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Abstract. Numerical resolution of exterior Helmholtz problems requires some approach to do-
main truncation. As an alternative to approximate nonreflecting boundary conditions and invocation
of the Dirichlet-to-Neumann map, we introduce a new, nonlocal boundary condition. This condition
is exact and requires the evaluation of layer potentials involving the free space Green’s function. How-
ever, it seems to work in general unstructured geometry, and Galerkin finite element discretization
leads to convergence under the usual mesh constraints imposed by G̊arding-type inequalities. The
nonlocal boundary conditions are readily approximated by fast multipole methods, and the resulting
linear system can be preconditioned by the purely local operator involving transmission boundary
conditions.
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1. Introduction. The exterior Helmholtz problem plays an essential role in scat-
tering problems and also serves as a starting point to consider exterior problems in
electromagnetics and problems in other unbounded domains such as waveguides. The
literature contains several techniques to address the challenge that unbounded do-
mains pose for numerical methods. Essentially, these techniques include some combi-
nation of truncating the domain to a bounded one, posing boundary conditions that
enforce (or approximate) the Sommerfeld condition on the newly-introduced bound-
ary, and/or modifying the PDE near the computational boundary to absorb any
reflected waves.

An early paper on finite elements for the exterior problem is [20], where the do-
main is truncated at radius R and an approximate radiation condition is posed at R.
Although the error estimates contain a factor of R−2, it is also possible to carefully
increase the mesh spacing near the boundary, somewhat mitigating the cost of a large
domain. Perfectly matched layers [3] modify the PDE near the boundary of the com-
putational domain, changing the coefficient of the elliptic term to ‘absorb’ outgoing
waves. While such methods allow small effective computational domains, the result-
ing linear systems do not yield readily to standard iterative techniques like multigrid,
although we refer to recent work [44] that poses a domain decomposition strategy to
use a direct solver only near the boundary and standard iterative techniques inside.

There is also considerable literature on nonlocal boundary conditions for do-
main truncation. Following early work [19, 25, 28], one can use a Dirichlet-to-
Neumann (DtN) operator on the artificial boundary to enforce proper far-field behav-
ior. Givoli [15] provides a survey of similar techniques and local conditions as well,
and [16, 22] give techniques for the time rather than frequency domain case. The DtN
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is typically given as an infinite series (truncated in computation) obtained by separat-
ing variables. This limits the shape of the domain boundary, although perturbations
of such domains and use of high-order methods are possible [6, 35, 36]. Careful er-
ror analysis for finite element discretizations can include the effect of truncating the
infinite series as well as polynomial approximation error [33]. Lastly, it is worth not-
ing that boundary integral equation methods solve exterior Helmholtz problems with
optimal complexity (linear in the number of boundary degrees of freedom), however
they are somewhat more difficult to adapt than (volume) PDE discretizing-methods
to specific (and potentially nonlinear) near-surface physics.

In this paper, we propose an alternative nonlocal boundary condition based on
Green’s Theorem [46] that has several important features. Like the DtN approach,
we have an (in principle) exact boundary condition, incurring no error in our domain
truncation. However, because we rely on the free-space Green’s function, there is
(again, in principle) no restriction on the shape of our computational domain. The
layer potentials appearing in our nonlocal boundary condition can be efficiently com-
puted by appropriate fast algorithms such as variants of the Fast Multipole Method [8].
So, although Galerkin’s method would give matrices with dense sub-blocks, we can
quickly compute the matrix-vector product required in a Krylov method. Because
our nonlocal operator involves double integrals over distinct boundaries, we avoid
the need to evaluate any singular integrals. We note that “two-boundary” approaches
have been explored in the time-domain literature [17, 24, 47]. Finally, the local part of
the operator (a standard finite element matrix) serves as an excellent preconditioner
for the system, so that an optimal solver for the local part would give O(n log n)
solution time in unstructured geometry. Our method works equally well in two and
three space dimensions.

Another method combining boundary integral and volumetric discretizations is
due to Johnson and Nédélec [27, 45]. This technique encloses a compactly-supported
volume source in a truncating boundary. Finite elements are used to compute the
solution inside the boundary and a boundary integral method is used on the boundary
to handle the exterior. Our present method bears some similarly, employing the same
kind of operators. However, we require only a single finite element space and do not
introduce additional unknowns on the domain boundary.

In the rest of the paper, we pose the model and its finite element discretization
in Section 2. We describe a preconditioned Krylov system for this system in Sec-
tion 3. Our implementation, which relies on the high-level codes Firedrake [40] and
Pytential [32], warrants some discussion, which is given in Section 4. Finally, we
give numerical results in Section 5.

