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Abstract

Safety-critical processes are becoming increasingly automated and connected. While automation
can increase efficiency, it brings new challenges associated with guaranteeing safety in the presence
of uncertainty especially in the presence of control system cyberattacks. One of the challenges for
developing control strategies with guaranteed safety and cybersecurity properties under sufficient
conditions is the development of appropriate detection strategies that work with control laws to
prevent undetected attacks that have immediate closed-loop stability consequences. Achieving this,
in the presence of uncertainty brought about by plant/model mismatch and process dynamics that
can change with time, requires a fundamental understanding of the characteristics of attacks that can
be detected with reasonable detection mechanisms and characterizing and verifying system safety
properties when cyberattacks and changing system behavior cannot be distinguished. Motivated
by this, this paper discusses three cyberattack detection strategies for nonlinear processes whose
dynamics change with time when these processes are operated under an optimization-based control
strategy known as Lyapunov-based economic model predictive control (LEMPC) until the closed-
loop state either leaves a characterizable region of state-space or an attack detection threshold
related to state estimates or state predictions is exceeded. Following this, the closed-loop state is
maintained within a larger region of operation under an updated cyberattack detection strategy for
a characterizable time period. A Taylor series-based model is used for making state predictions to

allow theoretical guarantees to be explicitly tied to the numerical approximation of the model used
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within the LEMPC. A process example illustrates the Taylor series-based model concept.

1. Introduction

With the move toward smart manufacturing Davis et al. (2015) and Industry 4.0 Lezzi et al.
(2018), there are increasing efforts to update production facilities to include greater integration
of physical processes and sensor measurements with computer and communication networks to
implement and update current automated systems with more advanced capabilities. Advances in
automation of various data-gathering/analysis and control tasks has also, however, raised concerns
regarding cyberattacks on industrial systems Ren et al., including control systems Tuptuk and
Hailes (2018).

The potential for cybersecurity vulnerabilities in control systems motivates the design of method-
ologies that are capable of detecting an attack in order to maintain safe operating conditions. Re-
search efforts have been made to identify game-theoretic frameworks for assessing security risks
associated with cyberphysical systems (CPS’s) Amin et al. (2013). Additionally, other perspectives
of vulnerability identification and assessment (e.g., Ani et al. (2017)), and detection mechanisms
and countermeasures to deal with cyber threats (e.g., Hoehn and Zhang (2016)) have been topics
of interest. Detection of attacks on a water distribution network was addressed in Amin et al.
(2012) where delay-differential observers, designed based on an analytically approximate model of
the process, were used. Stealthy attacks are considered particularly problematic and are defined
as attacks which are not detected by a given detection mechanism; Teixeira et al. (2012) develops
methods for changing a system’s dynamics to allow attacks to be detected.

Many works providing a means of combating cyberattacks on industrial control systems have
focused on linear systems. For example, Pasqualetti et al. (2013) focuses for a class of linear
systems on mathematically characterizing attack detectability and identifiability and the properties
of attack monitors. Other examples include handling of delay-based attacks on control signals using
a model-based maximum likelihood technique to affirm or refute the likely presence of an attack on
a linear system under an optimization-based controller as discussed in Barboni et al. (2018), and

model-based attack detector design and detectability analysis for stochastic actuator and sensor



attacks on a linear system with stochastic disturbances in Li et al. (2015).

Because chemical processes are often described by nonlinear dynamic models, recent efforts in
cybersecurity for chemical process systems have focused on methods for detection and handling of
attacks on nonlinear systems. These have included cyberattack mitigation techniques, discussed in
Wu et al. (2018) which integrate a neural network (NN)-based detection method and a Lyapunov-
based model predictive controller for a certain class of nonlinear systems and Durand (2018), in
which several strategies such as randomization of control law selection are analyzed to clarify their
inability to prevent cyberattacks on control systems from causing problems, as well as Durand and
Wegener (2020); Oyama and Durand (2020), in which strategies for combining detection and model
predictive control (MPC Qin and Badgwell (2003); Ellis et al. (2014a); Rawlings et al. (2012)) for
nonlinear systems are devised that ensure that the closed-loop state does not leave a safe operating
region before a certain time period passes after an undetected attack. Another recent work which
has integrated detection and control for nonlinear systems in the presence of cyberattacks is Liu et al.
(2016), which focuses on a class of discrete-time nonlinear systems with random sensor measurement
attacks and develops a filter with a bound on error covariance over time.

Cyberattacks pose a challenge for ensuring safety of an automated system. Safety assurance
for autonomous systems has received a good deal of attention, with techniques for guaranteeing
safety ranging from barrier functions, as described, for example, in Xu et al. (2015), to reachability
analysis, as described in works such as Xiang and Johnson (2018). Conditions for safety in the
presence of changing dynamics have been developed in Durand (2020b). Our recent work Durand
(2020a); Oyama et al. has begun an exploration into the topic of how to handle cyberattacks when
changes in the dynamics may also occur. As demonstrated in Oyama et al., there may be situations
in which a cyberattack detection mechanism could flag dynamics changes as attacks because the
dynamics change could lead data to no longer appear “expected.” A two-tier strategy for cyberattack
detection and handling was proposed in Oyama et al. in which a cyberattack detection strategy
could be tuned to recognize attacks before a change in the dynamics, but then not definitively
call detection of abnormality via this first strategy an attack or a model change. Subsequently,

model re-identification could occur as long as a secondary detection strategy that should only



detect attacks if the dynamics have not changed significantly does not detect an abnormality.
However, the simulation-based study of this concept in Oyama et al. indicated that this method
may be difficult to tune in a way that does not leave vulnerabilities without theoretical analysis
of whether the resulting tuning is guaranteed to eliminate such vulnerabilities. The first step in
moving toward trying to address this issue is to develop theoretical conditions. This work addresses
this by providing theoretical conditions for preventing a model change or an undetected attack from
driving the closed-loop state out of a safe operating region before a certain amount of time passes
after the attack or model change using a two-tier detection strategy, focused on the time period
before model re-identification. Furthermore, while Oyama et al. only provides simulation studies
for one integrated detection and control strategy, this work discusses how all three detection and
control strategies from Oyama and Durand (2020) could be updated to account for attacks as well
as changes in dynamics.

Motivated by this, cyberattack detection strategies from Oyama and Durand (2020) are ex-
tended, in this work, to examine their capabilities for detecting cyberattacks and allowing the
attacks to be handled with safety guarantees for some period of time after the attack when the pro-
cess dynamics can change over time. These strategies are examined when the controller utilized is
an LEMPC that incorporates a truncated Taylor series version of the solution to an empirical model
to allow connections between numerical error in the controller and one of the detection strategies to
be explicitly correlated with the guarantees that are made. The detection strategies are based on
triggering mechanisms when the state of the system breaches certain thresholds implemented based
on the model developed from empirical data. However, as changes in the underlying process dy-
namics are considered, we elucidate the challenges encountered in differentiating cyberattacks from
a change in the process dynamics, and our main contribution is to provide detection and control
techniques with sufficient conditions under which falsified state measurements cannot cause safety
problems within a certain timeframe even when model changes and attacks may both occur. This
paper is an extension of Rangan and Durand (2020); Durand (2020a). It incorporates the Taylor
series analysis in Rangan and Durand (2020) into a cyberattack analysis framework with changing

dynamics, and updates the model change framework in Durand (2020a) to include analysis of how



to handle cyberattacks simultaneously.

2. Preliminaries

2.1. Notation

The vector Euclidean norm is denoted by | - |. A class K function o : [0,a) — [0,00) has
a(0) = 0 and is strictly increasing. a7 denotes the transpose of a vector z. The notation “ /7
signifies set subtraction such that x € A/B:={z € R" :x € A,z ¢ B}. A level set of a positive
definite function V' is denoted by Q, := {z € R" : V(z) < p}. R, signifies the set of non-negative
real numbers. It is assumed that a measurement of the process state is available to a controller at
synchronous time instants separated by sampling periods of length A (i.e., a state measurement is
available to a controller at every t; :== kA, k=0,1,...).

A function f, : I — R, where I C R is an open set, is said to be real analytic on I if, for any

c € I there is a neighborhood J of ¢ in which the function can be expressed as a convergent Taylor

series Krantz and Parks (2002):

_ _ > /- (t—c)"

s(t) = fs N teri Vied

ZEFECEDY (Tl ()
where fI'y...(c) = dé;{? (c¢) and t € R. In other words, a function is said to be analytic if in the

neighborhood of some point ¢ within the domain J the Taylor series converges to the function fi.
A function g, : V — R, where V C R’ is an open set, is said to be real analytic on C if, for any
a € V the function g,, may be represented by a convergent power series in some neighborhood C of
a Krantz and Parks (2002):
Gm(y) = Z Buly—a)', VyecC (2)
nEA(b)
where = (p1, pi2, - - ., ttp) € A(D) is a multi-index (i.e., a b-tuple of non-negative integers) such that

the following holds with y = (y1,ya, ..., %) € R

= gy + o+ (3)
Y =yltyyt gt (4)
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diag(-) denotes a diagonal matrix with the arguments of this function as the diagonal elements.
2.2. Class of Systems

This work considers nonlinear process systems of the form:
Tai = [i(Tai(t), u(t), wi(t)) (8)

where f; is a locally Lipschitz nonlinear vector function of its arguments, z,; € X C R" is the
state vector, u € U C R™ is the input vector with u = [uy,...,u,]7, and w; € W; C R* is the
disturbance vector (W; := {w; € R* : |w;| <6, 6 > 0}, for i =1,2,...). The i-th model is used
for t € [ts;,tsiv1), where o ;(tsiv1) = Tait1(tsiv1) and ts1 = to. It is considered that the origin is
the equilibrium of the system of Eq. 8 (i.e., fi(0,0,0) = 0 and fi(%4s,uis,0) = 0 for i > 1 such
that the steady-state of the models after they update when w; = 01is 0 at z,; = X4, U = U;s).
When w; = 0, the system of Eq. 8 is termed the “nominal” system. Measurements are assumed
to be continuously available but provided to a controller at every ¢t = kA, k= 0,1,.... It is not
required for t,;, ¢ = 1,2, ..., to be an integer multiple of ¢;. The deviation variable z,; is defined
as Tg; — Tqyis = Tayi, Ui = U — Uj s, and f; is f; rewritten to have its origin at Z,; = 0 and 4; = 0
with w; = 0. U; is the set U in deviation variable form from w;,, and X; is X in deviation variable
form from z; .

It is assumed that the system of Eq. 8 is stabilizable in the sense that there exists an infinitely
differentiable positive definite Lyapunov function V; : R™ — R, as well as class K functions «;;(-),
j=1,...,4, and a controller h;(Za;) = [hi1(Zas) ... him(Ta:)]" that asymptotically stabilizes the

origin of the nominal closed-loop system of Eq. 8 such that:

a1i(|Zail) < Vi(Zai) < a2i(|Tail) (9a)
a‘/z jai 7= _ _
%fz(%z, hz’(l‘a,z'),O) < —043,z'(|$a,z'|) (9b)



a‘/z 7ai _
‘% < aus(|7as) (9¢)
hi(Zas) € U (9d)

for all z,; € D; € R" and @ = 1,2,..., where D; is an open neighborhood of the origin of fi.
1,, C D; denotes a level set of V; and is referred to as the stability region of the system of Eq. 8
under the control action h;(Z,;). It is assumed to be chosen such that it is contained within X;.
When u(t) is fixed /constant for the nominal (w;(t) = 0) system of Eq. 8, the resulting function is
considered to be analytic in Z,; on D; and to have a solution Z,;(t) that is analytic in .

From the Lipschitz continuity of f; and the boundedness of Z;, %;, and w;, there exist positive

constants M;, Ly, Ly, L

T,

and L, ; such that:

| fil @i, @iy wi) — fil @, 0, 0)] < Lyl @i — T + Lugifwi] (10a)
ovi(z;) - ovi(x) =, ., L L
) ) — P e, 0)| < L E) L + L] (100

A fi,lf'; S QPH ﬂi,ﬂ € Ui7 and w; € VVz
Finally, the Lyapunov-based controller is assumed to be locally Lipschitz continuous such that

the following inequalities hold:
|hi () — i ()] < Ll @i — % (11)

for a positive constant Ly, for all z;,2; € Q,,, Lp; > 0and ¢ = 1,2,..., with j =1,2,...,m. We

assume that there exists M; 5, > 0 such that for any u € U; and T € Q,;:
|fiN1+1('f> u, wz)l < Mi7N1 (12)

for all Ny = 0,1,2,... and that M, > 0 bounds | f;(Z, @, w;)| for all |w;| < 0, where fr = e

Todtn

2.3. Empirical Model

This work considers that the model of Eq. 8 is not available, and instead an empirical model

with the following form may be available:

T,g() = Frrqg(@,4(1), ul?)) (13)



where fyr, is a locally Lipschitz (and analytic in x, for fixed u with a solution xy,(¢) assumed
to be analytic in t) nonlinear vector function in x,, € R"™ and in the input v € R™. While
fnre1(0,0) = 0, the steady-state of the updated models is at Tpq = Thgs = 0 and u = u,, so that
InLg(Thgsstgs) = 0 for ¢ > 1. The index ¢ = 1,2,.. ., reflects the index for the empirical model
used at a given time, which is not necessarily the same as 7 in Eq. 8 because the empirical model
may not update at the same time as the process dynamics change. Eq. 13 is updated at the time
tsnLg and Ty o(ts NLg) = Tpg+1(tsvrq). The deviation variable 7y, is defined as xp; — Tp 46 = Tb.g,

Ug = U — Uqs, and fNLﬂ is fnr,q rewritten to have its origin at 7, , = 0, 4, = 0, giving the following:

Tpq(t) = fLq(Tng(t), U(t)) (14)

U, is the set U in deviation variable form from v, s, and X is the set X in deviation variable form
from z;,, .. We consider that there exist locally Lipschitz explicit stabilizing controllers hyy o(Zs4)

that can render the origin of the empirical models in Eq. 13 asymptotically stable in the sense that:

OA‘l,q(ﬁ’b,qD < Vq@b,q) < d2,q(‘jb,q|> (153)
Vo (Zp.) - o
—5( ba) INLa(Zogs Aneg(Trg)) < —aiq(|Th4]) (15b)
Tb,q
oV.(z
k) < ) (150)
7q
hNL,q(jb,q) S Uq (15d)

for all Z,, € Dyp4, where Dyp, is a neighborhood of the origin of fyz, contained in X. The
function Vq : R®™ — R, is an infinitely differentiable Lyapunov function and is assumed to be the
same as V; for the underlying dynamics at the time VQ is used (i.e., the V; and Vq are assumed to
be the same at all times). The functions d;q,g =1,2,3,4, are class K functions with ¢ = 1,2, .. ..

The set Q; C Dypq is defined to be the stability region of the system of Eq. 13 under hyg,,
and Q;

psaseq 18 @ superset of {25 contained in both Dyy, 4 and X. Lipschitz continuity of fyr , and

sufficient smoothness of Vq imply that there exist My, > 0 and Ly, > 0 such that:

| [npg(z,w)] < My, (16a)



RACHIE OWVy(w2) &
g(xxl) Inpglz,u) — # INLq(T2,u)| < Lp g1 — 2 (16b)

Vo, x1,22 € Qp, u € Ug,and ¢ =1,2,. ...

We assume that x4, and z,;s do not change over time and that z,,s = s even after
the empirical and process models change, though the steady-state inputs required to maintain the
closed-loop state at these conditions change as the models update. It is assumed that for any i-th
process model which describes that dynamics when the ¢g-th empirical model is used, €2; €.

Psafe,q

We consider that:

‘f]@L,q(fibm ﬂq) - f]r\LfL,q(fZ,qa 'EL;N S Lx,n,qﬁb,q - jfg,q| (173)
Woling) 7 - Val@y) o o L -
%f}q\lﬂl,q(:pb,q? uq) - @——qu%L,q(xé,qv ui]) < L;,n,q|xb7q - x;),q| + L;L,n,q|uq - ui]| (17b)

wb,q (L’b’q
for all Ty 4, 7, , € Qp, and 4y, 4}, € Uy, where Ly g, L), ;5 Lung, and L, , , are positive constants.
We consider that hyp 4 satisfies:
|hvrq(@) = hnpg(2')] < Lynilz — 2] (18)
for all x,2" € Q. with Ly np > 0.
2.4. Observability assumption
We assume that there are M sets of measurements y, € R%, p = 1,..., M, available continu-
ously, as follows:
Yp(t) = kp,i(Zai(t)) + vp(t) (19)

where y, represents the measurement vector in deviation variable form, k,; is a vector-valued
function that enables y, to be written in deviation form from the i-th steady-state, and v, represents
bounded measurement noise (i.e., v, € V, := {v, € R* : |v,| < 0,,, 0,, > 0}). We consider
that a deterministic observer exists for each of the M sets of measurements when the g-th empirical

model is used with the form:
Zap = Fp,q(%qv Zq,p; yp,q) (20)

where 2, , is the state estimate from the p-th observer, p =1,..., M, I}, , is a vector-valued function,

and €,, > 0. When a controller hyy 4(2,,) with Eq. 20 is used to control the closed-loop system of



Eq. 8 and no change in the underlying dynamics occurs, we make the following assumptions which

are similar to Ellis et al. (2014b); Lao et al. (2015), where Me,,;, > 0 is defined by:
|fi(x7ai7 0) - fNL,q(x7ﬂq)| S Merr,i,q (21)

for all x € Q.. and all u; = 4, + uys — u; s in the input bounds.

