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VC DENSITY OF DEFINABLE FAMILIES OVER VALUED

FIELDS

SAUGATA BASU AND DEEPAM PATEL

ABSTRACT. We prove a tight bound on the number of realized 0/1 patterns
(or equivalently on the Vapnik-Chervonenkis codensity) of definable fami-
lies in models of the theory of algebraically closed valued fields with a non-
archimedean valuation. Our result improves the best known result in this direc-
tion proved by Aschenbrenner, Dolich, Haskell, Macpherson and Starchenko,
who proved a weaker bound in the restricted case where the characteristics of
the field K and its residue field are both assumed to be 0. The bound obtained
here is optimal and without any restriction on the characteristics.

We obtain the aforementioned bound as a consequence of another result on
bounding the Betti numbers of semi-algebraic subsets of certain Berkovich an-
alytic spaces, mirroring similar results known already in the case of o-minimal
structures and for real closed, as well as, algebraically closed fields. The latter
result is the first result in this direction and is possibly of independent inter-
est. Its proof relies heavily on recent results of Hrushovski and Loeser on the
topology of semi-algebraic subsets of Berkovich analytic spaces.
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SAUGATA BASU AND DEEPAM PATEL

1. INTRODUCTION

In this article, we prove a tight bound on the number of realized 0/1 patterns
(or equivalently on the Vapnik-Chervonenkis codensity) of definable families in
models of the theory of algebraically closed valued fields with a non-archimedean
valuation (henceforth referred to just as ACVF). This result improves on the best
known upper bound on this quantity previously obtained by Aschenbrenner et al.
in [ADHT16]. Our result is a consequence of a topological result giving an upper
bound on the Betti numbers of certain semi-algebraic sets obtained as Berkovich
analytifications of definable sets in certain models of ACVF which we will recall
more precisely in the next section.

In order to state our main combinatorial result we need to introduce some prelim-
inary notation and definitions.

1.1. Combinatorial definitions. Suppose V and W are sets, and X C V x W
is a subset. Let my : X — V,mw : X — W denote the restriction to X of the
natural projection maps. For any v € V,w € W, we set X, := WW(ﬁ;l(v)), and
Xy = wv(ﬂ‘;}(w)).

Notation 1.1.1. For each n > 0, we define a function
XXMW;R Vx W™ = {0,1}"

as follows. For w := (wy,...,w,) € W™ and v € V, we set

(XX,V,W;n(U’w))i = {

(Note that in the special case when n =1, X/ XYW is just the usual characteristic
function of the subset X C V x W).

Forw € W™ and o € {0,1}", we will say that o is realized by the tuple (Xu,, ..., Xw,)
of subsets of V if there exists v € V' such that XX’V’W;n(v,zD) = 0. We will often
refer to elements of {0,1}™ colloquially as ‘0/1 patterns’.

0if v ¢ Xy,
1 otherwise.

Finally, we define the function

X XVw N—- N
by
XXMW(n) = wng%;(n card(XXy?Wm(V, w)).
The function Y Xvw is closely related to the notion of VC-codensity of a set
system. Since some of the prior results (for example, those in [ADH"16]) have

been stated in terms of VC-codensity it is useful to recall its definition here.

Definition 1.1.2. Let X be a set and S C 2X. The shatter function of S, Ts :
N — N; is defined by setting

ws(n) = ACX,Ig;?j%A):n card{ANY | Y € S}).

We denote

veds = lim sup 710g(7r3(n)) .
n—oo  log(n)



51

52
53
54
55

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
01
92
93
94

VC DENSITY OF DEFINABLE FAMILIES OVER VALUED FIELDS 3

Given a definable subset X C V' x W in some structure, we will denote
ved(X, V, W) := veds,

where § = {X,|v € V} € 2W. We will call (following the convention in [ADH"16]),
ved(X, V, W), the VC-codensity of the family of subsets, {X,,|w € W}, of V.. More
generally, if ¢(X,Y) is a first-order formula (with parameters) in the theory of some
structure M, we set

ved(9) = vcd(S,M'X‘,Mm),

where S ¢ MIXI x MY is the set defined by ¢. (Here and elsewhere in the paper,
| X| denotes the length of the finite tuple of variables X.) Note also that if M is an
NIP structure (see for example [Sim15, Chapter 2] for definition), then ved () < oo
for every (parted) formula ¢.