2. Model and discretization. Let Ωc ⊂ Rd with d = 2, 3 be a bounded domain
with boundary Γ, and Ω = Rd\Ωc its exterior. We consider the classic Helmholtz
exterior problem on Ω

(2.1) −∆u− κ2u = 0,

where κ2 is nonzero wave number. It may be complex (typically with positive real
part), and may take different forms in various application fields such as acoustics or
electromagnetics. We also pose Neumann boundary conditions

(2.2) ∂u
∂n = f
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on the interior boundary Γ. The Sommerfeld radiation condition

(2.3) lim
r→∞

r
d−1
2

(︁
∂u
∂r − iκu

)︁
= 0,

where r is the outward radial direction, must also hold. For computational purposes,
one typically poses the problem only on a truncated domain Ω′. Hence, we impose an
artificial boundary Σ, and let Ω′ denote that subset of Ω enclosed between Γ and Σ.
We assume that these boundaries are such that Ω′ is a Lipschitz domain. An example
is shown in Figure 1:

Ωc

Ω′

Γ Σ

Fig. 1. A 2D example of a truncated domain

A major challenge for volume-discretizing numerical methods is imposing a suit-
able boundary condition on Σ. For example, a simple approach is to impose the
Robin-type condition

(2.4) iκu− ∂u
∂n = 0

on Σ rather than at infinity. Frequently called “transmission” boundary conditions,
this changes the boundary value problem, incurring errors that do not vanish under
mesh refinement, and can create artificial wave reflections at the boundary.

We propose a new approach to the problem that, for constant-coefficient problems
at least, allows highly effective iterative solvers to be combined with effective domain
truncation. Let

K(x) :=

{︄
u(x) = i

4H
(1)
0 (κ|x|) d = 2,

u(x) = i
4π|x|e

iκ|x| d = 3.

be the free-space Green’s function for the Helmholtz equation, where H
(1)
0 (x) be

the first-kind Hankel function of index 0. Recall Green’s formula in the exterior [9,
Thm. 2.5] for the solution u(x) to (2.1):

(2.5) u(x) =

∫︂
Γ

(︁
∂
∂nK(x− y)

)︁
u(y)−

(︁
∂
∂nu(y)

)︁
K(x− y)dy,

for x ∈ Ω′. It is known that Green’s theorem holds in general Lipschitz domains [41].
Substituting in the Neumann boundary condition (2.2), we obtain

u(x) =

∫︂
Γ

(︁
∂
∂nK (|x− y|)

)︁
u(y)− f(y)K (|x− y|) dy

≡ D(u)(x)− S(f)(x),

(2.6)
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for x ∈ Ω′, where

(2.7) D(u)(x) = PV

∫︂
Γ

(︁
∂
∂nK(x− y)

)︁
u(y)dy

is the double layer potential and

(2.8) S(u)(x) =

∫︂
Γ

K(x− y)u(y)dy

is the single layer potential [9].
Now, we can pose an exact nonlocal Robin-type boundary condition as follows.

We use the representation (2.5) to write (suppressing the argument x):

(2.9) iκu− ∂u
∂n = iκ (D(u)− S(f))− ∂

∂n (D(u)− S(f)) ,

so that over Σ,

(2.10) ∂u
∂n = iκu−

(︁
iκ− ∂

∂n

)︁
(D(u)− S(f)) .

2.1. Variational Setting. We let (f, g) =
∫︁
Ω′ f(x)g(x)dx be the standard L2

inner product over the computational domain, and ⟨f, g⟩S that over some portion
S ⊆ ∂Ω′ of its boundary. We also letHs(Ω′) be the standard Sobolev spaces consisting
of L2 functions with weak derivatives of order up to and including s in L2.

When X is some Banach space, ∥ · ∥X refers to its norm. As we use several
different norms throughout our analysis, we explicitly label each such norm to limit
confusion.

We give a variational formulation of the PDE and hence a standard Galerkin
finite element discretization as follows. We take the inner product of (2.1) with any
v ∈ H1(Ω′). Integration by parts and the Neumann boundary condition on Γ give

(2.11) (∇u,∇v)− κ2 (u, v)− ⟨ ∂u∂n , v⟩Σ = ⟨f, v⟩Γ,

and substituting (2.10) in for ∂u
∂n on Σ gives

(∇u,∇v)− κ2 (u, v)− iκ⟨u, v⟩Σ + ⟨
(︁
iκ− ∂

∂n

)︁
D(u), v⟩Σ

= ⟨f, v⟩Γ + ⟨
(︁
iκ− ∂

∂n

)︁
S(f), v⟩Σ.

(2.12)

Hence, the solution to the Helmholtz equation (2.1) on Ω together with (2.2) and (2.3)
satisfies the variational problem of finding u ∈ H1(Ω′) such that

(2.13) a(u, v) = F (v)

for all v ∈ H1(Ω′). Here, the bilinear form

(2.14) a(u, v) = (∇u,∇v)− κ2 (u, v)− iκ⟨u, v⟩Σ + ⟨
(︁
iκ− ∂

∂n

)︁
D(u), v⟩Σ

consists of the standard bilinear form using transmission boundary conditions (2.4)
augmented by nonlocal terms involving a convolution-type integral with a Green’s
function kernel. We write a(u, v) = aL(u, v) + aNL(u, v), where

aL(u, v) = (∇u,∇v)− κ2 (u, v)− iκ⟨u, v⟩Σ,
aNL(u, v) = ⟨

(︁
iκ− ∂

∂n

)︁
D(u), v⟩Σ.