0, 0

ps Such that for each pair of

Assumption 1. There exist positive constants Mg, ; .,

{MBTT,i,q7 9, 01}717} UJZLLh Merr,i’q < M*

— err,i,q’

0 <0, and 0,, < 0; ,, there exist 0 < P14 < Pg, Emopg > 0
and €7,, > 0, €, > 0 such that if z(0) € Q5,5 124p(0) = Z05(0)] < emopg and €pq € (ezpq,e*qu)7
the trajectories of the closed-loop system are bounded in §2; , ¥V t > 0 before a change in the process

dynamics.

*

»00 there exist typ,(epq) such that

Assumption 2. There erxists e;, > 0 such that for each ey, > e

|24 (t) = Tai ()] < €pgs V t > typg(€pq) before a change in the process dynamics.

Remark 1. We assume that multiple observers exist that are capable of making state estimates with

a bound on their accuracy.
2.5. Taylor Series Error Bounds

There exists an upper bound on the error when truncating the Taylor series representation of

the function f;(¢) in Eq. 8 to N; + 1 terms that is captured in the following proposition.

Proposition 1. Stewart (2003) The error E;(t) from truncating the Taylor series representation

of fi(t) in Eq. 1 to Ny +1 terms is given by:

N1
a '3 n t—c)"
E() = 1)~ 1)) = 3 a0 = (22)
n=1 ’
If |fSNje+”1U| < MNLS for |t —c| < d, then for |t —c| < d:
MNl t— C|N1+1
EZ' ) < 2 23
B < (23)

10



2.6. Lyapunov-based Economic Model Predictive Control with Empirical Models

In this work, we use the optimization-based control design known as LEMPC as described in
Heidarinejad et al. (2012), to control the process described in Eq. 8. This formulation can be
developed using the empirical model of Eq. 13 Alanqar et al. (2015b,a); Giuliani and Durand (2018)

and can be represented in the following form:

iy / L), ()] (242)

St oy = Inna(@ng(t), dg(t)) (24b)

Tog (1) = (t) (24c)

Tog(1) € Xy, ¥Vt € [to trsn) (24d)

y(t) € Uy, VYt € [t tosn) (24¢)

Vo(@og(t)) < flgr V1t E [titin) if 2(ty) € Qp, (24f)
W) 7o i), i) < oD (o at), b (a00))

if z(tr) & Q. (24g)

where L.(-,-) represents a general scalar-valued stage cost of the LEMPC that is minimized in
Eq. 24. w, is a piecewise-constant input trajectory with period A, which is indicated by the notation
uy(t) € S(A). The prediction horizon is denoted by N. Eq. 24b represents the nominal process
model, with predicted state Zj, for the ¢-th model. z(t;) in Eq. 24c sets the predicted state of
the empirical model at ¢, equal to the measured state. Eqs. 24e and 24d are the input and state
constraints, respectively. The set 2 is selected as a subset of {1, that causes the closed-loop state
to be maintained within €2, over time when the system of Eq. 8 is operated under the controller of
Eq. 24. The constraints of the LEMPC guarantee recursive feasibility. We assume that there exists

M, k.n, > 0 such that for all u,(t;) € U, and z(tx) € Q;

safe,q”

Ll (@(te), ()] < My, (25)

Z "z
for all Ny =0,1,2,..., where f{ , = —=.
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3. Run-Time Cyberattack Resilience Verification

Theoretical guarantees regarding the ability to maintain the closed-loop state in a known op-
erating region for a certain amount of time after a cyberattack under certain detection strategies
have been previously developed for systems of the form in Eq. 8 when the underlying dynamics do
not change over time in Oyama and Durand (2020). New challenges arise in using these previously
proposed cyberattack detection methods, to be further discussed below, when the process dynamics
can change over time. This section will focus on developing cyberattack detection strategies that
can guarantee that when coupled with certain control strategies, the closed-loop state does not leave
a predefined region of operation for a defined amount of time after an undetected attack even when

the process dynamics change with time.
3.1. Run-time verification in the absence of attacks

In Durand (2020b) and Durand (2020a), a method for guaranteeing that the closed-loop state of
the system of Eq. 8 under the LEMPC of Eq. 24 does not exit a known operating region for a defined
amount of time after the underlying process dynamics change, but in the absence of an attack, was
developed. In this strategy, which we consider to be an (admittedly conservative and potentially
difficult to practically impose, but nonetheless theoretically valuable) method for verifying safety
at run-time, a region €2, . (a superset of ; ) which the closed-loop state should not leave after
a change in the underlying dynamics is defined, and €2, is defined such that the closed-loop state
should not leave €2, before the dynamics change. If the closed-loop state leaves €2 , this can signal a
change in the underlying dynamics. As a result, if the closed-loop state leaves Q; (a sampling time
at which this occurs is denoted by t4,), hnrq is used as the controller for ease of use until a model
re-identification can be performed and used to update the model incorporated within the LEMPC
at a sampling time t;p,. Once the model is re-identified, the parameters/functions utilized in the
design of the LEMPC and the Lyapunov-based controller are updated (specifically, the Lyapunov
function VZ]H, the Lyapunov-based controller iy 441, and the stability region €2 ., are used for

developing the controller for the process under the updated process model). A worst-case bound

is placed on the number of sampling periods ¢, , available between ¢4, and t;p, before model re-
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identification must be performed and the LEMPC and Lyapunov-based controller updated before
the closed-loop state will leave ;.. .

Combining the above strategy for operating an LEMPC with safety guarantees in the presence
of changing dynamic models with guarantees on cyberattack detection from Oyama and Durand
(2020) raises new issues that will be discussed and handled via updated implementation strategies

in the subsequent sections. Furthermore, in these sections, we will explore a modified version of the

LEMPC of Eq. 24 as follows:

L[ LGy (r), 57 (26a)
~ ~ N _ ~ (t _ t)n
s.t. jb,q(t) = fb,q@j) + ;fJ%L,q(xb,q(tj%uq(tj))n—!J

Vte[tj,tj+1)7j:k,...,k‘—i—N—l (26b)

ibyq(tk) = l‘(tk) (26C)

ibyq(t) € Xq, Vte [tkathrN) (26d)

ﬂq(t) € Uq, Vte {tk7tk+N> (266)

V(T g(t) < Pegy VT E [taythan),if Tng(te) € Q. (26f)

PO pe i), 1)) < P8 poy i) oo 6)
if Zyq(te) & Q.. (26g)

The formulation in Eq. 26, introduced in Rangan and Durand (2020), is similar to that in Eq. 24,
but it uses a different upper bound on ‘A/q in Eqs. 26f-26g, and it uses a truncated Taylor series
approximation of the solution of Eq. 13 to make the state predictions Z,, that appear in the
objective function and constraints. This formulation assumes that the model of Eq. 13 is known.
This allows the constraint of Eq. 26g to be written in terms of fy, explicitly, as in Eq. 24g. The
closeness of this formulation to that in Eq. 24 allows the results in this work to be applicable to the
LEMPC of Eq. 24 as well (i.e., if N1 = oo, they are the same). However, we select the formulation
in Eq. 26 in this work because it allows an explicit relationship to be developed essentially between
how a numerical method (in this case, a truncated Taylor series) impacts the guarantees to be

developed compared to noise and disturbances. This allows a clear relationship, in cyberattack
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detection strategies to be presented, to be developed between the impacts of noise, plant/model
mismatch, and numerical error in allowing the cyberattack-resilience guarantees to be developed.
For this formulation, as noted previously, we assume that Eqs. 8 and Eq. 14, for fixed inputs
in the input bounds, are analytic in the state and have a solution that is analytic in ¢ such that
the model of Eq. 14 throughout the prediction horizon of N sampling periods can be written as a
set of N equations with fixed values of the inputs. We further consider that A is sufficiently small
(to be denoted by A < A,;,) such that at any ¢; at which a model with a fixed input begins to
represent Eq. 14, there is a neighborhood of ¢; including ¢;41, where j = k,...,k+ N — 1, on which
the solution of that model can be represented as a convergent Taylor series. These assumptions

lead to the form of the approximate solution of Eq. 14 represented by Eq. 26b.
3.2. Run-Time Cybersecurity Verification with Changing Process Dynamics

In Oyama and Durand (2020), guarantees that closed-loop stability can be maintained after an
attack for at least some period of time were developed for nonlinear systems, of the form in Eq. 8, in
the scenario where the dynamics of the system do not change with time. These guarantees, however,
are based on the availability of detection strategies rooted in stability guarantees under Lyapunov-
based EMPC with a constraint in the form like that in Eq. 24g activated (i.e., that the time
derivative of the Lyapunov function decreases when the constraint is activated and the closed-loop
state is outside of a neighborhood of the origin; this strategy is referred to as Detection Strategy 1),
on state predictions being sufficiently accurate (Detection Strategy 2), or on state estimates being
sufficiently accurate (Detection Strategy 3). When the underlying dynamics change, it would not be
expected that state predictions and state estimates would necessarily continue to be accurate, and
in addition, it is not necessarily true that the Lyapunov function would decrease for an LEMPC with
a constraint of the form of Eq. 24g. Therefore, from the perspective of these detection strategies,
cyberattacks and changes in the underlying dynamics may be difficult to distinguish.

This section addresses this by presenting modified versions of Detection Strategies 2 and 3 from
Oyama and Durand (2020) designed to allow the closed-loop state to remain within €2, .. for
a characterizable amount of time after it is detected to have left €5 . This modification holds

even when the reason that the closed-loop state has left 2; cannot be definitively characterized
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as being the result of a cyberattack versus a change in the underlying process dynamics. We also
briefly discuss Detection Strategy 1 from Oyama and Durand (2020) for the case where changes
in the underlying dynamics cannot be differentiated from cyberattacks. The results from Oyama
and Durand (2020) were obtained without explicitly accounting for numerical error when solving
a process model as suggested in, for example, Eq. 26b, but can be extended to such a case. We
highlight that the theoretical results in the subsequent sections consider sufficiently small bounded

measurement noise and plant/model mismatch.

3.2.1. Detection Strategy 1: Randomized LEMPC Changes to Probe for Cyberattacks

This detection strategy in Oyama and Durand (2020) takes advantage of the closed-loop stability
properties of LEMPC to probe for cyberattacks. Specifically, when the constraint of the form of Eq.
24g is activated in the LEMPC under sufficient conditions, the Lyapunov function should decrease
over the subsequent sampling period as long as the state measurement at the beginning of the
sampling period is not within a neighborhood of the origin. Detection Strategy 1 takes advantage
of this by operating a process under an LEMPC designed based on the original (j = 1) steady-state
for the majority of the operation, but at random times develops alternative steady-states (i.e., j-th
steady-states with j > 1) with stability regions containing the state measurement at t;. At these
random times, it switches from using the j = 1 LEMPC (or 1-LEMPC) to using that LEMPC
designed around the new steady-state (i.e., the j-LEMPC, j > 1, has the process model, Lyapunov
function, and Lyapunov-based controller adjusted to be with respect to the j-th steady-state), but
with a constraint of the form of that in Eq. 24g activated regardless of the position of z(t;) within
the new stability region (i.e., a constraint similar to that in Eq. 24f is not activated). After a
sampling period, the j-LEMPC formulation is switched back to the 1-LEMPC formulation. In the
absence of a change in the process dynamics, the value of the Lyapunov function will decrease over
the sampling period following the activation of the j-LEMPC, so that a lack of decrease in the
Lyapunov function in the state measurement data could therefore signal a potential cyberattack on
the state measurements.

When the process dynamics may change, however, there become two possible reasons that the

value of the Lyapunov function may not decrease over the sampling period following the activation
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of the j-LEMPC: 1) the underlying dynamics of the process of Eq. 8 have changed (i.e., Eq. 14
is no longer a sufficiently accurate approximation of the actual process dynamics to enable the
J-LEMPC to decrease ‘ZI) or 2) a cyberattack on the sensor measurements has occurred. These two
cases might not be distinguishable using this detection mechanism alone (i.e., when the value of the
Lyapunov function fails to decrease over a sampling period following activation of the j-LEMPC,
this detection method alone might not reveal whether the reason is due to a cyberattack on the

sensor measurements or due to a change in the underlying process dynamics).

3.2.2. Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC

The second detection strategy from Oyama and Durand (2020) to be explored uses the difference
between state measurements and state predictions to flag cyberattacks on the process sensors.
Specifically, a threshold v, is selected a priori to upper bound the error between state predictions
at t; made from a measurement at t;_; and state measurements (denoted by z(t;)). Though
Oyama and Durand (2020) does not use the empirical models or the approximate Taylor series-
based solution of Eq. 24b, state predictions at ¢; made from the measurements at ¢;_;, in this
section, will be denoted by fbvq(tk]tk_l) to introduce notation that will be subsequently used when
the LEMPC of Eq. 26 is used and will capture the intent of the work in Oyama and Durand (2020).
If |Zp 4 (tk|te—1) — z(tr)| > v, at a sampling time, an attack is detected. If |Zp ,(txlte—1) — z(tr)] < vy
at a sampling time, the LEMPC of Eq. 24 is used to control the process for the subsequent
sampling period. If the parameters of the control law (e.g., A and p.,) are selected in a sufficiently
conservative fashion, then there is at least a sampling period after an undetected attack occurs
during which the closed-loop state does not leave €2, when the process dynamics do not change
over time.

In this strategy, when the process dynamics do not change over time, the value of v, is designed
to ensure that there is no way that disturbances (or plant/model mismatch caused by the use
of the empirical model) or noise could cause [Ty, (tx|tk—1) — z(tx)| to be greater than v,, making
the detection method capable of flagging attacks only. However, when the process dynamics are
allowed to change over time, there become two reasons that |z, (¢x|tr—1) — 2(tx)| could exceed vy

1) the dynamics of the process have changed such that Eq. 14 is no longer adequate for making
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accurate state predictions or 2) a cyberattack has occurred on the process sensors. It may not
be possible to differentiate between these two cases using this detection strategy as it depends on
state predictions. Furthermore, when the state measurement leaves €2, , it may not be possible to
know whether this has occurred due to an attack on the sensors or due to a change in the process
dynamics. This necessitates the need for an updated implementation strategy and value of v, for
guaranteeing that the closed-loop state remains within €, .. for a defined amount of time after
the closed-loop state leaves €2 or after |Zp o (t|ti—1) — z(tx)] > v, when it is not known whether
the cause of the mismatch between the state prediction and measurement arises from an attack or
a change in the dynamics.

To achieve this, we will utilize two stages of monitoring for cyberattacks and model changes.
The first stage will utilize a detection strategy based on an initial upper bound on [Ty, (¢x|tk—1) —
x(tx)|, denoted by v, This bound will be designed such that, if there were no model changes,
|Zp o (tk|ti—1) — x(tr)| > vsq would signify a cyberattack with certainty according to the method
in Oyama and Durand (2020). However, when model changes are allowed, it is uncertain whether
|Zp o (tk|ti—1) — x(tr)| > vs, signifies a cyberattack; therefore, we will develop a second bound
Vg (Vg > Usg) where, if [Ty, (tk|te—1) — z(tx)| < v, after a model change but no cyberattack
is detected via this updated detection mechanism, the closed-loop state should not leave €25 ..

within a sampling period after the attack occurs if it is not detected. Initially, the process is operated

within €2,

5q» and using the cyberattack detection mechanism based on v ,. Either a measurement

outside of €, or a measurement which causes |Zyq(t|ti—1) — z(ti)| > vsq triggers activation of
the second cyberattack detection method based on [Ty, (¢x|tk—1) — z(tx)| < v14. Because either of
those conditions which trigger the activation of the new cyberattack detection mechanism could
signify that the underlying process dynamics changed, a new model will be re-identified within ¢ ,
sampling periods after either of the detection conditions is triggered if no attack is detected within
ty,, sampling times after t;,. However, if an attack is undetected, an auxiliary detection mechanism
may be needed to prevent the attack from causing the closed-loop state to leave €2, .  after a

sampling period following the attack.

The implementation strategy just described for this detection method is as follows:
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1. At to, the i = 1 model (Eq. 8) describes the dynamics of the process. The ¢ = 1 empirical
model (Eq. 14) is used to design the LEMPC of Eq. 26. An index iy, is set to 0. An index ¢
is set to 0. Go to Step 2.

2. Check if z(t;) ¢ Q,,, but ¢ = 0. If so, set ( =1 and t44 = t;. Go to Step 3.

3. Check the value of egi = |Tp o (trlti—1) —x(tr)]. If ¢ = 0 and egip > vsy, set ¢ = 1 and tq, =t
and check if eq;r > vi4. If €qif > v14, consider that a cyberattack on the sensors is occurring
and initiate a backup strategy (e.g., redundant senors or an emergency shut-down mode). If
the = 1, go to Step 3a. Else, if ( =1, go to Step 3b, or if ( =0, go to Step 3c.

(a) If 2(t,) € Q,

Pq+1?

operate the process under the LEMPC of Eq. 24 with ¢ < ¢ + 1, set
ine =0 and ¢ = 0. Else, apply hnr g+1(2(t)) to the process. Go to Step 2. t; < ti1.

(b) If (tg41 — taq) < thg. gather on-line data to develop an improved process model as well
as updated functions Vq+1 and hyrgi1, and an updated stability region 2, ., for the
new empirical model, but do not yet update the LEMPC and control the process using
the prior LEMPC. Else, if (ty41 — taq) > thg, set in, = 1 and apply hnpg+1(x(te)). Go
to Step 2. tg ¢ tgi1.

(c) Operate the process under the LEMPC of Eq. 26 that was used at the prior sampling

time. Go to Step 2. tp < g1

Remark 2. We assume ts;11 and ts ;1o are separated by a sufficient length of time such that t;, >

tsire always occurs after the closed-loop state has entered € ., when there is no attack.