The problem of proving upper bounds on ved(X, V, W) of a definable family can be
reduced to proving upper bounds on the function X XVW (see Proposition 3.4.1
below). We will henceforth concentrate on the problem of obtaining tight upper
bounds on the function Y’ XVW for the rest of the paper.

1.2. Brief History. For definable families of hypersurfaces in F* of fixed degree
over a field F, Babai, Ronyai, and Ganapathy [RBGO01] gave an elegant argument
using linear algebra to show that the number of 0/1 patterns (cf. Notation 1.1.1)
realized by n such hypersurfaces in F* is bounded by C - n*, where C is a constant
that depends on the family (but independent of n). This bound is easily seen to
be optimal. A more refined topological estimate on these realized 0/1 patterns (in
terms of the sums of the Betti numbers) is given in [BPR09], where the methods
are more in line with the methods in the current paper.

A similar result was proved in [BPRO5] for definable families of semi-algebraic sets
in R*, where R is an arbitrary real closed field. For definable families in M*, where
M is an arbitrary o-minimal expansion of a real closed field, the first author [Bas10]
adapted the methods in [BPRO5] to prove a bound of C - n* on the number of 0/1
patterns for such families where C' is a constant that depends on the family (see
also [JL10]). These bounds were obtained as a consequence of more general results
bounding the individual Betti numbers of definable sets defined in terms of the
members of the family, and more sophisticated homological techniques (as opposed
to just linear algebra) played an important role in obtaining these bounds.

If K is an algebraically closed valued field, then the problem of obtaining tight
bounds on ved(¢) for parted formulas, ¢(X,Y), in the one sorted language of valued
fields with parameters in K was considered by Aschenbrenner et al. in [ADH"16].
They obtained the nontrivial bound of 2|X| on ved(¢) in the case when the char-
acteristic pair of K (i.e. the pair consisting of the characteristic of the field K and
that of its residue field) is (0,0) [ADH"16, Corollary 6.3]. In terms of 0/1 patterns
(cf. Proposition 3.4.1) their result can be restated as saying that for each k£ > 0
and any fixed definable family of subsets of K*, there exists C' > 0 (depending on
the family) such that for all n > 0 the number of 0/1 patterns realized by any n
sets of the family is bounded from above by C - n2*.
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4 SAUGATA BASU AND DEEPAM PATEL

Given that the model-theoretic/algebraic techniques used thus far do not imme-
diately yield the tight upper bound of |X| on ved(¢(X,Y)) for valued fields, it
is natural to consider a more topological approach as in [Basl0]. However, for
definable families over a (complete) valued field, it is not a priori clear that there
exists an appropriate well-behaved cohomology theory (i.e. with the required finite-
ness/cohomological dimension properties) that makes the approach in [Bas10] fea-
sible in this situation. For example, ordinary sheaf cohomology with respect to the
Zariski or Etale site for schemes are clearly not suitable. Fortunately, the recent
break-through results of Hrushovski and Loeser [HL.16] give us an opening in this
direction. Instead of considering the original definable subset of an affine variety
V' defined over K, we can consider the corresponding semi-algebraic subset of the
Berkovich analytification Bgr(V) of V' (see §A.2 below for the definitions). These
semi-algebraic subsets have certain key topological tameness properties which are
analogous to those used in the case of o-minimal structures, and moreover cru-
cially they are homotopy equivalent to a simplicial complex of dimension at most
dim (V). Therefore, their cohomological dimension is at most dim(V"). In particular,
the singular cohomology of the underlying topological spaces satisfies the requisite
properties. Thus, in order to bound the number of realizable 0/1 patterns of a
finite set of definable subsets of V', we can first replace the finite set of definable
subsets of V' by the corresponding semi-algebraic subsets of Bg(V'), and then try
to make use of their tame topological properties to obtain a bound on the number
of 0/1 patterns realized by these semi-algebraic subsets. An upper bound on the
latter quantity will also be an upper bound on the number of 0/1 patterns realized
by the definable subsets that we started with (this fact is elucidated later in Ob-
servation 3.3.1 in § 3.3).

