. (2015b,a); Giuliani and Durand (2018)

and can be represented in the following form:

min
ūq(t)∈S(∆)

∫ tk+N

tk

[Le(x̄b,q(τ), ūq(τ))]dτ (24a)

s.t. ˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (24b)

x̄b,q(tk) = x(tk) (24c)

x̄b,q(t) ∈ Xq, ∀ t ∈ [tk, tk+N) (24d)

ūq(t) ∈ Uq, ∀ t ∈ [tk, tk+N) (24e)

V̂q(x̄b,q(t)) ≤ ρ̂′e,q, ∀ t ∈ [tk, tk+N) if x(tk) ∈ Ωρ̂′e,q (24f)

∂V̂q(x(tk))

∂x
(f̄NL,q(x(tk), ūq(tk))) ≤

∂V̂q(x(tk))

∂x
(f̄NL,q(x(tk), hNL,q(x(tk))))

if x(tk) /∈ Ωρ̂′e,q (24g)

where Le(·, ·) represents a general scalar-valued stage cost of the LEMPC that is minimized in

Eq. 24. ūq is a piecewise-constant input trajectory with period ∆, which is indicated by the notation

ūq(t) ∈ S(∆). The prediction horizon is denoted by N . Eq. 24b represents the nominal process

model, with predicted state x̄b,q for the q-th model. x(tk) in Eq. 24c sets the predicted state of

the empirical model at tk equal to the measured state. Eqs. 24e and 24d are the input and state

constraints, respectively. The set Ωρ̂′e,q is selected as a subset of Ωρ̂q that causes the closed-loop state

to be maintained within Ωρ̂q over time when the system of Eq. 8 is operated under the controller of

Eq. 24. The constraints of the LEMPC guarantee recursive feasibility. We assume that there exists

Mq,k,N1 > 0 such that for all ūq(tk) ∈ Uq and x(tk) ∈ Ωρ̂safe,q :

|f̄N1+1
NL,q (x(tk), ūq(tk))| ≤Mq,k,N1 (25)

for all N1 = 0, 1, 2, . . ., where f̄n
NL,q =

dnx̄b,q

dtn
.

11



3. Run-Time Cyberattack Resilience Veri�cation

Theoretical guarantees regarding the ability to maintain the closed-loop state in a known op-

erating region for a certain amount of time after a cyberattack under certain detection strategies

have been previously developed for systems of the form in Eq. 8 when the underlying dynamics do

not change over time in Oyama and Durand (2020). New challenges arise in using these previously

proposed cyberattack detection methods, to be further discussed below, when the process dynamics

can change over time. This section will focus on developing cyberattack detection strategies that

can guarantee that when coupled with certain control strategies, the closed-loop state does not leave

a prede�ned region of operation for a de�ned amount of time after an undetected attack even when

the process dynamics change with time.

3.1. Run-time veri�cation in the absence of attacks

In Durand (2020b) and Durand (2020a), a method for guaranteeing that the closed-loop state of

the system of Eq. 8 under the LEMPC of Eq. 24 does not exit a known operating region for a de�ned

amount of time after the underlying process dynamics change, but in the absence of an attack, was

developed. In this strategy, which we consider to be an (admittedly conservative and potentially

di�cult to practically impose, but nonetheless theoretically valuable) method for verifying safety

at run-time, a region Ωρ̂safe,q (a superset of Ωρ̂q) which the closed-loop state should not leave after

a change in the underlying dynamics is de�ned, and Ωρ̂q is de�ned such that the closed-loop state

should not leave Ωρ̂q before the dynamics change. If the closed-loop state leaves Ωρ̂q , this can signal a

change in the underlying dynamics. As a result, if the closed-loop state leaves Ωρ̂q (a sampling time

at which this occurs is denoted by td,q), hNL,q is used as the controller for ease of use until a model

re-identi�cation can be performed and used to update the model incorporated within the LEMPC

at a sampling time tID,q. Once the model is re-identi�ed, the parameters/functions utilized in the

design of the LEMPC and the Lyapunov-based controller are updated (speci�cally, the Lyapunov

function V̂q+1, the Lyapunov-based controller hNL,q+1, and the stability region Ωρ̂q+1 are used for

developing the controller for the process under the updated process model). A worst-case bound

is placed on the number of sampling periods th,q available between td,q and tID,q before model re-
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identi�cation must be performed and the LEMPC and Lyapunov-based controller updated before

the closed-loop state will leave Ωρ̂safe,q .

Combining the above strategy for operating an LEMPC with safety guarantees in the presence

of changing dynamic models with guarantees on cyberattack detection from Oyama and Durand

(2020) raises new issues that will be discussed and handled via updated implementation strategies

in the subsequent sections. Furthermore, in these sections, we will explore a modi�ed version of the

LEMPC of Eq. 24 as follows:

min
ūq(t)∈S(∆)

∫ tk+N

tk

[Le(˜̄xb,q(τ), ūq(τ))]dτ (26a)

s.t. ˜̄xb,q(t) = ˜̄xb,q(tj) +

N1∑
n=1

f̄n
NL,q(˜̄xb,q(tj), ūq(tj))

(t− tj)
n

n!

∀ t ∈ [tj, tj+1), j = k, . . . , k +N − 1 (26b)

˜̄xb,q(tk) = x(tk) (26c)

˜̄xb,q(t) ∈ Xq, ∀ t ∈ [tk, tk+N) (26d)

ūq(t) ∈ Uq, ∀ t ∈ [tk, tk+N) (26e)

V̂q(˜̄xb,q(t)) ≤ ρ̂e,q, ∀ t ∈ [tk, tk+N), if ˜̄xb,q(tk) ∈ Ωρ̂e,q (26f)

∂V̂q(x(tk))

∂x
f̄NL,q(x(tk), ūq(tk)) ≤

∂V̂q(x(tk))

∂x
f̄NL,q(x(tk), hNL,q(x(tk)))

if x̄b,q(tk) /∈ Ωρ̂e,q (26g)

The formulation in Eq. 26, introduced in Rangan and Durand (2020), is similar to that in Eq. 24,

but it uses a di�erent upper bound on V̂q in Eqs. 26f-26g, and it uses a truncated Taylor series

approximation of the solution of Eq. 13 to make the state predictions ˜̄xb,q that appear in the

objective function and constraints. This formulation assumes that the model of Eq. 13 is known.

This allows the constraint of Eq. 26g to be written in terms of f̄NL,q explicitly, as in Eq. 24g. The

closeness of this formulation to that in Eq. 24 allows the results in this work to be applicable to the

LEMPC of Eq. 24 as well (i.e., if N1 =∞, they are the same). However, we select the formulation

in Eq. 26 in this work because it allows an explicit relationship to be developed essentially between

how a numerical method (in this case, a truncated Taylor series) impacts the guarantees to be

developed compared to noise and disturbances. This allows a clear relationship, in cyberattack
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detection strategies to be presented, to be developed between the impacts of noise, plant/model

mismatch, and numerical error in allowing the cyberattack-resilience guarantees to be developed.

For this formulation, as noted previously, we assume that Eqs. 8 and Eq. 14, for �xed inputs

in the input bounds, are analytic in the state and have a solution that is analytic in t such that

the model of Eq. 14 throughout the prediction horizon of N sampling periods can be written as a

set of N equations with �xed values of the inputs. We further consider that ∆ is su�ciently small

(to be denoted by ∆ ≤ ∆ub,q) such that at any tj at which a model with a �xed input begins to

represent Eq. 14, there is a neighborhood of tj including tj+1, where j = k, . . . , k+N − 1, on which

the solution of that model can be represented as a convergent Taylor series. These assumptions

lead to the form of the approximate solution of Eq. 14 represented by Eq. 26b.

3.2. Run-Time Cybersecurity Veri�cation with Changing Process Dynamics

In Oyama and Durand (2020), guarantees that closed-loop stability can be maintained after an

attack for at least some period of time were developed for nonlinear systems, of the form in Eq. 8, in

the scenario where the dynamics of the system do not change with time. These guarantees, however,

are based on the availability of detection strategies rooted in stability guarantees under Lyapunov-

based EMPC with a constraint in the form like that in Eq. 24g activated (i.e., that the time

derivative of the Lyapunov function decreases when the constraint is activated and the closed-loop

state is outside of a neighborhood of the origin; this strategy is referred to as Detection Strategy 1),

on state predictions being su�ciently accurate (Detection Strategy 2), or on state estimates being

su�ciently accurate (Detection Strategy 3). When the underlying dynamics change, it would not be

expected that state predictions and state estimates would necessarily continue to be accurate, and

in addition, it is not necessarily true that the Lyapunov function would decrease for an LEMPC with

a constraint of the form of Eq. 24g. Therefore, from the perspective of these detection strategies,

cyberattacks and changes in the underlying dynamics may be di�cult to distinguish.

This section addresses this by presenting modi�ed versions of Detection Strategies 2 and 3 from

Oyama and Durand (2020) designed to allow the closed-loop state to remain within Ωρ̂q,safe for

a characterizable amount of time after it is detected to have left Ωρ̂q . This modi�cation holds

even when the reason that the closed-loop state has left Ωρ̂q cannot be de�nitively characterized
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as being the result of a cyberattack versus a change in the underlying process dynamics. We also

brie�y discuss Detection Strategy 1 from Oyama and Durand (2020) for the case where changes

in the underlying dynamics cannot be di�erentiated from cyberattacks. The results from Oyama

and Durand (2020) were obtained without explicitly accounting for numerical error when solving

a process model as suggested in, for example, Eq. 26b, but can be extended to such a case. We

highlight that the theoretical results in the subsequent sections consider su�ciently small bounded

measurement noise and plant/model mismatch.

3.2.1. Detection Strategy 1: Randomized LEMPC Changes to Probe for Cyberattacks

This detection strategy in Oyama and Durand (2020) takes advantage of the closed-loop stability

properties of LEMPC to probe for cyberattacks. Speci�cally, when the constraint of the form of Eq.

24g is activated in the LEMPC under su�cient conditions, the Lyapunov function should decrease

over the subsequent sampling period as long as the state measurement at the beginning of the

sampling period is not within a neighborhood of the origin. Detection Strategy 1 takes advantage

of this by operating a process under an LEMPC designed based on the original (j = 1) steady-state

for the majority of the operation, but at random times develops alternative steady-states (i.e., j-th

steady-states with j > 1) with stability regions containing the state measurement at tk. At these

random times, it switches from using the j = 1 LEMPC (or 1-LEMPC) to using that LEMPC

designed around the new steady-state (i.e., the j-LEMPC, j > 1, has the process model, Lyapunov

function, and Lyapunov-based controller adjusted to be with respect to the j-th steady-state), but

with a constraint of the form of that in Eq. 24g activated regardless of the position of x(tk) within

the new stability region (i.e., a constraint similar to that in Eq. 24f is not activated). After a

sampling period, the j-LEMPC formulation is switched back to the 1-LEMPC formulation. In the

absence of a change in the process dynamics, the value of the Lyapunov function will decrease over

the sampling period following the activation of the j-LEMPC, so that a lack of decrease in the

Lyapunov function in the state measurement data could therefore signal a potential cyberattack on

the state measurements.

When the process dynamics may change, however, there become two possible reasons that the

value of the Lyapunov function may not decrease over the sampling period following the activation
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of the j-LEMPC: 1) the underlying dynamics of the process of Eq. 8 have changed (i.e., Eq. 14

is no longer a su�ciently accurate approximation of the actual process dynamics to enable the

j-LEMPC to decrease V̂q) or 2) a cyberattack on the sensor measurements has occurred. These two

cases might not be distinguishable using this detection mechanism alone (i.e., when the value of the

Lyapunov function fails to decrease over a sampling period following activation of the j-LEMPC,

this detection method alone might not reveal whether the reason is due to a cyberattack on the

sensor measurements or due to a change in the underlying process dynamics).

3.2.2. Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC

The second detection strategy from Oyama and Durand (2020) to be explored uses the di�erence

between state measurements and state predictions to �ag cyberattacks on the process sensors.

Speci�cally, a threshold νq is selected a priori to upper bound the error between state predictions

at tk made from a measurement at tk−1 and state measurements (denoted by x(tk)). Though

Oyama and Durand (2020) does not use the empirical models or the approximate Taylor series-

based solution of Eq. 24b, state predictions at tk made from the measurements at tk−1, in this

section, will be denoted by ˜̄xb,q(tk|tk−1) to introduce notation that will be subsequently used when

the LEMPC of Eq. 26 is used and will capture the intent of the work in Oyama and Durand (2020).

If |˜̄xb,q(tk|tk−1)− x(tk)| > νq at a sampling time, an attack is detected. If |˜̄xb,q(tk|tk−1)− x(tk)| ≤ νq

at a sampling time, the LEMPC of Eq. 24 is used to control the process for the subsequent

sampling period. If the parameters of the control law (e.g., ∆ and ρ̂e,q) are selected in a su�ciently

conservative fashion, then there is at least a sampling period after an undetected attack occurs

during which the closed-loop state does not leave Ωρ̂q when the process dynamics do not change

over time.

In this strategy, when the process dynamics do not change over time, the value of νq is designed

to ensure that there is no way that disturbances (or plant/model mismatch caused by the use

of the empirical model) or noise could cause |˜̄xb,q(tk|tk−1) − x(tk)| to be greater than νq, making

the detection method capable of �agging attacks only. However, when the process dynamics are

allowed to change over time, there become two reasons that |˜̄xb,q(tk|tk−1)− x(tk)| could exceed νq:

1) the dynamics of the process have changed such that Eq. 14 is no longer adequate for making

16



accurate state predictions or 2) a cyberattack has occurred on the process sensors. It may not

be possible to di�erentiate between these two cases using this detection strategy as it depends on

state predictions. Furthermore, when the state measurement leaves Ωρ̂q , it may not be possible to

know whether this has occurred due to an attack on the sensors or due to a change in the process

dynamics. This necessitates the need for an updated implementation strategy and value of νq for

guaranteeing that the closed-loop state remains within Ωρ̂safe,q for a de�ned amount of time after

the closed-loop state leaves Ωρ̂q or after |˜̄xb,q(tk|tk−1) − x(tk)| > νq when it is not known whether

the cause of the mismatch between the state prediction and measurement arises from an attack or

a change in the dynamics.

To achieve this, we will utilize two stages of monitoring for cyberattacks and model changes.

The �rst stage will utilize a detection strategy based on an initial upper bound on |˜̄xb,q(tk|tk−1) −

x(tk)|, denoted by νs,q. This bound will be designed such that, if there were no model changes,

|˜̄xb,q(tk|tk−1) − x(tk)| > νs,q would signify a cyberattack with certainty according to the method

in Oyama and Durand (2020). However, when model changes are allowed, it is uncertain whether

|˜̄xb,q(tk|tk−1) − x(tk)| > νs,q signi�es a cyberattack; therefore, we will develop a second bound

νl,q (νl,q ≥ νs,q) where, if |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νl,q after a model change but no cyberattack

is detected via this updated detection mechanism, the closed-loop state should not leave Ωρ̂safe,q

within a sampling period after the attack occurs if it is not detected. Initially, the process is operated

within Ωρ̂q , and using the cyberattack detection mechanism based on vs,q. Either a measurement

outside of Ωρ̂q or a measurement which causes |˜̄xb,q(tk|tk−1) − x(tk)| > νs,q triggers activation of

the second cyberattack detection method based on |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νl,q. Because either of

those conditions which trigger the activation of the new cyberattack detection mechanism could

signify that the underlying process dynamics changed, a new model will be re-identi�ed within th,q

sampling periods after either of the detection conditions is triggered if no attack is detected within

th,q sampling times after td,q. However, if an attack is undetected, an auxiliary detection mechanism

may be needed to prevent the attack from causing the closed-loop state to leave Ωρ̂safe,q after a

sampling period following the attack.

The implementation strategy just described for this detection method is as follows:
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1. At t0, the i = 1 model (Eq. 8) describes the dynamics of the process. The q = 1 empirical

model (Eq. 14) is used to design the LEMPC of Eq. 26. An index ihx is set to 0. An index ζ

is set to 0. Go to Step 2.

2. Check if x(tk) /∈ Ωρ̂q , but ζ = 0. If so, set ζ = 1 and td,q = tk. Go to Step 3.

3. Check the value of edif = |˜̄xb,q(tk|tk−1)−x(tk)|. If ζ = 0 and edif > vs,q, set ζ = 1 and td,q = tk

and check if edif > vl,q. If edif > vl,q, consider that a cyberattack on the sensors is occurring

and initiate a backup strategy (e.g., redundant senors or an emergency shut-down mode). If

ihx = 1, go to Step 3a. Else, if ζ = 1, go to Step 3b, or if ζ = 0, go to Step 3c.

(a) If x(tk) ∈ Ωρ̂q+1 , operate the process under the LEMPC of Eq. 24 with q ← q + 1, set

ihx = 0 and ζ = 0. Else, apply hNL,q+1(x(tk)) to the process. Go to Step 2. tk ← tk+1.

(b) If (tk+1 − td,q) < th,q, gather on-line data to develop an improved process model as well

as updated functions V̂q+1 and hNL,q+1, and an updated stability region Ωρ̂q+1 , for the

new empirical model, but do not yet update the LEMPC and control the process using

the prior LEMPC. Else, if (tk+1 − td,q) ≥ th,q, set ihx = 1 and apply hNL,q+1(x(tk)). Go

to Step 2. tk ← tk+1.

(c) Operate the process under the LEMPC of Eq. 26 that was used at the prior sampling

time. Go to Step 2. tk ← tk+1.

Remark 2. We assume ts,i+1 and ts,i+2 are separated by a su�cient length of time such that tk >

ts,i+2 always occurs after the closed-loop state has entered Ωρ̂q+1 when there is no attack.