Remark 3. An alternative to the implementation strategy described (which holds also for Detection
Strategy 1) would be to design the original stability region so conservatively that the closed-loop
state will not exit that region under a model change but only in the case of an attack. This loses
the capability, however, to know if the model needs to be re-identified due to changing underlying

dynamics via the method focused on whether the closed-loop state leaves (5, .

3.2.2.1. Detection Strategy 2: Cyberattack-Mitigating State Feedback LEMPC: Stability and Feasi-
bility Analysis In this section, it will be demonstrated that in the presence of either a change in

the underlying dynamics or an undetected cyberattack, the implementation strategy for Detection
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Strategy 2 above maintains the closed-loop state within €, . for at least ¢, sampling periods
after a model change and at least one sampling period after an undetected cyberattack (providing
some time available for auxiliary detection mechanisms to attempt to detect an attack that bypasses
this detection strategy). This strategy achieves these goals in the presence of bounded process noise
and disturbances, and with the attack potentially impacting all state measurements. To develop
this proof, a number of propositions are presented. The first bounds the value of Vq at any point

in €2, and the second bounds the difference between the closed-loop state of the system of Eq. 8

and that of Eq. 14 over time.

Proposition 2. P. Mhaskar and Christofides (2013) Consider the Lyapunov function 17(1() There

exists a quadratic function fy,(-) such that:
V() < V(@) + frg(lz —2']) (27)

for all x,2" € Qp, .. . with

fva(s) = &4,q(d1_7;(ﬁsafe7q))3 + ]\/[v,qs2 (28)
where M, , 1s a positive constant.

Proposition 3. Consider the systems

i'a,i = fi(i'a,i(t): U (t)v wl(t)) (293“)

fbvq = fNL#J(jb,Q(t)v ﬂq(t)) (29b)

with initial states |Tai(to) — Tuq(to)| < 0, with Tai(to) and Tye(to) contained within Q, ., ., with

to =0, 4 = Uy + ugs — Ui s contained within the input bounds, and w; € W;. If To:(t) and Ty 4(t)

remain within Q..
°q

fort € [0,T], then:

Lwie Me’/‘ri . Lwie Merri
4 2wl ”q>eLwt)— ¥+ i (30)

|1_7a,z‘(t) - fb,q(t” < ((6 Liw' Lgm‘

Proof 1. The proof follows that in Giuliani and Durand (2018) and Durand (2020b) by taking the

integral of Eqs. 29a and 29b, subtracting them, taking the norm with application of the triangle
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inequality, adding and subtracting fi(Zy4(s),1i(s),0) on the right-hand side, and applying Eq. 21,

Eq. 10a and the bound on w; to give:

|ja,i(t) - fb,q(t” < |ja,i(t0) - fb,q(t0>| +/ |ﬁ(ja,i(3)v ﬂi(s)7wi(s)) - fNLq(jb,q(S)a ﬂq(S))|d8
" (31)

t
S 5 + (Lw,ig + Me'r'r,i,q)t + / Lz,i’ja,i(s> - fb,q(s)|ds
0
Using the Gronwall-Bellman inequality Khalil (2002), Eq. 30 is obtained.

The next proposition establishes a bound on the difference between the deviation form of the

state of the system of Eq. 8 and the state of the nominal (w; = 0) system.

Proposition 4. Heidarinejad et al. (2012) Consider the systems

Taq = [i(Taalt), w(t), wi(t)) (32a)

%a,i = fi(fa,i (t)> U; (t)a O) (32b)

with initial states T, i(to) = Tai(to) and contained within juseyr With tg = 0, and w; € W;. If
Ta;(t) and Zo;(t) remain within Qp, for t € [0,T), then:

Lw,i
LSC7’£

|Zai(t) — Zai(t)] < (eL“'t —1) (33)

The next proposition characterizes the error between the solution of the model of Eq. 14 and

the approximate solution given by the following equation:

n!

Frglt) = Fralty) + (fo,q@b,q(tj), %(@-»M) (34)

Viteltjtit),j=k, ....,k+ N —1, when Zy,(t) is the state measurement at t.

Proposition 5. Consider the solution of the system of Eq. 14 and %y 4(t) from the model of Eq. 34.
There exists an upper bound on the error E,;(t;), j=k,...,k+ N — 1, between %y 4(t) and Ty 4(t)
throughout a sampling period beginning at t;, j =k,....k+ N — 1, in the interval [ty,tn) under
a sample-and-hold input policy defined by u,(t;) € Uy, V t € [tj,tj41), j=Fk,....,k+ N — 1, where
Ty q(tr) = T g(tx) and A < Ay, where the expression for the error is defined recursively by:

M p e AN+

|[Egn(t)] < =1

T Bt fort € bt )
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N1
_ _ M EpN AN+1 A" B _
|Eq,k+p(t)| SEq,ker—l(tkan—l) + q(NZi _; 1)! + - HLz,n,qEq,ker—l(thrp—l) = q,k+p(tk+p)’

fO?"t € [tk-‘rp?tk-‘rp-‘rl]u p= 17 .. ‘aN -1

(36)

Proof 2. This proof follows the proof of Proposition 4 in Rangan and Durand (2020). From

Proposition 1, Ty 4(t) can be represented as follows fort € [tj, tip1), j=Fk,...,k+ N —1:

Fualt) = Fulty) + 3 i aEalty) (1) 1" (37)
= Bualt) + 3 FanaEnaty). 1) B 0 (39)

Viteltytivl, j=Fk,....k+N—1, where E, ;(t) represents the Taylor series error from truncaling

the Taylor series representation of the solution of Eq. 14 to Ny + 1 terms. Defining F,;(t) =

Tuq(t) = Tog(t) fort € [tj, ], then fort € [t,tis1), Tog(t) = Tog(t) — Equ(t) = Toq(t) — Egu(t),

and

M,

D ~ AN+l
|Eqr(t)] = |Tp,q(t) — Toq(t)] < gk (D)

(Ny +1)!
from Eq. 23, with My n, > 0. Fort € [tii1,trt2], the following equations hold:

= Eq,k:(tk:) (39)

aalt) = altien) + 3 ( Fisanaltnen). dfts) 220 ) (40
1alt) = Braa) + 3 (Bt i) ) By )

Taking the Fuclidean norm of Eq. 41 minus Eq. 40 and applying the triangle inequality and
Eqs. 23, 39 and 17a gives:

N1
_ ~ _ ~ ATL n — — rn = —
[Zbq(t) = Tog (D] < 1T (ths1) = Fog(tesn)| + ) — Rna(@oa(tisn) (b)) = Firp g (T (ter), Uy (bir)|

n=1
+ | Eg (1))
N AR Ni+1
quNl(A)NH_l A B - My 1, (A)M
— _L;vn t - t : .
N (N +1)! * — nl alToq(ter1) = Toq(trsn)| + (N, + 1]
N
My (8) ™7 + S AT Mooy (DM Myjepany (A)MH Ey i1 (tisr)
- (N+ 1) = pl (N 41! (N, + 1)! = Lg k(e

(42)
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for t € [tii1, tiro), where Ty g(tri1) and Ty g(tepr) € Qp,, and My jian, > 0.
Continuing to follow this procedure for subsequent sampling periods gives the general form of the

error bound for t € [titp, tiipr1], wherep=1,....N —1, as follows, with My j+pn, > 0:

Ny
My joyp. vy AN AP _
(N1 + 1)! - ; WLzm,qEq,ker—l(thrp—l) (43)

|Eq,k+p(t)‘ < Eq,k+p—1<tk+p—1> +

From Proposition 5, decreasing N; and A decreases the error between 7, and Iy, throughout
a sampling period. For a given N; and A, the error at the end of the prediction horizon will be less
when the prediction horizon includes less sampling periods. Furthermore, E,;, j =k +1,....k +
N — 1, in Proposition 5 incorporates error both from truncation of the Taylor series solution and
from using the approximate value 7;, at each sampling time in the approximation of the dynamics
at a subsequent time. E,;, in contrast, only reflects truncation error. The following proposition
bounds the difference between the state trajectory of Eq. 34 and the solution of the nominal (w; = 0)

system of Eq. 8.

Proposition 6. Consider the following systems:

Tai(t) = Tas to+z< (Za.i(to), i(to),O)M) (44)

n!

ualt) = Fuglte) + Y (Bl a2 ) (49

with initial states |Tq;(to) — Tog(to)] < 8 and Zai(to), Toe(to) € Qp, with ty = 0, w(ty) € U,

Ug(to) € Uy, ui(to) = 1y(to) + ugs — wis, and w; € Wi, Also consider that for alln > 1:
|fzn(ffa u,0) — fJT\L/L,q(Q_U/’“,” < Maeriv,ig (46)

for all |z —Z'| < 0 and contained in Q, and for all uw = u' 4 uq s — u; s in the input bounds, and

p.sufe q’

Eq. 12 holds. If Zq;(t), Zpq(t) € Qp,, then for t € [0,t,,41],

M; n, (t — to)M !
(N7 + 1)!

‘ia,i( ) qu | < 6+Z Mderzvzq+
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Proof 3. Taking the Euclidean norm of Eq. 44 minus Eq. 45 and applying FEqs. 23, 12 and 46 and

the triangle inequality and taking the norm on both sides:

[Za,i(t) = Zog(t)] < [Zai(to) — Tnq(to)|+

00 Ny

AR ORIBIECS R S (NGBS ]
n=1 ' n=1 '

N1 _ no_ B ~ Mz _ Ni+1
< o+ Z %|f?(i‘a,i<t0)u ai<t0)7 O) - f]?/'L,q(jb:q(tO)ﬂ Hq(tO))l + ,J\Eljiftl +tf))|

n=1 ’ ’

N

L (t— to)" M, (t — to) M !
S ) + ; TMdem'v,i,q + (Nl + 1)'
(48)

The following proposition provides the conditions under which hAyy , implemented in sample-

and-hold can maintain the closed-loop state of the system of Eq. 34 within (2, when it is initialized

within that region.

Proposition 7. Consider the model of Eq. 34 under the Lyapunov-based controller hny 4 imple-
mented in a sample-and-hold fashion from ti to ti. N that satisfies the requirements of Eqs. 15a-15d

and 18. If Ty 4(ty) € Q5,, 0 < A < Aypq and

N A" N N A" Anfl
Lv,q ]\4L,qA + 22 Mq,k,n—lﬁ ML,q + 22 Lv,q ML,qA + _2_2 Mq,k,ﬁ—lﬁ Mq,k,n—l (TL _ 1)'
M Anfl
— b3 (G5 g (Psg)) + Qg (B0 (Pg) Y Mq,k,n—lm < —€uq/A
n=2 )
Praing = max{Vy(Tog(t + A)) 1 Vy(Tng(1) < pug} (50)

forj =k, ...;k+ N —1, where €, >0, L, > 0, and py > P, > Psqr then Tyq(t) € Qp, for
t e [tk,tk+]\[).
Proof 4. Eq. 15b gives:

AACM)

Ot Inpa(@oo(ti), hnp.g(Toq(t)) < —asq(|Thq(t)]) (51)
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From Eq. 34, fort € [tj,tjt1):

T < Tt <Z<mq<@,q<mhNL,q<§b,q<tj>>>>—(Z;fj)f )

n=1

- 8%@})7(1(0) (fNL,q@b,q(tj) hnea(Tog(ts))) + Z TN g (Tog(ti), hvrg(Thq(t; ))))_(t(;ijir;! )

8[Eb7q
(52)
With 2001 (Fup o (Fglt), hnra(Fng())) + SN (g Fnalts), b (6)) 20 )

added and subtracted from the right-hand side of Eq. 52, and Eqs. 15 and 51, we obtain:

OVy(Tng(t) _ OVi(Tng(ty))

dVy(Toq(t) _ | Inna(@oq(t;)), v o (Tq(L5)))|

dt - 6@7(1 6xb7q
N1 ~ ~ - ~ -
OVy(@oq(t))  OVi(Th4(t; - An-1
+n2; Ty Om, |fNLq( ba(t))s hve.q(Toq(t5))] 1) (53)
Anfl
— Gi3.(|70,4(t; Z%q (1Z0.q(E) ) | FR g (T (8))s nvrg(Tng(t5))] CR]
Because f/q is infinitely differentiable, there exists L, , > 0 such that:
V(') V(") :
_ <L, — " 4
ax 81‘ — ,Q|x T | (5 )
for all x,2" € Q.. .. Using Eqs. 54, 51, 16a, 25, and 15c:
WAGH0) Ny A
i SLoglEeg(t) = Tog(t;)| Mrg + Z Ly q|Z0,4(t) — fbg@j)kam—lm
Anfl
_a3q(|qu< 1)+ A |qu Z a,k,n— 1 ~ 1)
Using the definition of Ty 4(t) from Eq. 84 and Egs. 16a and 25 gives:
(t—t;)" ol An
|Zy,q(t) — Tnq(5)] = Z SNpa(Toq(t;), hvrg(ts)) n!j < Mp A+ ; Mq,k,nflﬁ (56)
Combining Eq. 56 with Eq. 55 gives:
AV, (Zp4(t)) al A” AP An-1
—a <Lyg | MpgA + nz:; ahn-177 My, + nz; Lyg [ Mp A+ nz; ahn-1=7 Mq,k,n—lm
n—1
— G5 (672 (t)]) + g (AT (Bt Z o o

(57)
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If i’bﬁ(tj) S Qf)q/Qf)s,q; then fort € [tj,t]url].'

LACHO) N N
— o <L, MLqA+;M7,m = ML,q+n2;qu MLqA+ZM,,m 1= | Mg
M An—l
— Gi3 g(i3 1 (Pssg)) + Cag(655(pg) Y Mq,k,n—lm
n=2 ’

(58)
If Eq. 49 holds, then Vy(Zy4(t)) < Vo(Zuq(t;), ¥ t € (t;,t;41], s0 that Ty ,(t) € Qp,. If instead
Tyq(t;) € Qp,,, then Ty 4(t) € Qoo YV EE [ty ty4a], from Eq. 50. When pg > Pl as required by
the theorem, Tyq(tj41) € Qp, in this case also. Therefore, if Ty q(tp) € Q5. then Tyq(t) € Q,, for

te [tk, tk+N)~

The following theorem guarantees that in the presence of bounded measurement noise and
disturbances, the implementation strategy of Section 3.2.2: 1) maintains the closed-loop state within
5, before an attack or model change occurs; 2) maintains the closed-loop state in ;. = for at
least one sampling period after an attack; and 3) maintains the closed-loop state in €, . = for at

least 5, , sampling periods after ¢4, if no attack occurs.

Theorem 1. Consider the system of Eq. 8 in closed-loop, under the implementation strategy of
Section 8.2.2 based on a controller hyy o(-) that satisfies Eqs. 15a-15d and 18, as well as the re-

>0, € 1 >0,0 <A< Apg N 2>1, Psampiitig =

quirements of Proposition 7. Let €, .,

w,q,i+
ﬁq + fV,q( ) + 6qu+1 > O Qp.sampq - Qﬁq - Qﬁsafe,q - Xq’ q Z ]'7 ﬁsampvq > p/\evq > ﬁiﬂiﬂ,q > p/\qu > 07

Peq > Pminyig > Psq > 0, and Peg > Pminit1,q > Psq > 0. If the following equations are satisfied:
— G3,4(Q5 4 (Ps.g)) + Ly (B + MigA) + L, 0 4 Ga g (674 (D)) Maerivig < =€, 04/ A (59)
— G3,4(Gg4(Psg)) + Ly yiy (O + M1 o) + Ly i 10 + Gag (67 4 (Pg)) Maerivivrg < €001/ (60)

A)” Moy, (A)MH L0, )
Peq + frq (9 + Z I Macriviq + (Nll i T (b2 —1) | < Psampq (61)

" M; N (AN L0 A .
Peat Ja <9 * Z o M S R e - 1)) + Fal6) <y (62)
pAmin,i,q = max{‘zl<ja,i(t + A)) : %(jayi(t)) S ﬁqu} (63)

25



~

ﬁsampq + qu(e ) < Pyq (64)

20, + el et Z Maiosa + TN <, (65)
20, + Z Mdmv g T Mia\lf’ff;;“ - L[Zf:le (eb=t1® —1) <y, (66)
Psamp2,i+1,4 T eiu’q’iﬂ(zw — &) = Dfar (67)
Psamp.q T fviq (IZ::L) (GLNA —1)+6,+ é %Mdemv,i,q + (Z]\]]V;—ﬁ]\lf;ﬂ + Vl,q>
+ fvg (é <Mmaxqiil>> + fvg < IZ;ZZQ (eLz’iA - 1) + g %Mderw,i,q + %) < Psafeq
(68)

A n
pfar+qu (9 +Z ) Mderwz—i—lq‘"

N1
A" Lupil, |
+ fvg (Z (Mmax,qﬁ)> + fvg ( T (ebeinid 1) (69)

Mi+1,N1 (A)Nl+1 Lw,i+19(6Lx,i+1A _ 1) +u
(N + 1)! Lyt b

n—1 Lx,z+l
N1
(A)" M1y, (A)NH .
d \ < safe
AP TN ) e
Ny
)n Min, (DM Lyit poa
psampq + qu <9 + Z Mdemvzq + (Nl T 1>‘ + Lm,z’ (6 T 1) + Viq + fV,l] Zl Mmax,qT
g _ M. (A)Ni+1
w,i+1 z,z+1A 5 M i+1,N1 <5
+ qu ( $Z+1 + + Z deriv,i+1,q + (Nl T 1)' > Psafeq
(70)
A)TL MzN (A)N1+1
sam 91} ——M, eriv,i, —_—
Lt al A" Lu0
Zzuz ( F7AN 1) + 12 q) + f[/;q (Z (Mmax,qﬁ)) + fV,q (Mi—i-l,OA + [’jvvl‘ (eLz,iA o 1)
n=1 ) z2
My, (A)M+1 - 3 A" )
+5 + Z Mderw 4,q + le—‘i‘l)' + zzl Mmax,qm S Psafe,q
(71)
with Vg > Vegq, x(to) € Qp. s Tailto) € Q.. and [To,;(ty) — ()| < 6, k = 0,1..., then the

closed-loop state is contained in €); and the state measurement is in Qﬁq for allt > 0 until the

Psamp,q

dynamics of the process change at ts ;1 or there is a cyberattack on the sensors at ta. Furthermore,

26



Tai(t) € Q5

peaseq JOT at least one sampling period after to and To;11(t) € Q

psageq JOT at least ty 4 =

floor (p”fe’q;p”m’ﬂ’”l’q) sampling periods after tqq if ta > trp,.