Using the results of Hrushovski and Loeser, one can then hope to proceed with the
o-minimal case as the guiding principle. While the arguments are somewhat simi-
lar in spirit, there are several technical challenges that need to be overcome — for
example, an appropriate definition of “tubular neighborhoods” with the required
properties (see §3.1 below for a more detailed description of these challenges). The
bounds on the sum of the Betti numbers of the semi-algebraic subsets of Berkovich
spaces that we obtain in this way are exactly analogous to the ones in the alge-
braic, semi-algebraic, as well as o-minimal cases. The fact that the cohomological
dimension of the semi-algebraic subsets of B (V') is bounded by dim(V') is one key
ingredient in obtaining these tight bounds.

Our results on bounding the Betti numbers of semi-algebraic subsets of Berkovich
spaces are of independent interest, and the aforementioned results seem to sug-
gest a more general formalism of cohomology associated to NIP structures. For
example, one obtains bounds (on the Betti numbers) of the exact same shape and
having the same exponents for definable families in the case of algebraic, semi-
algebraic, o-minimal and valued field structures. Moreover, in each of these cases,
these bounds are obtained as a consequence of general bounds on the dimension of
certain cohomology groups. Therefore, it is perhaps reasonable to hope for some
general cohomology theory (say for NIP structures which are fields) which would
in turn give a uniform method of obtaining tight bounds on VC-density via coho-
mological methods. More generally, it shows that cohomological methods can play
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VC DENSITY OF DEFINABLE FAMILIES OVER VALUED FIELDS 5
an important role in model theory in general.

As a consequence of the bound on the Betti numbers (in fact using the bound
only on the 0-th Betti number) we prove that ved(¢(X,Y)) over an arbitrary alge-
braically closed valued field is bounded by |X|. One consequence of our methods
(unlike the techniques used in [ADH"16]) is that there are no restrictions on the
characteristic pair of the valued field K.

Finally note that in [ADHT16] the authors also obtain a bound of 2|X| — 1 on
ved(4(X,Y)), over Qp, where ¢ is a formula in Macintyre’s language [Mac76].
However, our methods right now do not yield results in this case.

Outline of the paper: In §2 we first introduce the necessary technical background
(in §2.1), and then state the main results of the paper, namely Theorems 1 and 2,
and Corollary 1 (in §2.2). The proofs of the main results appear in §3. We first
give an outline of the proofs in §3.1. We next prove the main topological result of
the paper (Theorem 2) in in §3.2, and prove Theorem 1 and Corollary 1 in §3.3 and
§3.4 respectively.

In order to make the paper self-contained and for the benefit of the readers, we
include in an appendix (Appendix §A) a review of some very classical results about
singular cohomology (in §A.1), as well as much more recent ones related to semi-
algebraic sets associated to definable sets in models of ACVF proved by Hrushovski
and Loeser [HL16] (in §A.2). These results are used heavily in the proofs of the
main theorems.

2. MAIN RESULTS

2.1. Model theory of algebraically closed valued fields. In this section, K
will always denote an algebraically closed non-archimedean valued field, and the
value group of K will be denoted by I'. Let R := K[Xy,...,Xy] and AY =
Spec(R). Given a closed affine subvariety V' = Spec(A) of AY = Spec(R) and an
extension K’ of K, we will denote by V(K’) C AX(K') the set of K’ points of V.

We denote by L the two-sorted language
Ok, 1k, + k6, X ks | - |+ K = T'U{0r}, <r, xr),

where the subscript K denotes constants, functions, relations etc., of the field sort
and the subscript I' denotes the same for the value group sort. When the context
is clear we will drop the subscripts. The constant Or is interpreted as the valuation
of 0 (and does not technically belong to the value group).

Now suppose that ¢(X1,---,X,) is a quantifier-free formula with parameters in
(K;T U{0r}) in the language £ with free variables only of the field sort. Then, ¢
is a quantifier-free formula with atoms of the form |F| < A - |G| where F,G € R
and A € T'U{0r}. The formula ¢ gives rise to a definable subset of AY and, in
particular, ¢ defines a subset of A¥(K’) for every valued extension K’ of K. We
will denote the intersection of this subset with V' by R(¢, V), and by R(¢, V)(K’)
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6 SAUGATA BASU AND DEEPAM PATEL
the corresponding subset of V(K”).

Let ¢ be a formula with parameters in (K;I' U {Or}) in the language £ with free
variables only of the field sort. Note that every such formula is equivalent modulo
the two-sorted theory of (K;T'U{Or}) to a quantifier-free formula (see for example
[HHMO08, Theorem 7.1 (ii)]). Because of this fact, we can assume without loss of
generality in what follows that ¢ is a quantifier-free formula, and is thus a quantifier-
free formula with atoms of the form |F| < A- |G| where F,G € R and A € TU{0r}.