(2.15)
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Similarly, the linear form

(2.16) F (v) = ⟨f, v⟩Γ + ⟨
(︁
iκ− ∂

∂n

)︁
S(f), v⟩Σ

involves the Neumann data on the scatterer together with its appearance in the single
layer potential.

By taking Vh ⊂ H1(Ω′) as any suitable finite element space, we can introduce a
Galerkin finite element method of finding uh ∈ Vh such that

(2.17) a(uh, vh) = F (vh)

for all vh ∈ Vh.
At this point, we pause compare our method to the Dirichlet-to-Neumann map

P . (In the literature, the same operator is sometimes called the Steklov-Poincaré
operator. Generically, S-P operators convert one type of boundary data into another.)
Replacing ∂u

∂n on Σ in (2.11) with P acting on u would give

(∇u,∇v)− κ2 (u, v) + ⟨Pu, v⟩Σ = ⟨f, v⟩Γ.

Compared to (2.14), this appears to only have a single nonlocal term. Moreover, P is
a symmetric elliptic operator from H1/2(Σ) into H−1/2(Σ), so that ⟨Pu, u⟩ ≥ 0 and
a G̊arding estimate readily holds for the bilinear form. Unfortunately, the Steklov-
Poincaré operator is not typically explicitly available, and thus its application requires
the solution of a linear system at additional computational cost, e.g. in the form of a
boundary integral equation solve. Approximating Pu with a Fourier series is possible,
however doing so requires separable geometry.

2.2. Convergence theory. Our argument will rely on showing the boundedness
of the bilinear form a and establishing a G̊arding-type inequality. Using standard
techniques [7], this leads to discrete solvability and optimal a priori error estimates
under a constraint on the maximal mesh size.

We will rely on the trace estimates [7, 21] that since Ω′ is Lipschitz, there exists
a constant C such that

(2.18) ∥v∥L2(∂Ω′) ≤ C ∥v∥1/2L2(Ω′) ∥v∥
1/2
H1(Ω′) ≤ C ∥v∥H1(Ω′)

for all v ∈ H1(Ω′).

Proposition 2.1. If the Neumann data satisfies f ∈ H− 1
2 (Γ), the functional F

defined in (2.16) is a bounded linear functional on H1.

Proof. Linearity is clear from the linearity of integration and differentiation. To
see that it is bounded, let v ∈ H1(Ω) be given. The local portion of F is bounded
thanks to Cauchy-Schwarz and the second trace estimate in (2.18). For the nonlocal
portion, it is known [46] that S(f) ∈ H1(Ω′) and so it has a normal derivative on Σ
in H−1/2(Σ).

The following result implies both the boundedness of aNL on H1 × H1 and is
critical to establishing the G̊arding inequality:

Lemma 2.2. There exists a CNL > 0 such that for all u, v ∈ H1(Ω′),

(2.19) |aNL(u, v)| ≤ CNL ∥u∥L2(Γ) ∥v∥L2(Σ) .
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Proof. First, we simplify the notation by writing the first argument in aNL as

(2.20)
(︁
iκ− ∂

∂n

)︁
D(u) =

(︁
iκ− ∂

∂n

)︁ ∫︂
Γ

K(x− y)u(y)dy,

From the properties of the kernel, K(x − y) is smooth and bounded provided that
∥x− y∥ is bounded below away from zero. Since we have x ∈ Σ and y ∈ Γ, this is the
case as long as the truncating boundary stays away from the scatterer. By writing
the normal derivative in (2.20) as the limit of a difference quotient, passing under
the integral, and appealing to the Lebesgue Dominated Convergence Theorem in the
usual way, we can then write

(2.21)
(︁
iκ− ∂

∂n

)︁
D(u) =

∫︂
Γ

(︁
iκ− ∂

∂n

)︁
K(x− y)dy =

∫︂
Γ

˜︁K(x− y)dy,

where ˜︁K(x− y) is also smooth and bounded for x and y separated. We can write the
nonlocal bilinear form now as

(2.22) |aNL(u, v)| =
⃓⃓⃓⃓∫︂

Γ

∫︂
Σ

˜︁K(x, y)u(y)v(x)dx dy

⃓⃓⃓⃓
≤ K0

∫︂
Γ

u(y)dy

∫︂
Σ

v(x)dx,

and the result holds with with CNL = K0|Γ|1/2|Σ|1/2 by the Cauchy-Schwarz inequal-
ity.

Proposition 2.3. There exists CB > 0 such that for all u, v ∈ H1(Ω′),

(2.23) |a(u, v)| ≤ CB ∥u∥H1(Ω′) ∥v∥H1(Ω′) .

