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Figure 1: Our proposed fact-evidence reasoning framework (FaEvR) augments the conventional visualization pipeline by explicitly
characterizing the scientific visual communication in terms of decoding facts and associated evidence.

ABSTRACT

Despite the widespread use of communicative charts as a medium
for scientific communication, we lack a systematic understanding
of how well the charts fulfill the goals of effective visual commu-
nication. Existing research mostly focuses on the means, i.e. the
encoding principles, and not the end, i.e. the key takeaway of a chart.
To address this gap, we start from the first principles and aim to
answer the fundamental question: how can we describe the message
of a scientific chart? We contribute a fact-evidence reasoning frame-
work (FaEvR) by augmenting the conventional visualization pipeline
with the stages of gathering and associating evidence for decoding
the facts presented in a chart. We apply the resulting classification
scheme of fact and evidence on a collection of 500 charts collected
from publications in multiple science domains. We demonstrate the
practical applications of FaEvR in calibrating task complexity and
detecting barriers towards chart interpretability.

Keywords: Visual communication, scientific communication,
graphical reasoning, chart interpretation

1 INTRODUCTION

In his iconic TED talk about fourteen years back [31], Hans Rosling,
a Swedish scientist, had opened the door for realizing the hitherto
untapped potential of visualization in publicly communicating data-
driven facts [33]. Fast-forward to the modern era, when, in the times
of a raging global pandemic, charts have been highly consequential
for disseminating data-driven facts and evidence. Even beyond these
two watershed moments in the history of visual communication,
charts have been an integral part of scientific disciplines, via aca-
demic publications or presentations. Despite this widespread use
and impact of communicative charts in advancing public awareness
and scientific discourse, we lack a systematic way of bridging the
gap between what is shown and what to look for in a chart, what
we term as a communication gap, or the missing link, between the
visual representation of data and the mental model of a visualization
consumer. This gap is more profound when visualization designers
and consumers have different backgrounds or expertise levels (e.g.,
scientists communicating a message to the public), but also exists
when designers and consumers have similar expertise levels (e.g.,
scientists communicating a message to their peers via publications).

To bridge this gap, we aim to characterize the cognitive effort re-
quired for decoding communicative charts using a fact-evidence rea-

soning framework (FaEvR). FaEvR is motivated by the need to char-
acterize the starting point of a visualization decoding pipeline (Fig-
ure 1) in terms of the outcomes of scientific data analysis processes.
While terms like messages or insights are used for this purpose,
they often have unclear definitions and are loosely connected to the
downstream perceptual tasks and the high-level cognitive process-
ing stages for consuming the information presented in a chart. Our
framework addresses this missing link by serving the dual purpose of
input and output-oriented reasoning, when decoding and encoding,
respectively, from the perspectives of a visualization consumer and
a designer. As shown in Figure 1, we augment the conventional,
encoding-focused visualization pipeline [13] with the additional in-
put stages of understanding facts and finding evidence, which trigger
the process of reading charts and ultimately, lead to the outcome of
gathering evidence and associating them back with the facts. The
bidirectional arrows in the extended pipeline capture the reasoning
processes while decoding and encoding charts. Decoding effort
can be calibrated in terms of a visual search process for gathering
evidence: a communicative chart could be deemed as most effective,
when the signals representing relevant evidence are maximized and
the noise corresponding to irrelevant evidence can be minimized,
a goal that is analogous to optimizing the signal-to-noise ratio in
data-driven predictions [35]. When we analyze visualization design
using this fact-evidence lens, we can ask questions that can guide
us towards calibrating the degree of interpretability of a chart, like:
are the facts represented true or false?, are the evidence presented
necessary and sufficient for associating them with intended facts?,
and is the chart expressive [27] enough with respect to the presented
evidence?.

For instantiating FaEvR, we collected 500 charts from three sci-
ence domains, like, energy, climate science, and healthcare. We fo-
cus on two main contributions in this paper: i) a theoretical cognitive
processing framework organized around the classification of facts
and evidence in static, communicative charts, and ii) demonstration
of the practical value of the framework in preemptively calibrating
task complexity and in analyzing barriers towards effective visual
interpretation, by applying the framework on our collected scientific
charts.