Remark 3. An alternative to the implementation strategy described (which holds also for Detection

Strategy 1) would be to design the original stability region so conservatively that the closed-loop

state will not exit that region under a model change but only in the case of an attack. This loses

the capability, however, to know if the model needs to be re-identi�ed due to changing underlying

dynamics via the method focused on whether the closed-loop state leaves Ωρ̂q .

3.2.2.1. Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC: Stability and Feasi-

bility Analysis In this section, it will be demonstrated that in the presence of either a change in

the underlying dynamics or an undetected cyberattack, the implementation strategy for Detection
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Strategy 2 above maintains the closed-loop state within Ωρ̂safe,q for at least th,q sampling periods

after a model change and at least one sampling period after an undetected cyberattack (providing

some time available for auxiliary detection mechanisms to attempt to detect an attack that bypasses

this detection strategy). This strategy achieves these goals in the presence of bounded process noise

and disturbances, and with the attack potentially impacting all state measurements. To develop

this proof, a number of propositions are presented. The �rst bounds the value of V̂q at any point

in Ωρ̂q , and the second bounds the di�erence between the closed-loop state of the system of Eq. 8

and that of Eq. 14 over time.

Proposition 2. P. Mhaskar and Christo�des (2013) Consider the Lyapunov function V̂q(·). There

exists a quadratic function fV,q(·) such that:

V̂q(x) ≤ V̂q(x
′) + fV,q(|x− x′|) (27)

for all x, x′ ∈ Ωρ̂safe,q with

fV,q(s) := α̂4,q(α̂
−1
1,q(ρ̂safe,q))s+Mv,qs

2 (28)

where Mv,q is a positive constant.

Proposition 3. Consider the systems

˙̄xa,i = f̄i(x̄a,i(t), ūi(t), wi(t)) (29a)

˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (29b)

with initial states |x̄a,i(t0) − x̄b,q(t0)| ≤ δ, with x̄a,i(t0) and x̄b,q(t0) contained within Ωρ̂safe,q , with

t0 = 0, ūi = ūq + uq,s − ui,s contained within the input bounds, and wi ∈ Wi. If x̄a,i(t) and x̄b,q(t)

remain within Ωρ̂safe,q for t ∈ [0, T ], then:

|x̄a,i(t)− x̄b,q(t)| ≤
((

δ +
Lw,iθ +Merr,i,q

Lx,i

)
eLx,it

)
− Lw,iθ +Merr,i,q

Lx,i
(30)

Proof 1. The proof follows that in Giuliani and Durand (2018) and Durand (2020b) by taking the

integral of Eqs. 29a and 29b, subtracting them, taking the norm with application of the triangle
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inequality, adding and subtracting f̄i(x̄b,q(s), ūi(s), 0) on the right-hand side, and applying Eq. 21,

Eq. 10a and the bound on wi to give:

|x̄a,i(t)− x̄b,q(t)| ≤ |x̄a,i(t0)− x̄b,q(t0)|+
∫ t

0

|f̄i(x̄a,i(s), ūi(s), wi(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ δ + (Lw,iθ +Merr,i,q)t+

∫ t

0

Lx,i|x̄a,i(s)− x̄b,q(s)|ds
(31)

Using the Gronwall-Bellman inequality Khalil (2002), Eq. 30 is obtained.

The next proposition establishes a bound on the di�erence between the deviation form of the

state of the system of Eq. 8 and the state of the nominal (wi ≡ 0) system.

Proposition 4. Heidarinejad et al. (2012) Consider the systems

˙̄xa,i = f̄i(x̄a,i(t), ūi(t), wi(t)) (32a)

˙̄̂xa,i = f̄i(x̄a,i(t), ūi(t), 0) (32b)

with initial states x̄a,i(t0) = ˆ̄xa,i(t0) and contained within Ωρ̂safe,q , with t0 = 0, and wi ∈ Wi. If

x̄a,i(t) and ˆ̄xa,i(t) remain within Ωρ̂q for t ∈ [0, T ], then:

|x̄a,i(t)− ˆ̄xa,i(t)| ≤
Lw,iθ

Lx,i

(
eLx,it − 1

)
(33)

The next proposition characterizes the error between the solution of the model of Eq. 14 and

the approximate solution given by the following equation:

˜̄xb,q(t) = ˜̄xb,q(tj) +

N1∑
n=1

(
f̄n
NL,q(˜̄xb,q(tj), ūq(tj))

(t− tj)
n

n!

)
(34)

∀ t ∈ [tj, tj+1), j = k, . . . , k +N − 1, when ˜̄xb,q(tk) is the state measurement at tk.

Proposition 5. Consider the solution of the system of Eq. 14 and ˜̄xb,q(t) from the model of Eq. 34.

There exists an upper bound on the error Ēq,j(tj), j = k, . . . , k +N − 1, between x̄b,q(t) and ˜̄xb,q(t)

throughout a sampling period beginning at tj, j = k, . . . , k +N − 1, in the interval [tk, tk+N) under

a sample-and-hold input policy de�ned by ūq(tj) ∈ Uq, ∀ t ∈ [tj, tj+1), j = k, . . . , k +N − 1, where

x̄b,q(tk) = ˜̄xb,q(tk) and ∆ < ∆ub,q, where the expression for the error is de�ned recursively by:

|Ēq,k(t)| ≤
Mq,k,N1∆

N1+1

(N1 + 1)!
:= Ēq,k(tk), for t ∈ [tk, tk+1] (35)
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|Ēq,k+p(t)| ≤Ēq,k+p−1(tk+p−1) +
Mq,k+p,N1∆

N1+1

(N1 + 1)!
+

N1∑
n=1

∆n

n!
Lx,n,qĒq,k+p−1(tk+p−1) := Ēq,k+p(tk+p),

for t ∈ [tk+p, tk+p+1], p = 1, . . . , N − 1
(36)

Proof 2. This proof follows the proof of Proposition 4 in Rangan and Durand (2020). From

Proposition 1, x̄b,q(t) can be represented as follows for t ∈ [tj, tj+1), j = k, . . . , k +N − 1:

x̄b,q(t) = x̄b,q(tj) +
∞∑
n=1

f̄n
NL,q(x̄b,q(tj), ūq(tj))

(t− tj)
n

n!
(37)

= x̄b,q(tj) +

N1∑
n=1

f̄n
NL,q(x̄b,q(tj), ūq(tj))

(t− tj)
n

n!
+ Eq,j(t) (38)

∀ t ∈ [tj, tj+1], j = k, . . . , k+N−1, where Eq,j(t) represents the Taylor series error from truncating

the Taylor series representation of the solution of Eq. 14 to N1 + 1 terms. De�ning Ēq,j(t) =

x̄b,q(t)− ˜̄xb,q(t) for t ∈ [tj, tj+1], then for t ∈ [tk, tk+1), ˜̄xb,q(t) = x̄b,q(t)− Ēq,k(t) = x̄b,q(t)−Eq,k(t),

and

|Ēq,k(t)| = |x̄b,q(t)− ˜̄xb,q(t)| ≤
Mq,k,N1(∆)N1+1

(N1 + 1)!
:= Ēq,k(tk) (39)

from Eq. 23, with Mq,k,N1 > 0. For t ∈ [tk+1, tk+2], the following equations hold:

˜̄xb,q(t) = ˜̄xb,q(tk+1) +

N1∑
n=1

(
f̄n
NL,q(˜̄xb,q(tk+1), ūq(tk+1))

(t− tk+1)
n

n!

)
(40)

x̄b,q(t) = x̄b,q(tk+1) +

N1∑
n=1

(
f̄n
NL,q(x̄b,q(tk+1), ūq(tk+1))

(t− tk+1)
n

n!

)
+ Eq,k+1(t) (41)

Taking the Euclidean norm of Eq. 41 minus Eq. 40 and applying the triangle inequality and

Eqs. 23, 39 and 17a gives:

|x̄b,q(t)− ˜̄xb,q(t)| ≤ |x̄b,q(tk+1)− ˜̄xb,q(tk+1)|+
N1∑
n=1

∆n

n!

∣∣f̄n
NL,q(x̄b,q(tk+1), ūq(tk+1))− f̄n

NL,q(˜̄xb,q(tk+1), ūq(tk+1))
∣∣

+ |Eq,k+1(t)|

≤ Mq,k,N1(∆)N1+1

(N1 + 1)!
+

N1∑
n=1

∆n

n!
Lx,n,q|x̄b,q(tk+1)− ˜̄xb,q(tk+1)|+

Mq,k+1,N1(∆)N1+1

(N1 + 1)!

≤ Mq,k,N1(∆)N1+1

(N1 + 1)!
+

N1∑
n=1

∆n

n!
Lx,n,q

Mq,k,N1(∆)N1+1

(N1 + 1)!
+

Mq,k+1,N1(∆)N1+1

(N1 + 1)!
:= Ēq,k+1(tk+1)

(42)
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for t ∈ [tk+1, tk+2], where x̄b,q(tk+1) and ˜̄xb,q(tk+1) ∈ Ωρ̂q , and Mq,k+1,N1 > 0.

Continuing to follow this procedure for subsequent sampling periods gives the general form of the

error bound for t ∈ [tk+p, tk+p+1], where p = 1, . . . , N − 1, as follows, with Mq,k+p,N1 > 0:

|Ēq,k+p(t)| ≤ Ēq,k+p−1(tk+p−1) +
Mq,k+p,N1∆

N1+1

(N1 + 1)!
+

N1∑
n=1

∆n

n!
Lx,n,qĒq,k+p−1(tk+p−1) (43)

From Proposition 5, decreasing N1 and ∆ decreases the error between x̄b,q and ˜̄xb,q throughout

a sampling period. For a given N1 and ∆, the error at the end of the prediction horizon will be less

when the prediction horizon includes less sampling periods. Furthermore, Ēq,j, j = k + 1, . . . , k +

N − 1, in Proposition 5 incorporates error both from truncation of the Taylor series solution and

from using the approximate value ˜̄xb,q at each sampling time in the approximation of the dynamics

at a subsequent time. Eq,j, in contrast, only re�ects truncation error. The following proposition

bounds the di�erence between the state trajectory of Eq. 34 and the solution of the nominal (wi ≡ 0)

system of Eq. 8.

Proposition 6. Consider the following systems:

ˆ̄xa,i(t) = ˆ̄xa,i(t0) +
∞∑
n=1

(
f̄n
i (ˆ̄xa,i(t0), ūi(t0), 0)

(t− t0)
n

n!

)
(44)

˜̄xb,q(t) = ˜̄xb,q(t0) +

N1∑
n=1

(
f̄n
NL,q(˜̄xb,q(t0), ūq(t0))

(t− t0)
n

n!

)
(45)

with initial states |ˆ̄xa,i(t0) − ˜̄xb,q(t0)| ≤ δ and ˆ̄xa,i(t0), ˜̄xb,q(t0) ∈ Ωρ̂q with t0 = 0, ūi(t0) ∈ Ui,

ūq(t0) ∈ Uq, ūi(t0) = ūq(t0) + uq,s − ui,s, and wi ∈ Wi. Also consider that for all n ≥ 1:

|f̄n
i (x̄, u, 0)− f̄n

NL,q(x̄
′, u′)| ≤Mderiv,i,q (46)

for all |x̄− x̄′| ≤ δ and contained in Ωρ̂safe,q , and for all u = u′+uq,s−ui,s in the input bounds, and

Eq. 12 holds. If ˆ̄xa,i(t), ˜̄xb,q(t) ∈ Ωρ̂q , then for t ∈ [0, ts,i+1],

|ˆ̄xa,i(t)− ˜̄xb,q(t)| ≤ δ +

N1∑
n=1

(t− t0)
n

n!
Mderiv,i,q +

Mi,N1(t− t0)
N1+1

(N1 + 1)!
(47)
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Proof 3. Taking the Euclidean norm of Eq. 44 minus Eq. 45 and applying Eqs. 23, 12 and 46 and

the triangle inequality and taking the norm on both sides:

|ˆ̄xa,i(t)− ˜̄xb,q(t)| ≤ |ˆ̄xa,i(t0)− ˜̄xb,q(t0)|+∣∣∣∣ ∞∑
n=1

(f̄n
i (ˆ̄xa,i(t0), ūi(t0), 0)

(t− t0)
n

n!
)−

N1∑
n=1

(
f̄n
NL,q(˜̄xb,q(t0), ūq(t0))

(t− t0)
n

n!

) ∣∣∣∣
≤ δ +

N1∑
n=1

(t− t0)
n

n!
|f̄n

i (ˆ̄xa,i(t0), ūi(t0), 0)− f̄n
NL,q(˜̄xb,q(t0), ūq(t0))|+

Mi,N1(t− t0)
N1+1

(N1 + 1)!

≤ δ +

N1∑
n=1

(t− t0)
n

n!
Mderiv,i,q +

Mi,N1(t− t0)
N1+1

(N1 + 1)!

(48)

The following proposition provides the conditions under which hNL,q implemented in sample-

and-hold can maintain the closed-loop state of the system of Eq. 34 within Ωρ̂q when it is initialized

within that region.

Proposition 7. Consider the model of Eq. 34 under the Lyapunov-based controller hNL,q imple-

mented in a sample-and-hold fashion from tk to tk+N that satis�es the requirements of Eqs. 15a-15d

and 18. If ˜̄xb,q(tk) ∈ Ωρ̂q , 0 < ∆ < ∆ub,q and

Lv,q

[
ML,q∆+

N1∑
n=2

Mq,k,n−1
∆n

n!

]
ML,q +

N1∑
n=2

Lv,q

[
ML,q∆+

N1∑
n̄=2

Mq,k,n̄−1
∆n̄

n̄!

]
Mq,k,n−1

∆n−1

(n− 1)!

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + α̂4,q(α̂

−1
1,q(ρ̂q))

N1∑
n=2

Mq,k,n−1
∆n−1

(n− 1)!
≤ −ϵw,q/∆

(49)

ρ̂′min,q = max{V̂q(˜̄xb,q(t+∆)) : V̂q(˜̄xb,q(t)) ≤ ρ̂s,q} (50)

for j = k, . . . , k + N − 1, where ϵw,q > 0, Lv,q > 0, and ρ̂q > ρ̂′min,q > ρ̂s,q, then ˜̄xb,q(t) ∈ Ωρ̂q for

t ∈ [tk, tk+N).

Proof 4. Eq. 15b gives:

∂V̂q(˜̄xb,q(tj))

∂x̄b,q

f̄NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))) ≤ −α̂3,q(|˜̄xb,q(tj)|) (51)
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From Eq. 34, for t ∈ [tj, tj+1):

dV̂q(˜̄xb,q(t))

dt
=

∂V̂q(˜̄xb,q(t))

∂x̄b,q

(
N1∑
n=1

(f̄n
NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))))

(t− tj)
n−1

(n− 1)!

)

=
∂V̂q(˜̄xb,q(t))

∂x̄b,q

(
f̄NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))) +

N1∑
n=2

(f̄n
NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))))

(t− tj)
n−1

(n− 1)!

)
(52)

With
∂V̂q(˜̄xb,q(tj))

∂x̄b,q

(
f̄NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))) +

∑N1

n=2(f̄
n
NL,q(˜̄xb,q(tj), hNL,q(˜̄xb,q(tj))))

(t−tj)
n−1

(n−1)!

)
added and subtracted from the right-hand side of Eq. 52, and Eqs. 15 and 51, we obtain:

dV̂q(˜̄xb,q(t))

dt
≤

∣∣∣∣∣∂V̂q(˜̄xb,q(t))

∂x̄b,q

− ∂V̂q(˜̄xb,q(tj))

∂x̄b,q

∣∣∣∣∣ ∣∣f̄NL,q(˜̄xb,q(tj)), hNL,q(˜̄xb,q(tj))
∣∣

+

N1∑
n=2

∣∣∣∣∣∂V̂q(˜̄xb,q(t))

∂x̄b,q

− ∂V̂q(˜̄xb,q(tj))

∂x̄b,q

∣∣∣∣∣ ∣∣f̄n
NL,q(˜̄xb,q(tj)), hNL,q(˜̄xb,q(tj))

∣∣ ∆n−1

(n− 1)!

− α̂3,q(|˜̄xb,q(tj)|) +
N1∑
n=2

α̂4,q(|˜̄xb,q(tj)|)
∣∣f̄n

NL,q(˜̄xb,q(tj)), hNL,q(˜̄xb,q(tj))
∣∣ ∆n−1

(n− 1)!

(53)

Because V̂q is in�nitely di�erentiable, there exists Lv,q > 0 such that:∣∣∣∣∣∂V̂q(x
′)

∂x
− ∂V̂q(x

′′)

∂x

∣∣∣∣∣ ≤ Lv,q|x′ − x′′| (54)

for all x, x′′ ∈ Ωρ̂safe,q . Using Eqs. 54, 51, 16a, 25, and 15c:

dV̂q(˜̄xb,q(t))

dt
≤Lv,q|˜̄xb,q(t)− ˜̄xb,q(tj)|ML,q +

N1∑
n=2

Lv,q|˜̄xb,q(t)− ˜̄xb,q(tj)|Mq,k,n−1
∆n−1

(n− 1)!

− α̂3,q(|˜̄xb,q(tj)|) + α̂4,q(|˜̄xb,q(tj)|)
N1∑
n=2

Mq,k,n−1
∆n−1

(n− 1)!

(55)

Using the de�nition of ˜̄xb,q(t) from Eq. 34 and Eqs. 16a and 25 gives:

|˜̄xb,q(t)− ˜̄xb,q(tj)| =

∣∣∣∣∣
N1∑
n=1

f̄n
NL,q(˜̄xb,q(tj), hNL,q(tj))

(t− tj)
n

n!