Proof. Let u, v ∈ H1(Ω′). Then

|a(u, v)| ≤ ∥∇u∥L2(Ω′) ∥∇v∥L2(Ω′)

+ κ2 ∥u∥L2(Ω′) ∥v∥L2(Ω′) + κ ∥u∥L2(Σ) ∥v∥L2(Σ) + |aNL(u, v)|,
(2.24)

and the proof is finished by applying the previous Lemma and trace theorem.

The bilinear form a satisfies a G̊arding inequality. That is, shifting a by a multiple
of the L2 inner product renders a coercive bilinear form. For complex Hilbert spaces,
it is sufficient to demonstrate that the real part itself is coercive.

Proposition 2.4. There exists a real number M and an α > 0 such that

(2.25) Re(a(u, u)) +M ∥u∥2L2(Ω′) ≥ α ∥u∥2H1(Ω′) .

Proof. We calculate

(2.26) a(u, u) = ∥∇u∥2L2(Ω′) − κ2 ∥u∥2L2(Ω′) − iκ ∥u∥2L2(Σ) + aNL(u, u),

and note that the real part of this is just

Re(a(u, u)) = ∥∇u∥2L2(Ω′) − κ2 ∥u∥2L2(Ω′) +Re(aNL(u, u))

= ∥u∥2H1(Ω′) −
(︁
κ2 + 1

)︁
∥u∥2L2(Ω′) +Re(aNL(u, u)).

(2.27)

Using Lemma 2.2, the trace inequality (2.18), and a weighted Young’s inequality, we
can bound this below by

Re(a(u, u)) ≥ ∥u∥2H1(Ω′) − (κ2 + 1) ∥u∥2L2(Ω′) − CNL ∥u∥L2(Σ) ∥u∥L2(Γ)

≥ ∥u∥2H1(Ω′) − (κ2 + 1) ∥u∥2L2(Ω′) − CNL ∥u∥H1(Ω′) ∥u∥L2(Ω′)

≥ 1
2 ∥u∥

2
H1(Ω′) −

(︂
κ2 + 1 +

C2
NL

2

)︂
∥u∥2L2(Ω′) ,

(2.28)
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so (2.26) holds with α = 1
2 provided M ≥ κ2 +

3+C2
NL

2 .

Now, following standard techniques for general elliptic (but possibly not coercive)
problems [7], suitably adapted for the complex-valued case, we have a general solvabil-
ity and approximation result. We suppose that the standard abstract approximation
result

(2.29) inf
v∈Vh

∥u− v∥H1(Ω′) ≤ CAh |u|H2(Ω′)

holds and that the solution to (2.1) is in H2(Ω′). We also require that the adjoint
problem of finding w ∈ H1(Ω′) such that

(2.30) a(v, w) = (f, v)

for all v ∈ H1(Ω′) has a unique solution with regularity estimate

(2.31) |u|H2(Ω′) ≤ CR ∥f∥L2(Ω′) .

With these assumptions, the arguments leading to Theorem 5.7.6 of [7] give this result:

Theorem 2.5. Under the above conditions, there exists h0 such that for h ≤ h0,
the discrete variational problem (2.32) has a unique solution uh satisfying the error
estimate

(2.32) ∥u− uh∥H1(Ω′) ≤ C inf
v∈Vh

∥u− v∥H1(Ω′) .

Moreover, with the same assumptions, there exists another C > 0 such that

(2.33) ∥u− uh∥L2(Ω′) ≤ Ch ∥u− uh∥H1(Ω′) .

Note that this is a quasi-optimal result, independent of the particular choice of poly-
nomial spaces. So, it gives error estimates for higher-order approximations as well as
for standard P 1 elements.

Remark 2.6. In particular, following [7], one can show

(2.34) h0 =

(︁
α

2M

)︁1/2
CBCACR

,

and the constant C in (2.32) can be taken as 2CB

α and that in (2.33) as CBCACR.

Remark 2.7. This convergence theory assumes the layer potentials and boundary
integrals are evaluated exactly. These results can be extended to account for approx-
imation to the layer potential along the lines of [34, Thm. 13.6/7] and quadrature in
the bilinear forms using the standard theory of variational crimes [7].

3. Linear algebra. We can effectively solve our variational formulation using
preconditioned GMRES, which is a parameter-free algorithm approximating the solu-
tion of a linear system Ax = b as the element of the Krylov subspace span{Aib}mi=0

minimizing the equation residual. Building the subspace does not require the entries
of A, just the action of A on vectors. Unlike conjugate gradients, GMRES is not
restricted to operators that are symmetric and positive definite.

For most problems arising in the discretization of PDE, the condition number
of A degrades quickly under mesh refinement, and GMRES is most frequently used
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in conjunction with a (left) preconditioner. Mathematically, we multiply the linear

system through by some matrix ˆ︁P−1:

(3.1) ˆ︁P−1Ax = ˆ︁P−1b,

and so the Krylov space then is span{
(︂ ˆ︁P−1A

)︂i ˆ︁P−1b}mi=0.