2 RELATED FRAMEWORKS AND MODELS

In this section, we discuss the frameworks and models related to our
fact-evidence based visual communication pipeline.
Critical thinking and reasoning: We know both from real-world
experience and from empirical evidence that critical thinking is
an essential component of scientific inquiry and education [7, 22].
Charts representing scientific findings should facilitate such inquiry
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by engaging visual consumers in deliberative reasoning [26]. In
terms of our pipeline, this means reasoning about facts, and assimi-
lation and introspection about associated evidence. In the process of
decoding facts and evidence, one can also potentially be engaged in
counterfactual thinking [28] and mentally simulate what-if scenarios.
Task taxonomies: Existing visualization task taxonomies and clas-
sification schemes [4, 10, 34] mostly address interactive, exploratory
data analysis scenarios. Here, the target is often unknown and the
goal is to traverse through the why, what, and how [10] pipeline
of data and visual mappings for deriving hypotheses and findings.
On the other hand, the starting point for decoding scientific charts
are the findings, which we characterize as facts and associated evi-
dences. Our framework, therefore, naturally links to the existing task
taxonomies by providing a way for visualization consumers, often
unfamiliar with the data and domain, to translate their intent to visu-
alization tasks and ultimately decode meaning from the data. The
fact-evidence characterization serves as an abstraction layer [36],
providing incentives to users to perform the necessary perceptual
tasks for gathering evidence and interpreting facts. Analogous to the
knowledge precepts proposed by Amar and Stasko for data analysis
scenario [5], we provide an abstraction bridge for visual communi-
cation. It can be used for a more meaningful analysis of the effects
of visualization design on decoding communicative charts, going
beyond the exclusive focus on encoding principles [18].
Bridging Perception and Cognition: Visualization can be concep-
tualized as a communication channel between the data space and the
mental space of the intended audience [17]. The encoding side of
visualization, based on principles of graphical perception, has been
well studied. Starting from the seminal work of Bertin [9], defining
the building blocks of data visualization, and the work of Cleveland
and McGill [14], providing principles grounded in psychophysics
to make informed decisions in visualization design, researchers
have developed a wealth of knowledge on how to effectively depict
data [8, 11, 23, 25, 37] from the perspective of human perception.
Recently, studies and frameworks have also been proposed for an-
alyzing graphical interpretation and cognition [20, 39], connecting
visualization interpretation with graphical inference. FaEvR com-
plements these empirical approaches by providing a systematization
of the scientific visual communication outcomes and processes. Our
work is similar in spirit to the human cognition framework proposed
by Patterson et al. [30], however, in comparison, FaEvR provides
a more accessible and operational framework to visualization non-
experts like domain scientists and general information consumers
alike.

3 THE FACT-EVIDENCE REASONING FRAME-
WORK (FAEVR)

FaEvR was developed with the intuition that the primary goal of sci-
entific charts, found in publications, presentations, and abundantly
in news stories in the COVID-19 era, is to inform people about facts.
These facts are results of scientific data analysis processes, which
naturally generate both facts and associated evidence. We adopt
the following definition of fact and evidence: the Cambridge dictio-
nary [1] defines fact as “something that is known to have happened
or to exist, especially something for which proof exists, or about
which there is information.” Evidence [1] is defined as “anything
that helps to prove that something is or is not true.” Our framework
aims to formalize these concepts in the context of visual communi-
cation. When presented with a chart, text-based guidance, in the
form of captions, axis labels, annotations, and chart titles, help users
get an idea of the intent of the designer, i.e., the intended fact. Facts
need to be backed up by evidence and users need to find evidence
by reading a chart, leading to them performing a set of visualization
tasks, followed by gathering and association of the evidence with
the facts. This process of gathering evidence and associating them
back with the facts is a hybrid between the classical exploratory

(a)

(b)Figure 2: Descriptive evidence. Simulations of the Earth’s tempera-
ture variations and comparing the results to the measured tempera-
tures [38]. This is an example of descriptive visual evidence, where,
With minimal cognitive effort, a chart consumer can compare the
two measures and associate the evidence with the fact about global
warming.

data analysis and confirmatory data analysis processes [2]. Here,
the complexity of the reasoning tasks is dependent on the nature of
facts and evidence. To instantiate FaEvR, we selected three scien-
tific domains where visualization is an integral part of the scientific
communication process, especially to a non-expert audience, like
the public and policy-makers. For collecting charts, we consulted
with senior domain scientists in each of these domains, like climate
science, healthcare, and energy, who are experts working in national
labs. They pointed us to the main publications in their respective do-
mains which are used for knowledge dissemination purposes. From
these publications, we extracted the charts, along with their captions,
and ended with a sample of 500 charts. Next, we performed thematic
and qualitative analysis [32] for organizing the facts and evidence
based on our classification scheme, as described below.