∣∣∣∣∣ ≤ML,q∆+

N1∑
n=2

Mq,k,n−1
∆n

n!
(56)

Combining Eq. 56 with Eq. 55 gives:

dV̂q(˜̄xb,q(t))

dt
≤Lv,q

[
ML,q∆+

N1∑
n=2

Mq,k,n−1
∆n

n!

]
ML,q +

N1∑
n=2

Lv,q

[
ML,q∆+

N1∑
n̄=2

Mq,k,n̄−1
∆n̄

n̄!

]
Mq,k,n−1

∆n−1

(n− 1)!

− α̂3,q(α̂
−1
2,q(|˜̄xb,q(tj)|)) + α̂4,q(α̂

−1
1,q(|˜̄xb,q(tj)|))

N1∑
n=2

Mq,k,n−1
∆n−1

(n− 1)!

(57)
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If ˜̄xb,q(tj) ∈ Ωρ̂q/Ωρ̂s,q , then for t ∈ [tj, tj+1]:

dV̂q(˜̄xb,q(t))

dt
≤Lv,q

[
ML,q∆+

N1∑
n=2

Mq,k,n−1
∆n

n!

]
ML,q +

N1∑
n=2

Lv,q

[
ML,q∆+

N1∑
n̄=2

Mq,k,n̄−1
∆n̄

n̄!

]
Mq,k,n−1

∆n−1

(n− 1)!

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + α̂4,q(α̂

−1
1,q(ρ̂q))

N1∑
n=2

Mq,k,n−1
∆n−1

(n− 1)!

(58)

If Eq. 49 holds, then V̂q(˜̄xb,q(t)) < V̂q(˜̄xb,q(tj)), ∀ t ∈ (tj, tj+1], so that ˜̄xb,q(t) ∈ Ωρ̂q . If instead

˜̄xb,q(tj) ∈ Ωρ̂s,q , then ˜̄xb,q(t) ∈ Ωρ̂′min,q
, ∀ t ∈ [tj, tj+1], from Eq. 50. When ρ̂q > ρ̂′min,q as required by

the theorem, ˜̄xb,q(tj+1) ∈ Ωρ̂q in this case also. Therefore, if ˜̄xb,q(tk) ∈ Ωρ̂q , then ˜̄xb,q(t) ∈ Ωρ̂q for

t ∈ [tk, tk+N).

The following theorem guarantees that in the presence of bounded measurement noise and

disturbances, the implementation strategy of Section 3.2.2: 1) maintains the closed-loop state within

Ωρ̂q before an attack or model change occurs; 2) maintains the closed-loop state in Ωρ̂safe,q for at

least one sampling period after an attack; and 3) maintains the closed-loop state in Ωρ̂safe,q for at

least th,q sampling periods after td,q if no attack occurs.

Theorem 1. Consider the system of Eq. 8 in closed-loop, under the implementation strategy of

Section 3.2.2 based on a controller hNL,q(·) that satis�es Eqs. 15a-15d and 18, as well as the re-

quirements of Proposition 7. Let ϵ′w,q,i > 0, ϵ̄′w,q,i+1 > 0, 0 < ∆ < ∆ub,q, N ≥ 1, ρ̂samp2,i+1,q =

ρ̂q + fV,q(θv) + ϵ̄′w,q,i+1 > 0, Ωρ̂samp,q ⊂ Ωρ̂q ⊂ Ωρ̂safe,q ⊂ Xq, q ≥ 1, ρ̂samp,q > ρ̂e,q > ρ̂′min,q > ρ̂s,q > 0,

ρ̂e,q > ρ̂min,i,q > ρ̂s,q > 0, and ρ̂e,q > ρ̂min,i+1,q > ρ̂s,q > 0. If the following equations are satis�ed:

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + L′

x,i (θv +Mi,0∆) + L′
w,iθ + α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i,q ≤ −ϵ′w,q,i/∆ (59)

− α̂3,q(α̂
−1
2,q(ρ̂s,q)) + L′

x,i+1 (θv +Mi+1,0∆) + L′
w,i+1θ + α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i+1,q ≤ ϵ̄′w,q,i+1/∆ (60)

ρ̂e,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(
eLx,i∆ − 1

))
≤ ρ̂samp,q (61)

ρ̂e,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(
eLx,i∆ − 1

))
+ fV,q(θv) ≤ ρ̂q (62)

ρ̂min,i,q := max{V̂q(x̄a,i(t+∆)) : V̂q(x̄a,i(t)) ≤ ρ̂s,q} (63)
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ρ̂samp,q + fV,q(θv) ≤ ρ̂q (64)

2θv +
Lw,iθ

Lx,i

(eLx,i∆ − 1) +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
≤ νs,q (65)

2θv +

N1∑
n=1

∆n

n!
Mderiv,i+1,q +

Mi+1,N1∆
N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(
eLx,i+1∆ − 1

)
≤ νl,q (66)

ρ̂samp2,i+1,q +
ϵ̄′w,q,i+1(th,q −∆)

∆
:= ρ̂far (67)

ρ̂samp,q + fV,q

(
Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
+ νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
δ +

Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!

)
≤ ρ̂safe,q

(68)

ρ̂far + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1)

+δ +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!

)
≤ ρ̂safe,q

(69)

ρ̂samp,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(eLx,i∆ − 1) + νl,q

)
+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))

+ fV,q

(
Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + δ +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!

)
≤ ρ̂safe,q

(70)

ρ̂samp,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!

+
Lw,iθ

Lx,i

(eLx,i∆ − 1) + νl,q

)
+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
Mi+1,0∆+

Lw,iθ

Lx,i

(eLx,i∆ − 1)

+δ +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

N1∑
n=1

(
Mmax,q

∆n

n!

))
≤ ρ̂safe,q

(71)

with νl,q ≥ νs,q, x(t0) ∈ Ωρ̂e,q , x̄a,i(t0) ∈ Ωρ̂e,q , and |x̄a,i(tk) − x(tk)| ≤ δ, k = 0, 1 . . ., then the

closed-loop state is contained in Ωρ̂samp,q and the state measurement is in Ωρ̂q for all t ≥ 0 until the

dynamics of the process change at ts,i+1 or there is a cyberattack on the sensors at tA. Furthermore,
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x̄a,i(t) ∈ Ωρ̂safe,q for at least one sampling period after tA and x̄a,i+1(t) ∈ Ωρ̂safe,q for at least th,q =

floor
(

ρ̂safe,q−ρ̂samp2,i+1,q

ϵ̄′w,q,i+1

)
sampling periods after td,q if tA > tID,q.

Proof. The proof consists of �ve parts. In the �rst part, recursive feasibility at every sampling time

in which the LEMPC of Eq. 26 is used under the implementation strategy is demonstrated. In the

second part, it is demonstrated that the closed-loop state and state measurement are maintained

within Ωρ̂q before any model change or cyberattack occurs. In the third part, it is demonstrated that

after td,q, if only a model change occurs that is detected via either the closed-loop state measurement

leaving Ωρ̂q or if it is detected via |˜̄xb,q(tk|tk−1) − x(tk)| > vs,q, the closed-loop state stays within

Ωρ̂safe,q for at least th,q sampling times and no attack will be �agged by the updated detection

mechanism (|˜̄xb,q(tk|tk−1) − x(tk)| > vl,q) before tID,q. In the fourth part, it is demonstrated that

if there is no change in the dynamics but there is an undetected attack (whether it occurs when

|˜̄xb,q(tk|tk−1)−x(tk)| < vs,q is checked or if it occurs at td,q when vl,q < |˜̄xb,q(tk|tk−1)−x(tk)| < vs,q),

there is at least one sampling period before the closed-loop state leaves Ωρ̂safe,q . In the �fth part, it

is demonstrated that if there is a change in the dynamic model as well as an undetected cyberattack,

then the closed-loop state is maintained within Ωρ̂safe,q for at least one sampling period after the

attack.

Part 1. hNL,q implemented in sample-and-hold is a feasible input policy for the LEMPC of Eq. 26

whenever the LEMPC of Eq. 26 is used according to the implementation strategy in Section 3.2.2.

Speci�cally, hNL,q in sample-and-hold maintains ˜̄xb,q in Ωρ̂q ⊂ Xq according to Proposition 7 (i.e.,

Eq. 26f is met) and meets the constraints of Eqs. 26d-26e. In addition, it trivially satis�es Eq. 26g.

Part 2. In this part, we demonstrate that before any attack or change in the underlying dy-

namics, the closed-loop state is maintained within Ωρ̂samp,q ⊂ Ωρ̂q and the state measurement is

maintained within Ωρ̂q . In this case, either x(tk) ∈ Ωρ̂e,q so that the constraint of Eq. 26f is acti-

vated, or x(tk) ∈ Ωρ̂q/Ωρ̂e,q so that the constraint of Eq. 26g is activated.

Consider �rst the case that x(tk) ∈ Ωρ̂e,q . Eq. 26f ensures that ˜̄xb,q(t) is maintained within Ωρ̂e,q

throughout the prediction horizon, so we must demonstrate that x̄a,i(t) ∈ Ωρ̂samp,q and x(tk+1) ∈ Ωρ̂q

for t ∈ [tk, tk+1). From Proposition 2, and de�ning θv to be the measurement noise associated with
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full state feedback:

V̂q(x̄a,i(t)) ≤ V̂q(˜̄xb,q(t)) + fV,q(|˜̄xb,q(t)− x̄a,i(t)|)

≤ V̂q(˜̄xb,q(t)) + fV,q(|˜̄xb,q(t)− ˆ̄xa,i(t)|+ |ˆ̄xa,i(t)− x̄a,i(t)|)

≤ ρ̂e,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(
eLx,i∆ − 1

)) (72)

for t ∈ [tk, tk+1) if x̄a,i(t) and ˜̄xb,q(t) ∈ Ωρ̂q , where the second inequality follows from Eqs. 26f, 47,

and 33. If Eq. 61 holds, then x̄a,i(t) ∈ Ωρ̂samp,q for t ∈ [tk, tk+1) when x(tk) ∈ Ωρ̂e,q .

To ensure that x(tk+1) ∈ Ωρ̂q , Eq. 72 and Proposition 2 give:

V̂q(x(tk+1)) ≤ V̂q(x̄a,i(tk+1)) + fV,q(|x(tk+1)− x̄a,i(tk+1)|)

≤ ρ̂e,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(
eLx,i∆ − 1

))
+ fV,q(θv)

(73)

When Eq. 62 holds, Eq. 73 gives that x(tk+1) ∈ Ωρ̂q when x(tk) ∈ Ωρ̂e,q .

Next, we evaluate the case that x(tk) ∈ Ωρ̂/Ωρ̂e,q (i.e., Eq. 26g is activated). The time derivative

of the Lyapunov function along the state trajectory of the system of Eq. 8 can be written as follows:

˙̂
Vq(x̄a,i(t)) =

∂V̂q(x̄a,i(t))

∂x
f̄i(x̄a,i(t), ūi(tk), wi(t)) (74)

for t ∈ [tk, tk+1). Adding and subtracting
∂V̂q(x̄b,q(tk))

∂x
f̄NL,q(x̄b,q(tk), ūq(tk)) and

∂V̂q(x̄b,q(tk))

∂x
f̄i(x̄b,q(tk), ūi(tk), 0) to/from the above equation (where ūi(tk) = ūq(tk) + uq,s − ui,s), and

using Eqs. 26g, 15b, 10b, 46, 15c, and the bound on wi, we obtain that:

˙̂
Vq(x̄a,i(t)) ≤ −α̂3,q(|x̄b,q(tk)|) +

∂V̂q(x̄a,i(t))

∂x
f̄i(x̄a,i(t), ūi(tk), wi(t))−

∂V̂q(x̄b,q(tk))

∂x
f̄i(x̄b,q(tk), ūi(tk), 0)

+
∂V̂q(x̄b,q(tk))

∂x
f̄i(x̄b,q(tk), ūi(tk), 0)−

∂V̂q(x̄b,q(tk))

∂x
f̄NL,q(x̄b,q(tk), ūq(tk))

≤ −α̂3,q(|x̄b,q(tk)|) + L′
x,i|x̄a,i(t)− x̄b,q(tk)|+ L′

w,iθ +

∣∣∣∣∣∂V̂q(x̄b,q(tk))

∂x

∣∣∣∣∣Mderiv,i,q

≤ −α̂3,q(|x̄b,q(tk)|) + L′
x,i(|x̄a,i(t)− x̄a,i(tk) + x̄a,i(tk)− x̄b,q(tk)|) + L′

w,iθ + α̂4,q(|x̄b,q(tk)|)Mderiv,i,q

≤ −α̂3,q(α̂
−1
2,q(ρ̂s,q)) + L′

x,i (θv +Mi,0∆) + L′
w,iθ + α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i,q

(75)

for all x̄b,q(tk) = x(tk) ∈ Ωρ̂/Ωρ̂s,q . If the condition of Eq. 59 is satis�ed:

V̂q(x̄a,i(t)) ≤ V̂q(x̄a,i(tk))−
ϵ′w,q,i(t− tk)

∆
, t ∈ [tk, tk+1) (76)
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Thus, when x(tk) ∈ Ωρ̂q/Ωρ̂e,q , then V̂q(x̄a,i(t)) decreases over the subsequent sampling period. Since

ρ̂e,q > ρ̂s,q, x(tk) ∈ Ωρ̂q/Ωρ̂e,q only if x(tk) ∈ Ωρ̂q/Ωρ̂s,q . x̄a,i(tk) is guaranteed to be within Ωρ̂samp,q

when the conditions of the theorem are satis�ed, as demonstrated below. In addition, we can

demonstrate that x(tk+1) ∈ Ωρ̂q using Proposition 2:

V̂q(x(tk+1)) ≤ V̂q(x̄a,i(tk+1)) + fV,q(|x(tk+1)− x̄a,i(tk+1)|)

≤ V̂q(x̄a,i(tk)) + fV,q(θv)

≤ ρ̂samp,q + fV,q(θv)

(77)

When Eq. 64 holds, x(tk+1) ∈ Ωρ̂q when x̄a,i(tk) ∈ Ωρ̂samp,q .

The results above require that x̄a,i(tk) ∈ Ωρ̂samp,q whenever x(tk) ∈ Ωρ̂q . To demonstrate that

this always holds under the proposed implementation strategy, we note that initially, x̄a,i(t0) and

x(t0) ∈ Ωρ̂e,q as assumed in the theorem. As a result, from t0 to t1, Eqs. 73 and 62 guarantee

that x̄a,i(t) ∈ Ωρ̂samp,q for t ∈ [tk, tk+1) and x(tk+1) ∈ Ωρ̂q . At the next sampling time, one of four

things happens: 1) x̄a,i(tk) ∈ Ωρ̂samp,q/Ωρ̂s,q and x(tk) ∈ Ωρ̂q/Ωρ̂e,q ; 2) x̄a,i(tk) ∈ Ωρ̂samp,q/Ωρ̂s,q and

x(tk) ∈ Ωρ̂e,q ; 3) x̄a,i(tk) ∈ Ωρ̂s,q and x(tk) ∈ Ωρ̂q/Ωρ̂e,q ; or 4) x̄a,i(tk) ∈ Ωρ̂s,q and x(tk) ∈ Ωρ̂e,q . In

the �rst case, Eq. 76 demonstrates that V̂q(x̄a,i(t)) decreases over the subsequent sampling period

so that since x̄a,i(tk) ∈ Ωρ̂samp,q , x̄a,i(tk+1) ∈ Ωρ̂samp,q as well. In the second case, Eqs. 72 and 61

guarantee that x̄a,i(tk+1) ∈ Ωρ̂samp,q . In the third case and the fourth case, Eq. 63 and the assumption

that ρ̂min,i,q < ρ̂e,q guarantees that x̄a,i(tk+1) ∈ Ωρ̂samp,q . Therefore, applying this recursively, x̄a,i(t)

is always maintained in Ωρ̂samp,q and the state measurement is always maintained within Ωρ̂q under

the proposed implementation strategy in the absence of a cyberattack or a model change.

In addition, it remains to be demonstrated that when there is no attack or model change, the

condition |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νs,q always holds (i.e., there will be no false alarms) if νs,q is

selected to satisfy Eq. 65. To demonstrate this, we note that Eq. 47 and Proposition 4 give:

|˜̄xb,q(tk|tk−1)− x(tk)| ≤ |˜̄xb,q(tk|tk−1)− ˆ̄xa,i(tk|tk−1) + ˆ̄xa,i(tk|tk−1)− x̄a,i(tk) + x̄a,i(tk)− x(tk)|

≤ 2θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Lw,iθ

Lx,i

(eLx,i∆ − 1) +
Mi,N1∆

N1+1

(N1 + 1)!

(78)

If Eq. 65 holds, then at all times, |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νs,q such that there are no false alarms

with this detection threshold.
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Part 3. In this part, we demonstrate that after a model change occurs, if there is no attack, the

closed-loop state stays in Ωρ̂safe,q for at least th,q sampling periods after td,q and no attack is detected

after td,q until tID,q (i.e., there are no false alarms under the proposed implementation strategy).