The overall performance of GMRES typically is determined by two factors –
the cost of building and applying the operators ˆ︁P−1 and A, and the total number
of iterations. One hopes to obtain a per-application cost that scales linearly (or
log-linearly) with respect to the number of unknowns in the linear system, and a
total number of GMRES iterations that is bounded independently of the number of
unknowns. We think of ˆ︁P−1 being an approximation to the inverse of some matrix
P that somehow approximates A. In our case, we will find it useful to let P = AL,
the local part of the operator. Then, applying ˆ︁P−1 might correspond to applying the
inverse of P by a sparse direct method or perhaps just some sweeps of a multigrid
algorithm.

3.1. Structure of the discrete problem. By taking a standard finite element
basis {ϕi}Ni=1 for Vh, the stiffness matrix is

(3.2) Aij = a(ϕj , ϕi) = aL(ϕj , ϕi) + aNL(ϕj , ϕi) = AL
ij +ANL

ij .

The portion AL is the standard sparse matrix one obtains for discretization of the
Helmholtz operator with transmission boundary conditions, while ANL contains the
contributions for the nonlocal terms. To further consider the sparsity of this system,
supposing we use standard P 1 basis functions and have aboutO(Nd) total vertices and
hence basis functions. Then AL has nonzero entries corresponding to vertices sharing
a common mesh element – typically about 6-7 nonzeros per row on two-dimensional
triangulations and 20-30 for three-dimensional tetrahedral meshes when using linear
basis functions. The total storage required for AL will be proportional to the number
of vertices in the mesh.

Explicit sparse storage of ANL, however, can be quite different. Since K involves
a convolution-type integral over Γ,

(3.3) ANL
ij = ⟨

(︁
iκ− ∂

∂n

)︁
K(ϕj), ϕi⟩Σ

will be nonzero whenever ϕj is supported on Γ and ϕi is supported on Σ. Suppose that
we have O(Nd−1) basis functions supported on Σ and the same order on Γ. Then,
ANL will be nonzero except for a dense logical subblock. However, each basis function
associated with Σ will interact with each basis functions associated with Γ, so that
the dense subblock will contain about O(N2d−2) nonzero entries. When d = 2, ANL

has the same order of nonzeros as AL and so conceivably could be stored explicitly.
On the other hand, when d = 3, ANL has O(N4) nonzero entries and so its storage
dominates that of the local part AL. Consequently, a matrix-free application of ANL

that bypasses the storage may be preferred, as described in Section 4.2.

3.2. Operator application. From (3.2), the system matrix A = AL + ANL is
the sum of two matrices corresponding to the local and nonlocal terms in the bilinear
form. Although we could implement a matrix-free action of AL, we opt to assemble
a standard sparse matrix and only apply ANL in a matrix-free fashion as follows.

Recall that ANL = aNL(ϕj , ϕi) = ⟨
(︁
iκ− ∂

∂n

)︁
D(ϕj), ϕi⟩. Any vector x ∈ RdimVh

can be identified uniquely with some vh in the finite element space so that

(3.4)
(︁
ANLx

)︁
i
= aNL(vh, ϕi).
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Note that (ANLx)i will be nonzero exactly when ϕi has support on the exterior
boundary Σ.

In a startup phase, we prepare the boundary geometry according to the algo-
rithm of [50] construct a GIGAQBX tree structure [39, 49, 50, 51] for the approx-
imation of the layer potentials D and S. These allow us to efficiently approximate(︁
iκ− ∂

∂n

)︁
D(vh) at a collection of ‘target’ points. In particular, we can evaluate on

quadrature points on each facet of Σ. Hence, we can loop over the facets on Σ to
integrate against the basis functions supported on that facet and sum the contribu-
tions in the usual way. This gives the action of ANL onto some x, and the full action
of A onto x is computed by summing this with ALx computed by a standard sparse
matrix-vector product.

3.3. Preconditioners. Rather than letting the preconditioning matrix P equal
A itself, we opt for P = AL. If we were to exactly invert AL, then the resulting
system becomes

(3.5)
(︂
I +

(︁
AL

)︁−1
ANL

)︂
x =

(︁
AL

)︁−1
b.

Since AL discretizes an elliptic equation and ANL a bounded operator, this has the
form of a discretization of a compact perturbation of the identity. In [18], GMRES
convergence for a similar situation was shown to be very favorable. We also comment
that preconditioning a system to obtain a compact perturbation of the identity was
used heuristically to good effect for Bénard convection [26].

It is possible to replace the inverse of AL with an approximation, and it is like-
wise possible to use a suitable, spectrally equivalent preconditioner, such as algebraic
multigrid [1, 43, 37]. This gives a preconditioner that scales well with mesh refinement,
but can degrade as the wave number increases [12, 13].

4. Implementation. Our implementation rests on combining the capabilities
of Firedrake [40] for the finite element part of our problem and Pytential [32] for
the evaluation of layer potentials K and S. Krylov solvers and preconditioners are
accessed using PETSc.