Cw,q,i+1

Proof. The proof consists of five parts. In the first part, recursive feasibility at every sampling time
in which the LEMPC of Eq. 26 is used under the implementation strategy is demonstrated. In the
second part, it is demonstrated that the closed-loop state and state measurement are maintained
within €2, before any model change or cyberattack occurs. In the third part, it is demonstrated that
after 44, if only a model change occurs that is detected via either the closed-loop state measurement
leaving . or if it is detected via |Zpq(tg|te—1) — x(tk)| > vsq, the closed-loop state stays within

Q , for at least t, sampling times and no attack will be flagged by the updated detection

Psafe,
mechanism (|Zp 4 (t|te—1) — z(tx)| > v,) before t;p,. In the fourth part, it is demonstrated that
if there is no change in the dynamics but there is an undetected attack (whether it occurs when
|Zpq(t|ti—1) — x(tr)| < vs,4 is checked or if it occurs at tq, when v, < |Tp4(trlte—1) — 2 (k)| < vsg),
there is at least one sampling period before the closed-loop state leaves 25 .. . In the fifth part, it
is demonstrated that if there is a change in the dynamic model as well as an undetected cyberattack,
then the closed-loop state is maintained within 2, . for at least one sampling period after the
attack.

Part 1. hyr,q implemented in sample-and-hold is a feasible input policy for the LEMPC of Eq. 26
whenever the LEMPC of Eq. 26 is used according to the implementation strategy in Section 3.2.2.
Specifically, hyr,q in sample-and-hold maintains Zp, in €, C X, according to Proposition 7 (i.e.,
Eq. 26f is met) and meets the constraints of Eqs. 26d-26e. In addition, it trivially satisfies Eq. 26g.

Part 2. In this part, we demonstrate that before any attack or change in the underlying dy-
namics, the closed-loop state is maintained within €2, . C €, and the state measurement is
maintained within €, . In this case, either z(t;) € Q;,, so that the constraint of Eq. 26f is acti-
vated, or z(ty) € Q;,/€;,, so that the constraint of Eq. 26g is activated.

Consider first the case that z(t;) € Q. Eq. 26f ensures that I 4(¢) is maintained within Q,_,

throughout the prediction horizon, so we must demonstrate that Zo;(t) € Qp,,,.,.

and ZI}(tk_H) S Qf,q

for t € [tg,tr+1). From Proposition 2, and defining 6, to be the measurement noise associated with
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full state feedback:
Va(@ai(t) < Vo(@g(t)) + frg(|Tog(t) — Zaa(t)])

V (*%b q( )) + qu(‘i‘bq( ) - i‘a,i(t” + |‘%a,i<t) - */Ea,’i(t)l) (72)

A)” M, (M) Luwib ( p,a
<Peq+qu (9 +Z Mdemvzq"’ (N1+1)' + LIZ (6 o —1>

for t € [ty tps1) if Ty;(t) and Zy4(t) € Qp,, where the second inequality follows from Eqs. 26f, 47,

and 33. If Eq. 61 holds, then z,,(t) € £, for t € [ty, tir1) when z(ty) € Qp, .

Psamp,q

To ensure that z(tx41) € 5, Eq. 72 and Proposition 2 give:

~

Vo(@(ti1)) < Vi(Zai(tesr)) + qu(\iU(tkH) — Zai(tes1)|)

A)” My, (AN L6
= Peqt fva (9 +Z Tt Maerivia + g N T (€2 = 1) | + fuql6.)

When Eq. 62 holds, Eq. 73 gives that x(ty41) € Q;, when x(t;) € Q;, .
Next, we evaluate the case that x(t;) € €5/, (i.e., Eq. 26g is activated). The time derivative

of the Lyapunov function along the state trajectory of the system of Eq. 8 can be written as follows:

~

A 8V jai t =, _
Vo(Tai(t)) = %f@'(«ra,i(t%ui(tk% wi(t)) (74)
for t € [tg, tprr) Adding and subtracting W%fzu g(Tog(tr), Ug(ty)) and

Wﬁ@bvq@k)’ u;(ty),0) to/from the above equation (where w;(t;) = U,y(tg) + Ugs — wis), and

using Eqs. 26g, 15b, 10b, 46, 15¢, and the bound on w;, we obtain that:

Fifzai(t) < ~daalona(t) + 2925 o ), ) i) — LTl £ )0, 0
¢ D)) £ 0, ) (00,0) — 2P £ ), a0
< g (Fa(t)) + L Faslt) — Foglt)] + L+ | 20D g,
< g (gD + L 1) — Faslt) + Fast) = Fuglt0)]) + Ly + 120 o 1)) Mt

< —di3,g(Qga(Psg)) + Lii (00 + MioA) + L, ;0 + 6 g(a1 4 (0g)) Maerivig
(75)

for all Ty q(tx) = x(tr) € 5/, .. 1f the condition of Eq. 59 is satisfied:

Volaslt) < Vafaas(t) 2257 0 € ot (1)
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Thus, when x(t;,) € Q;,/9. ,, then V,(Za(t)) decreases over the subsequent sampling period. Since

Pe,q?

Peq > Psg> T(tr) € Qp,/Qp,., only if x(te) € Qp, /Qp, . Tai(tr) is guaranteed to be within €2,

Psamp,q

when the conditions of the theorem are satisfied, as demonstrated below. In addition, we can

demonstrate that x(t,41) € 25, using Proposition 2:
Vi@ (t)) < Vy(@ai(tien)) + frg(l2(tes) = Taaltes)])
< Vy(@asi(tr)) + fra(00) (77)

S ﬁsamp,q + fV,q(ev)
When Eq. 64 holds, z(tx4+1) € Q5, when Z,;(tx) €

Psamp,q*

The results above require that Z,;(tx) € €2, whenever z(t;) € ;. To demonstrate that

Psamp,q
this always holds under the proposed implementation strategy, we note that initially, Z,;(fo) and
x(ty) € €Qp,, as assumed in the theorem. As a result, from #y to t;, Egs. 73 and 62 guarantee

that z,,(t) € Q; for t € [ty,tps1) and z(tpy1) € Qp,. At the next sampling time, one of four

psampq
things happens: 1) Tai(tk) € Qpuppa/pe, and 2(tr) € Q5 /s, 5 2) Tai(te) € Lpoarnp.a/ i, and
o(te) € Qs.5 3) Tai(te) € Qp,, and x(ty) € Qp, /Qp. 5 o8 4) Tai(te) € Qp,, and x(t,) € Qp. . In

the first case, Eq. 76 demonstrates that V,(Z,;(t)) decreases over the subsequent sampling period

so that since Toi(tr) € Qpoump.ar Tasiltes1) € as well. In the second case, Eqs. 72 and 61

Psamp,q

guarantee that Z,;(tx+1) € €2, In the third case and the fourth case, Eq. 63 and the assumption

Psamp,q*

that Pminig < Peq guarantees that T, ,;(tx+1) € Q5 Therefore, applying this recursively, Z,;(t)

Psamp,q

is always maintained in €2, and the state measurement is always maintained within €2, under

Psamp.q
the proposed implementation strategy in the absence of a cyberattack or a model change.

In addition, it remains to be demonstrated that when there is no attack or model change, the
condition |Zy,(tg|ts—1) — x(tx)| < vs, always holds (i.e., there will be no false alarms) if vy, is
selected to satisfy Eq. 65. To demonstrate this, we note that Eq. 47 and Proposition 4 give:

|Zo,g (tlte—1) — 2(tr)| < |Tpq(telti—1) — Tai(teltio1) + Tai(trlte—1) — Zai(te) + Zai(tr) — z(te)]

N1
<20, + Z %Mderiv,i,q + LLw—f A

n=1

Ly ;A le

eleal _ 1) 4 0T
( ) (N1 +1)!

(78)

If Eq. 65 holds, then at all times, |Zp(tx|tr—1) — 2(tx)| < vs, such that there are no false alarms

with this detection threshold.

29



Part 3. In this part, we demonstrate that after a model change occurs, if there is no attack, the

closed-loop state stays in €2, . for at least ¢ , sampling periods after ¢4, and no attack is detected

after ¢, until ¢;p, (i.e., there are no false alarms under the proposed implementation strategy).

Until t37i+1, .i'a,i(t> € Q;

psampq a0d the state measurement is maintained within 2, under the

implementation strategy of Section 3.2.2 as proven in Part 2. After t,,,; and until ¢4, either: 1)
the state measurement is maintained within Qp but |Zy o (te|ts—1) — z(tr)| > vsq at tage; 2) the state
measurement is outside €2, at t5, but still T g (tk|tr—1) — x(tr)| < vsq; or 3) both z(ty) ¢ Q;, and
|Zp o (tk|ti—1) — x(t)| > vsq at ta,. In any of these cases, the upper bound on |z, (tg|te—1) — z(t)]
is changed to v, and re-checked, and the worst-case value of V,(z(t4,)) is determined from Eq. 60
and a similar procedure to that in Eq. 75 by assuming that the model change can occur at ¢;_; with

A

Vi(Zai(tk—1)) = Psamp,q such that an equation similar to that in Eq. 75 by using the i + 1 model

~

holds for the entire sampling period (i.e., V; is increasing for the entire sampling period according

to Eq. 60), giving

~

Vo(Tai1(t)) < €, qi41/A (79)
which gives that %(i’a7i+1(t)) < ‘Z](i’a,i(tk_l)) + M, V't € [tk_1,tx). Because there is no

detection of the model change before tyq, V,(z(ts, — A)) < py. From Proposition 2:

~

Vi(Tairr(tag — D)) < Vila(tag — D) + frg(|Taini (tag — A) = 2(tag — A)))

(80)
< ﬁq + f‘ﬂq(ev)
This gives that the worst-case value of IA/q(:Z’WH(td,q)) i Psamp,it1,q = Pg+ fv,q(Ou) +€, :11- In this

case, Eq. 79 continues to hold even under hyy, , (which is triggered to be used after ¢4, according to

the implementation strategy in Section 3.2.2) such that there are ﬂoor((ﬁs‘lf‘:’q;ﬁsm”p?”"*l’q)) sampling

Cw,q,i+1

periods before the closed-loop state leaves (2, .. —as required.
Second, we must demonstrate that if there is no attack and the attack detection strategy is
updated at t4, to become [Ty, (tx|tr—1) — 2(tx)| < 114, then no cyberattack will be flagged after the

underlying process dynamics changed by determining an upper bound on |z ,(tx|tk—1) — x(tx)| in

the absence of an attack and presence of a model change and setting v; , larger than that bound as
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follows:

|Zoq(tilti—1) — 2(tr)| < |Toq(trlteo1) — Zagsr (trlte1) + Taipr (telti1) — Zaipr (te)] + [Tagipr (tr) — 2(te)]

M1y AN n Ly,it10
(N, + 1)! Lyit

An
S 261} + Z FMderiv,i+1,q +

n=1

eheiid 1)

(81)
where the second inequality uses the bound on the measurement noise and Eqgs. 33 and 47. When
Eq. 66 holds, then |Zp,(tg|tk—1) — 2(tx)| < v, at all times after the change in the dynamics is
detected so that there are no false detections.

Part 4. In this part, we demonstrate that if there is no model change but an undetected attack
occurs at ta, the closed-loop state is maintained within €, . for at least one sampling period

after £4. If an attack is undetected, one of several cases has occurred: 1) z(tx) € Q,,,,..,

/Qﬁq but
|Zoq(trlth1) =2 (tr)] < vegs 2) x(tr) € Qp, and |2y g (trltr—1) —2(tr)] < vig but [Ty g (tr|te—1) —z(te)| >

Vsgqi 3) x(ti) €

Psafe,q

[, and [Ty q(te|te—1) — 2(te)| < vig but [ZTyg(te|ts—1) — x(tp)] > vsgq; or 4)
z(ty) € Qp, and |Tyq(tilts—1) — z(tg)] < vsq. In each case, however, because there was no model

change, Z,;(tx) € Q;

psampq according to the proof in Part 2 (i.e., no model change and no attack

before t;). However, in some of these cases, the implementation strategy of Section 3.2.2 dictates
that hvp 4 be used starting at 5, given the above conditions, and in some of these cases, the LEMPC
of Eq. 26 continues to be used.

Propositions 4 and 6 give:

Zai(tr) — Zog(trltr—1)| < |Zai(te) — Tai(Erltoo1) + Zai(telti—1) — Zoq(trltr—1)|

N1
L0 A" M; y, AN (82)
< w,? Ly 1 ev —M, eriv,i —
- Lm,z (6 )+ +n2:; n! d ,,l]+ (N1+1)'

regardless of the input used (i.e., hyp , or the LEMPC of Eq. 26 can be used, depending on which
is utilized according to the implementation strategy in Section 3.2.2), so that if an attack is not
flagged at ty:

|Za,i(tk) = Toq(trlte)| < |Taitr) — Tog(teltio) + Toq(teltr—1) — z(telts)|
um'e

L My, AN (83)
P + ]/l q
La:,i 7

IN

(e"= 2 —1) + 0 +§1:EM¢ viig T
v n' eri,i,q (Nl _I_ 1)|
n=1
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where v, , > v, , according to the statement of the theorem. From Proposition 2,

Vo(@n0(teltr) < Vo(@ai(t1) + Frg(|Zai(tr) — Toq(teltr)])
Luib [ 1., Ar My, AN+
( 2 N l,q>

S Iésamp,q + fV,q ( + 9 + Z Mderw z,q

Ly, (N1 + 1)!
(84)
Defining Myax,q to be the maximum value of |f}\l,L7q(§b,q,ﬂq)\ forall n = 1,..., Ny, Zog € Q.
and u, € Uy:
N1
Va(@oq(trslte)) < Vo(Zog(telte)) + frg (Z ( max,q ))
) Lw 20 A" ‘]\42,’1\/1 AN1+1
S psamp,q -+ fV,q < Lw’z ( + 9 + Z Mderw,z,q (Nl + 1>‘ + l,q
Ny
A?’L
+ fV,q <Zl <Mmax,qﬁ)>
(85)

~

Vo(Zai(ter1)) < Vi(@og(tilte)) + frg(|Tai(tisr) — Tai(teralts) + Tai(tor|te) — Tog(teralte)])

Ny
5 L0 v A" M; n, AN
< Psamp,g T fvig ( 7 (GLWA - 1) + 6, + E FMderiv,i,q +————— -+,
n=1

N1 Nl
A" L. .0 AP M; N AN+
Mmax =r Loalh _ 1 —M, eriv,i e
v (35 (e 25 ) ) v (54 5 0 )43 a4 Mo
(86)

When Eq. 68 holds, Z,;(tr+1) € Q5 though there is an undetected attack at ty.

psafe q

Part 5. In this case, we consider that there is both a model change and an undetected attack.
The attack may occur first, or the model change may occur first, or both may occur at the same time.
However, regardless of which occurs first or the order in which they occur, the worst-case condition

is that the closed-loop state at the time at which the attack occurs is as close to the boundary of

(O

psajeq 8 1t can be. When a model change occurs at t,, and an attack occurs subsequently, the

closed-loop state remains within €2, before the attack occurs for ¢5, , time units according to the

psafe q
proof of Part 3. However, an attack could then occur at any subsequent sampling time before ¢;p 4.
In a worst case, it occurs at ¢t;p, — A when it may be possible that the closed-loop state is near the

boundary of €. .. Therefore, it is necessary to ensure that the closed-loop state at t;p, — A is

within a region from which, even if an undetected cyberattack occurs at that time, the closed-loop

32



state 1s still within at t;p4. From Part 3, the farthest that the state could be at t;p, — A

psafe q

is given by:

A

~ €y qir1(thg — A
Vo(Zair1(tipg — A)) < Vo(Zaisiltag)) + — #1(fng )

A

(87)

where Vq(i’a,iﬂ(td,q)) < Psamp2,i+1,¢ from Part 3. If Eq. 67 holds, then the largest possible value of
f/q(:z’cwﬂ(tmg —A))i8 prar- If Tair1(te) € Qp,,., then the model change already occurred and if
there has not yet been an attack, it is only necessary to demonstrate that T, ;1(tx1) € stafeq if
Taiv1(tk) € Qp,,, and an attack occurs at t. Using similar steps as for Eq. 82 gives:

]Wz‘Jrl,M(A)NlJrl Lw,z‘+19
(Nl + 1)! L:Jc,i—i-l

A n
|Q_:a,i+1<tk) qu(tk‘tk 1)‘ < 0 +Z ) Mderw 'L+1,q+

n=1

(et 18 —1) (88)

regardless of the input used. Then if an attack is not flagged at ¢, similar steps as in Eqgs. 83-86
give:

)n Mgz (AN L6

|‘fa,i+1(tk) .Tb q(tk|tk)‘ < 9 + Z Mdem’u Ji+1,q (eLz’iJrlA — 1) + Vg

(Nl + 1)‘ Lz,i-l—l
(89)
(A)" My ny (A)NMH L0 _
V (l‘b q(tk|tk>) < pfa?” + qu (9 + Z ) Mderw si+1,q JE?\][\lf —(l— 1))' + I : :11 (eLw"l-HA - ]_) + V17q>

(90)
o ( >"

Mi A N+l sz‘ 9
v, o(Taiv1(ter1)) < Prar + frg (9 + Z 113 (B) +1

5 Lz’i+1A o 1
(N + 1)! + Lyt (e )+ Vl’q>

Ny
A" Lwi 0 )
+ fV,q (Z (Mmax,q o >) + qu <’—+1(€Lz,z+1A o 1) +45

n=1 L:p,i—l—l

Mg n, ()M
M eriv N4 1
" Z deriviitla TN ]

Mderw Ji+1,qg

(91)

If Eq. 69 holds, then the closed-loop state is still within £, . after a sampling period if an attack
occurs after the model change.