Until ts,i+1, x̄a,i(t) ∈ Ωρ̂samp,q and the state measurement is maintained within Ωρ̂q under the

implementation strategy of Section 3.2.2 as proven in Part 2. After ts,i+1 and until td,q, either: 1)

the state measurement is maintained within Ωρ̂q but |˜̄xb,q(tk|tk−1)−x(tk)| > νs,q at td,q; 2) the state

measurement is outside Ωρ̂q at td,q but still |˜̄xb,q(tk|tk−1)− x(tk)| ≤ νs,q; or 3) both x(tk) /∈ Ωρ̂q and

|˜̄xb,q(tk|tk−1)− x(tk)| > νs,q at td,q. In any of these cases, the upper bound on |˜̄xb,q(tk|tk−1)− x(tk)|

is changed to νl,q and re-checked, and the worst-case value of V̂q(x(td,q)) is determined from Eq. 60

and a similar procedure to that in Eq. 75 by assuming that the model change can occur at tk−1 with

V̂q(x̄a,i(tk−1)) = ρ̂samp,q such that an equation similar to that in Eq. 75 by using the i + 1 model

holds for the entire sampling period (i.e.,
˙̂
Vq is increasing for the entire sampling period according

to Eq. 60), giving

˙̂
Vq(x̄a,i+1(t)) ≤ ϵ̄′w,q,i+1/∆ (79)

which gives that V̂q(x̄a,i+1(t)) ≤ V̂q(x̄a,i(tk−1)) +
ϵ̄′w,q,i+1(t−tk−1)

∆
, ∀ t ∈ [tk−1, tk). Because there is no

detection of the model change before td,q, V̂q(x(td,q −∆)) ≤ ρ̂q. From Proposition 2:

V̂q(x̄a,i+1(td,q −∆)) ≤ V̂q(x(td,q −∆)) + fV,q(|x̄a,i+1(td,q −∆)− x(td,q −∆)|)

≤ ρ̂q + fV,q(θv)
(80)

This gives that the worst-case value of V̂q(x̄a,i+1(td,q)) is ρ̂samp2,i+1,q := ρ̂q+fV,q(θv)+ ϵ̄′w,q,i+1. In this

case, Eq. 79 continues to hold even under hNL,q (which is triggered to be used after td,q according to

the implementation strategy in Section 3.2.2) such that there are �oor(
(ρ̂safe,q−ρ̂samp2,i+1,q)

ϵ̄′w,q,i+1
) sampling

periods before the closed-loop state leaves Ωρ̂safe,q as required.

Second, we must demonstrate that if there is no attack and the attack detection strategy is

updated at td,q to become |˜̄xb,q(tk|tk−1)− x(tk)| ≤ νl,q, then no cyberattack will be �agged after the

underlying process dynamics changed by determining an upper bound on |˜̄xb,q(tk|tk−1) − x(tk)| in

the absence of an attack and presence of a model change and setting νl,q larger than that bound as
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follows:

|˜̄xb,q(tk|tk−1)− x(tk)| ≤ |˜̄xb,q(tk|tk−1)− ˆ̄xa,i+1(tk|tk−1) + ˆ̄xa,i+1(tk|tk−1)− x̄a,i+1(tk)|+ |x̄a,i+1(tk)− x(tk)|

≤ 2θv +

N1∑
n=1

∆n

n!
Mderiv,i+1,q +

Mi+1,N1∆
N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(
eLx,i+1∆ − 1

)
(81)

where the second inequality uses the bound on the measurement noise and Eqs. 33 and 47. When

Eq. 66 holds, then |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νl,q at all times after the change in the dynamics is

detected so that there are no false detections.

Part 4. In this part, we demonstrate that if there is no model change but an undetected attack

occurs at tA, the closed-loop state is maintained within Ωρ̂safe,q for at least one sampling period

after tA. If an attack is undetected, one of several cases has occurred: 1) x(tk) ∈ Ωρ̂safe,q/Ωρ̂q but

|˜̄xb,q(tk|tk−1)−x(tk)| ≤ νs,q; 2) x(tk) ∈ Ωρ̂q and |˜̄xb,q(tk|tk−1)−x(tk)| ≤ νl,q but |˜̄xb,q(tk|tk−1)−x(tk)| >

νs,q; 3) x(tk) ∈ Ωρ̂safe,q/Ωρ̂q and |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νl,q but |˜̄xb,q(tk|tk−1) − x(tk)| > νs,q; or 4)

x(tk) ∈ Ωρ̂q and |˜̄xb,q(tk|tk−1) − x(tk)| ≤ νs,q. In each case, however, because there was no model

change, x̄a,i(tk) ∈ Ωρ̂samp,q according to the proof in Part 2 (i.e., no model change and no attack

before tk). However, in some of these cases, the implementation strategy of Section 3.2.2 dictates

that hNL,q be used starting at tk given the above conditions, and in some of these cases, the LEMPC

of Eq. 26 continues to be used.

Propositions 4 and 6 give:

|x̄a,i(tk)− ˜̄xb,q(tk|tk−1)| ≤ |x̄a,i(tk)− ˆ̄xa,i(tk|tk−1) + ˆ̄xa,i(tk|tk−1)− ˜̄xb,q(tk|tk−1)|

≤ Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!

(82)

regardless of the input used (i.e., hNL,q or the LEMPC of Eq. 26 can be used, depending on which

is utilized according to the implementation strategy in Section 3.2.2), so that if an attack is not

�agged at tk:

|x̄a,i(tk)− ˜̄xb,q(tk|tk)| ≤ |x̄a,i(tk)− ˜̄xb,q(tk|tk−1) + ˜̄xb,q(tk|tk−1)− x(tk|tk)|

≤ Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
+ νl,q

(83)
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where νl,q ≥ νs,q according to the statement of the theorem. From Proposition 2,

V̂q(˜̄xb,q(tk|tk)) ≤ V̂q(x̄a,i(tk)) + fV,q(|x̄a,i(tk)− ˜̄xb,q(tk|tk)|)

≤ ρ̂samp,q + fV,q

(
Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
+ νl,q

)
(84)

De�ning Mmax,q to be the maximum value of |f̄n
NL,q(˜̄xb,q, ūq)| for all n = 1, . . . , N1, ˜̄xb,q ∈ Ωρ̂safe,q ,

and ūq ∈ Uq:

V̂q(˜̄xb,q(tk+1|tk)) ≤ V̂q(˜̄xb,q(tk|tk)) + fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))

≤ ρ̂samp,q + fV,q

(
Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
+ νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
(85)

V̂q(x̄a,i(tk+1)) ≤ V̂q(˜̄xb,q(tk+1|tk)) + fV,q(|x̄a,i(tk+1)− ˆ̄xa,i(tk+1|tk) + ˆ̄xa,i(tk+1|tk)− ˜̄xb,q(tk+1|tk)|)

≤ ρ̂samp,q + fV,q

(
Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+ θv +

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!
+ νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
δ +

Lw,iθ

Lx,i

(
eLx,i∆ − 1

)
+

N1∑
n=1

∆n

n!
Mderiv,i,q +

Mi,N1∆
N1+1

(N1 + 1)!

)
(86)

When Eq. 68 holds, x̄a,i(tk+1) ∈ Ωρ̂safe,q though there is an undetected attack at tk.

Part 5. In this case, we consider that there is both a model change and an undetected attack.

The attack may occur �rst, or the model change may occur �rst, or both may occur at the same time.

However, regardless of which occurs �rst or the order in which they occur, the worst-case condition

is that the closed-loop state at the time at which the attack occurs is as close to the boundary of

Ωρ̂safe,q as it can be. When a model change occurs at td,q and an attack occurs subsequently, the

closed-loop state remains within Ωρ̂safe,q before the attack occurs for th,q time units according to the

proof of Part 3. However, an attack could then occur at any subsequent sampling time before tID,q.

In a worst case, it occurs at tID,q−∆ when it may be possible that the closed-loop state is near the

boundary of Ωρ̂safe,q . Therefore, it is necessary to ensure that the closed-loop state at tID,q −∆ is

within a region from which, even if an undetected cyberattack occurs at that time, the closed-loop
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state is still within Ωρ̂safe,q at tID,q. From Part 3, the farthest that the state could be at tID,q −∆

is given by:

V̂q(x̄a,i+1(tID,q −∆)) ≤ V̂q(x̄a,i+1(td,q)) +
ϵ̄′w,q,i+1(th,q −∆)

∆
(87)

where V̂q(x̄a,i+1(td,q)) ≤ ρ̂samp2,i+1,q from Part 3. If Eq. 67 holds, then the largest possible value of

V̂q(x̄a,i+1(tID,q − ∆)) is ρ̂far. If x̄a,i+1(tk) ∈ Ωρ̂far , then the model change already occurred and if

there has not yet been an attack, it is only necessary to demonstrate that x̄a,i+1(tk+1) ∈ Ωρ̂safe,q if

x̄a,i+1(tk) ∈ Ωρ̂far and an attack occurs at tk. Using similar steps as for Eq. 82 gives:

|x̄a,i+1(tk)− ˜̄xb,q(tk|tk−1)| ≤ θv+

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q+

Mi+1,N1(∆)N1+1

(N1 + 1)!
+
Lw,i+1θ

Lx,i+1

(eLx,i+1∆−1) (88)

regardless of the input used. Then if an attack is not �agged at tk, similar steps as in Eqs. 83-86

give:

|x̄a,i+1(tk)− ˜̄xb,q(tk|tk)| ≤ θv +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + νl,q

(89)

V̂q(˜̄xb,q(tk|tk)) ≤ ρ̂far + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + νl,q

)
(90)

V̂q(x̄a,i+1(tk+1)) ≤ ρ̂far + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!
+

Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + δ

+

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q +

Mi+1,N1(∆)N1+1

(N1 + 1)!

)
(91)

If Eq. 69 holds, then the closed-loop state is still within Ωρ̂safe,q after a sampling period if an attack

occurs after the model change.

If an attack occurs but the model did not change before the attack, the model can change at the

same time as the attack or in the sampling period following it. In this case, the worst-case possible

value of V̂q(x̄a,i(tk)) is ρ̂samp,q according to the proof of Part 2. We consider �rst the case that the

model and attack both occur for the �rst time at tk. In this case, following similar steps to those
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in Eqs. 88-91 and using Eqs. 85 and 89 gives that Eqs. 84 and 85 hold and:

V̂q(x̄a,i+1(tk+1)) ≤ ρ̂samp,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!
+

Lw,iθ

Lx,i

(eLx,i∆ − 1) + νl,q

)

+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))
+ fV,q

(
Lw,i+1θ

Lx,i+1

(eLx,i+1∆ − 1) + δ +

N1∑
n=1

(∆)n

n!
Mderiv,i+1,q

+
Mi+1,N1(∆)N1+1

(N1 + 1)!

)
(92)

If Eq. 70 holds, then x̄a,i+1(tk+1) ∈ Ωρ̂safe,q after a sampling period if an attack occurs at the same

time as the model change.

We consider second the case that the attack occurs �rst, at tk, and the model change occurs

at some ts,i+1 ∈ [tk, tk+1) (if the model change does not occur in the sampling period following

the attack, it does not occur in the timeframe over which we guarantee that the closed-loop state

remains in Ωρ̂safe,q after an attack). Again Eq. 83 holds and using Eq. 85 and similar steps to those

used in deriving Eq. 89, with Eqs. 84-85 and 92 gives,

V̂q(x̄a,i+1(tk+1)) ≤ V̂q(˜̄xb,q(tk+1|tk)) + fV,q(|x̄a,i+1(tk+1)− x̄a,i+1(ts,i+1)

+ x̄a,i+1(ts,i+1)− ˆ̄xa,i(ts,i+1|tk) + ˆ̄xa,i(ts,i+1|tk)− ˜̄xb,q(ts,i+1|tk) + ˜̄xb,q(ts,i+1|tk)− ˜̄xb,q(tk+1|tk)|)

≤ ρ̂samp,q + fV,q

(
θv +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!

+
Lw,iθ

Lx,i

(eLx,i∆ − 1) + νl,q

)
+ fV,q

(
N1∑
n=1

(
Mmax,q

∆n

n!

))

+ fV,q

(
Mi+1,0∆+

Lw,iθ

Lx,i

(eLx,i∆ − 1) + δ +

N1∑
n=1

(∆)n

n!
Mderiv,i,q +

Mi,N1(∆)N1+1

(N1 + 1)!

+

N1∑
n=1

(
Mmax,q

∆n

n!

))
(93)

If Eq. 71 holds, then x̄a,i+1(tk+1) ∈ Ωρ̂safe,q after a sampling period if an attack occurs before the

model change.

Remark 4. As seen in the proof of Theorem 1, the use of the truncated Taylor series model solution

in the LEMPC allows impacts of numerical approximations of the solution to the empirical model to

be accounted for not only in the closed-loop stability guarantees in the absence of an attack, but also
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in the guarantees that can be made with the proposed detection strategy based on predictions from

this approximated model. This could allow tradeo�s between numerical error (and therefore compu-

tation time) and stability conditions (e.g., stability region sizes) to be assessed from a veri�cation

perspective.

Remark 5. The proposed method is focused on the case when it is not straightforward to immediately

re-identify the model after a change in the dynamic model occurs (i.e., some additional data since

the model change is needed �rst). If the model was updated immediately at td,q, then it is only

important to guarantee that x̄a,i+1(td,q) is still within Ωρ̂safe,q (i.e., at ρ̂samp2,i+1,q) and then to use

hNL,q+1 after the model update at td,q until the closed-loop state enters Ωρ̂q+1. Even with slowly

changing dynamics (i.e., Merr,i+1,q and Mderiv,i+1,q are small), the condition in Eq. 60 could result

in ϵ̄′w,q,i+1 being only slightly positive, at least for a short time after the model change, since it was

negative previously (Eq. 59), and the proposed method could still be used to �ag when the model has

changed su�ciently such that a model update is needed. If it is desired to re-identify the model at td,q,

the potential increase of the detection bounds for the cyberattack detection method may no longer

pose a signi�cant bene�t, but breaching of the initial bound could still signify either a model change or

a cyberattack. The proposed strategy provides insights into how model changes and cyberattacks are

related, and the ways that time-varying process dynamics could impact the bene�ts of cyberattack

detection strategies and potentially allow stealthy cyberattacks to be developed that �y under the

radar of detection strategies that are inconclusive regarding whether the detection conditions were

breached due to model updates or sensor attacks, providing falsi�ed data that over time is re-coding

the controller through model re-identi�cation using falsi�ed data.

Remark 6. While the numerical approximation used in this paper is the Taylor series approximation

method, it can be substituted with other numerical methods for which bounds on the error between

the predicted state with the numerical method and the actual trajectory of the system are available

to be used in place of Eq. 23. This may be preferable to, for example, suggesting many potential

terms that may be in the solution of a di�erential equation and hoping to �nd those which provide

the best approximation to the solution Brunton et al. (2016a), as that does not guarantee that the
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correct terms are guessed to allow an error bound to be developed as above.

Remark 7. Ultimate boundedness of the closed-loop state in Ωρ̂min,i,q
in the absence of an attack or

model change could also be obtained by the techniques in Theorem 1 if the constraint of Eq. 24g is

repeatedly applied until the closed-loop state enters a region Ωρ̂s,q , with ρ̂s,q de�ned in Eq. 63, given

the proof of Part 2 of Theorem 1.

Remark 8. The works Alanqar et al. (2015a,b) utilize empirical models in LEMPC as well. The

major di�erence is that those works assume the empirical dynamic model is used and do not explicitly

account for the manner in which error in �nding the solution of that dynamic model impacts the

closed-loop stability results outside of the plant/model mismatch associated with modeling error.

3.2.3. Detection Strategy 3: Cyberattack-Resilient Output Feedback LEMPC

Detection Strategy 3 from Oyama and Durand (2020) uses multiple redundant state estimators

in a detection strategy that, compared to Detection Strategy 2, has the bene�t of guaranteeing

that the closed-loop state remains within Ωρ̂q when there is no model change even if undetected

attacks occur, but the disadvantage that the guarantees are made with restrictions on the number

of sensors that can be attacked compared to Detection Strategy 2. For Detection Strategy 3,

the LEMPC of Eq. 26 no longer uses a state measurement at tk, but instead uses one of the

redundant state estimates (denoted as zq,1), and also switches Ωρ̂e,q with the stability region Ωρ̂e,1,q

that corresponds to the subset of Ωρ̂q used with the 1-th observer. With slight abuse of notation,

we will consider that references in this section to the LEMPC of Eq. 26 imply that x(tk) in Eq. 26c

is replaced by zq,1(tk). Cyberattacks are detected by comparing |zq,r(tk) − zq,l(tk)| with an upper

bound ϵmax,q := max{e∗rq + e∗lq}, r = 1, . . . ,M , l = 1, . . . ,M . Up to M − 1 state estimates can

be impacted by the sensor attack, and the attack is assumed to occur after tbpq, p = 1, . . . ,M . If

|zq,r(tk)− zq,l(tk)| ≤ ϵmax,q at a sampling time, the LEMPC of Eq. 24 is used to control the process

for the subsequent sampling period.

When the process dynamics are allowed to change over time, |zq,r(tk) − zq,l(tk)| could exceed

ϵmax,q either because the process dynamics changed or because a cyberattack occurred on the process

sensors (the closed-loop state may also be detected to leave Ωρ̂q for either reason as well). As for
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Detection Strategies 1 and 2, these cases may not be able to be distinguished from the sensor data

because the estimates are derived from Eq. 20, which may have been developed based on a process

model. This necessitates the need for an updated implementation strategy and value of ϵmax,q for

guaranteeing that the closed-loop state remains within Ωρ̂safe,q for a characterizable time period

after the closed-loop state leaves Ωρ̂q or after |zq,r(tk) − zq,l(tk)| > ϵmax,q when it cannot be known

whether the cause of the mismatch between the di�erent state estimators arises from an attack or

a change in the dynamics. To handle this, we propose two methods that could be used to allow for

a known amount of time before the closed-loop state leaves Ωρ̂safe,q after an attack or a change in

the underlying dynamics while still allowing model changes to trigger re-identi�cation.