4.1. Firedrake. Firedrake [40] is an automated system for the solution of par-
tial differential equations using the finite element method. It allows users to describe
the variational form of a PDE using the Unified Form Language [2], from which it
generates effective lower-level numerical code. We make use of Firedrake for loading
computational meshes, defining the local part of a, and integrating evaluated layer
potentials against test functions. Firedrake can be built supporting complex arith-
metic at every level (definition of bilinear forms down to a complex-enabled PETSc
build).

Firedrake also makes it possible to compare our new method against domain
truncation by means of a perfectly matched layer (PML). We implement the technique
of [4] which uses an unbounded integral as the absorbing function on the PML. This
approach is parameter-free and simple to implement in UFL.

4.2. Pytential. Pytential [32] is an open-source, MIT licensed software sys-
tem that allows the evaluation of layer potentials from source geometry represented by
unstructured meshes in two and three dimensions with near-optimal complexity and
at a high order of accuracy. The main aspects of functionality provided by Pytential
are the discretization of a source surface using discretization tools (through its use
of a sister tool, meshmode [30]) for high-order accurate nonsingular quadrature [52],
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its refinement according to accuracy requirements [50], and, finally, the evaluation of
weakly singular, singular, and hypersingular integral operators via quadrature by ex-
pansion (QBX) [29] and the associated GIGAQBX fast algorithm [49], with rigorous
accuracy guarantees in two and three dimensions [51]. This fast algorithm, can, in
turn make use of FMMLIB [14, 31] for the evaluation of translation operators in the
moderate-frequency regime for the Helmholtz equation.

While the layer potential evaluations in aNL are nonsingular, we nonetheless
benefit from the use of the QBX machinery in the event that source and target surfaces
are chosen to lie in close proximity for increased efficiency of the finite element method.
See [50] for estimates of the error incurred in the evaluation of the layer potential. Our
2D experiments employ higher order discretizations and fine meshes, so we set FMM
order adaptively at each level of the FMM tree to provide a precision stricter than
machine epsilon for double precision. Our 3D experiments are limited to piecewise
linear elements on coarse meshes, so it is sufficient to use an FMM order of 12.

4.3. Representing the linear system in PETSc. At the top level, our code
builds and solves the linear system (3.2). To do this, we have implemented a Python
matrix type in petsc4py [10]. Its Python context builds the bilinear form aL in
Firedrake and assembles AL. It also sets up the layer potential evaluation in Pyten-
tial. The class also provides a multiplication method that multiplies by AL (itself
just a PETSc call) and ANL (which requires more code) and sums the results. It also
provides a handle to AL so that it can be used as a preconditioning matrix. Setting
up a KSP context in PETSc, we can then select from any available Krylov method
and apply any preconditioning technique to AL in the standard ways.

The application of ANL to a vector requires some low-level interaction of Fire-
drake and Pytential beneath their public interfaces, and warrants some explana-
tion. Data transfer between Pytential and Firedrake occurs in two directions. The
transfer of density information from Firedrake to Pytential occurs through (exact)
interpolation within PN from the C0 finite element space used for aL to the discon-
tinuous finite element space on Vioreanu-Rokhlin nodes [48] used for the density in
aNL. This requires some attention to details regarding ordering of degrees of freedom,
vertices [42], and data formats. The transfer of layer potential information back to
Firedrake meanwhile is straightforward by comparison. Pytential is able to evalu-
ate the layer potential with guaranteed accuracy anywhere in the target domain, even
close to the source surface, where this might otherwise require special treatment such
as near-singular quadrature, e.g. by adaptive techniques. Thus we merely evaluate
the layer potential at a set of quadrature points supplied by Firedrake to obtain an
approximate projection of the (analytically) C∞ potential back into the C0 finite
element space.

5. Numerical results. Now, we present some empirical investigation of our
method. We establish the accuracy obtained using finite element approximation us-
ing our nonlocal boundary condition and also consider preconditioning the nonlocal
boundary system. We find that the accuracy obtained using the nonlocal bound-
ary condition compares favorably with that rendered by PML and the transmission
boundary condition. Moreover, when methods are available to accurately approxi-
mate the inverse of AL, we find that it is an excellent preconditioner for the overall
system. However, as the wave number increases, the difficulty of attaining an accurate
approximation increases.

To verify the accuracy of our method in two and three space dimensions, we chose
the unit disc/sphere as a scatterer and use a manufactured solution based on the free-
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space Helmholtz Green’s function. That is, the true solution outside of the scatterer
is taken as {︄

u(x) = i
4H

(1)
0 (κ|x|) d = 2,

u(x) = i
4π|x|e

iκ|x| d = 3.

In two dimensions, we truncated the domain as the 6×6 square centered at the origin,
shown in Figure 2 with the PML region separately highlighted. In three dimensions,
we created an analogous mesh, the unit sphere embedded in [−3, 3]3, with the PML
sponge region taking up [−3, 3]3 \ [−2, 2]3, shown in Figure 3.