If an attack occurs but the model did not change before the attack, the model can change at the

same time as the attack or in the sampling period following it. In this case, the worst-case possible

value of 17(1(9_56171-(15;6)) iS Psamp,q according to the proof of Part 2. We consider first the case that the

model and attack both occur for the first time at ¢;. In this case, following similar steps to those
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in Eqgs. 88-91 and using Eqs. 85 and 89 gives that Eqs. 84 and 85 hold and:

Ny
(A)" My, (ANH Lo
V (xa i+1 (tk+1>) < psampq + qu <0 + Z ) M aeriv Jiyq + 2l ( ) + : (eLz’ZA — 1) -+ Vl,q)

— (N1 +1)! Ly,
al A" Luis10
w,i+1 wit1A
-+ fV,q (; (Mmax,q TL. )) + qu (m( + + (5 -+ Z q
Mi+1,Nl(A)Nl+1)
(N + 1)!

(92)
If Eq. 70 holds, then Z411(tk+1) € Q5. after a sampling period if an attack occurs at the same
time as the model change.

We consider second the case that the attack occurs first, at ¢;, and the model change occurs
at some ;11 € [tg,tk+1) (if the model change does not occur in the sampling period following
the attack, it does not occur in the timeframe over which we guarantee that the closed-loop state
remains in §2; . - after an attack). Again Eq. 83 holds and using Eq. 85 and similar steps to those
used in deriving Eq. 89, with Eqgs. 84-85 and 92 gives,

Vo Zaisr (1)) < Va(@og(trsa [tr) + frg(|Zaics (b)) — Zaipr (bsivr)

+ Zair1(tsiv1) — Taa(t si+1|tk> t Zai(tsiviltr) — Tog(tsiviltr) + Tog(tsivaltr) — Tog(terlte)])

A M x, (D)1
< psampq+qu 6 +Z ( ) Mderwz,q‘"%
Luwif, | al An
+ Lm’i (BLI’lA — 1) + Vl,q) + fV,q <Zl <Mmax,qﬁ)>

Lw 19 , N1 A" ]\4—Z A Ni+1
f( B LR DETES B ST e

Ly, (N + 1)!
+z )

(93)
If Eq. 71 holds, then Z,11(tk1) € Q4. after a sampling period if an attack occurs before the

model change. O]

Remark 4. As seen in the proof of Theorem 1, the use of the truncated Taylor series model solution
in the LEMPC allows impacts of numerical approrimations of the solution to the empirical model to

be accounted for not only in the closed-loop stability guarantees in the absence of an attack, but also
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in the guarantees that can be made with the proposed detection strategy based on predictions from
this approzimated model. This could allow tradeoffs between numerical error (and therefore compu-
tation time) and stability conditions (e.g., stability region sizes) to be assessed from a verification

perspective.

Remark 5. The proposed method is focused on the case when it is not straightforward to immediately
re-identify the model after a change in the dynamic model occurs (i.e., some additional data since
the model change is needed first). If the model was updated immediately at tq,, then it is only
important to guarantee that Ta;yi(tag) is still within Q.. . (i.e., at Psamp2,it1,4) and then to use
hnrg+1 after the model update at tq, until the closed-loop state enters S, ... FEven with slowly

changing dynamics (i.e., Merriv1,4 and Merivit14 are small), the condition in Eq. 60 could result

- =
M € g,it1

being only slightly positive, at least for a short time after the model change, since it was
negative previously (Eq. 59), and the proposed method could still be used to flag when the model has
changed sufficiently such that a model update is needed. If it is desired to re-identify the model at t4,,
the potential increase of the detection bounds for the cyberattack detection method may no longer
pose a significant benefit, but breaching of the initial bound could still signify either a model change or
a cyberattack. The proposed strategy provides insights into how model changes and cyberattacks are
related, and the ways that time-varying process dynamics could impact the benefits of cyberattack
detection strategies and potentially allow stealthy cyberattacks to be developed that fly under the
radar of detection strategies that are inconclusive regarding whether the detection conditions were

breached due to model updates or sensor attacks, providing falsified data that over time is re-coding

the controller through model re-identification using falsified data.

Remark 6. While the numerical approximation used in this paper is the Taylor series approrimation
method, it can be substituted with other numerical methods for which bounds on the error between
the predicted state with the numerical method and the actual trajectory of the system are available
to be used in place of Eq. 23. This may be preferable to, for example, suggesting many potential
terms that may be in the solution of a differential equation and hoping to find those which provide

the best approximation to the solution Brunton et al. (2016a), as that does not guarantee that the
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correct terms are quessed to allow an error bound to be developed as above.

Remark 7. Ultimate boundedness of the closed-loop state in Q.. . in the absence of an attack or
model change could also be obtained by the techniques in Theorem 1 if the constraint of Eq. 24g is
repeatedly applied until the closed-loop state enters a region Q;, , with psq defined in Eq. 63, given

the proof of Part 2 of Theorem 1.

Remark 8. The works Alanqgar et al. (2015a,b) utilize empirical models in LEMPC as well. The
major difference is that those works assume the empirical dynamic model is used and do not explicitly
account for the manner in which error in finding the solution of that dynamic model impacts the

closed-loop stability results outside of the plant/model mismatch associated with modeling error.

3.2.3. Detection Strateqy 3: Cyberattack-Resilient Output Feedback LEMPC

Detection Strategy 3 from Oyama and Durand (2020) uses multiple redundant state estimators
in a detection strategy that, compared to Detection Strategy 2, has the benefit of guaranteeing
that the closed-loop state remains within €2; when there is no model change even if undetected
attacks occur, but the disadvantage that the guarantees are made with restrictions on the number
of sensors that can be attacked compared to Detection Strategy 2. For Detection Strategy 3,
the LEMPC of Eq. 26 no longer uses a state measurement at t;, but instead uses one of the
redundant state estimates (denoted as z,1), and also switches €25, with the stability region €, ,
that corresponds to the subset of €2, used with the 1-th observer. With slight abuse of notation,
we will consider that references in this section to the LEMPC of Eq. 26 imply that z(¢;) in Eq. 26¢
is replaced by z,1(t;). Cyberattacks are detected by comparing |z, (tx) — 2z:(tx)| with an upper
bound €paxq = max{ejiq + e;*q}, r=1,...,M, 1 =1,...,M. Up to M — 1 state estimates can
be impacted by the sensor attack, and the attack is assumed to occur after ty,,, p = 1,..., M. If
|24 (tk) — 24.0(tk)| < €max,q at a sampling time, the LEMPC of Eq. 24 is used to control the process
for the subsequent sampling period.

When the process dynamics are allowed to change over time, |z,,(tx) — 2z4:(tx)| could exceed
€max,q either because the process dynamics changed or because a cyberattack occurred on the process

sensors (the closed-loop state may also be detected to leave €, for either reason as well). As for
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Detection Strategies 1 and 2, these cases may not be able to be distinguished from the sensor data
because the estimates are derived from Eq. 20, which may have been developed based on a process
model. This necessitates the need for an updated implementation strategy and value of €yax 4 for
guaranteeing that the closed-loop state remains within €, . for a characterizable time period
after the closed-loop state leaves €, or after |2y, (tx) — 2¢:(tk)| > €max,q When it cannot be known
whether the cause of the mismatch between the different state estimators arises from an attack or
a change in the dynamics. To handle this, we propose two methods that could be used to allow for
a known amount of time before the closed-loop state leaves €2; . after an attack or a change in

the underlying dynamics while still allowing model changes to trigger re-identification.

3.2.3.1. Detection Strateqy 3, Method 1: Implementation Strategy The first method to be explored
for Detection Strategy 3 will, similar to the method proposed in Section 3.2.2, utilize two stages
of monitoring for cyberattacks and model changes. The first stage will utilize a bound €payx 4 On
|2qr(tk) — 2zqu1(tx)| designed such that, if there were no model changes, the difference between the
two estimated states would signify a cyberattack with certainty according to the method in Oyama
and Durand (2020). After x(tyq) € Qp, or |24:r(taq) — Zqi(taq)| > €maxgqs for some r = 1,... M,
l=1,..., M, asecond bound €yax 4 Will be used where, if |z, ,(tx) — 241 (k)| < €max,qu after a model
change but no cyberattack is detected via the updated detection mechanism, the closed-loop state
should not leave €, .~ before {5, time units pass after t5,. The goal of this is to ensure that
if |24, (tk) — 200(tk)| > €max,qs because of a model change or cyberattack, subsequent cyberattacks
before ¢;p , cannot cause the closed-loop state to leave €2 .~ within a sampling period.

To set €max.q,s a0 €max g1, We note that the bounds in Assumption 2 imply that, as demonstrated

in Oyama and Durand (2020), the following holds for t < t;;1:
ar(t) = 2000 < max{el, + iy} = emang (94)

forallr £, r=1,..., M, l=1,..., M, as long as t > tyax := max{tpy, ..., ey} However, for
t>tsit1:

240 (1) = 2ga(8)] < |24 (8) = Tais1 (t) + Taiia (8) = 2qu(1)] (95)
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However, despite that the norm of the difference between z,,(t) and Z,;(t) is assumed to be within
a given bound by Assumption 2, after a model change, the state estimate may become inaccurate.

Therefore, we make the following assumption.

Assumption 3. There exists epqiy1 > 0 such that when |zqp(tsi11) — Zair1(tsiv1)] < €5 P =

1, ceey M7 ‘qup(t) — ja,iJrl (t)’ S ep,q,i+1 fOT’ ts,iJrl S t S td,q + tthA.

Using this assumption and Eq. 95, we conclude that for ¢ > ¢, ;. 1:

‘Zq,r@) - Zq,l(tﬂ < maX{er,q,iH + el,q,iH} = €max,i+1 (96)

forr =1,...,M and [ = 1,..., M. From this, if €naxq < €maxqgs a0d €maxit1 < €max,gql, With

€max,gs < Emax,gls then for ¢ € [thax, tsit1), there will not be any false alarm with the detection
strategy based on the selected value of €yax g5, and for t € [tsi11, %44 + thel), there will again not
be a false alarm whether the process dynamics changed or not.

The implementation strategy in this case follows that in Section 3.2.2 with the difference being

that in Step 3, instead of setting eqif = |ZTpq(tx|ti—1) — x(tx)|, it is set to |zq,(tk) — zqu(tr)|, for

r=1,...,Mand [ =1,..., M, and vs, and v;, are replaced by €nax q.s and €max 41, rESPECtively.

Remark 9. For ease of presentation, we do not consider impacts of numerical error (e.g., a trun-

cated Taylor series) in solving Eq. 20.

3.2.8.2. Detection Strategqy 3, Method 1: Stability and Feasibility Analysis We first present a propo-
sition which bounds the worst-case error between the state estimate and closed-loop state before

and after a model change, considering Assumptions 2 and 3.

Proposition 8. Consider the system of Fq. 8 under the implementation strategy of Section 3.2.3
where M > 1 state estimators develop independent estimates of the process state and at least one of
these estimators is not impacted by false state measurements being provided to the estimators (and
the attacks do not begin until after tmax). If a false sensor measurement cyberattack is not flagged
at ty according to the implementation strategy, then the worst-case difference between z,1 and the

actual state T, ;(ty) is given by:

1201 (k) — Zai(tr)] < Mg "= €maxg T max{e;q}, p=1,....M (97)
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or ty < ts;11, and the worst-case difference between z,1 and the actual state T, ;. 1(ty) is given by:
A+ q, i+ g )
20,1 (k) — Zais1 (Ek)| < €hpigrg = €maxit1 +max{epgirit, p=1,..., M (98)

f07" ts,i-l—l <t< td,q + th,qA-

Proof. The proof consists of three parts. In Part 1, it is demonstrated that the bound in Eq. 97 holds
when ¢}, < t5,+1 whether or not z,; is impacted by a sensor attack. In Part 2, it is demonstrated that
if £, > t5,41 and 2,4 is not impacted by an attack, then Eq. 98 holds. In Part 3, it is demonstrated
that if ¢ > ¢5,41 and 2, is impacted by an attack, then Eq. 98 holds.

Part 1 was proven in Oyama and Durand (2020). Part 2 follows from Eq. 96. Specifically, when

Z¢1 1s not impacted by an attack, Assumption 3 gives:

241 (tk) = Taig1(tr)] < €pgitt < maxitr + max{eygis1} = €rrip1q (99)

for p=1,..., M, satisfying Eq. 98. Part 3 uses a similar technique to develop the following upper
bound on z,; when it is experiencing an attack and at least one of the other state estimators (with

state estimate denoted by z,2) is not:
291 (tk) = Taira ()| = 201 (8) — 2g2(tk) + 2g2(tk) — Taiva(ti)]
< |za1(tk) = 2q2(ti)| + [20.2(tk) = Taia(t)] (100)

[jp— * N
< €maxit1 T max{e, i1} = €1 P=1,., M

]

The following theorem guarantees that in the presence of bounded measurement noise and
disturbances, the implementation strategy of Section 3.2.3: 1) maintains the closed-loop state within
Q;, before an attack or model change occurs; 2) maintains the closed-loop state in €2, for at

Psafe,q

least one sampling period after an attack; and 3) maintains the closed-loop state in €2, . for at

least ¢5, , sampling periods after ¢4, if no attack occurs.

Theorem 2. Consider the system of Eq. 8 in closed-loop under the implementation strategy of Sec-
tion 3.2.3 based on a controller hyp4(-) that satisfies Eqs. 15a-15d and 18, as well as the require-

ments of Proposition 7, and based on an observer and controller pair satisfying Assumptions 1-3 and
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formulated with respect to the p = 1 measurement vector. Let 0 < 0%, 0,, <05 . Mepyiq < M

v,p’ err,i,q’
€pq € (Ezpme;(]pq)? ﬁ{samzﬂ,i—i—l,q = 15(1 + f%q(e?\/[,i—i-l,q) + g211,q,i—|—1 > O) and |Zq,p(t0) - fa,i(t0)| S €mopgq -

>0, ¢ . >0, 1>0,0 <A< Apy Q C X,

i w,q,t qu+

Also, let €, , C Q, C Q;

Psamp,q Psafe q

pq > p]-a]-:q > psamp7q > p6717q > ,Omin,l,i,q > p571»q > O’ pev]-:q > pmin71»i+1’q > pszl’q > O’ and

~ N ~ . .
106,1,q > pmin,q > p871,q satzsfy.

Pe,1,q + Mipmax{A, tzl}é‘4,q(@f,;<:5q)) < Pq (101)

Punin 1. = max{Vy(Zai(t + A)) = Vy(Zai(t)) < Pag} (102)
ﬁe,l,q + fV,q (G*M,i,q + Mi,OA) < Iésamp,q (103)

Perq t fvag (E}k\/[,z‘,q + Mi,0A> + f%q(e}k\/l,i,q) < Pq (104)

- d&q(dQ_,;(PAS,Lq)) + L/m, (EMz ¢ M; OA) + L, 10 + by g(a7, (pq))Mderw iq < _eiu,q,i/A (105)
Psamp,q + fV,q(G}k\/l,i,q) < Pq (106)

- d3,q(d2_7; (/58,1,(1)) + L;,H—l (e}k\/l,i-s-l,q + MHLOA) + Liu,i-i-le + CAV4,<1(OA‘1_,¢; (ﬁQ))Mderiv,iJrl,q < 6w,q i-i-l/A

(107)

Psamp,q T fvig (Mi0, D)) < Psafeq (108)

Pfar + ggu,q,i—‘rl < Psafeq (109)

Petq + [vg(MioA + €344 + €maxgs) < Psamp.g (110)

Petg T fva(MioA + €yri g+ €maxg,s) + [vig(€maxgs + €irig) < Py (111)

_6‘3,q<d5,; (ﬁs,l,q)) + L;c,i(Mi,OA + 6?\4,@',(] + Gmam,q,S) + L’/w,’ie + &4,q(di; (ﬁq))Mderiv,i,q < —€ug, 1/A (112)

ﬁsamp,q + fV,q(emax,q,s + 67\/[77;711) S ﬁq (113)

where t,1 is the first sampling time after tpiq, €maxg < €maxg,s M0 Emaxit1 < Emax,gl; Wi €maxgs <

€maxgls nd €ypy 0 < €xpy0vy. Then, if Ta,i(to) € Q5 and z,1(to) € Q5 then T,;(t) € €,

pe 1,q9 pe 1,q° psamp q

and z41(t) € Qp, before an attack or a change in the model occur if tmax < tsip1 and tmax < ta.