3.2.3.1. Detection Strategy 3, Method 1: Implementation Strategy The �rst method to be explored

for Detection Strategy 3 will, similar to the method proposed in Section 3.2.2, utilize two stages

of monitoring for cyberattacks and model changes. The �rst stage will utilize a bound ϵmax,q,s on

|zq,r(tk) − zq,l(tk)| designed such that, if there were no model changes, the di�erence between the

two estimated states would signify a cyberattack with certainty according to the method in Oyama

and Durand (2020). After x(td,q) /∈ Ωρ̂q or |zq,r(td,q) − zq,l(td,q)| > ϵmax,q,s for some r = 1, . . . ,M ,

l = 1, . . . ,M , a second bound ϵmax,q,l will be used where, if |zq,r(tk)−zq,l(tk)| ≤ ϵmax,q,l after a model

change but no cyberattack is detected via the updated detection mechanism, the closed-loop state

should not leave Ωρ̂safe,q before th,q time units pass after td,q. The goal of this is to ensure that

if |zq,r(tk) − zq,l(tk)| > ϵmax,q,s because of a model change or cyberattack, subsequent cyberattacks

before tID,q cannot cause the closed-loop state to leave Ωρ̂safe,q within a sampling period.

To set ϵmax,q,s and ϵmax,q,l, we note that the bounds in Assumption 2 imply that, as demonstrated

in Oyama and Durand (2020), the following holds for t < ts,i+1:

|zq,r(t)− zq,l(t)| ≤ max{e∗rq + e∗lq} := ϵmax,q (94)

for all r ̸= l, r = 1, . . . ,M , l = 1, . . . ,M , as long as t ≥ tmax := max{tb1q, . . . , tbMq}. However, for

t ≥ ts,i+1:

|zq,r(t)− zq,l(t)| ≤ |zq,r(t)− x̄a,i+1(t) + x̄a,i+1(t)− zq,l(t)| (95)
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However, despite that the norm of the di�erence between zq,r(t) and x̄a,i(t) is assumed to be within

a given bound by Assumption 2, after a model change, the state estimate may become inaccurate.

Therefore, we make the following assumption.

Assumption 3. There exists ep,q,i+1 > 0 such that when |zq,p(ts,i+1) − x̄a,i+1(ts,i+1)| ≤ e∗pq, p =

1, . . . ,M , |zq,p(t)− x̄a,i+1(t)| ≤ ep,q,i+1 for ts,i+1 ≤ t ≤ td,q + th,q∆.

Using this assumption and Eq. 95, we conclude that for t ≥ ts,i+1:

|zq,r(t)− zq,l(t)| ≤ max{er,q,i+1 + el,q,i+1} := ϵmax,i+1 (96)

for r = 1, . . . ,M and l = 1, . . . ,M . From this, if ϵmax,q ≤ ϵmax,q,s and ϵmax,i+1 ≤ ϵmax,q,l, with

ϵmax,q,s ≤ ϵmax,q,l, then for t ∈ [tmax, ts,i+1), there will not be any false alarm with the detection

strategy based on the selected value of ϵmax,q,s, and for t ∈ [ts,i+1, td,q + th,q∆), there will again not

be a false alarm whether the process dynamics changed or not.

The implementation strategy in this case follows that in Section 3.2.2 with the di�erence being

that in Step 3, instead of setting edif = |˜̄xb,q(tk|tk−1) − x(tk)|, it is set to |zq,r(tk) − zq,l(tk)|, for

r = 1, . . . ,M and l = 1, . . . ,M , and vs,q and vl,q are replaced by ϵmax,q,s and ϵmax,q,l, respectively.

Remark 9. For ease of presentation, we do not consider impacts of numerical error (e.g., a trun-

cated Taylor series) in solving Eq. 20.

3.2.3.2. Detection Strategy 3, Method 1: Stability and Feasibility Analysis We �rst present a propo-

sition which bounds the worst-case error between the state estimate and closed-loop state before

and after a model change, considering Assumptions 2 and 3.

Proposition 8. Consider the system of Eq. 8 under the implementation strategy of Section 3.2.3

where M > 1 state estimators develop independent estimates of the process state and at least one of

these estimators is not impacted by false state measurements being provided to the estimators (and

the attacks do not begin until after tmax). If a false sensor measurement cyberattack is not �agged

at tk according to the implementation strategy, then the worst-case di�erence between zq,1 and the

actual state x̄a,i(tk) is given by:

|zq,1(tk)− x̄a,i(tk)| ≤ ϵ∗M,i,q := ϵmax,q +max{e∗pq}, p = 1, . . . ,M (97)
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for tk < ts,i+1, and the worst-case di�erence between zq,1 and the actual state x̄a,i+1(tk) is given by:

|zq,1(tk)− x̄a,i+1(tk)| ≤ ϵ∗M,i+1,q := ϵmax,i+1 +max{ep,q,i+1}, p = 1, . . . ,M (98)

for ts,i+1 ≤ t ≤ td,q + th,q∆.

Proof. The proof consists of three parts. In Part 1, it is demonstrated that the bound in Eq. 97 holds

when tk < ts,i+1 whether or not zq,1 is impacted by a sensor attack. In Part 2, it is demonstrated that

if tk ≥ ts,i+1 and zq,1 is not impacted by an attack, then Eq. 98 holds. In Part 3, it is demonstrated

that if tk ≥ ts,i+1 and zq,1 is impacted by an attack, then Eq. 98 holds.

Part 1 was proven in Oyama and Durand (2020). Part 2 follows from Eq. 96. Speci�cally, when

zq,1 is not impacted by an attack, Assumption 3 gives:

|zq,1(tk)− x̄a,i+1(tk)| ≤ ep,q,i+1 ≤ ϵmax,i+1 +max{ep,q,i+1} := ϵ∗M,i+1,q (99)

for p = 1, . . . ,M , satisfying Eq. 98. Part 3 uses a similar technique to develop the following upper

bound on zq,1 when it is experiencing an attack and at least one of the other state estimators (with

state estimate denoted by zq,2) is not:

|zq,1(tk)− x̄a,i+1(tk)| = |zq,1(tk)− zq,2(tk) + zq,2(tk)− x̄a,i+1(tk)|

≤ |zq,1(tk)− zq,2(tk)|+ |zq,2(tk)− x̄a,i+1(tk)|

≤ ϵmax,i+1 +max{ep,q,i+1} := ϵ∗M,i+1,q, p = 1, . . . ,M

(100)

The following theorem guarantees that in the presence of bounded measurement noise and

disturbances, the implementation strategy of Section 3.2.3: 1) maintains the closed-loop state within

Ωρ̂q before an attack or model change occurs; 2) maintains the closed-loop state in Ωρ̂safe,q for at

least one sampling period after an attack; and 3) maintains the closed-loop state in Ωρ̂safe,q for at

least th,q sampling periods after td,q if no attack occurs.

Theorem 2. Consider the system of Eq. 8 in closed-loop under the implementation strategy of Sec-

tion 3.2.3 based on a controller hNL,q(·) that satis�es Eqs. 15a-15d and 18, as well as the require-

ments of Proposition 7, and based on an observer and controller pair satisfying Assumptions 1-3 and
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formulated with respect to the p = 1 measurement vector. Let θ ≤ θ∗, θv,p ≤ θ∗v,p, Merr,i,q ≤M∗
err,i,q,

ϵpq ∈ (ϵ∗Lpq, ϵ
∗
Upq), ρ̂

′
samp2,i+1,q = ρ̂q + fV,q(ϵ

∗
M,i+1,q) + ϵ̄′w,q,i+1 > 0, and |zq,p(t0) − x̄a,i(t0)| ≤ em0pq.

Also, let ϵ′w,q,i > 0, ϵ′′w,q,i > 0, ϵ̄′w,q,i+1 > 0, 0 < ∆ < ∆ub,q, Ωρ̂samp,q ⊂ Ωρ̂q ⊂ Ωρ̂safe,q ⊂ Xq,

ρ̂q > ρ̂1,1,q > ρ̂samp,q > ρ̂e,1,q > ρ̂min,1,i,q > ρ̂s,1,q > 0, ρ̂e,1,q > ρ̂min,1,i+1,q > ρ̂s,1,q > 0, and

ρ̂e,1,q > ρ̂′min,q > ρ̂s,1,q satisfy:

ρ̂e,1,q +Mi,0max{∆, tz1}α̂4,q(α̂
−1
1,q(ρ̂q)) ≤ ρ̂q (101)

ρ̂min,1,i,q := max{V̂q(x̄a,i(t+∆)) : V̂q(x̄a,i(t)) ≤ ρ̂s,1,q} (102)

ρ̂e,1,q + fV,q
(
ϵ∗M,i,q +Mi,0∆

)
≤ ρ̂samp,q (103)

ρ̂e,1,q + fV,q
(
ϵ∗M,i,q +Mi,0∆

)
+ fV,q(ϵ

∗
M,i,q) ≤ ρ̂q (104)

− α̂3,q(α̂
−1
2,q(ρ̂s,1,q)) + L′

x,i

(
ϵ∗M,i,q +Mi,0∆

)
+ L′

w,iθ + α̂4,q(α̂
−1
1,q(ρ̂q))Mderiv,i,q ≤ −ϵ′w,q,i/∆ (105)

ρ̂samp,q + fV,q(ϵ
∗
M,i,q) ≤ ρ̂q (106)

− α̂3,q(α̂
−1
2,q(ρ̂s,1,q)) + L′

x,i+1

(
ϵ∗M,i+1,q +Mi+1,0∆

)
+ L′

w,i+1θ + α̂4,q(α̂
−1
1,q(ρ̂q))Mderiv,i+1,q ≤ ϵ̄′w,q,i+1/∆

(107)

ρ̂samp,q + fV,q (Mi,0,∆)) ≤ ρ̂safe,q (108)

ρ̂far + ϵ̄′w,q,i+1 ≤ ρ̂safe,q (109)

ρ̂e,1,q + fV,q(Mi,0∆+ ϵ∗M,i,q + ϵmax,q,s) ≤ ρ̂samp,q (110)

ρ̂e,1,q + fV,q(Mi,0∆+ ϵ∗M,i,q + ϵmax,q,s) + fV,q(ϵmax,q,s + ϵ∗M,i,q) ≤ ρ̂q (111)

−α̂3,q(α̂
−1
2,q(ρ̂s,1,q))+L′

x,i(Mi,0∆+ϵ∗M,i,q+ϵmax,q,s)+L′
w,iθ+ α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i,q ≤ −ϵ′′w,q,i/∆ (112)

ρ̂samp,q + fV,q(ϵmax,q,s + ϵ∗M,i,q) ≤ ρ̂q (113)

where tz1 is the �rst sampling time after tb1q, ϵmax,q ≤ ϵmax,q,s and ϵmax,i+1 ≤ ϵmax,q,l, with ϵmax,q,s ≤

ϵmax,q,l, and ϵ∗M,i,q ≤ ϵ∗M,i,q+1. Then, if x̄a,i(t0) ∈ Ωρ̂e,1,q and zq,1(t0) ∈ Ωρ̂e,1,q , then x̄a,i(t) ∈ Ωρ̂samp,q

and zq,1(t) ∈ Ωρ̂q before an attack or a change in the model occur if tmax < ts,i+1 and tmax < tA.

Furthermore, x̄a,i(t) ∈ Ωρ̂safe,q for at least one sampling period after tA and x̄a,i+1(t) ∈ Ωρ̂safe,q for

at least th,q = floor
(

ρ̂safe,q−ρ̂′samp2,i+1,q

ϵ̄′w,q,i+1

)
sampling periods after td,q if tA > tID,q.
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Proof. The proof consists of six parts. In the �rst part, recursive feasibility at every sampling time

in which the LEMPC of Eq. 26 is used under the implementation strategy is demonstrated. In the

second part, it is demonstrated that the closed-loop state trajectory is contained in Ωρ̂q for t ∈

[t0,max{∆, tb1q}). In the third part, it is shown that the closed-loop state is maintained in Ωρ̂samp,q

and the state measurement is maintained within Ωρ̂q before any model change or cyberattack occurs.

In the fourth part, it is demonstrated that after td,q, if only a model change occurs that is detected

via either the closed-loop state measurement leaving Ωρ̂q or if it is detected via |zq,r(tk)− zq,l(tk)| >

ϵmax,q,s, r = 1, . . . ,M , l = 1, . . . ,M , the closed-loop state and state measurement then stay within

Ωρ̂safe,q for at least th,q sampling times and no attack will be �agged by the updated detection

mechanism (|zq,r(tk)− zq,l(tk)| > ϵmax,q,l). In the �fth part, it is demonstrated that after there is no

change in the model but there is an undetected attack (whether it occurs when |zq,r(tk)− zq,l(tk)| <

ϵmax,q,s is checked or if it occurs at td,q when ϵmax,q,s < |zq,r(td,q)−zq,l(td,q)| ≤ ϵmax,q,l), there is at least

one sampling period before the closed-loop state leaves Ωρ̂safe,q . In the sixth part, it is demonstrated

that if there is a change in the dynamic model as well as an undetected cyberattack at td,q that lead

to either the state measurement being outside Ωρ̂q at td,q, ϵmax,q,s < |zq,r(t) − zq,l(t)| ≤ ϵmax,q,l at

td,q, or both at td,q, then the closed-loop state is maintained within Ωρ̂safe,q for at least one sampling

period.

Part 1. hNL,q implemented in sample-and-hold is a feasible input policy for the LEMPC of Eq. 26

whenever the LEMPC of Eq. 26 is used according to the implementation strategy in Section 3.2.3

by the same proof as for Part 1 for Theorem 1.

Part 2. For t ∈ [t0,max{∆, tz1}), when no attack or model change occurs in that time interval as

stated in the conditions of the theorem, the steps in Ellis et al. (2014b); Oyama and Durand (2020)

for demonstrating boundedness of the closed-loop state in Ωρ̂q follow. Speci�cally, integrating the

time derivative of the Lyapunov function along the trajectory of Eq. 8 with x̄a,i(t0) ∈ Ωρ̂e,1,q and

Eqs. 9a and 9c gives:

V̂q(x̄a,i(t)) ≤ ρ̂e,1,q +Mi,0max{∆, tz1}α̂4,q(α̂
−1
1,q(ρ̂q)) (114)

for all t ∈ [t0,max{∆, tz1}), so that if Eq. 101 is satis�ed, x̄a,i(t) ∈ Ωρ̂q for all t ∈ [t0,max{∆, tz1}).
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Part 3. In this part, we demonstrate that before any attack or change in the underlying dynamics

occurs, the closed-loop state is maintained within Ωρ̂samp,q ⊂ Ωρ̂q and the state estimate is maintained

within Ωρ̂q . In this case, either zq,1(tk) ∈ Ωρ̂e,1,q so that the constraint of Eq. 26f is activated, or

zq,1(tk) ∈ Ωρ̂q/Ωρ̂e,1,q so that the constraint of Eq. 26g is activated.

Consider �rst the case that zq,1(tk) ∈ Ωρ̂e,1,q . Eq. 26f ensures that ˜̄xb,q(t) is maintained within

Ωρ̂e,1,q throughout the prediction horizon. Following steps similar to those in Eq. 72 but using

Proposition 8 to note that |zq,1(tk)− x̄a,i(tk)| ≤ ϵ∗M,i,q in this case gives:

V̂q(x̄a,i(t)) ≤ V̂q(zq,1(tk)) + fV,q(|x̄a,i(t)− x̄a,i(tk) + x̄a,i(tk)− zq,1(tk)|

≤ ρ̂e,1,q + fV,q
(
ϵ∗M,i,q +Mi,0∆

) (115)

for t ∈ [tk, tk+1) if x̄a,i(t) and zq,1(tk) ∈ Ωρ̂e,1,q . If Eq. 103 holds, then x̄a,i(t) ∈ Ωρ̂samp,q for t ∈ [tk, tk+1)

when zq,1(tk) ∈ Ωρ̂e,1,q .

To ensure that zq,1(tk+1) ∈ Ωρ̂q for t ∈ [tk, tk+1), Eq. 115 and Proposition 2 give:

V̂q(zq,1(tk+1)) ≤ V̂q(x̄a,i(tk+1)) + fV,q(|zq,1(tk+1)− x̄a,i(tk+1)|)

≤ ρ̂e,1,q + fV,q
(
ϵ∗M,i,q +Mi,0∆

)
+ fV,q(ϵ

∗
M,i,q)

(116)

When Eq. 104 holds, Eq. 116 gives that zq,1(tk+1) ∈ Ωρ̂q when zq,1(tk) ∈ Ωρ̂e,1,q .