3.1 Metadata-based Classification of Facts
We use the chart metadata for classifying the facts presented in
communicative charts. A dimension contains discrete values such as
year, geographical locations which are used to categorize, segment,
or group data items. A measure represents a numerically quantifiable
piece of information. Temperature, Sales, Profit, Retention Rate, are
all examples of specific measures. They represent observations about
the data or the calculated values like budget invested for renewable
sources of energy, average cost, profit revenue, GDP growth of a
country per capita.

We categorize the measures according to their number and their
scales by extracting this information from a chart. In the case of
charts where there are more than one measure, we further drill down
according to the similarity of their scales. By scale here we mean
the range of values which suggests the relative size or the extent of
a quantitative attribute. In summary, we classify charts based on
whether they represent a single measure or multiple measures, and
also if, for multiple measures, they are on the same or different scales.
Both of these are important factors for triggering the downstream
tasks, especially when combining multiple measures for drawing an
inference.

Multiple dimensions usually represent different facets of a data
item. We adopt the concept of faceted search [24], traditionally used
for describing interactive user interfaces, for a high-level classifica-
tion of facts, expressed in static charts, based on dimensions and
measures. We consider unifaceted facts as those which depict one
dimension corresponding to given measures in a given visualization.
Multifaceted facts depict more than one dimension or more than
one measure with different scales in a visualization. For example,
the line chart in Figure 3a, which depicts the rise in temperature
involves one dimension (the data from simulations) over a contin-
uous scale of time. Hence we classify this fact as a unifaceted
one. For the stacked bar chart in Figure 3b, multiple measures and
their changes are shown across the time dimension, percentage of
yield measure, a continuous measure, and the range of yield change,
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a.

b.

Figure 3: Inferential evidence. Multiple estimates of people flooded
in coastal areas due to sea level rise (a) [29] and comparison of
projected changes in crop yields across multiple time periods due
to climate change (b) [3]. These are examples of inferential visual
evidence, as decoding these charts requires mental computation and
deductive reasoning for gathering the evidence and associating them
with the presented facts.

which is discretized into two directions of change, and hence can be
treated as another dimension. Since associating multiple dimensions
is needed here, we classify this fact as a multifaceted one. Faceted
search for evidence gathering is a useful concept for linking the
presented facts with the difficulty level of the reasoning and retrieval
tasks, as we will see in the following sections.

3.2 Reasoning-based Classification of Evidence

We take inspiration from reasoning frameworks [15], models of
graph comprehension [12] and concepts of statistical data analy-
sis [2] for classifying the different forms of evidence into two broad
classes: descriptive evidence, where minimal cognitive effort needs
to be spent for decoding a chart and caters to the system 1 type
of quick thinking [26] and inferential evidence, where one needs
to engage in the process of deliberative reasoning and it caters to
the system 2 type of slow thinking [26] for piecing together the
evidence. It should be noted that these are not mutually exclusive
categories of evidence types as in many cases, both types of evidence
can be present in a chart. Descriptive evidence can be considered as
the minimal amount of evidence that substantiates a fact, whereas,
inferential evidence necessitates an added degree of reasoning for
processing the information. To simplify our classification, we avoid
creating a hybrid class of evidence and wherever inferential evi-
dence is present, we classify it as such, with the assumption that
additional descriptive evidence maybe also present for substantiating
the presented fact.
Descriptive Evidence: The concept of descriptive evidence is anal-
ogous to that of descriptive statistics for summarizing properties
of data. Similarly, when an evidence is shown directly without an
additional level of inference required, we classify it as descriptive
evidence. An analogy can also be drawn here with WYSIWYG
editors where one directly observes what one writes. In the case of
charts, the visual evidence directly describes the facts and does not
demand a thoughtful cognitive processing on the user’s end to estab-
lish the fact. Deriving descriptive evidence is related to recognizing
characteristics and relationships which can be identified quickly
either through visual means or using text-based guidance. As shown
in Figure 2, the chart aims to convey the surge in temperature over
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Figure 4: Applying the classification of facts and evidence. A
large proportion of the scientific charts we collected exhibited inferen-
tial evidence, for which the complexity of reasoning tasks is high.