Fig. 2. Example 2d mesh (with PML region colored in red)

We compare our approach with transmission boundary conditions and with PML.
Since the PML-based simulation is only accurate in the non-PML region (the blue
region in Figure 2), we evaluate the error only over the non-PML region for all meth-
ods, even though we solve over the entire computational domain. For computations
with piecewise linear approximating spaces, we use affine geometry, although we use
quadratic geometry for computations with higher-order spaces.

We implement both PML and transmission boundary conditions in Firedrake. For
PML, we use unbounded absorbing functions as described in [4]. This form of PML has
no parameters to be fitted, is simple to implement in Firedrake, and has been shown
to recover the exact solution (up to discretization errors) on annular domains [5].
However, other implementations of PML (or equivalent boundary conditions) can
obtain higher accuracy at lower wavelengths [11, 23].
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Fig. 3. Sample coarse 3D mesh with a spherical exclusion at the center of a cube.

We compare the accuracy of transmission boundary conditions, PML, transmis-
sion, and our new approach in 2D for degree 1 approximations in Figure 4. We observe
that the transmission boundary conditions, which incur a perturbation of the PDE,
lead to convergence to a slightly incorrect solution. Both PML and our new boundary
conditions, however, seem to be converging to the true solution at the proper rate of
O(h2) predicted in Theorem 2.5. For small κ, the nonlocal condition seems quite a
bit more accurate, although they give nearly the same error for larger κ. Accuracy
for the 2D case is reported for higher degrees in Figures 5, 6, and 7 respectively. In
these case, we observe the theoretically-predicted convergence rates for our nonlocal
method, although for higher degree our (suboptimal) PML does not obtain full accu-
racy. Our theoretical results apply to 3D as well as 2D, although the computations
are considerably more expensive. As a simple test, we have used linear polynomials on
rather coarse meshes, presenting the results in Figure 8. We see comparable behavior
to that obtained in 2D.

In Figure 9, we study the error obtained versus the number of degrees of freedom
using various orders of approximation. In these computations, we use the domain
Ω′ as [−2, 2]2 minus the unit square and pose the boundary condition (2.10) along
the outer boundary. Then, for each κ ∈ {0.1, 1, 5, 10} and polynomial degrees 1
through 4, we computed the L2 error in the numerical approximation. In addition to
giving faster convergence rates, we also see that higher-order polynomials provide a
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lower error per degree of freedom used. Moreover, no modifications to our method or
boundary condition were required to obtain this higher accuracy.
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Fig. 4. L2 Relative error using degree 1 polynomials with respect to refinement in 2D. A KSP
relative tolerance of 10−12 was used. Since the transmission BC are a perturbation of the actual
boundary value problem, the convergence levels off as the method converges to a slightly incorrect
solution. The PML and nonlocal methods give comparable accuracy.

We recall that our theoretical results apply to 3D as well as 2D, although the
computations are considerably more expensive. As a simple test, we have used linear
polynomials on rather coarse meshes, presenting the results in Figure 8. We see
comparable behavior to that obtained in 2D.

In Figure 9, we study the error obtained versus the number of degrees of freedom
using various orders of approximation. In these computations, we use the domain
Ω′ as [−2, 2]2 minus the unit square and pose the boundary condition (2.10) along
the outer boundary. Then, for each κ ∈ {0.1, 1, 5, 10} and polynomial degrees 1
through 4, we computed the L2 error in the numerical approximation. In addition to
giving faster convergence rates, we also see that higher-order polynomials provide a
lower error per degree of freedom used. Moreover, no modifications to our method or
boundary condition were required to obtain this higher accuracy.

Now, we turn to efficient solution of the linear system, focusing on the two-
dimensional case. In table 1 we see that, even for low wave numbers on coarse meshes
with a piecewise linear discretization, solving the system without a preconditioner is
not scalable.

We want to demonstrate that the local part of our operator (2.4) provides an
effective preconditioner, so that our new method can be seen as comparably difficult
to solve as the local problem. As a first approach, we can compute a sparse LU fac-
torization of AL to apply the inverse as a preconditioner for A. The GMRES iteration
counts are shown in Figure 10. For a fixed κ, we see mild decrease in the iteration
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Fig. 5. L2 Relative error using degree 2 polynomials with respect to refinement in 2D. A KSP
relative tolerance of 10−12 was used.
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Fig. 6. L2 Relative error using degree 3 polynomials with respect to refinement in 2D. A KSP
relative tolerance of 10−12 was used.

count under mesh refinement. Moreover, for a fixed mesh, increasing κ corresponds
only to a slight increase in iteration count. So, if the underlying transmission operator
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Fig. 7. L2 Relative error using degree 4 polynomials with respect to refinement in 2D. A KSP
relative tolerance of 10−12 was used.
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Fig. 8. L2 Error with respect to refinement in 3D using degree 1 polynomials. A KSP relative
tolerance of 10−7 was used. Comparable results to Figure 4 are obtained, although we have not been
able to attain the same mesh resolutions as in 2D.
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Fig. 9. Relative L2 error of our nonlocal method for degrees 1-4 as the number of degrees of
freedom increase. A KSP relative tolerance of 10−12 was used. We used a mesh with no PML
sponge region and Σ = [−2, 2]2.

can be effectively inverted, this will in turn serve as an excellent preconditioner for
the system with nonlocal boundary conditions. Using a direct method on AL, sparse
factorization is typically the dominant cost. Then, each Krylov iteration requires a
sparse matrix-vector product, an FMM evaluation, some quadrature, and solution
with the sparse factors.