Next, we evaluate the case that zq,1(tk) ∈ Ωρ̂/Ωρ̂e,1,q (i.e., Eq. 26g is activated). Using similar

steps as in Eqs. 74 and 75 gives:

˙̂
Vq(x̄a,i(t)) ≤ −α̂3,q(|zq,1(tk)|) +

∂V̂q(x̄a,i(t))

∂x
f̄i(x̄a,i(t), ūi(tk), wi(t))−

∂V̂q(zq,1(tk))

∂x
f̄i(zq,1(tk), ūi(tk), 0)

+
∂V̂q(zq,1(tk))

∂x
f̄i(zq,1(tk), ūi(tk), 0)−

∂V̂q(zq,1(tk))

∂x
f̄NL,q(zq,1(tk), ūq(tk))

≤ −α̂3,q(|zq,1(tk)|) + L′
x,i|x̄a,i(t)− x̄a,i(tk) + x̄a,i(tk)− zq,1(tk)|+ L′

w,iθ +

∣∣∣∣∣∂V̂q(zq,1(tk))

∂x

∣∣∣∣∣Mderiv,i,q

≤ −α̂3,q(α̂
−1
2,q(ρ̂s,1,q)) + L′

x,i

(
ϵ∗M,i,q +Mi,0∆

)
+ L′

w,iθ + α̂4,q(α̂
−1
1,q(ρ̂q))Mderiv,i,q

(117)

If the condition of Eq. 105 holds, then:

V̂q(x̄a,i(t)) ≤ V̂q(x̄a,i(tk))−
ϵ′w,q,i(t− tk)

∆
, t ∈ [tk, tk+1) (118)

so that when zq,1(tk) ∈ Ωρ̂q/Ωρ̂e,1,q , V̂q(x̄a,i(t)) decreases over the subsequent sampling period. Since

ρ̂e,1,q > ρ̂s,1,q, zq,1(tk) ∈ Ωρ̂q/Ωρ̂e,1,q only if zq,1(tk) ∈ Ωρ̂q/Ωρ̂s,1,q . x̄a,i(tk) is guaranteed to be within
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Ωρ̂samp,q when the conditions of the theorem are satis�ed, as demonstrated using a similar proof as

in a similar part of Part 2 of the proof of Theorem 1 and with Eqs. 102, 103, 115, and 118 (i.e.,

regardless of where x̄a,i(tk) is located in Ωρ̂samp,q at tk, since zq,1(tk) ∈ Ωρ̂q/Ωρ̂e,1,q or Ωρ̂e,1,q ⊃ Ωρ̂min,1,i,q
,

x̄a,i(tk) either stays within Ωρ̂samp,q in the former case by Eqs. 105 and 117, or it remains within

Ωρ̂samp,q by Eqs. 102, 103, and 116). Demonstrating that zq,1(tk+1) ∈ Ωρ̂q when x̄a,i(tk) ∈ Ωρ̂samp,q

uses similar steps as in Eq. 77 with zq,1(t) replacing x(tk+1) when Eq. 106 holds. Furthermore, Eq. 94

demonstrates that when there is no attack or model change, the condition |zq,r(t)−zq,l(t)| ≤ ϵmax,q,s,

r = 1, . . . ,M , l = 1, . . . ,M , always holds when ϵmax,q ≤ ϵmax,q,s (i.e., there will be no false alarms

with this detection threshold).

Part 4. In this part, we demonstrate that after a model change occurs, if there is no attack,

the closed-loop state stays in Ωρ̂safe,q for at least th,q sampling periods after td,q and no attack is

detected after td,q (i.e., there are no false alarms under the proposed implementation strategy).

Until ts,i+1, x̄a,i(t) ∈ Ωρ̂samp,q and zq,1(tk) ∈ Ωρ̂q under the implementation strategy of

Section 3.2.3 as proven in Part 3. After ts,i+1 and at td,q, either: 1) zq,1(td,q) ∈ Ωρ̂q but

|zq,r(td,q) − zq,l(td,q)| > ϵmax,q,s at td,q for some r, l ∈ {1, . . . ,M}; 2) zq,1 /∈ Ωρ̂q at td,q but

still |zq,r(td,q) − zq,l(td,q)| ≤ ϵmax,q,s for all r, l ∈ {1, . . . ,M}; or 3) both zq,1(td,q) /∈ Ωρ̂q and

|zq,r(td,q) − zq,l(td,q)| > ϵmax,q,s for some r, l ∈ {1, . . . ,M}. In any of these cases, the upper bound

on |zq,r(t)− zq,l(t)| is changed to ϵmax,q,l and re-checked, and the worst-case value of V̂q(x̄a,i+1(td,q))

is determined from Eq. 107 and Eq. 117 formulated using the i+ 1 model. From Proposition 2:

V̂q(x̄a,i+1(td,q −∆)) ≤ V̂q(zq,1(td,q −∆)) + fV,q(|x̄a,i+1(td,q −∆)− zq,1(td,q −∆)|)

≤ ρ̂q + fV,q(ϵ
∗
M,i+1,q)

(119)

From the integration of Eq. 79, the worst-case value of V̂q(x̄a,i+1(tk)) is given by ρ̂′samp2,i+1,q =

ρ̂q + fV,q(ϵ
∗
M,i+1,q) + ϵ̄′w,q,i+1, from which it can be derived from Eq. 79 that there are

�oor(
(ρ̂safe,q−ρ̂′samp2,i+1,q)

ϵ̄′w,q,i+1
) sampling periods before the closed-loop state leaves Ωρ̂safe,q , as required,

following td,q. Finally, Eqs. 94 and 96 demonstrate that if there is no attack and the attack detection

strategy is updated at td,q to become |zq,r(t)− zq,l(t)| ≤ ϵmax,q,l, then no cyberattack will be �agged

after the underlying process dynamics change so that there are no false detections.

Part 5. If there is no model change but an undetected attack occurs at tA, if the attack causes
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neither |zq,r(tk)− zq,l(tk)| > ϵmax,q,s nor zq,1(tk) /∈ Ωρ̂q , then from Proposition 2:

V̂q(x̄a,i(t)) ≤ V̂q(zq,1(tk)) + fV,q(|x̄a,i(t)− x̄a,i(tk) + x̄a,i(tk)− zq,2(tk) + zq,2(tk)− zq,1(tk)|)

≤ ρ̂e,1,q + fV,q(Mi,0∆+ ϵ∗M,i,q + ϵmax,q,s)
(120)

for t ∈ [tk, tk+1), where zq,2 represents a state estimator that is not impacted by the attack, if

zq,1(tk) ∈ Ωρ̂e,1,q , leading to:

V̂q(zq,1(tk+1)) ≤ V̂q(x̄a,i(tk+1)) + fV,q(|zq,1(tk+1)− zq,2(tk+1) + zq,2(tk+1)− x̄a,i(tk+1)|)

≤ ρ̂e,1,q + fV,q(Mi,0∆+ ϵ∗M,i,q + ϵmax,q,s) + fV,q(ϵmax,q,s + ϵ∗M,i,q)
(121)

In contrast, if zq,1(tk) ∈ Ωρ̂q/Ωρ̂e,1,q , then through similar steps as in Eq. 117, we obtain:

˙̂
Vq(x̄a,i(t)) ≤ −α̂3,q(α̂

−1
2,q(ρ̂s,1,q)) + L′

x,i|x̄a,i(t)− x̄a,i(tk) + x̄a,i(tk)− zq,2(tk) + zq,2(tk)− zq,1(tk)|

+ L′
w,iθ + α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i,q

≤ −α̂3,q(α̂
−1
2,q(ρ̂s,1,q)) + L′

x,i(Mi,0∆+ ϵ∗M,i,q + ϵmax,q,s) + L′
w,iθ + α̂4,q(α̂

−1
1,q(ρ̂q))Mderiv,i,q

(122)

V̂q(zq,1(tk+1)) ≤ V̂q(x̄a,i(tk+1)) + fV,q(|zq,1(tk+1)− zq,2(tk+1) + zq,2(tk+1)− x̄a,i(tk+1)|)

≤ V̂q(x̄a,i(tk)) + fV,q(ϵmax,q,s + ϵ∗M,i,q)

≤ ρ̂samp,q + fV,q(ϵmax,q,s + ϵ∗M,i,q)

(123)

If Eqs. 102, and 110-113 hold, this ensures that the closed-loop state stays in Ωρ̂samp,q and the

state estimate stays within Ωρ̂q . In contrast, if the attack occurs at td,q but remains undetected

(i.e., inconclusively detected) and occurs at tk = tA, one of several cases occurred: 1) zq,1(tk) ∈

Ωρ̂safe,q/Ωρ̂q but |zq,r(tk) − zq,l(tk)| ≤ ϵmax,q,s; 2) zq,1(tk) ∈ Ωρ̂q and |zq,r(tk) − zq,l(tk)| ≤ ϵmax,q,l

but |zq,r(tk) − zq,l(tk)| > ϵmax,q,s; or 3) zq,1(tk) ∈ Ωρ̂safe,q/Ωρ̂q and |zq,r(tk) − zq,l(tk)| ≤ ϵmax,q,l but

|zq,r(tk) − zq,l(tk)| > ϵmax,q,s. In each case, however, because there was no model change, x̄a,i(tk) ∈

Ωρ̂samp,q according to the proof in Part 3. However, in some of these cases, the implementation

strategy of Section 3.2.3 dictates that hNL,q be used starting at tk given the above conditions, and

in some of these cases, the LEMPC of Eq. 26 continues to be used. Using similar steps as in

Eqs. 115-116 indicates that when Eq. 108 holds, x̄a,i(tk+1) ∈ Ωρ̂safe,q though there is an undetected

attack at tk, demonstrated as follows with Eq. 108:

V̂q(x̄a,i(t)) ≤ V̂q(x̄a,i(tk)) + fV,q(|x̄a,i(t)− x̄a,i(tk)|)

≤ ρ̂samp,q + fV,q(Mi,0∆)
(124)
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Part 6. In this case, we consider that there are both a model change and an undetected attack,

where one of those could occur before the other, or both may occur at the same time. From

Eqs. 107 and 79, and given ρ̂far := ρ̂′samp2,i+1,q +
ϵ̄′w,q,i+1(th,q−∆)

∆
as the largest possible value of V̂q at

x̄a,i+1(tID,q − ∆), the worst-case value of V̂q evaluated along the state trajectory for t ∈ [tk, tk+1)

when any attack at tk is undetected (whether or not a model change occurs before, after, or at the

same time as the attack) occurs when
˙̂
Vq is increasing at its maximal possible rate in Ωρ̂safe,q for an

undetected attack given by Eq. 107 with the initial state as far from Ωρ̂q at that time as it can be,

which is given by ρ̂far + ϵ̄′w,q,i+1. If Eq. 109 holds, then the closed-loop state is still within Ωρ̂safe,q

after a sampling period after an attack occurs, regardless of whether the model change occurs �rst

or not.

Remark 10. If ϵ∗M,i,q > ϵ∗M,i,q+1 when de�ned as in Proposition 8, ϵ∗M,i,q+1 can be set to ϵ∗M,i,q instead

of to the value in Proposition 8.

3.2.3.3. Detection Strategy 3, Method 2 The second method to be proposed for Detection Strategy

3 takes advantage of the closed-loop stability properties in Part 3 of the proof of Theorem 2 above.

Assumption 2 guarantees that the original state estimator, designed using the q-th empirical model,

is able to be used to derive a characterizable upper bound on the worst-case di�erence between the

closed-loop state and state estimate in the presence of an undetected attack before the model update.

An updated implementation strategy for the second method for Detection Strategy 3 utilizes the two

bounds ϵmax,q,s and ϵmax,q,l, but ensures that the closed-loop state is maintained within Ωρ̂safe,q for

th,q time periods after td,q regardless of whether an undetected attack or a model change occurred at

td,q. If the conditions of Theorem 2 hold, then until td,q, the closed-loop state should be maintained

within Ωρ̂samp,q with the state estimate in Ωρ̂q following the proof of Parts 1-3 of Theorem 2. If

a state estimate is received where zq,1(tk) /∈ Ωρ̂q and/or |zq,r(tk) − zq,l(tk)| > ϵmax,q,s, for some

r = 1, . . . ,M and l = 1, . . . ,M , then the detection bound for the second condition is changed to

ϵmax,q,l and it is checked whether |zq,r(tk) − zq,l(tk)| > ϵmax,q,l. If it is, a cyberattack is �agged and

backup strategies are employed. In addition, a cyberattack should be �agged if zq,1(tk) /∈ Ωρ̂safe,q

before tID,q, since this implementation strategy should maintain the process state within Ωρ̂safe,samp,q
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(a subset of Ωρ̂safe,q) while maintaining the estimate at tk in Ωρ̂safe,q in the presence of an undetected

attack after td,q and before tID,q, as discussed below. When no attack is �agged with this method,

then at tID,q, instead of using hNL,q, the LEMPC of Eq. 26 is updated to utilize a subset Ωρ̂safe,q,e

of Ωρ̂safe,q (Ωρ̂q ⊂ Ωρ̂safe,q,e) in place of Ωρ̂e,1,q .

We note that the only di�erences between what must hold in this case and what has already

been proven in Theorem 2, assuming that the requirements of that theorem hold, are: 1) feasibility

of the LEMPC of Eq. 26 after it is updated at td,q as described in the prior paragraph must be

demonstrated; 2) after td,q, if only a cyberattack occurred to cause the �rst detection bound to

be breached, the closed-loop state would not leave Ωρ̂safe,q before th,q time units pass; 3) the state

estimate is maintained within Ωρ̂safe,q at every sampling time before tID,q when there are a model

change, an undetected attack, or both; and 4) the proof of Part 6 of Theorem 2 can be extended

to re�ect that th,q sampling periods can be made available after td,q before the closed-loop state

exits Ωρ̂safe,q under a combined model change and cyberattack. To demonstrate the �rst point, it

is noted that the proof of Part 1 of Theorem 1 holds for the updated LEMPC formulation after

td,q if the conditions of Theorem 2 are met, Ωρ̂safe,q ⊂ Xq, ρ̂q is replaced by ρ̂safe,q in Eq. 49, the

Lipschitz requirements (e.g., on hNL,q, derivatives of V̂q along model trajectories, and derivatives

of V̂q with respect to the states) hold in Ωρ̂safe,q , and if the state estimate always remains within

Ωρ̂safe,q , which can be guaranteed under some additional conditions clari�ed below. To demonstrate

the second point, the proof of Part 5 of Theorem 2 can be performed with Ωρ̂samp,q replaced by

Ωρ̂safe,samp,q
(a subset of Ωρ̂safe,q), Ωρ̂q replaced by Ωρ̂safe,q , and Ωρ̂safe,q,e used in place of Ωρ̂e,1,q (where

Ωρ̂q ⊂ Ωρ̂safe,q,e ⊂ Ωρ̂safe,q) if x̄a,i(td,q) ∈ Ωρ̂safe,samp,q
and zq,1(td,q) ∈ Ωρ̂safe,q . In that case, if the

following conditions are added to the requirements of Theorem 2:

ρ̂safe,q,e + fV,q(ϵ
∗
M,i,q +Mi,0∆+ ϵmax,q,l) ≤ ρ̂safe,samp,q (125)

ρ̂safe,q,e + fV,q(ϵ
∗
M,i,q +Mi,0∆+ ϵmax,q,l) + fV,q(ϵ

∗
M,i,q + ϵmax,q,l) ≤ ρ̂safe,q (126)

−α̂3,q(α̂
−1
2,q(ρ̂s,1,q)) + L′

x,i

(
ϵ∗M,i,q +Mi,0∆+ ϵmax,q,l

)
+ L′

w,iθ + α̂4,q(α̂
−1
1,q(ρ̂safe,q))Mderiv,i,q ≤ −ϵ′′′w,i,q/∆

(127)

ρ̂safe,samp,q + fV,q
(
ϵmax,q,l + ϵ∗M,i,q)

)
≤ ρ̂safe,q (128)
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where ϵ′′′w,i,q > 0, then x̄a,i(t) ∈ Ωρ̂safe,samp,q
and zq,1(tk) ∈ Ωρ̂safe,q for all times after td,q before tID,q.

To verify that this holds, we therefore must de�ne the conditions under which x̄a,i(td,q) ∈ Ωρ̂safe,samp,q

and zq,1(td,q) ∈ Ωρ̂safe,q .

Under the assumption that at tk = td,q one of the detection bounds is �rst breached, then one

of several cases have occurred: 1) an undetected attack occurred at td,q or in a sampling period

before it. In this case, Part 3 of the proof of Theorem 2 indicates that zq,1(tk−1) ∈ Ωρ̂q ; 2) a model

change at a time prior to td,q, but no subsequent cyberattack. In this case, as the detection is �rst

triggered at td,q, zq,1(tk−1) ∈ Ωρ̂q ; or 3) both an attack and model change have a�ected the system

prior to or at td,q, either one occurring before the other, or both simultaneously. Again the lack of

detection at a prior sampling time implies zq,1(tk−1) ∈ Ωρ̂q .