Northern Hemisphere for the past 1000 years. Chart consumers can
readily notice the upward trend and can associate this with the fact
that global temperature has been escalating foran decades.
Inferential Evidence: The concept of inferential evidence is sim-
ilar to that of inferential statistics where one must draw inference
based on the metrics (e.g. the degree of uncertainty) presented about
the data. Similarly, in a chart, inferential evidence requires the
chart consumer to piece together multiple aspects of the informa-
tion, drawing from the visual encoding of dimensions and measures
and using that information to update their mental model about the
presented facts [12]. Inferential evidence demands introspective
and critical thinking as the user tries to understand: how to derive
the evidence, how to link them together, and how they can be as-
sociated with the fact that the chart intends to communicate. This
requires continuously alternating between the perceptual properties
of the visualization and the underlying semantics [6] of the evidence.
Deriving inferential evidence to support the fact requires a greater
amount of cognitive effort on the user’s end, because of two reasons.
First, the nature of the dimensions could be such that there is an
inherent hierarchy, implying that part-to-whole relationships need to
be derived either through visual cues or through mental operations.
As shown in Figure 3a, the fact represented is about the correlation
between people flooded annually and sea-level rise, across different
model types (A1, B1, A2, B2). The model types are hierarchical,
based on the different protection types. In the line chart, while this
is a unifaceted chart with apparently less complexity, one has to
spend some time and effort to understand how much variance there
is across the protection sub-categories and how that variance can be
associated back with the fact. Second, one might need to associate
multiple measures at once, which have different scales and seman-
tics, for drawing conclusions. As shown in Figure 3b, the fact is
about projected changes in crop yield over given years. Here, the
two directions of change need to be associated with the magnitude
percentage of yield projections by estimating the relative heights
of the different stacks. Combining these two pieces of information,
by connecting the end-points of the bar charts and by observing the
diverging colors, is needed to verify the trajectory of the temporal
changes across multiple years and measures. An increasing number
of facets can lead to greater task complexity while deriving infer-
ential evidence, while the presence of prior knowledge about the
fact can mitigate some of those costs associated with the decoding
process.

4 APPLICATIONS OF FAEVR

We developed FaEvR with the vision that the classification of sci-
entific findings in terms of facts and evidence will help both chart
consumers and chart producers, like domain scientists. The latter
can leverage this framework for better design decisions by staying
close to their mental model and not spend their time and effort apply-
ing encoding-based design principles. This addresses two recurring
issues. First, the principles of visual encoding might not fully cap-
ture the goals and nuances of what communicative charts need to
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Figure 5: Illustrating barriers to chart interpretability in simple bar charts. (a) Variation in expected range of annual global CO2 savings from
renewable energy for multiple scenarios and years [21]. The presence of visual cues, like indicators of mean values or missing values help in
reducing the cognitive load for inferential reasoning. In (b), though there are no obvious encoding problems, it requires gathering of evidence
across multiple facets, namely the welfare scenarios and the strategies [21], and across measures like temperature rise, health effects, and
increased welfare. The absence of appropriate visual cues increases cognitive load for the multiway comparison needed for decoding the chart. In
(c), showing global average GDP reduction for alternative stabilization targets and multiple reference scenarios [29], a chart consumer has to
mentally organize the presence or absence of data points and the absence of cues can make it difficult to interpret the fact correctly.

optimize for. Second, scientists themselves might be skeptical of
adopting new techniques or principles owing to the familiarity bar-
rier [16]. FaEvR addresses these by creating an abstraction, using
which domain scientists will be able to better anticipate the conse-
quences of their design choices by preemptive task-level assessment
of the decoding effort and an evaluation of interpretability barriers
in the design outcomes. In this section, we demonstrate how FaEvR
can be operationalized by applying the classification scheme on our
collection of 500 charts (faevr.njitvis.com) across energy, climate,
and healthcare domains.