Furthermore, Z,;(t) € 2, for at least one sampling period after to and Toip1(t) € Qp,,;., for

psufe q

at least ty, , = floor <pmfe’q€, ps“mﬂ‘”l‘q) sampling periods after toq if ta > tipg.
w,q,i+1
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Proof. The proof consists of six parts. In the first part, recursive feasibility at every sampling time
in which the LEMPC of Eq. 26 is used under the implementation strategy is demonstrated. In the
second part, it is demonstrated that the closed-loop state trajectory is contained in €, for t €
[to, max{A, ty1,}). In the third part, it is shown that the closed-loop state is maintained in €5, .
and the state measurement is maintained within €2, before any model change or cyberattack occurs.
In the fourth part, it is demonstrated that after ¢, if only a model change occurs that is detected
via either the closed-loop state measurement leaving €, or if it is detected via |z, (tx) — 2qu(tx)] >
€maxg,s; T = 1,..., M, 1 =1,..., M, the closed-loop state and state measurement then stay within

Q , for at least t,, sampling times and no attack will be flagged by the updated detection

Psafe,
mechanism (|24, (tx) — 24.1(tk)| > €max,qg1). In the fifth part, it is demonstrated that after there is no
change in the model but there is an undetected attack (whether it occurs when |z, (t) — 241 (t)| <
€max,q,s 18 checked or if it occurs at ¢4, when €nax g5 < |2g.r(taq) — 2.0 (tdq)| < €max,q1), there is at least
one sampling period before the closed-loop state leaves {25 .. . In the sixth part, it is demonstrated
that if there is a change in the dynamic model as well as an undetected cyberattack at ¢4, that lead
to either the state measurement being outside Q; at tiq, €maxgs < [2gr(t) = 2¢1(t)] < €maxqs at
ta,q, or both at t4,, then the closed-loop state is maintained within €2, . for at least one sampling
period.

Part 1. hyr,q implemented in sample-and-hold is a feasible input policy for the LEMPC of Eq. 26
whenever the LEMPC of Eq. 26 is used according to the implementation strategy in Section 3.2.3
by the same proof as for Part 1 for Theorem 1.

Part 2. Fort € [ty, max{A,t,1}), when no attack or model change occurs in that time interval as
stated in the conditions of the theorem, the steps in Ellis et al. (2014b); Oyama and Durand (2020)
for demonstrating boundedness of the closed-loop state in €2, follow. Specifically, integrating the

time derivative of the Lyapunov function along the trajectory of Eq. 8 with Z,;(to) € €25, ,, and

Eqgs. 9a and 9c gives:
Vi(Tai(t)) < Pepg + Migmax{ A, t1}éuq(d4(pg) (114)

for all t € [ty, max{A,.1}), so that if Eq. 101 is satisfied, Z,;(t) € €2, for all ¢ € [to, max{A,t.,}).
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Part 3. In this part, we demonstrate that before any attack or change in the underlying dynamics

occurs, the closed-loop state is maintained within €, C €2, and the state estimate is maintained

within ©, . In this case, either z,.(tx) € €., so that the constraint of Eq. 26f is activated, or
Zq1(te) € Qp, /€., , so that the constraint of Eq. 26g is activated.
Consider first the case that z,1(tx) € Qp,,,. Eq. 26f ensures that Z;,(t) is maintained within

Q

pen, throughout the prediction horizon. Following steps similar to those in Eq. 72 but using

Proposition 8 to note that [z,1(tx) — Zai(te)| < €3, in this case gives:

~

Vo(Zai(t) < V(zg(th) + frg(1Zai(t) = Tai(te) + Zai(ty) = 241 (th)]
(115)

< Peiq+ fvg (67\4,1‘,(1 + Mi,OA)

fort € [tg, trr1) if To () and zq1 (k) € Qp, , - If Eq. 103 holds, then Z,;(t) € Q2 fort € [ty, tri1)

Psamp,q

when z,1(t;) € €2,

Pe,1,q°

To ensure that zy1(tx+1) € Qp, for t € [ty, tg1), Eq. 115 and Proposition 2 give:

~

V(201 (ter1)) < V(@ai (i) + frig(|2g1 (trr) — Tai(tie)|)
(116)

< Pea T v (€hnig T Miod) + fra(€irig)
When Eq. 104 holds, Eq. 116 gives that z,(tx41) € 5, when z,1(t) € Qp, .
Next, we evaluate the case that z,1(tx) € Q,/Q;., . (i.e., Eq. 26g is activated). Using similar

Pe,1,q

steps as in Eqs. 74 and 75 gives:

~ ~

A R 8V9‘ca7it - _ GVz,t —
V@) < ~asgllzaa ) + 222D fi ) 00 ey) ~ P ), a0, 0)
OV (zg1(ty)) - Vo (zg1(th)) -
4 Pl g, 0) — Pt oy ), (1)
Ox Ox
. _ _ _ OV (zga (t
< g (2 (06)) - Lyl s1) = Fas(b)  Fut) = 20 (10)| + L+ | 202 (0)
< —Gi3,q(G,9(Ps,1.0)) + L (€hrig T MinA) + Liy 30 + g (654 (Pg)) Materiv,ig
(117)
If the condition of Eq. 105 holds, then:
. . e (t—t
0ifuslt) < Vy(rastt) - 2570 4 e ) (118)
so that when 2,1 (tx) € Qp, /.., V,(Zq.(t)) decreases over the subsequent sampling period. Since

ﬁe,l,q > ,55,141, Zq71(tk) - Qﬁq/Qﬁe,l,q only if Zq71(tk) - Qﬁq/Qpﬂsqu. ja,i(tk) is guaranteed to be within
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psamp.e When the conditions of the theorem are satisfied, as demonstrated using a similar proof as

in a similar part of Part 2 of the proof of Theorem 1 and with Eqs. 102, 103, 115, and 118 (i.e.,

regardless of where 7, ;(fx) is located in 2, at ty, since zg1(tr) € Qp,/Qp,.,, 00 Qs DO

Psamp,q ﬁmin,l,i,q7
Tqi(ly) either stays within Q. in the former case by Eqgs. 105 and 117, or it remains within
psampa DY Eqs. 102, 103, and 116). Demonstrating that zq1(tx41) € Q5, when Toi(tk) € Qs

uses similar steps as in Eq. 77 with z,1(t) replacing z(t41) when Eq. 106 holds. Furthermore, Eq. 94
demonstrates that when there is no attack or model change, the condition |z, (t) — 24.:(t)] < €max,q.ss
r=1,...,M,l=1,...,M, always holds when €yaxq < €maxqs (i-€., there will be no false alarms
with this detection threshold).

Part 4. In this part, we demonstrate that after a model change occurs, if there is no attack,
the closed-loop state stays in (2 .. for at least ¢, sampling periods after ¢4, and no attack is

detected after ¢4, (i.e., there are no false alarms under the proposed implementation strategy).

Until ts,i+17 Zi‘aﬂ;(t) e Q;

Psamp,q

and z41(tx) € €, under the implementation strategy of
Section 3.2.3 as proven in Part 3. After t,;11 and at tgq, either: 1) z,:(ta,) € €z, but
|Zgr(tag) — 2qi(tag)| > €maxgs at tag for some 1 € {1,....M}; 2) z,1 ¢ Qp, at tq, but
still |2q,(taq) — 2qi(tag)] < €maxgs for all 7,1 € {1,...,M}; or 3) both z,1(taq) ¢ €5, and
|2q0(taq) — 2qi(taq)| > €maxqs for some r,l € {1,...,M}. In any of these cases, the upper bound
on |zg,(t) — zg(t)| is changed to €mayq, and re-checked, and the worst-case value of V,(Zai1(taq))

is determined from Eq. 107 and Eq. 117 formulated using the ¢ + 1 model. From Proposition 2:

~

Vq(fa,i—H(td,q —A)) < ‘A/q(zq,l(td,q —A)) + fV,q(‘ja,iH (td,q —A) - Zq,l(td,q —A)]) (119)

< pg + fvg(€hrivig)
From the integration of Eq. 79, the worst-case value of V,(Za,1(tx)) is given by Dsamp2.itig =

Pg + fva(€hrivig) + €uqir1>, from which it can be derived from Eq. 79 that there are

ﬂoor((psafe‘q:psamﬂ‘i“‘q)) sampling periods before the closed-loop state leaves ;. . as required,

Ew,q,i+1
following t4,. Finally, Eqs. 94 and 96 demonstrate that if there is no attack and the attack detection
strategy is updated at ¢4, to become |2, ,(t) — 24:(t)] < €maxq1, then no cyberattack will be flagged

after the underlying process dynamics change so that there are no false detections.

Part 5. If there is no model change but an undetected attack occurs at t4, if the attack causes
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neither |2zq, (tx) — 2g(tk)| > €max,g,s DOT Zq1(tk) & 5, then from Proposition 2:

A

Va(Zai(8)) < Vo(z1(t6) + Fra(|Zas(t) = Zaslte) + Tas(te) — 202(tk) + 202(tx) = 201 (tx)])
(120)

< et + frig(MioA + €4 4 + €maxg,s)
for t € [ty tgs1), where 2,0 represents a state estimator that is not impacted by the attack, if

2q1(tk) € Qp, ., leading to:

~

V(21 (tir1)) < Va(@ai(tisn)) + frig(zan (trrn) — 2zg2(tir) + Zg2(test) — Tai(trst)]) (121)

< Petgt f‘ﬂq(Mi,OA + e}k\/[7i,q + €max,q,5) + f‘/,q(emax,q,s + E*M,i,q)

In contrast, if z,1(tx) € Qp,/Qp,.,,, then through similar steps as in Eq. 117, we obtain:

A

Vo(Zai(t)) < —di3g(Gg g (Ps,1.9)) + Ly i Tai(t) — Zai(tr) + Tai(tr) — zg2(tr) + 2zq2(te) — 2q1(tx)|
+ L:vu,ie + d4yq(d1_,;(/3q))Mderiv7i,q

< _d&q(dié(ﬁs,l,q)) + ng,i(Mi,OA + GRLi,q + 6max,qﬁ) + Liu,z‘e + d4yq(d1_,;(ﬁq))Mderiv7ivq

(122)
Vo(zg1(tre1)) < Vo(@ai(trrr)) + frig(lzqn(trer) — Zg2(trrr) + Zg2(ter1) — Taitesa)|)
< ‘A/q(fa,i(tk)) + fvg(€maxygs + E?W,i,q) (123)
< ,asamp,q + fV,q(Emax,q,s + 6?\/[,7;41)
If Egs. 102, and 110-113 hold, this ensures that the closed-loop state stays in ;.. . and the

state estimate stays within €25 . In contrast, if the attack occurs at ¢4, but remains undetected

(i.e., inconclusively detected) and occurs at ¢, = ta, one of several cases occurred: 1) z,1(tx) €
Qoasea/ Yoy DUt (200 (te) — 201 (k)] < €maxgs 2) 2q1(tk) € Q5 and |20 (tk) = Zgu(t)] < €maxgl

but ‘Zq,,ﬂ(tk) — Zq’l(tk)‘ > €max,q,s; OT 3) Zq’l(tk) c Q;

peasea! oy a0 |20, (tr) — 2g1(tr)| < €max,gy but

|2qr (k) — 2¢1(tk)| > €maxqs- In each case, however, because there was no model change, Z,(t;) €

Q according to the proof in Part 3. However, in some of these cases, the implementation

Psamp,q

strategy of Section 3.2.3 dictates that hyr , be used starting at t;, given the above conditions, and
in some of these cases, the LEMPC of Eq. 26 continues to be used. Using similar steps as in

Eqgs. 115-116 indicates that when Eq. 108 holds, Z,;(tx+1) € though there is an undetected

ﬁsafe,q

attack at tx, demonstrated as follows with Eq. 108:
Vi(@as(1)) < Vo(@ai(tr)) + Fra(|Zai(t) — Zau(ti)])

< ﬁsamp,q + fV,q(Mi,OA)

(124)
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Part 6. In this case, we consider that there are both a model change and an undetected attack,
where one of those could occur before the other, or both may occur at the same time. From

e i ] -A . >,
+ —Ew"“”“X}’q ) as the largest possible value of V, at

Eqs. 107 and 79, and given pyrar 1= flump2.it1.q
Zaivt(tipg — A), the worst-case value of V, evaluated along the state trajectory for ¢ € [ty, tps)
when any attack at t; is undetected (whether or not a model change occurs before, after, or at the
same time as the attack) occurs when \21 is increasing at its maximal possible rate in €2, for an
undetected attack given by Eq. 107 with the initial state as far from )5, at that time as it can be,
which is given by pq, + Efw’q,iﬂ. If Eq. 109 holds, then the closed-loop state is still within €, .

after a sampling period after an attack occurs, regardless of whether the model change occurs first

or not. L]

Remark 10. If €}, . > €3, .1 when defined as in Proposition 8, €}, .1 can be set to €, , instead

of to the value in Proposition 8.

3.2.8.3. Detection Strategy 3, Method 2 The second method to be proposed for Detection Strategy
3 takes advantage of the closed-loop stability properties in Part 3 of the proof of Theorem 2 above.
Assumption 2 guarantees that the original state estimator, designed using the ¢-th empirical model,
is able to be used to derive a characterizable upper bound on the worst-case difference between the
closed-loop state and state estimate in the presence of an undetected attack before the model update.
An updated implementation strategy for the second method for Detection Strategy 3 utilizes the two
bounds €max,qs and €max g, but ensures that the closed-loop state is maintained within €2, feu for
iy, time periods after ¢4, regardless of whether an undetected attack or a model change occurred at
taq- If the conditions of Theorem 2 hold, then until ¢;4, the closed-loop state should be maintained

within Q;

Psamp,q

with the state estimate in (2, following the proof of Parts 1-3 of Theorem 2. If
a state estimate is received where z,1(tx) & Qs and/or |zy.(tr) — 24i(tk)] > €max,qs, for some
r=1,...,Mand [ = 1,..., M, then the detection bound for the second condition is changed to
€max,qs and it is checked whether |z, (tx) — 24u(tk)| > €maxqs. If it is, a cyberattack is flagged and
backup strategies are employed. In addition, a cyberattack should be flagged if 2,1 (tx) & Q.. ;...

before t1p 4, since this implementation strategy should maintain the process state within €, .
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(a subset of Q;

pease.,) While maintaining the estimate at ¢; in €2, in the presence of an undetected

Psafe,q

attack after ¢4, and before ¢;p 4, as discussed below. When no attack is flagged with this method,
then at t;p,, instead of using hny 4, the LEMPC of Eq. 26 is updated to utilize a subset €,

Psafe,q,e

of 2,

peasen (2, €y ) in place of Q;, . .

Psafe,q,e

We note that the only differences between what must hold in this case and what has already
been proven in Theorem 2, assuming that the requirements of that theorem hold, are: 1) feasibility
of the LEMPC of Eq. 26 after it is updated at ¢;, as described in the prior paragraph must be
demonstrated; 2) after t4,, if only a cyberattack occurred to cause the first detection bound to

be breached, the closed-loop state would not leave ;.. —before ¢, , time units pass; 3) the state

estimate is maintained within €2,

psaseq AU every sampling time before ¢;p, when there are a model

change, an undetected attack, or both; and 4) the proof of Part 6 of Theorem 2 can be extended
to reflect that t5, sampling periods can be made available after ¢{;, before the closed-loop state
exits ()5 ... under a combined model change and cyberattack. To demonstrate the first point, it
is noted that the proof of Part 1 of Theorem 1 holds for the updated LEMPC formulation after
taq if the conditions of Theorem 2 are met, €25 . . C Xy, py is replaced by psaseq in Eq. 49, the

Lipschitz requirements (e.g., on hyy, 4, derivatives of f/q along model trajectories, and derivatives

of V, with respect to the states) hold in Qpaseqr and if the state estimate always remains within

Qp.0e.q» Which can be guaranteed under some additional conditions clarified below. To demonstrate

the second point, the proof of Part 5 of Theorem 2 can be performed with €, . replaced by

jasesamp.q (asubset of Q; . 3. Q; replaced by Q. ., and ;. used in place of Q5 ,  (where

Qﬁq C Qﬁsafe,q,e C Qﬁsafe,q) if ja,i(td,q) € Qﬁsafe,samp,q and Zq,l(td,q) € Qf?safe,q' In that case, if the
following conditions are added to the requirements of Theorem 2:

ﬁsafe,q,e + fV,Q(E*M,i,q + Mi,OA + 6max,q,l) < ﬁsafe,samp,q (125)

Psafeae + Jva(€rrigq + MioA + maxgt) + [vig(€hrig + Emaxat) < Psafeq (126)

_d3,q(@ié (ﬁs,l,q)) + L;:,i (67\4,1',(1 + M; oA + €max,q,l) + L;u,ie + &47q(é‘i;(ﬁsafe,q))Mderiv,i,q < _€2Z,i,q/A
(127)

ﬁsafe,samp,q + fV,q (emax,q,l + 67\/[71'7(1)) S ﬁsafe,q (128)
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where €/, > 0, then Z,,(t) € Q;

w,i,q Psafe,samp,q

and z,1(tx) € £,

psapeq tOT all times after ¢4, before ¢1p 4.