In the �rst case, the cyberattack remains undetected by maintaining zq,1(td,q − ∆) ∈ Ωρ̂q , and

this implies that x̄a,i(td,q) ∈ Ωρ̂samp,q according to the proof in Parts 3 and 5 of Theorem 2. In the

second case, and assuming ϵ∗M,i,q ≤ ϵ∗M,i+1,q so that the case of a model change at or before tk−1 is

to be considered, Proposition 2 gives:

V̂q(x̄a,i+1(tk−1)) ≤ V̂q(zq,1(tk−1)) + fV,q(|x̄a,i+1(tk−1)− zq,1(tk−1)| ≤ ρ̂q + fV,q(ϵ
∗
M,i+1,q) (129)

If Eq. 107 holds, with similar steps as used for equations Eqs. 107 and 79, the worst-case value

of V̂q(x̄a,i+1(tk)) in this case is given by ρ̂q + fV,q(ϵ
∗
M,i+1,q) + ϵ̄′w,q,i+1. If the following condition is

satis�ed:

ρ̂q + fV,q(ϵ
∗
M,i+1,q) + ϵ̄′w,q,i+1 ≤ ρ̂safe,samp,q (130)

then x̄a,i+1(td,q) ∈ Ωρ̂safe,samp,q
. When there is no attack, it can also be demonstrated that zq,1(td,q) ∈

Ωρ̂safe,q by using Eqs. 129 and 130 and Proposition 2 as follows with tk = td,q:

V̂q(zq,1(tk)) ≤ V̂q(x̄a,i+1(tk)) + fV,q(|zq,1(tk)− x̄a,i+1(tk)|)

≤ ρ̂q + fV,q(ϵ
∗
M,i+1,q) + ϵ̄′w,q,i+1 + fV,q(ϵ

∗
M,i+1,q)

(131)

If

ρ̂q + fV,q(ϵ
∗
M,i+1,q) + ϵ̄′w,q,i+1 + fV,q(ϵ

∗
M,i+1,q) ≤ ρ̂safe,q (132)

then zq,1(td,q) ∈ Ωρ̂safe,q .
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In the third case (i.e., a cyberattack and a change in the dynamics of the process both occur),

if it is assumed for simplicity of presentation that L′
x,i+1 > L′

x,i, L
′
w,i+1 > L′

w,i, Mi+1,0 > Mi,0, and

Mderiv,i+1,q > Mderiv,i,q (to avoid the need to present separately whether the model change occurs

before tk−1 or not), Proposition 2 gives:

V̂q(x̄a,i+1(tk−1)) ≤ V̂q(zq,1(tk−1))+fV,q(|x̄a,i+1(tk−1)−zq,2(tk−1)+zq,2(tk−1)−zq,1(tk−1)| ≤ ρ̂q+fV,q(ϵ
∗
M,i+1,q+ϵmax,q,s)

(133)

If

−α̂3,q(α̂
−1
2,q(ρ̂s,1,q))+L′

x,i+1

(
ϵ∗M,i+1,q +Mi+1,0∆+ ϵmax,q,l

)
+L′

w,i+1θ+α̂4,q(α̂
−1
1,q(ρ̂safe,q))Mderiv,i+1,q ≤ ϵ̃w,i+1,q/∆

(134)

which is derived in a similar manner to Eq. 117 but for the i + 1 model and accounting for the

possibility of an attack, then the worst-case value of V̂ (x̄a,i+1(td,q)) is given by ρ̂q + fV,q(ϵ
∗
M,i+1,q +

ϵmax,q,s) + ϵ̃w,i+1,q and the worst-case value th,q time units after td,q from Eqs. 129, 130, and 79 is

ρ̂q + fV,q(ϵ
∗
M,i+1,q + ϵmax,q,s) + ϵ̃w,i+1,q(th,q + 1). The worst-case value of zq,1(td,q + th,q) is given by:

V̂q(zq,1(tID,q)) ≤ V̂q(x̄a,i+1(tID,q)) + fV,q(|zq,1(tID,q)− zq,2(tID,q) + zq,2(tID,q)− x̄a,i+1(tID,q)|)

≤ ρ̂q + fV,q(ϵ
∗
M,i+1,q + ϵmax,q,s) + ϵ̃w,i+1,q(th,q + 1) + fV,q(ϵ

∗
M,i+1,q + ϵmax,q,l)

(135)

Therefore, if the following hold:

ρ̂q + fV,q(ϵ
∗
M,i+1,q + ϵmax,q,s) + ϵ̃w,i+1,q(th,q + 1) ≤ ρ̂safe,samp,q (136)

ρ̂q + fV,q(ϵ
∗
M,i+1,q + ϵmax,q,s) + ϵ̃w,i+1,q(th,q + 1) + fV,q(ϵ

∗
M,i+1,q + ϵmax,q,l) ≤ ρ̂safe,q (137)

then the state estimate at each sampling time and the closed-loop state trajectory are maintained

from td,q to tID,q in Ωρ̂safe,q and Ωρ̂safe,samp,q
, respectively, even in the presence of a model change,

undetected cyberattack, or both, where th,q = floor
(

ρ̂safe,q−(ρ̂q+fV,q(ϵ
∗
M,i+1,q+ϵmax,q,s)+ϵ̃w,i+1,q)

ϵ̃w,i+1,q

)
.

Remark 11. In Method 2 for Detection Strategy 3, because the estimation error remains bounded

after the model change, the attack detection policy makes it certain that if |zq,r(tk)−zq,l(tk)| > ϵmax,q,l,

for r = 1, . . . ,M or z1,q(tk) /∈ Ωρ̂safe,q (assuming that no further model changes occur until after

tID,q and the closed-loop state is driven into Ωρ̂q+1 using hNL,q+1 after tID,q), an attack that would
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compromise closed-loop stability is �agged with certainty. Thus, despite the consideration in this

work that sensor measurement attacks and model changes cannot be distinguished from the sensor

data, this method indicates that under certain assumptions, there is no need to distinguish them

in order to ensure that the closed-loop state remains in a bounded operating region for some time

after the attack or model change. However, a consideration is that if there is a new model change

before the closed-loop state enters Ωρ̂q+1, then there may not be much time before the closed-loop

state leaves Ωρ̂safe,q (i.e., the system is not robust to a second model update before x̄a,i+1 ∈ Ωρ̂q+1).

This indicates that the time required for the re-identi�cation and for driving the closed-loop state

from Ωρ̂safe,samp,q
may also be a consideration to investigate during the design of the system to ensure

that su�cient time is expected between model updates to prevent loss of closed-loop stability.

Remark 12. The proofs presented provide a way to guarantee that the closed-loop state is main-

tained within Ωρ̂safe,q until tID,q, regardless of whether an undetected cyberattack on the sensors

caused the closed-loop state measurements to leave Ωρ̂q , or whether a change in the underlying dy-

namics caused this. However, for verifying safety at run-time for an autonomous system in the

presence of changes in the underlying process dynamics and potentially also undetected cyberat-

tacks on the sensors further requires that the closed-loop state be driven into Ωρ̂q+1 and subsequently

safely operated within that region after tID,q in either the case that a model was re-identi�ed at

tID,q from accurate process data, or that it was re-identi�ed from corrupted data (i.e., data that has

been impacted by an undetected attack on the sensors). To achieve this, Mderiv,i+1,q+1 cannot be too

large, as re�ected from the fact that when the closed-loop state is initialized in Ωρ̂e,q+1, under both

Detection Strategy 2 and Detection Strategy 3, that variable would need to be su�ciently small to

allow the guarantees of Theorems 1 and 2 to hold. If data used in the model re-identi�cation is

potentially falsi�ed, it must be asked what the conditions are under which that data would prevent

Mderiv,i+1,q+1 from being too large. One way to begin to consider this is to consider that the model

to be re-identi�ed is chosen from a set of models, each of which has a bounded prediction error.

Su�cient data must be available to distinguish which of these models is most accurate. Further-

more, the data is not arbitrarily bad due to the detection mechanisms utilized (e.g., for Detection

Strategies 2 and 3, the data is only being used to re-identify the model if the attack was undetected,
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implying that there is a bound on how far o� the sensor data is from the actual state). Theoreti-

cally, one could evaluate the potential worst-case impact of the falsi�ed data on the model selection

by evaluating what models would be selected from the set of possible models for each possible data

set with data that could be generated within the bounds allowed by the detection strategies, and then

for each of the identi�ed models, evaluate Mderiv,i+1,q+1. Though perhaps computationally this would

be di�cult, it provides insights into the fact that falsi�ed data does not necessarily correspond to a

model that would cause closed-loop stability to be compromised being identi�ed, which is consistent

with simulation results presented in Durand (2020a). It also suggests how stealthy attacks could

be carried out by an attacker who is aware of the model identi�cation algorithm and could seek to

determine whether there are state measurement trajectories that could be provided to the sensors

that could keep the closed-loop state in Ωρ̂safe,q until tID,q but then cause the re-identi�ed model to

be insu�cient for maintaining closed-loop stability under the LEMPC. However, it may be possible

to evaluate whether these stealthy attacks can occur a priori and then to attempt to evaluate how or

whether they might be mitigated via the control design.

Remark 13. We note that the discussion in Remark 12 provides one of the major motivations for

explicitly considering numerical error in the LEMPC formulation in this work, and di�erentiating it

from model error. Speci�cally, the guarantees regarding model re-identi�cation above describe how

far o� the new dynamic model right-hand side is from that of the empirical model. However, they

do not describe how far o� it would be in the presence of numerical error. Though the traditional

assumption is that they would not be far o� in the presence of numerical error, explicitly accounting

for the numerical error as a function of the numerical method used and trading o� accuracy with

computation time in the design of a safe and cybersecure operating policy for run-time veri�cation

provides a comprehensive picture of how changing the various parameters involved in the implemen-

tation of the control design should be expected to change the guarantees that can be made. We have

assumed throughout, however, that the results returned by the numerical methods can take any value

(i.e., we have not accounted for �nite precision).

Remark 14. From a veri�cation standpoint, tests which would be required to be run for this method
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include evaluating many of the parameters which correspond to the next model to be identi�ed (e.g.,

parameters that depend only on the next model such as those in Eq. 9b, or those which depend on

di�erences between models including the next model such as Mderiv,i+1,q).

Remark 15. The proofs have considered sudden changes in the underlying dynamics. One could

attempt to use this method when a gradual change progressively causes the plant/model mismatch

to grow over time. The theoretical results lead to an admittedly conservative Ames et al. (2016)

concept for run-time veri�cation. However, the conservatism of this initial approach allows the

results in Oyama and Durand (2020) developed speci�cally for nonlinear systems under Lyapunov-

based economic model predictive control to be readily extended to this case.

4. Process Example Demonstration: LEMPC with a Truncated Taylor Series Model

In Oyama et al., simulation results are presented for a continuous stirred tank reactor (CSTR)

under strategies similar to some of those proposed in this work. For example, the process was

simulated under di�erent thresholds on the smaller state estimate-based detection bound used for

Detection Strategy 3 in the presence of plant/model mismatch or sensor measurement attacks. The

conclusion of Oyama et al. based on the simulation studies was that without a theoretical basis

for developing the various parameters in the simulation (e.g., appropriate values of the detection

bounds and di�erent subsets of Ωρ̂safe,q), it may be less obvious how to tune all of these parameters

appropriately. Thus, the work in Oyama et al. motivated the theoretical results developed in this

paper. However, it is outside the scope of the present work to develop algorithms for attempting

to obtain control law parameters which meet conditions of the theorems systematically. We there-

fore leave the determination of algorithms for obtaining control law parameters which meet the

requirements in this work to future work, and focus instead in this section on addressing the im-

pact that data-driven modeling and di�erent numerical methods could have on sensor measurement

cyberattacks via a process example.

The process example under consideration is a continuous stirred tank reactor (CSTR) in which

a second-order reaction A → B occurs. The states are the reactant concentration of A (CA) and
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the temperature (T ), where the dynamics are given by:

ĊA =
F

V
(CA0 − CA)− k0e

− E
RgT C2

A (138)

Ṫ =
F

V
(T0 − T )− ∆Hk0

ρLCp

e
− E

RgT C2
A +

Q

ρLCpV
(139)

Here, Rg is the ideal gas constant, E is the activation energy, ∆H is the enthalpy of reaction, and

k0 is the pre-exponential constant. The inlet/outlet volumetric �ow rate, F , is considered �xed,

as are the liquid density, ρL, heat capacity, Cp, and liquid volume in the tank, V . The parameter

values are as shown in Table 1.

Parameter Value Unit Parameter Value Unit

V 1 m3 T0 300 K
Cp 0.231 kJ/kg·K k0 8.46× 106 m3/h·kmol
F 5 m3/h ρL 1000 kg/m3

E 5× 104 kJ/kmol Rg 8.314 kJ/kmol·K
∆H −1.15× 104 kJ/kmol

Table 1: Parameters for the CSTR model of Eqs. 138-139

The manipulated inputs are the inlet reactant A concentration (CA0, which is bounded as follows:

0.5 ≤ CA0 ≤ 7.5 kmol/m3) and the rate of heat transferred to the system (Q, which is bounded as

follows: −5 × 105 ≤ Q ≤ 5 × 105 kJ/h). Vectors of deviation variables for the states and inputs

from their steady-state values, CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4.0 kmol/m3, and

Qs = 0 kJ/h, respectively, are xT = [x1 x2] = [C̄A T̄ ], where C̄A = CA − CAs and T̄ = T − Ts, and

uT = [u1 u2] = [C̄A0 Q̄], where C̄A0 = CA0 − CA0s and Q̄ = Q−Qs. An LEMPC is used to control

the process with the objective function:∫ tk+N

tk

[−k0e−
E

RT (τ)CA(τ)
2]dτ (140)

Lyapunov-based stability constraints are designed using the quadratic function, V̂q = xTPx, where

P = [1200, 5; 5, 0.1]. The Lyapunov-based controller, denoted by hNL,1(x) = [hNL,1,1(x) hNL,1,2(x)]
T

has hNL,1,1(x) ≡ 0 kmol/m3 and hNL,1,2 is governed by Sontag's control law Lin and Sontag (1991):

hNL,1,2(x) =

−
Lf̃ V̂q+

√
Lf̃ V̂

2
q +Lg̃2

V̂ 4
q

Lg̃2
V̂q

, if Lg̃2V̂q ̸= 0

0, if Lg̃2V̂q = 0
(141)
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hNL,1,2 is saturated at the input bounds. f̃ and g̃ represent the vector-valued and matrix-valued

functions that do not and do multiply the inputs, respectively, in Eqs. 138-139 (g̃2 is the second

column of g̃). Lf̃ V̂q and Lg̃2V̂q are Lie derivatives of V̂q with respect to f̃ and g̃2. ρ̂1 was selected to

be 300, with ρ̂e,1 = 225. The process state was initialized from xinit = [−0.4 kmol/m3 8 K]T , N is

10, and ∆ is 0.01 h.

In the �rst part of this example, we analyze how plant/model mismatch introduced via numerical

integration techniques in a controller could impact the results of a state measurement cyberattack on

the controller. To do this, we develop two LEMPC formulations: one which numerically integrates

the process model of Eqs. 138-139 using the explicit Euler numerical integration method with an

integration step of 10−4 h, and one which uses a truncated Taylor series model as discussed in this

work. We choose to employ three terms in the truncated Taylor series model. Speci�cally, the

truncated Taylor series model employed was:

C̃A(t) = C̃A(tj) +

[(
F

V
(CA0(tj)− C̃A(tj))

)
− k0e

− E
RgT̃ (tj) (C̃A(tj))

2

]
(t− tj)

1!
+[(

−F

V
− (2k0e

− E
RgT̃ (tj) C̃A(tj))

)
dCA(tj)

dt
+

(
−k0

E

Rg(T̃ (tj))2
e
− E

RgT̃ (tj) (C̃A(tj))
2

)
dT (tj)

dt

]
(t− tj)

2

2!

(142)

T̃ (t) = T̃ (tj) +

[(
F

V
(T0 − T̃ (tj))

)
− ∆Hk0

ρLCp

e
− E

RgT̃ (tj) (C̃A(tj))
2 +

Q(tk)

ρLCpV

]
(t− tj)

1!
+[(

−2k0∆H

ρLCP

e
− E

RgT̃ (tj) C̃A(tj)

)
dCA(tj)

dt
+

(
−F

V
−

(
k0∆HE

ρLCPRg(T̃ (tj))2
e
− E

RgT̃ (tj) (C̃A(tj))
2

))
dT (tj)

dt

]
(t− tj)

2

2!

(143)

for t ∈ [tj, tj+1), j = k, . . . , k + N − 1. To obtain some intuition regarding how close the process

model solutions from the Taylor series and explicit Euler methods are to one another for the same

inputs, both the explicit Euler numerical method and the truncated Taylor series method were

used to numerically integrate the process model from a number of di�erent initial conditions in

the stability region and under a number of di�erent inputs for at least the length of a sampling

period. The results of these studies indicated that over some time horizons under a constant input

pro�le, the results from the explicit Euler and Taylor series methods were relatively close. For

example, Fig. 1 shows the trajectories of the process of Eqs. 138-139 under the steady-state inputs,

initialized from xinit = [-0.4 kmol/m3, 8 K]T , and indicates good agreement of the trajectories.
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Figure 1: Plot of the state trajectories for CA and T from Eqs. 138-139 determined using explicit Euler (�Explicit
Euler�) and Eqs. 142-143 (�Taylor Series�) using the steady-state inputs and initialized from xinit = [-0.4 kmol/m3,
8 K]T .

Furthermore, a number of di�erent initial conditions in state-space were used with various inputs

(the initial value of CA was varied between 0 and 4 kmol/m3 in increments of 1 kmol/m3 and the

initial value of T was varied between 250 and 500 K in increments of 50 K, discarding any points

in this discretization that were not in the stability region, and employing an input for each of the

CA−T combinations from a discretization of the input space in which CA0 was between 0.5 kmol/m
3

and 7.5 kmol/m3 in increments of 3.5 kmol/m3 and Q was between −5×105 kJ/h and 5×105 kJ/h

in increments of 5× 105 kJ/h). These simulations resulted in 18 di�erent scenarios being analyzed

for each numerical integration technique. The average integral square error between the trajectories

from the two integration methods was evaluated for each initial condition and input combination

over 0.01 h as the sum of the squares of the errors between the trajectories at each 0.0001 h, divided

by 100 (the number of integration steps in a sampling period). The maximum value of the mean

integral square error (scaled by 104) was 0.1269 and the minimum value was 1.3836× 10−6 among

the points evaluated. Even for the case corresponding to the maximum value of the mean integral

square error in 0.01 h (which occurred with CA0 = 0.5 kmol/m3, Q = −5× 105 kJ/h, and with the

initial condition T = 450 K, and CA = 1 kmol/m3), relatively good agreement is shown between

the trajectories over 0.1 h, as demonstrated in Fig. 2.