At large enough scale, one might wish to (approximately) invert AL with an iter-
ative method rather than factorization. To move in this direction, we used gamg [1], a
PETSc-accessible algebraic multigrid scheme that supports complex arithmetic. This
performed admirably at low wave number (κ ≲ 1), but not beyond this. We were able
to tackle higher wave numbers using the approach in [37]. The Laplacian has eigen-
modes that become increasingly oscillatory as the eigenvalues increase. The indefinite
Helmholtz operator shifts the eigenvalues (with the same eigenmodes) leftward in the
complex plane. Hence, the eigenvalues closest to zero correspond to certain higher-
frequency modes for Helmholtz. The technique in [37] approximates this oscillatory
near null space with plane waves. To apply this method, we wrapped PyAMG [38]
as a PETSc4Py preconditioner. We applied a fixed number of W-multicycles, aug-
mented with plane waves in the same way as in [38], to AL as a preconditioner for the
overall system. Figure 11 shows the results we obtained. The preconditioner is very
effective at low κ but requires more iterations for larger ones. However, we see that
applying more W-cycles within the preconditioner typically leads to a lower outer
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Fig. 10. GMRES iteration counts for a two-dimensional mesh using LU factorization for AL

as a preconditioner for various values of κ. Fixing κ and refining the mesh (right to left) leads to a
slight decrease in iteration count, while fixing a mesh and increasing κ leads to a mild increase in
iteration count.

iteration count. Comparing Figure 11 to Figure 10 suggests that the difference in it-
eration counts follows from the difficulty in obtaining an effective iterative method for
the regular Helmholtz operator rather than new difficulties presented by our nonlocal
boundary condition.

Finally, we devise an experiment to demonstrate our method’s robustness with
respect to the distance between the scatterer boundary Γ and the truncated boundary
Σ. We continue to use the circle of radius 1 centered at the origin as the scatter Γ.
For side length s ∈ {2.25, 2.5, 3.0, 4.0, 5.0, 6.0}, we truncated the domain as the square
[− s

2 ,
s
2 ]

2 take out the circle of radius 1. In Figure 12, we measure the relative L2 error
of our nonlocal method for each domain. We see no pathologies emerging as the
computational domain becomes smaller.
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Fig. 11. Outer GMRES iteration count for various meshes and κ values. We apply PyAMG’s
smoothed aggregation augmented with plane waves to AL as a preconditioner for the total system. At
small wave numbers, we see relatively low iteration counts that are fairly flat under mesh refinement.
As κ increases, however, far more outer iterations are required to obtain convergence.
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Fig. 12. Relative L2 error of the nonlocal method using degree 1 polynomials as κ and the
truncated domain size vary. A KSP relative tolerance of 10−12 was used.
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6. Conclusions and future work. We have proposed a new nonlocal boundary
condition for exterior Helmholtz problems. This condition, based on Green’s formula
and expressed in terms of layer potentials, works in general unstructured geometry
in two and three dimensions. Thanks to a G̊arding inequality, we have optimal finite
element error estimates under standard conditions. The nonlocal terms are amenable
to approximation by fast multipole expansions, and the discrete system can be readily
preconditioned by its local part. In the future, it should be possible to extend the
analysis to handle inexactness in evaluating the boundary terms. Moreover, we antic-
ipate being able to apply this technique to a much broader class of problems such as
exterior curl-curl problems. Additionally, we are working to integrate layer potentials
with Firedrake’s top-level language to make it easier to apply the method.
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[43] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid methods, SIAM, 1987, pp. 73–
130.

[44] A. Safin, S. Minkoff, and J. Zweck, A preconditioned finite element solution of the coupled
pressure-temperature equations used to model trace gas sensors, SIAM Journal on Scientific
Computing, 40 (2018), pp. B1470–B1493.

[45] F.-J. Sayas, The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces,
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h κ Iteration Count

0.5 0.1 88
0.25 0.1 293
0.125 0.1 675
0.5 1.0 89
0.25 1.0 283
0.125 1.0 519

Table 1
Number of iterations to convergence for the nonlocal method with no preconditioner, degree 1

polynomials, a KSP relative tolerance of 10−12, and GMRES restart set to 200. Iteration counts
were higher with a GMRES restart of 100, and much higher with the default GMRES restart of 30.
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