4.1 Task-level assessment of decoding effort

FaEvR is an extension of the conventional data visualization
pipeline (Figure 1) and it naturally connects the cognitive reasoning
tasks with the lower-level perceptual tasks. Here, we demonstrate
that FaEvR helps calibrate the complexity of cognitive and percep-
tual tasks by using the fact and evidence classifications. To facilitate
this analysis, we group the charts based on four quadrants, derived
from the fact and evidence types (Figure 4). The figure summarizes
two trends we extracted by applying the framework on our collection:
i) moving from unifaceted to multifaceted along the Y-axis of fact
types, the complexity of information retrieval tasks increases and
ii) moving from along the X-axis of evidence types from descriptive
to inferential, the complexity of reasoning tasks increases. The
greater complexity of retrieval tasks is correlated with the larger
number of dimensions and measures encoded in multifaceted visu-
alization, implying greater the need for greater decoding time and
effort. The greater complexity of reasoning tasks is correlated with
the need to spend more time on drawing inferences for extracting
semantics from the encodings and make mental calculations and
reasoning to assimilate the information. Figure 4 also shows that
most charts across the three domains belonged to the inferential
evidence category, implying a high degree of average task complex-
ity for the charts we collected. This categorization also helps us to
distinguish among the sequence of perceptual tasks triggered by
the types of facts and evidence. For the 37.97% charts in the multi-
faceted - inferential quadrant (exemplified by Figure 3b), user will
generally perform the following sequence of tasks. They will start
with the organization of the data values by comparing the different
dimensions with each of the given measures and browse through the
values for making necessary derivations. Here, the time involved
to understand data distribution is correlated with the number of di-
mensions. A high amount of cognitive effort is spent in finding
inferential evidence, by comparing the relationships among multi-

ple facets and then reading the chart by using the inferences from
the previous step. This helps in generating an explanation about
the semantics of these deductions and ultimately, gather evidence
by associating the patterns found in the derived evidence with the
presented fact, thus completing the loop. In contrast, for the 11.83%
charts in the left most unifaceted - descriptive quadrant (exemplified
by Figure 3a), since only one dimension is involved, the user mainly
aims to identify relevant dimensions and patterns related to measures
to find the descriptive evidence. This requires less cognitive effort,
as compared to the multifaceted - inferential quadrant, and the effort
is spent in mainly summarizing and retrieving the facets to read the
chart because mapping is to be done only within the one dimension.

4.2 Understanding barriers to chart interpretability

The quadrant-based classification of charts based on FaEvR helps
discover several chart interpretability barriers, going beyond the
conventional criteria of effectiveness and expressiveness [27] and
the usual decoding suspects, like clutter, over-plotting, etc. The
challenges of task complexity, encountered during the mental com-
putation that one needs to perform for inferring the evidence and
associating the evidence with the fact, can be mitigated by use of
visual cues. Mental computations here involve performing aggrega-
tion operations and performing multi-way comparisons [19] across
different dimensions and measures. Figure 5a illustrates an example
from our collection where visual cues can provide a reference for
facilitating efficient visual comparisons across multiple facets and
associated evidence. However in Figure 5b, there is no visual cue
available to assist users with finding the associated fact and a chart
consumer has to make more inefficient comparisons across the facets
of welfare scenarios and strategies and across multiple measures
with different scales, for deducing the information. From our chart
collection, it was found that around 3% charts in unifaceted - in-
ferential and 13% charts in mutlifaceted - inferential guided user’s
attention towards the relevant details using visual cues. The second
factor influencing the interpretation of visualizations is contextual
explanation. When people try to comprehend a visualization, they
are encountered with the task of forming reasonable inferences from
the visuals. In these cases, the presence of textual information draws
user’s attention towards what needs to be seen and they don’t have
to put extra efforts to understand the graphic as shown in Figure 5a.
From the charts we analyzed, there were around 9% Multifaceted -
Descriptive, 8% Multifaceted - Inferential 7% Unifaceted - Descrip-
tive and 2% Unifaceted - Inferential where having an explanatory
text reduces user’s efforts to decode the given visualization by pro-
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viding them with additional context to grasp the information shown.
Both the visual features and the cognitive efforts impact the user’s
ability to get a sense of the message being conveyed. The third
barrier to chart interpretability we identified is missing informa-
tion potentially leading to incorrect or incomplete derivation of fact
as shown in Figure 5c. When the visualization does not contain
information about all the dimensions and measures represented, it
obstructs the user from forming a complete understanding of the fact.
From the charts we examined, 3% in Multifaceted - Descriptive and
5% from Multifaceted - Inferential were found to contain insufficient
information. This impedes the user from forming a complete sense
of the message being conveyed and establishing a link between the
fact and its corresponding evidence.

5 CONCLUSION

Fact and evidence-based understanding of information are imper-
ative in a world that is getting inundated with misinformation ev-
ery day, especially via social media. Visual communication of
data-driven facts, demonstrated by the widespread use of charts
for creating public awareness about COVID-19, will become an
increasingly important tool for ensuring high-quality information
dissemination and consumption. By grounding visual communica-
tion in a fact-evidence framework, we have laid the foundation for a
deeper understanding of how communicative visualization can be
optimized for inference-based reasoning.
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