Simulations using the LEMPC with the truncated Taylor series model and with explicit Euler
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Figure 2: Plot of the state trajectories for CA and T from Eqs. 138-139 determined using explicit Euler (�Explicit
Euler�) and Eqs. 142-143 (�Taylor Series�) using the inputs CA0 = 0.5 kmol/m3, Q = −5 × 105 kJ/h, and with the
initial condition T = 450 K, and CA = 1 kmol/m3.

were performed for one hour of operation in IPOPT Wächter and Biegler (2006) with ADOL-

C Walther and Griewank (2009) using C + + and the code for integrating IPOPT and ADOL-C

from Walther (2010), on an Intel(R) Core i7-7500U CPU at 2.70 GHz, 2.90 GHz with 16.0 GB of

installed RAM (15.9 GB usable) and a 64-bit operating system with an x64-based processor running

Windows 10 Enterprise. The solver indicated that a local minimum was found at each sampling

time. The Lyapunov-based stability constraint with the form in Eq. 26f was enforced at the end

of each sampling period when x(tk) ∈ Ωρ̂e,1 , and at the end of each sampling period after the �rst

otherwise. The plant was also simulated using explicit Euler, but with an integration step of 10−5

h to introduce minor plant/model mismatch even for the case that the explicit Euler method is

used both in the LEMPC and the plant simulation. The input and state trajectories are shown in

Figs. 3-4. The somewhat periodic behavior of the states and inputs results from the plant-model

mismatch that causes the closed-loop state to leave Ωρ̂e,1 when it was not predicted that it would

under the computed control action in the LEMPC, resulting in switching between which of the two

Lyapunov-based stability constraints is activated at various sampling times. The truncated Taylor

series approach and the method with Explicit Euler had similar economic performance (i.e., an

integral of the form of the negative of Eq. 140 evaluated over the full hour of operation was 32.516

for the explicit Euler-based LEMPC and 32.606 for the Taylor series method-based LEMPC), but the
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Figure 3: Inputs over one hour of operation under LEMPC's with the truncated Taylor Series solution (�Taylor�)
compared to the formulation using explicit Euler (�Euler�).

LEMPC using the truncated Taylor series did not require the value of the state at every integration

step within a sampling period to be computed since the Lyapunov-based stability constraint of

Eq. 26f is only enforced at the end of sampling periods.

The results in Fig. 3 indicate that if the trajectories of the state computed using the two

di�erent numerical integration techniques are only slightly di�erent (e.g., Figs. 1-2), the two di�erent

LEMPC's might compute similar inputs for the process when presented the same state measurement.

If the process is initialized from the same initial condition under two di�erent LEMPC's, these

initially similar input trajectories may result in similar state trajectories for the process, but if the

inputs are slightly di�erent, they may over time drive the process state to di�erent conditions from

which the state measurements are no longer the same, resulting in the inputs computed potentially

being di�erent or driving the state to di�erent conditions over time than would have otherwise been

the case (Fig. 4). This implies that if the problem formulation within a model predictive controller

is not overly sensitive to slight changes in the process model (e.g., slight changes in the degree of

approximation of the model solution introduced by the numerical integration technique used for

the dynamic model do not introduce large changes in the optimization problem solution), then a

false sensor measurement cyberattack would be likely to cause EMPC's with di�erent numerical

methods used to develop similar inputs to the process. This is demonstrated, for example, by

performing a cyberattack involving the false state measurement of [C̄A T ] = [0.1 kmol/m3 -5 K] on
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Figure 4: States over one hour of operation under LEMPC's with the truncated Taylor Series solution (�Taylor�)
compared to the formulation using explicit Euler (�Euler�).

both controllers. In this case, both computed approximately the same input to implement on the

process (both LEMPC's selected CA0 = 7.5 kmol/m3 and Q = 5 × 105 kJ/h for the �rst sampling

period of the prediction horizon). Thus, both controllers would operate the same process under this

attack in approximately the same manner for the subsequent sampling period. This suggests that if

an optimization algorithm and problem formulation are not highly sensitive to slight changes in the

constraints and objective function, these algorithms and formulations could cause the same state

measurement cyberattacks to have similar e�ects on the process when di�erent levels of plant/model

mismatch are present due to numerical integration techniques selected. In addition, the inputs

computed for this false state measurement are at the input bounds, demonstrating that even in

cases where the process models/their numerical integration method accuracies di�er signi�cantly,

if the same false state measurement would saturate the inputs in either case, the two di�erent

controllers could still operate the process in a similar manner under the same cyberattack.

The above results suggest that if a data-driven model was instead used in an LEMPC, introduc-

ing plant/model mismatch due to the imperfections of the model, then if the model is su�ciently

close to the model which describes the underlying dynamics, it may be that the use of a data-driven

model compared to the use of a �rst-principles model would not cause the inputs computed by an

LEMPC with a data-driven model to be su�ciently di�erent from those which would be computed

with a �rst-principles model even in the face of a sensor measurement cyberattack. To demon-
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strate this, we develop an LEMPC that utilizes a data-driven model. To obtain a rough (and not

optimized) data-driven model for the purpose of this simulation, we focused on a state-space data-

driven modeling strategy to be able to perform a Taylor series approximation of the data-driven

model. Inspired by Brunton et al. (2016b), we suggested 78 potential terms for the model (which

are listed in Tables 2-3) and performed a regression to determine the coe�cients of all of these

terms in these tables. The resulting data-driven model was a sum of all of the terms multiplied

by their respective coe�cients. Ipopt with ADOL-C was used to perform the regression with a

data set developed in MATLAB by simulating the process from an initial condition equivalent to

(CAs kmol/m3, Ts + 8 K) under randomly generated inputs from the MATLAB randn function,

seeded with the rng function with an argument of 15, and with means of 0, standard deviations of

1 kmol/m3 and 105 kJ/h, and bounds of magnitudes 3.5 kmol/m3 and 5 × 105 kJ/h (in deviation

variable form for the inputs) for CA0 and Q respectively, and simulated for 0.1 h over which the

inputs were changed at every 10 integration steps of length 10−4 h, and with the initial inputs

of 3.5 kmol/m3 and 1 kJ/h in deviation variable form. The regression was unconstrained besides

lower and upper bounds on the decision variables of −109 and 109 respectively (initial guesses of

all decision variables were 0), and the objective function was the sum of the squares of the errors in

the predictions of all states (with those for concentration weighted by a constant of 100 and those

for temperature weighted by a constant of 1). The steady-state inputs for the empirical model

for maintaining the closed-loop state at the operating steady-state noted above are 4.0 kmol/m3

and 102.1 kJ/h. The stability region selected for the original system continued to be selected for

the empirical model under Sontag's control law developed for the empirical system. Though Ipopt

returned a solution in this case, no attempt was made to make this model-building strategy robust

to noise or to enhance predictive accuracy. Though noise can be present in the process and still

be handled with the proposed method as demonstrated theoretically in Section 3.2.3, noise also

can impact the data-driven model �delity (e.g., the value of Merr,i,q). Because the resulting model

provided a su�cient approximation of the actual process dynamics for a sampling period in the ab-

sence of noise and therefore serves to adequately demonstrate the concept that an LEMPC using a

su�ciently accurate model developed from data may compute similar inputs under a certain sensor
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measurement cyberattack as an LEMPC using a �rst-principles model would, it was decided not to

explore enhancing the data-driven modeling strategy to make it robust to noise in the data from

which it is identi�ed or to consider noise in the data that could lead to the need for a more robust

identi�cation strategy for this example. The resulting data-driven model can be poor at predicting

the value of the state under an input for more than a sampling period; therefore, the LEMPC

using this data-driven model will employ a prediction horizon on 1. For a single sampling period,

the predictions from this model over a sampling period were evaluated in open-loop for a number

of di�erent points in state-space (speci�cally, for 8536 combinations of CA, T , CA0, and Q in the

stability region in state-space, obtained by taking the combinations that result from discretizing

CA0 between 0.5 and 7.5 kmol/m3 in increments of 1 kmol/m3, Q between −5 × 105 and 5 × 105

kJ/h in increments of 105 kJ/h, CA from 0 to 4 kmol/m3 in increments of 0.1 kmol/m3, and T

between 250 and 500 K in increments of 10 K, where the initial conditions were in the stability

region). The maximum average integral square error (scaled by 104) between the predictions using

the actual process dynamics and the empirical process dynamics (both integrated using the explicit

Euler numerical method with an integration step of 10−4 h from each of the CA−T combinations in

the discretization) among the points tested was 4.3014. For the case that generated this maximum

average integral square error (using the initial condition with CA = 1.4 kmol/m3 and T = 480 K,

under the inputs CA0 = 7.5 kmol/m3 and Q = 5 × 105 kJ/h), the trajectories of the actual and

empirical models over a sampling period are shown in Fig. 5; even with the error in the model for

this case, the general trend of the state trajectories with both models appears to be in a similar

direction.

To explore the concept in this work of using a Taylor series approximation of a data-driven

model, we used three terms in the Taylor series expansion. Whereas the terms in the Taylor series

were derived analytically in Eqs. 142-143, with the large number of terms in the data-driven model

(78 terms), it was deemed preferable to estimate the derivatives using centered �nite di�erences

with the o�set in each variable as it is increased or decreased set to 10−5. When three terms are

included in the Taylor series expansion as in Eqs. 142-143, the largest value of the average integral

mean-square error (scaled by 104) between the empirical model's dynamics integrated using Explicit
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Figure 5: Comparison of state predictions under the data-driven and actual process models integrated using Explicit
Euler with an integration step of 10−4 h from the initial condition with CA = 1.4 kmol/m3 and T = 480 K, under
the inputs CA0 = 7.5 kmol/m3 and Q = 5× 105 kJ/h.

Euler with an integration step of 10−4 h and that of the Taylor series for the empirical model was

1.99 (using the same discretization with 8536 CA − T combinations as mentioned above). This

corresponds to the o�set over a sampling period depicted in Fig. 6 and was initialized at CA = 1.2

kmol/m3 and T = 490 K, under the inputs CA0 = 0.5 kmol/m3 and Q = −5× 105 kJ/h.

The EMPC formulation was modi�ed for comparing the results of an EMPC using the explicit

Euler numerical integration method and using the Taylor series version of the data-driven model.

Speci�cally, in Eq. 140, the economics-based objective function is based on an understanding of the

process dynamics and in particular on the knowledge of the reaction rate of the desired product.

A challenge is, however, that the model from Tables 2-3 may not allow the reaction rate law to

be clearly understood. Therefore, to demonstrate the use of the data-driven model in the EMPC,

we will change the stage cost to the following tracking stage cost to avoid the need to assess the

reaction rate law:

100x2
1 + x2

2 + u2
1 + 10−10u2

2 (144)

With slight abuse of notation, u1 and u2 in Eq. 144 represent the inputs in deviation form from the

steady-state of the model being used in the EMPC (i.e., either the dynamic model of Eqs. 138-139

or the data-driven model). The constraints were also changed to eliminate those with the form in

Eq. 26f and to only enforce that with the form in Eq. 26g at the beginning of a sampling period.
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Figure 6: Comparison of state predictions under the data-driven model integrated using Explicit Euler (�Euler�) with
an integration step of 10−4 h from the initial condition with CA = 1.2 kmol/m3 and T = 490 K, under the inputs
CA0 = 0.5 kmol/m3 and Q = −5 × 105 kJ/h, against the state predictions from the Taylor series approximation of
the data-driven model including three terms (�Taylor�) and under the same inputs, initialized from the same state.

Simulations using the EMPC's based on the objective function in Eq. 144 were subjected to a

cyberattack where the sensor measurement provided to the controller was [C̄A T̄ ] = [0.1 kmol/m3

-5 K] despite that the actual state was xinit, and the inputs from the two di�erent EMPC's were

computed using Ipopt and ADOL-C for a sampling period. The state trajectories under the inputs

computed in both cases over the following sampling period are shown in Fig. 7. Even with the

di�erent process models and numerical integration techniques used in the two controllers, the inputs

computed in both cases are very similar (i.e., CA0 = 3.807 kmol/m3 and Q = 1.3759 × 105 kJ/h

for the explicit Euler numerical integration of Eqs. 138-139, whereas CA0 = 3.809 kmol/m3 and

Q = 1.3814× 105 kJ/h using the Taylor series form of the data-driven model). This indicates that

the cyberattacks caused both LEMPC's to compute similar inputs and therefore to cause the state

trajectories in the following sampling period to be relatively similar. If the control laws (e.g., models

or numerical integration accuracy) were di�erent enough to �nd di�erent local optima for the same

state measurement, then potentially the same cyberattack could impact both controllers di�erently.

However, these results indicate that an attacker wishing to provide false state measurements to a

process may not need to know all of the details of how the code is written (e.g., whether a �rst-

principles or a data-driven model is used, and the method by which the numerical model solution

is determined) to plan attacks on the control system.
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Figure 7: State trajectories over a sampling period of the system of Eqs. 138-139 under the inputs computed by
EMPC's with the stage cost of Eq. 144 and using the explicit Euler numerical integration method for the model of
Eqs. 138-139 with an integration step of 10−4 h (�Euler�) and the Taylor series form of the data-driven model solution
(�Taylor�) initialized from xinit when the controllers were given a false state measurement [C̄A T̄ ] = [0.1 kmol/m3 -5
K].

5. Conclusions

This work considers the fact that despite the desire to be able to verify, at run-time, that

an LEMPC maintains safe operation even in the presence of changing dynamics, changes in the

process model may violate a notion of cyberattack �discoverability� and thus could be di�cult

to distinguish from attacks. As a result, detection mechanisms from Oyama and Durand (2020)

developed for guaranteeing that the closed-loop state under an LEMPC is maintained within a

characterizable region of operation for de�ned time periods after attacks in the absence of changes

in the process dynamics may no longer be guaranteed to do so in the presence of dynamics changes

as well. Modi�ed detection strategies with two steps of detection were developed and conditions

under which the closed-loop state remains within a characterizable region of operation for a de�ned

time period after either undetected attacks or model changes occur were characterized. However,

a challenge with the presented approaches, which we consider a step toward run-time veri�cation

of safety with cybersecurity considered as a part of this, is that they may be di�cult to utilize

practically. Developing techniques for automatically obtaining control law parameters that meet

the requirements remains an open direction.
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Coe�cient Number Coe�cient Value Term

1 4.9996 CA0
2 −71.4819 CA

3 1873.4916 e

−13000
RgT (CA)2

4 −1164.1370 e

−16000
RgT (CA)2

5 −6571.2291 e

−19000
RgT (CA)2

6 −6171.4487 e

−23000
RgT (CA)2

7 −1053.5566 e

−26000
RgT (CA)2

8 −146.256 e

−29000
RgT (CA)2

9 713.2755 e

−33000
RgT (CA)2

10 614.1902 e

−36000
RgT (CA)2

11 428.4638 e

−39000
RgT (CA)2

12 265.2503 e

−43000
RgT (CA)2

13 155.5268 e

−46000
RgT (CA)2

14 94.0699 e

−49000
RgT (CA)2

15 44.8221 e

−53000
RgT (CA)2

16 24.6876 e

−56000
RgT (CA)2

17 13.1956 e

−59000
RgT (CA)2

18 5.7048 e

−63000
RgT (CA)2

19 2.9842 e

−66000
RgT (CA)2

20 1.5408 e

−69000
RgT (CA)2

21 11237.9225 e

−13000
RgT CA

22 −17294.489 e

−16000
RgT CA

23 −7849.0201 e

−19000
RgT CA

24 1597.6678 e

−23000
RgT CA

25 2547.4864 e

−26000
RgT CA

26 2854.5928 e

−29000
RgT CA

27 1845.8469 e

−33000
RgT CA

28 1134.8829 e

−36000
RgT CA

29 696.6413 e

−39000
RgT CA

30 337.1544 e

−43000
RgT CA

31 188.4947 e

−46000
RgT CA

32 103.4909 e

−49000
RgT CA

33 46.5209 e

−53000
RgT CA

34 24.4744 e

−56000
RgT CA

35 12.8937 e

−59000
RgT CA

36 5.3838 e

−63000
RgT CA

37 2.7827 e

−66000
RgT CA

38 1.4225 e

−69000
RgT CA

Table 2: Coe�cients and terms determined for the data-driven model for the terms on the right-hand side of ˙̄CA

(i.e., ˙̄CA equals the sum of all of the terms in this table multiplied by their respective coe�cients).
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Coe�cient Number Coe�cient Value Term

39 −223.992 1
40 3275.1834 CA
41 0.0043 Q

42 −152969.9125 e

−13000
RgT (CA)2

43 205377.9155 e

−16000
RgT (CA)2

44 295222.1403 e

−19000
RgT (CA)2

45 234061.6455 e

−23000
RgT (CA)2

46 162756.8662 e

−26000
RgT (CA)2

47 103695.0183 e

−29000
RgT (CA)2

48 52141.5254 e

−33000
RgT (CA)2

49 29747.4961 e

−36000
RgT (CA)2

50 16492.8407 e

−39000
RgT (CA)2

51 7255.0603 e

−43000
RgT (CA)2

52 3838.9721 e

−46000
RgT (CA)2

53 2002.212 e

−49000
RgT (CA)2

54 824.9108 e

−53000
RgT (CA)2

55 419.2063 e

−56000
RgT (CA)2

56 211.1986 e

−59000
RgT (CA)2

57 83.6753 e

−63000
RgT (CA)2

58 41.4646 e

−66000
RgT (CA)2

59 20.4283 e

−69000
RgT (CA)2

60 −319541.5717 e

−13000
RgT CA

61 255551.8217 e

−16000
RgT CA

62 360356.6269 e

−19000
RgT CA

63 270756.4013 e

−23000
RgT CA

64 182069.3959 e

−26000
RgT CA

65 112987.0472 e

−29000
RgT CA

66 55245.1489 e

−33000
RgT CA

67 31012.5856 e

−36000
RgT CA

68 16951.9104 e

−39000
RgT CA

69 7344.6616 e

−43000
RgT CA

70 3847.5611 e

−46000
RgT CA

71 1989.7173 e

−49000
RgT CA

72 811.7477 e

−53000
RgT CA

73 409.9647 e

−56000
RgT CA

74 205.36 e

−59000
RgT CA

75 80.8220 e

−63000
RgT CA

76 39.8696 e

−66000
RgT CA

77 19.5618 e

−69000
RgT CA

78 −1.1485 T

Table 3: Coe�cients and terms determined for the data-driven model for the terms on the right-hand side of ˙̄T (i.e.,
˙̄T equals the sum of all of the terms in this table multiplied by their respective coe�cients).
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