To verify that this holds, we therefore must define the conditions under which Z,;(ta,q) € Q.. e amp
and 21 (ta.q) € ooy,

Under the assumption that at ¢, = 74, one of the detection bounds is first breached, then one
of several cases have occurred: 1) an undetected attack occurred at t;, or in a sampling period
before it. In this case, Part 3 of the proof of Theorem 2 indicates that z,;(tx—1) € Q5,5 2) a model
change at a time prior to ¢4, but no subsequent cyberattack. In this case, as the detection is first
triggered at tqgq, 24,1(tk—1) € Q5,5 or 3) both an attack and model change have affected the system
prior to or at t4,, either one occurring before the other, or both simultaneously. Again the lack of
detection at a prior sampling time implies zq1(tx—1) € Q5.

In the first case, the cyberattack remains undetected by maintaining z,1(tqy — A) € Q;,, and

this implies that Z,;(ts,) € Q5

Psamp,q

according to the proof in Parts 3 and 5 of Theorem 2. In the
second case, and assuming €3, . < €, , S0 that the case of a model change at or before t_; is

to be considered, Proposition 2 gives:

~

Va(Zaie1 (1)) < Vi(zg1(tee1)) + g Zaist (tee1) — 2g1(te-1)| < Pg + Fra(€hrirng) (129)

If Eq. 107 holds, with similar steps as used for equations Eqs. 107 and 79, the worst-case value
of Vo(Zair1(tx)) in this case is given by pj, + fva(€iriv1q) + €pgiv1- If the following condition is
satisfied:

Pa+ Ivia(€hitrg) T €ugirt < Psafesampa (130)

then i’a,i—l—l (td7q) € Q5

psafesampq- When there is no attack, it can also be demonstrated that 2, (ta,) €

Qp.ase, by using Eqgs. 129 and 130 and Proposition 2 as follows with ¢ = {4,
Va(2g,1(tk)) < Vo(Zaiv1(tn)) + frg(lzg1 (k) — Zasivr (te)])
(131)
< pg+ fV,q(E}kw,iH,q) + glw,q,zurl + fV,Q<E}kV[,i+1,q)
If
Pq + Jva(€rrivig) * Cogivs T fva(€hrivig) < Psafeq (132)

theIl Zq71<td,q) € Qﬁsafe,q'
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In the third case (i.e., a cyberattack and a change in the dynamics of the process both occur),

if it is assumed for simplicity of presentation that L, ., > L ;, L, ;.

1 > Ly sy Miyio > M, and

Maerivit1,q > Maeriv,iq (to avoid the need to present separately whether the model change occurs

before t;_1 or not), Proposition 2 gives:

A

Vo(Zair1 (te-1)) < Val(Zg1 (tr-1))+ Frg([Zasi (Bemt) = Zg2 (tro1)+2q2(te—1) = 2q1 (te—1)| < PaFria(€hr.is1.Emaxa,
(133)
If

_643,q<é‘5,§ (ﬁs,l,q))‘i‘L;c,iH (6?\/[,i+1,q + ]\/[Hl,oA + €max,q,l)+L2y,i+19+‘544,q<5‘17; (ﬁsaf6761)>Mderiv,i+1,q < Ew,iH,q/A
(134)

which is derived in a similar manner to Eq. 117 but for the ¢ + 1 model and accounting for the

possibility of an attack, then the worst-case value of V (Zq.i41(ta,)) is given by p, + fva(€ivig

€max,q.s) T €w,it+1,4 and the worst-case value 5, time units after ¢4, from Eqs. 129, 130, and 79 is

Pq+ fva(€hrivtg T €maxgs) + €wit1q(tng +1). The worst-case value of 2z, 1(ta, + th,) is given by:

~

Vtz(zqal(tID,q» < ‘A/q(:za,i-%l(tlD,q)) + fV,q(|Zq,1(tID,q> - Zq,2(t1D,q) + Zq,2<t1D,q) — Za,i+1 (tID,q)D

(135)
< pgt fV,q(GL,z'-s-l,q + 6max7q75) + g111,%’-&-1,q(th41 +1) + fV7q(€>Jk\/[,z‘+1,q + Emax,q,l)
Therefore, if the following hold:
faq + fV,q(E}k\/l,iH,q + 6max,q,S) + gw,iﬂ,q(th,q + 1) < ﬁsafe,samp,q (136)
ﬁq + fV,q(E}kw,H_l,q + 6max,q,s) + gw,i+1,q(th,q + 1) + fV,q(Ej\/Li_g_Lq + Emax,q,l) < /A)safe,q (137)

then the state estimate at each sampling time and the closed-loop state trajectory are maintained

from 4, to tipq in €2, and €);

Poafen Peafesampqs TESDECtively, even in the presence of a model change,

undetected cyberattack, or both, where ., = floor (psafﬁ-,q_(pq+fV,q(€]v1,i+1,q+ﬁmax,q-,S)+Ew,i+1,q)).

gw.i+1,q

Remark 11. In Method 2 for Detection Strategy 3, because the estimation error remains bounded
after the model change, the attack detection policy makes it certain that if |z, (tk) —2q.1(tk)| > €max.qgis
forr =1,...,M or z4(ty) ¢ Q; (assuming that no further model changes occur until after

Psafe,q

tip,q and the closed-loop state is driven into Qs ., using hnp g1 after tipg), an attack that would
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compromise closed-loop stability 1s flagged with certainty. Thus, despite the consideration in this
work that sensor measurement attacks and model changes cannot be distinguished from the sensor
data, this method indicates that under certain assumptions, there is no need to distinguish them
in order to ensure that the closed-loop state remains in a bounded operating region for some time
after the attack or model change. However, a consideration is that if there is a new model change
before the closed-loop state enters € ., then there may not be much time before the closed-loop

state leaves 1,

peaseq (i-€., the system is not robust to a second model update before To i1 € Q5 ).

This indicates that the time required for the re-identification and for driving the closed-loop state
from € may also be a consideration to investigate during the design of the system to ensure

Psafe,samp,q

that sufficient time 1s expected between model updates to prevent loss of closed-loop stability.

Remark 12. The proofs presented provide a way to guarantee that the closed-loop state is main-

tained within ;

psageq Ul t1p g, regardless of whether an undetected cyberattack on the sensors

caused the closed-loop state measurements to leave €2y, , or whether a change in the underlying dy-
namics caused this. However, for verifying safety at run-time for an autonomous system in the
presence of changes in the underlying process dynamics and potentially also undetected cyberat-
tacks on the sensors further requires that the closed-loop state be driven into € ., and subsequently
safely operated within that region after tip, in either the case that a model was re-identified at
trp, from accurate process data, or that it was re-identified from corrupted data (i.e., data that has
been impacted by an undetected attack on the sensors). To achieve this, Mueriv,it1,4+1 cannot be too

large, as reflected from the fact that when the closed-loop state is initialized in 25, under both

g+17
Detection Strategy 2 and Detection Strategy 3, that variable would need to be sufficiently small to
allow the guarantees of Theorems 1 and 2 to hold. If data used in the model re-identification is
potentially falsified, it must be asked what the conditions are under which that data would prevent
M eriv,it1,4+1 from being too large. One way to begin to consider this is to consider that the model
to be re-identified is chosen from a set of models, each of which has a bounded prediction error.
Sufficient data must be available to distinguish which of these models is most accurate. Further-

more, the data is not arbitrarily bad due to the detection mechanisms utilized (e.g., for Detection

Strategies 2 and 3, the data is only being used to re-identify the model if the attack was undetected,
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implying that there is a bound on how far off the sensor data is from the actual state). Theoreti-
cally, one could evaluate the potential worst-case impact of the falsified data on the model selection
by evaluating what models would be selected from the set of possible models for each possible data
set with data that could be generated within the bounds allowed by the detection strategies, and then
for each of the identified models, evaluate Mgerivit1,4+1- Though perhaps computationally this would
be difficult, it provides insights into the fact that falsified data does not necessarily correspond to a
model that would cause closed-loop stability to be compromised being identified, which is consistent
with simulation results presented in Durand (2020a). It also suggests how stealthy attacks could
be carried out by an attacker who is aware of the model identification algorithm and could seek to
determine whether there are state measurement trajectories that could be provided to the sensors
that could keep the closed-loop state in S .. . until t;p 4 bul then cause the re-identified model to
be insufficient for maintaining closed-loop stability under the LEMPC. However, it may be possible

to evaluate whether these stealthy attacks can occur a priori and then to attempt to evaluate how or

whether they might be mitigated via the control design.

Remark 13. We note that the discussion in Remark 12 provides one of the major motivations for
explicitly considering numerical error in the LEMPC formulation in this work, and differentiating it
from model error. Specifically, the guarantees regarding model re-identification above describe how
far off the new dynamic model right-hand side is from that of the empirical model. However, they
do not describe how far off it would be in the presence of numerical error. Though the traditional
assumption is that they would not be far off in the presence of numerical error, explicitly accounting
for the numerical error as a function of the numerical method used and trading off accuracy with
computation time in the design of a safe and cybersecure operating policy for run-time verification
provides a comprehensive picture of how changing the various parameters involved in the implemen-
tation of the control design should be expected to change the guarantees that can be made. We have
assumed throughout, however, that the results returned by the numerical methods can take any value

(i.e., we have not accounted for finite precision).

Remark 14. From a verification standpoint, tests which would be required to be run for this method
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include evaluating many of the parameters which correspond to the next model to be identified (e.g.,
parameters that depend only on the next model such as those in Eq. 9b, or those which depend on

differences between models including the next model such as Mgeyipit1,q4)-

Remark 15. The proofs have considered sudden changes in the underlying dynamics. One could
attempt to use this method when a gradual change progressively causes the plant/model mismatch
to grow over time. The theoretical results lead to an admittedly conservative Ames et al. (2016)
concept for run-time verification. However, the conservatism of this initial approach allows the
results in Oyama and Durand (2020) developed specifically for nonlinear systems under Lyapunov-

based economic model predictive control to be readily extended to this case.
4. Process Example Demonstration: LEMPC with a Truncated Taylor Series Model

In Oyama et al., simulation results are presented for a continuous stirred tank reactor (CSTR)
under strategies similar to some of those proposed in this work. For example, the process was
simulated under different thresholds on the smaller state estimate-based detection bound used for
Detection Strategy 3 in the presence of plant/model mismatch or sensor measurement attacks. The
conclusion of Oyama et al. based on the simulation studies was that without a theoretical basis
for developing the various parameters in the simulation (e.g., appropriate values of the detection
bounds and different subsets of ;. ), it may be less obvious how to tune all of these parameters
appropriately. Thus, the work in Oyama et al. motivated the theoretical results developed in this
paper. However, it is outside the scope of the present work to develop algorithms for attempting
to obtain control law parameters which meet conditions of the theorems systematically. We there-
fore leave the determination of algorithms for obtaining control law parameters which meet the
requirements in this work to future work, and focus instead in this section on addressing the im-
pact that data-driven modeling and different numerical methods could have on sensor measurement
cyberattacks via a process example.

The process example under consideration is a continuous stirred tank reactor (CSTR) in which

a second-order reaction A — B occurs. The states are the reactant concentration of A (C4) and
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the temperature (7'), where the dynamics are given by:

. F __E_
CA = V(CAQ — CA) - koe RgT C.El (138)
F AHky __5_ Q
T=—(Ty—-T) — e RT(C%2 4 % 139
V( ‘ ) prCyp AT pC v (139)

Here, R, is the ideal gas constant, F is the activation energy, AH is the enthalpy of reaction, and
ko is the pre-exponential constant. The inlet/outlet volumetric flow rate, F', is considered fixed,
as are the liquid density, pr, heat capacity, C,, and liquid volume in the tank, V. The parameter

values are as shown in Table 1.

Parameter Value Unit Parameter Value Unit
% 1 m? Ty 300 K
Cp 0.231 kJ/kg-K ko 8.46 x 10° m?/h-kmol
F 5 m®/h oL 1000 kg/m?
E 5 x 10% kJ /kmol R, 8.314 kJ /kmol-K
AH —1.15 x 10*  kJ/kmol

Table 1: Parameters for the CSTR model of Eqgs. 138-139

The manipulated inputs are the inlet reactant A concentration (Cao, which is bounded as follows:
0.5 < Cyo < 7.5 kmol/m?) and the rate of heat transferred to the system (@, which is bounded as
follows: —5 x 10° < Q < 5 x 10° kJ/h). Vectors of deviation variables for the states and inputs
from their steady-state values, Cys = 1.22 kmol/m?, T, = 438.2 K, Caps = 4.0 kmol/m?, and
Qs = 0 kJ/h, respectively, are 27 = [z, 2] = [C4 T], where Cy = C4 — Cys and T =T — T, and
u? = [u; up] = [Cao Q], where Cyg = Cap — Caps and Q = Q — Q,. An LEMPC is used to control
the process with the objective function:

tp+N =
/ [—koe” FT@ Cy(1)3]dr (140)

tg

Lyapunov-based stability constraints are designed using the quadratic function, ‘7q = 2T Px, where

P = [1200, 5;5,0.1]. The Lyapunov-based controller, denoted by hxr1(z) = [Anr11(z) hnpi2(z)]"

has hyr11(x) = 0 kmol/m? and hyp 12 is governed by Sontag’s control law Lin and Sontag (1991):
LiVa+\/LV2+Lg, VA i ~

SR AR oS MR ACRT S A

hnpig(x) = Lgy Vg ’ A
0, it Ly,V, =0

(141)
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hinrpiz2 1s saturated at the input bounds. f and g represent the vector-valued and matrix-valued
functions that do not and do multiply the inputs, respectively, in Eqgs. 138-139 (g, is the second
column of §). L qu and ngffq are Lie derivatives of VZI with respect to f and go. p1 was selected to
be 300, with p.; = 225. The process state was initialized from z;,;; = [—0.4 kmol/m? 8 K]*, N is
10, and A is 0.01 h.

In the first part of this example, we analyze how plant/model mismatch introduced via numerical
integration techniques in a controller could impact the results of a state measurement cyberattack on
the controller. To do this, we develop two LEMPC formulations: one which numerically integrates
the process model of Eqs. 138-139 using the explicit Euler numerical integration method with an
integration step of 10~ h, and one which uses a truncated Taylor series model as discussed in this
work. We choose to employ three terms in the truncated Taylor series model. Specifically, the

truncated Taylor series model employed was:

Cult) = Calty) + [(é(CAo(tj) —éA(tj))) — ke BT (G (1)) } s ;tfh

(—5 - (zkoe‘%fw@(tj))) Aalti) (—ko—R (TE e‘Rﬁw(éA(tj)f) A(t;)

T(t) =T(t;) + |:(§(TO - T<tj))> - iﬂoew%ﬂw@(”)f i pcigf‘)/] : I!tj)+

2hoAH -5k dC4(t;) F ko AHE — —pfs = e | 4X(t)
( piCp © e 7 Cat )> a <_V ) (PLCPRg(T(tj)>2e G )) dt
(143)

(t—t)?

2

for t € [tj,tj+1), j =k,...,k+ N — 1. To obtain some intuition regarding how close the process
model solutions from the Taylor series and explicit Euler methods are to one another for the same
inputs, both the explicit Euler numerical method and the truncated Taylor series method were
used to numerically integrate the process model from a number of different initial conditions in
the stability region and under a number of different inputs for at least the length of a sampling
period. The results of these studies indicated that over some time horizons under a constant input
profile, the results from the explicit Euler and Taylor series methods were relatively close. For
example, Fig. 1 shows the trajectories of the process of Eqs. 138-139 under the steady-state inputs,

initialized from z;,;; = [-0.4 kmol/m?, 8 K|”, and indicates good agreement of the trajectories.
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Figure 1: Plot of the state trajectories for C4 and T from Eqs. 138-139 determined using explicit Euler (“Explicit
?1}15;”) and Eqs. 142-143 (“Taylor Series”) using the steady-state inputs and initialized from x;,;; = [-0.4 kmol/m3,
Furthermore, a number of different initial conditions in state-space were used with various inputs
(the initial value of C'y was varied between 0 and 4 kmol/m? in increments of 1 kmol/m?® and the
initial value of T was varied between 250 and 500 K in increments of 50 K, discarding any points
in this discretization that were not in the stability region, and employing an input for each of the
Ca—T combinations from a discretization of the input space in which C 4y was between 0.5 kmol /m?
and 7.5 kmol/m? in increments of 3.5 kmol/m® and @ was between —5 x 10° kJ/h and 5 x 10° kJ /h
in increments of 5 x 10° kJ/h). These simulations resulted in 18 different scenarios being analyzed
for each numerical integration technique. The average integral square error between the trajectories
from the two integration methods was evaluated for each initial condition and input combination
over 0.01 h as the sum of the squares of the errors between the trajectories at each 0.0001 h, divided
by 100 (the number of integration steps in a sampling period). The maximum value of the mean
integral square error (scaled by 10*) was 0.1269 and the minimum value was 1.3836 x 1075 among
the points evaluated. Even for the case corresponding to the maximum value of the mean integral
square error in 0.01 h (which occurred with C49 = 0.5 kmol/m?, Q = —5 x 10° kJ/h, and with the
initial condition 7' = 450 K, and C'4 = 1 kmol/m?), relatively good agreement is shown between
the trajectories over 0.1 h, as demonstrated in Fig. 2.

Simulations using the LEMPC with the truncated Taylor series model and with explicit Euler
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— Explicit Euler
0.9 N - - Taylor Series

0 001 002 003 004 005 006 007 008 009 0.1
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0 001 002 003 004 005 006 007 008 0.09 0.1
Time (h)

Figure 2: Plot of the state trajectories for C4 and T from Eqs. 138-139 determined using explicit Euler (“Explicit
Euler”) and Eqs. 142-143 (“Taylor Series”) using the inputs Cap = 0.5 kmol/m3, Q = —5 x 10° kJ/h, and with the
initial condition T' = 450 K, and C'4 = 1 kmol/m?3.

were performed for one hour of operation in IPOPT Wichter and Biegler (2006) with ADOL-
C Walther and Griewank (2009) using C' + + and the code for integrating IPOPT and ADOL-C
from Walther (2010), on an Intel(R) Core i7-7500U CPU at 2.70 GHz, 2.90 GHz with 16.0 GB of
installed RAM (15.9 GB usable) and a 64-bit operating system with an x64-based processor running
Windows 10 Enterprise. The solver indicated that a local minimum was found at each sampling
time. The Lyapunov-based stability constraint with the form in Eq. 26f was enforced at the end

of each sampling period when z(t;) € €,_,, and at the end of each sampling period after the first

Pe,1
otherwise. The plant was also simulated using explicit Euler, but with an integration step of 10~°
h to introduce minor plant/model mismatch even for the case that the explicit Euler method is
used both in the LEMPC and the plant simulation. The input and state trajectories are shown in
Figs. 3-4. The somewhat periodic behavior of the states and inputs results from the plant-model
mismatch that causes the closed-loop state to leave €25 , when it was not predicted that it would
under the computed control action in the LEMPC, resulting in switching between which of the two
Lyapunov-based stability constraints is activated at various sampling times. The truncated Taylor
series approach and the method with Explicit Euler had similar economic performance (i.e., an

integral of the form of the negative of Eq. 140 evaluated over the full hour of operation was 32.516
for the explicit Euler-based LEMPC and 32.606 for the Taylor series method-based LEMPC), but the
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Figure 3: Inputs over one hour of operation under LEMPC’s with the truncated Taylor Series solution (“Taylor”)
compared to the formulation using explicit Euler (“Euler”).

LEMPC using the truncated Taylor series did not require the value of the state at every integration
step within a sampling period to be computed since the Lyapunov-based stability constraint of
Eq. 26f is only enforced at the end of sampling periods.

The results in Fig. 3 indicate that if the trajectories of the state computed using the two
different numerical integration techniques are only slightly different (e.g., Figs. 1-2), the two different
LEMPC’s might compute similar inputs for the process when presented the same state measurement.
If the process is initialized from the same initial condition under two different LEMPC’s, these
initially similar input trajectories may result in similar state trajectories for the process, but if the
inputs are slightly different, they may over time drive the process state to different conditions from
which the state measurements are no longer the same, resulting in the inputs computed potentially
being different or driving the state to different conditions over time than would have otherwise been
the case (Fig. 4). This implies that if the problem formulation within a model predictive controller
is not overly sensitive to slight changes in the process model (e.g., slight changes in the degree of
approximation of the model solution introduced by the numerical integration technique used for
the dynamic model do not introduce large changes in the optimization problem solution), then a
false sensor measurement cyberattack would be likely to cause EMPC’s with different numerical
methods used to develop similar inputs to the process. This is demonstrated, for example, by

performing a cyberattack involving the false state measurement of [C'4 T] = [0.1 kmol/m3 -5 K] on
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Figure 4: States over one hour of operation under LEMPC’s with the truncated Taylor Series solution (“Taylor”)
compared to the formulation using explicit Euler (“Euler”).

both controllers. In this case, both computed approximately the same input to implement on the
process (both LEMPC’s selected Cag = 7.5 kmol/m? and @ = 5 x 10° kJ/h for the first sampling
period of the prediction horizon). Thus, both controllers would operate the same process under this
attack in approximately the same manner for the subsequent sampling period. This suggests that if
an optimization algorithm and problem formulation are not highly sensitive to slight changes in the
constraints and objective function, these algorithms and formulations could cause the same state
measurement cyberattacks to have similar effects on the process when different levels of plant/model
mismatch are present due to numerical integration techniques selected. In addition, the inputs
computed for this false state measurement are at the input bounds, demonstrating that even in
cases where the process models/their numerical integration method accuracies differ significantly,
if the same false state measurement would saturate the inputs in either case, the two different
controllers could still operate the process in a similar manner under the same cyberattack.

The above results suggest that if a data-driven model was instead used in an LEMPC, introduc-
ing plant/model mismatch due to the imperfections of the model, then if the model is sufficiently
close to the model which describes the underlying dynamics, it may be that the use of a data-driven
model compared to the use of a first-principles model would not cause the inputs computed by an
LEMPC with a data-driven model to be sufficiently different from those which would be computed

with a first-principles model even in the face of a sensor measurement cyberattack. To demon-
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strate this, we develop an LEMPC that utilizes a data-driven model. To obtain a rough (and not
optimized) data-driven model for the purpose of this simulation, we focused on a state-space data-
driven modeling strategy to be able to perform a Taylor series approximation of the data-driven
model. Inspired by Brunton et al. (2016b), we suggested 78 potential terms for the model (which
are listed in Tables 2-3) and performed a regression to determine the coefficients of all of these
terms in these tables. The resulting data-driven model was a sum of all of the terms multiplied
by their respective coefficients. Ipopt with ADOL-C was used to perform the regression with a
data set developed in MATLAB by simulating the process from an initial condition equivalent to
(Cys kmol/m® T, + 8 K) under randomly generated inputs from the MATLAB randn function,
seeded with the rng function with an argument of 15, and with means of 0, standard deviations of
1 kmol/m? and 10° kJ/h, and bounds of magnitudes 3.5 kmol/m? and 5 x 10° kJ/h (in deviation
variable form for the inputs) for Cyp and @ respectively, and simulated for 0.1 h over which the
inputs were changed at every 10 integration steps of length 10~* h, and with the initial inputs
of 3.5 kmol/m? and 1 kJ/h in deviation variable form. The regression was unconstrained besides
lower and upper bounds on the decision variables of —10% and 10° respectively (initial guesses of
all decision variables were 0), and the objective function was the sum of the squares of the errors in
the predictions of all states (with those for concentration weighted by a constant of 100 and those
for temperature weighted by a constant of 1). The steady-state inputs for the empirical model
for maintaining the closed-loop state at the operating steady-state noted above are 4.0 kmol /m?
and 102.1 kJ/h. The stability region selected for the original system continued to be selected for
the empirical model under Sontag’s control law developed for the empirical system. Though Ipopt
returned a solution in this case, no attempt was made to make this model-building strategy robust
to noise or to enhance predictive accuracy. Though noise can be present in the process and still
be handled with the proposed method as demonstrated theoretically in Section 3.2.3, noise also
can impact the data-driven model fidelity (e.g., the value of M., ;,). Because the resulting model
provided a sufficient approximation of the actual process dynamics for a sampling period in the ab-
sence of noise and therefore serves to adequately demonstrate the concept that an LEMPC using a

sufficiently accurate model developed from data may compute similar inputs under a certain sensor
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measurement cyberattack as an LEMPC using a first-principles model would, it was decided not to
explore enhancing the data-driven modeling strategy to make it robust to noise in the data from
which it is identified or to consider noise in the data that could lead to the need for a more robust
identification strategy for this example. The resulting data-driven model can be poor at predicting
the value of the state under an input for more than a sampling period; therefore, the LEMPC
using this data-driven model will employ a prediction horizon on 1. For a single sampling period,
the predictions from this model over a sampling period were evaluated in open-loop for a number
of different points in state-space (specifically, for 8536 combinations of Cy4, T, C4o, and @ in the
stability region in state-space, obtained by taking the combinations that result from discretizing
Cao between 0.5 and 7.5 kmol/m® in increments of 1 kmol/m®, @ between —5 x 10° and 5 x 10°
kJ/h in increments of 10° kJ/h, Cys from 0 to 4 kmol/m? in increments of 0.1 kmol/m?, and T
between 250 and 500 K in increments of 10 K, where the initial conditions were in the stability
region). The maximum average integral square error (scaled by 10?) between the predictions using
the actual process dynamics and the empirical process dynamics (both integrated using the explicit
Euler numerical method with an integration step of 10~% h from each of the C4 — T combinations in
the discretization) among the points tested was 4.3014. For the case that generated this maximum
average integral square error (using the initial condition with C'y = 1.4 kmol/m?® and T = 480 K,
under the inputs Cyp = 7.5 kmol/m? and Q = 5 x 10° kJ/h), the trajectories of the actual and
empirical models over a sampling period are shown in Fig. 5; even with the error in the model for
this case, the general trend of the state trajectories with both models appears to be in a similar
direction.

To explore the concept in this work of using a Taylor series approximation of a data-driven
model, we used three terms in the Taylor series expansion. Whereas the terms in the Taylor series
were derived analytically in Eqgs. 142-143, with the large number of terms in the data-driven model
(78 terms), it was deemed preferable to estimate the derivatives using centered finite differences
with the offset in each variable as it is increased or decreased set to 107°. When three terms are
included in the Taylor series expansion as in Eqs. 142-143, the largest value of the average integral

mean-square error (scaled by 10?) between the empirical model’s dynamics integrated using Explicit
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Figure 5: Comparison of state predictions under the data-driven and actual process models integrated using Explicit
Euler with an integration step of 10~* h from the initial condition with C4 = 1.4 kmol/m® and T' = 480 K, under
the inputs Ca9 = 7.5 kmol/m? and Q = 5 x 10° kJ/h.

Euler with an integration step of 107* h and that of the Taylor series for the empirical model was
1.99 (using the same discretization with 8536 C'y — T' combinations as mentioned above). This
corresponds to the offset over a sampling period depicted in Fig. 6 and was initialized at C'y = 1.2
kmol/m? and T = 490 K, under the inputs C4o = 0.5 kmol/m?* and @ = —5 x 10° kJ/h.

The EMPC formulation was modified for comparing the results of an EMPC using the explicit
Euler numerical integration method and using the Taylor series version of the data-driven model.
Specifically, in Eq. 140, the economics-based objective function is based on an understanding of the
process dynamics and in particular on the knowledge of the reaction rate of the desired product.
A challenge is, however, that the model from Tables 2-3 may not allow the reaction rate law to
be clearly understood. Therefore, to demonstrate the use of the data-driven model in the EMPC,
we will change the stage cost to the following tracking stage cost to avoid the need to assess the

reaction rate law:

10023 + x5 + uj + 107 u; (144)

With slight abuse of notation, u; and wus in Eq. 144 represent the inputs in deviation form from the
steady-state of the model being used in the EMPC (i.e., either the dynamic model of Eqgs. 138-139
or the data-driven model). The constraints were also changed to eliminate those with the form in

Eq. 26f and to only enforce that with the form in Eq. 26g at the beginning of a sampling period.
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Figure 6: Comparison of state predictions under the data-driven model integrated using Explicit Euler (“Euler”) with
an integration step of 10~ h from the initial condition with C'4 = 1.2 kmol/m® and T = 490 K, under the inputs
Cao = 0.5 kmol/m?® and Q = —5 x 10° kJ/h, against the state predictions from the Taylor series approximation of
the data-driven model including three terms (“Taylor”) and under the same inputs, initialized from the same state.

Simulations using the EMPC’s based on the objective function in Eq. 144 were subjected to a
cyberattack where the sensor measurement provided to the controller was [Cy T] = [0.1 kmol/m?
-5 K] despite that the actual state was ;,;, and the inputs from the two different EMPC’s were
computed using Ipopt and ADOL-C for a sampling period. The state trajectories under the inputs
computed in both cases over the following sampling period are shown in Fig. 7. Even with the
different process models and numerical integration techniques used in the two controllers, the inputs
computed in both cases are very similar (i.e., Ca9 = 3.807 kmol/m? and Q = 1.3759 x 10° kJ/h
for the explicit Euler numerical integration of Eqs. 138-139, whereas Cx9 = 3.809 kmol/m? and
Q = 1.3814 x 10° kJ /h using the Taylor series form of the data-driven model). This indicates that
the cyberattacks caused both LEMPC’s to compute similar inputs and therefore to cause the state
trajectories in the following sampling period to be relatively similar. If the control laws (e.g., models
or numerical integration accuracy) were different enough to find different local optima for the same
state measurement, then potentially the same cyberattack could impact both controllers differently.
However, these results indicate that an attacker wishing to provide false state measurements to a
process may not need to know all of the details of how the code is written (e.g., whether a first-

principles or a data-driven model is used, and the method by which the numerical model solution

is determined) to plan attacks on the control system.
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Figure 7: State trajectories over a sampling period of the system of Eqs. 138-139 under the inputs computed by
EMPC’s with the stage cost of Eq. 144 and using the explicit Euler numerical integration method for the model of
Eqs. 138-139 with an integration step of 10~% h (“Euler”) and the Taylor series form of the data-driven model solution
(“Taylor”) initialized from z;,,;; when the controllers were given a false state measurement [C4 T] = [0.1 kmol/m3 -5

5. Conclusions

This work considers the fact that despite the desire to be able to verify, at run-time, that
an LEMPC maintains safe operation even in the presence of changing dynamics, changes in the
process model may violate a notion of cyberattack “discoverability” and thus could be difficult
to distinguish from attacks. As a result, detection mechanisms from Oyama and Durand (2020)
developed for guaranteeing that the closed-loop state under an LEMPC is maintained within a
characterizable region of operation for defined time periods after attacks in the absence of changes
in the process dynamics may no longer be guaranteed to do so in the presence of dynamics changes
as well. Modified detection strategies with two steps of detection were developed and conditions
under which the closed-loop state remains within a characterizable region of operation for a defined
time period after either undetected attacks or model changes occur were characterized. However,
a challenge with the presented approaches, which we consider a step toward run-time verification
of safety with cybersecurity considered as a part of this, is that they may be difficult to utilize
practically. Developing techniques for automatically obtaining control law parameters that meet

the requirements remains an open direction.
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Coefficient Number Coefficient Value Term

T 1.9996 Cao

2 —71.4819 Ca
— 13000

3 1873.4916 e BgT (Cy)2
—16000

4 —1164.1370 e BT (Cy)?
—19000

5 —6571.2291 e BaT (Cy)?
— 23000

6 —6171.4487 e 9T (Cy)?
—26000

7 —1053.5566 e 9T (Cy)?
—29000

8 —146.256 e BaT (C /)2
—33000

9 713.2755 e BaT (C4)2
—36000

10 614.1902 e BgT (Cy)2
—39000

11 428.4638 e T (Cy)?
—43000

12 265.2503 e BaT (Cy)2
—46000

13 155.5268 e BaT (Cy)2
—49000

14 94.0699 e BgT (Cy)2
—53000

15 44.8221 e BaT (Cy)?
—56000

16 24.6876 e BaT (Cy)2
—59000

17 13.1956 e 9T (Cy)?
—63000

18 5.7048 e T (Cy)?
—66000

19 2.9842 e BaT (Cy)?
—69000

20 1.5408 e BaT (Cy)2
— 13000

21 11237.9225 e BgT 4
—16000

22 —17294.489 e BgT C,
—19000

23 —17849.0201 e BT 4
—23000

24 1597.6678 e BgT 4
—26000

25 2547.4864 e BaT 4
—29000

26 2854.5928 e BT 4
—33000

27 1845.8469 e 9T Cy
—36000

28 1134.8829 e BT 4
—39000

29 696.6413 e BT o4
—43000

30 337.1544 e BT 4
—46000

31 188.4947 e 9T Cy
—49000

32 103.4909 e BT 4
—53000

33 46.5209 e BgT 4
—56000

34 24.4744 e BgT 4
—59000

35 12.8937 e BT 4
—63000

36 5.3838 e B9T o4
—66000

37 2.7827 e BT 4
—69000

38 1.4225 e BT 4

Table 2: Coefficients and terms determined for the data-driven model for the terms on the right-hand side of é’A
(i.e., C'4 equals the sum of all of the terms in this table multiplied by their respective coefficients).

68



Coefficient Number Coefficient Value Term

39 —223.992 1

40 3275.1834 Ca

a1 0.0043
— 13000

42 —152969.9125 e BaT (Cy)2
—16000

43 205377.9155 e 9T (Cy)?
—19000

44 295222.1403 e BaT (Cy)2
—23000

45 234061.6455 e BaT (Cy)?
—26000

46 162756.8662 e BgT (Cy)2
—29000

47 103695.0183 e T (Cy)?
—33000

48 52141.5254 e BaT (Cy)?
—36000

49 29747.4961 e 9T (Cy)?
—39000

50 16492.8407 e BgT (C4)2
—43000

51 7255.0603 e BaT (Cy)?
—46000

52 3838.9721 e BaT (Cy)?
—49000

53 2002.212 e BaT (C4)2
—53000

54 824.9108 e T (Cy)?
—56000

55 419.2063 e BaT (Cy)?
—59000

56 211.1986 e BaT (Cy)2
—63000

57 83.6753 e BgT (Cy)2
—66000

58 41.4646 e BaT (Cy)2
—69000

59 20.4283 e BaT (Cy)2
— 13000

60 —319541.5717 e BT 4
—16000

61 255551.8217 e T Cy
—19000

62 360356.6269 e BT 4
—23000

63 270756.4013 e BaT 4
—26000

64 182069.3959 e T Cy
—29000

65 112987.0472 e BT o4
—33000

66 55245.1489 e BT 4
—36000

67 31012.5856 e BT 4
—39000

68 16951.9104 e BgT 4
—43000

69 7344.6616 e BgT 4
—46000

70 3847.5611 e BaT 4
—49000

71 1989.7173 e BT 4
—53000

72 811.7477 e BT 4
—56000

73 409.9647 e BT 4
—59000

74 205.36 e BT 4
—63000

75 80.8220 e BT 4
—66000

76 39.8696 e BgT 4
—69000

77 19.5618 e g7 Cy

78 —1.1485 T

Table 3: Coefficients and terms determined for the data-driven model for the terms on the right-hand side of T (i.e.,
T equals the sum of all of the terms in this table multiplied by their respective coefficients).
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