2.2. New Results. Our main result is the following.

Theorem 1 (Bound on the number of 0/1 patterns). Let K be an algebraically
closed valued field with value group I'. Suppose that V C A% and W C A% are
closed affine subvarieties and let

<;§(X1,...,XN;Y1,...,YM)

be a formula with parameters in (K;TU{0r}) in the language L (with free variables
only of the field sort). Then there exists a constant C = Cy v,w, such that for all
n > 0,
k
Xr(o.(vsw) ) ).w (o) (M) = €1,
where k = dim V.

As an immediate corollary of Theorem 1 we obtain the following bound on the
VC-codensity for definable families over algebraically closed valued fields.

Corollary 1 (Bound on the VC-codensity for definable families over ACVF). Let
K be an algebraically closed valued field with value group T. Let ¢(X,Y) be a
formula with parameters in (K;T'U{0r}) in the language L. Then,

ved(¢) < |X].

Theorem 1 will follow from a more general topological theorem which we will now
state. Before we state the theorem, we recall some more notation.

We now assume that K is an algebraically closed complete valued field with a
non-archimedean valuation whose value group I is a subgroup of the multiplicative
group Rsg.

Given an affine variety V' as before, Hrushovski-Loeser [HL16] associate to V' a
locally compact Hausdorff topological space, denoted by Bg (V). More generally,
they associate a locally compact Hausdorff topological space Bgp(X) to any defin-
able subset X C V which is functorial in definable maps. In the the present setting,
Br(V) can be identified with the Berkovich analytic space associated to V' and has
an explicit description in terms of valuations. We refer the reader to Appendix A.2
for a brief review of this construction and its main properties.

Notation 2.2.1. If V C A¥ is a affine closed subvariety, and ¢ a formula in the
language with parameters in (K;I' U {Or}) in the language £ with free variables
only of the field sort, we will denote R(¢, V') the semi-algebraic subset Br(R($,V))
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VC DENSITY OF DEFINABLE FAMILIES OVER VALUED FIELDS 7

Suppose now that V. C A¥ and W C A are closed affine subvarieties and let
@(+;+) be a formula in disjunctive normal form without negations and with atoms
of the form |F| < A-|G|, F,G € K[X1,..., XN, Y1,...,Yy], A € TU{Or}. Then for
each w € W(K), R(¢(-,w), V) is a semi-algebraic subset of Bg(V).

For w = (wy,...,w,) € W(K)™ and o € {0,1}", we set
(2.2.2) R(o,w) := R(¢o(w),V),

where
do(0) = N\ ol w)n N o, w).
i,0(i)=1 i,0(i)=0
Given a topological space Z, we denote by Hi(Z ) the corresponding i-th singular
cohomology group of X with rational coefficients. We refer the reader to § A.1 for a
brief recollection of the main properties of these cohomology groups. We note that
for Z = R(o,w) these cohomology groups are finite dimensional Q-vector spaces.
Let
bi(R(o,w)) = dimg H' (R (o, w))

denote the corresponding i-th Betti number.

The following theorem, mirroring a similar theorem in the o-minimal case [Bas10],
is the main technical result of this paper.

Theorem 2 (Bound on the Betti numbers). Let K be an algebraically closed
complete valued field with a non-archimedean valuation whose value group T' is
a subgroup of the multiplicative group Rsq. Suppose that V. C A% and W C
A are closed affine subvarieties and let ¢(+;-) be a formula in disjunctive nor-
mal form without negations and with atoms of the form |F| < X - |G|, F,G €
K[Xy,....,Xn,Y1,...,YM),A € TU{Or}. Let dim(V) = k. Then, there exists
a constant C' = Cy v, > 0 such that for all w € W(K)", and 0 <i <k,

> bi(R(o,w)) < CnF

oe{0,1}n

3. PROOFS OF THE MAIN RESULTS

In this section we prove our main results. Before starting the formal proof we first
give a brief outline of our methods.

3.1. Outline of the methods used to prove the main theorems. Our main
technical result Theorem 2 gives a bound, for each i,0 < i < k, and w € W(K)",
on the sum over o € {0,1}" of the i-th Betti numbers of R (o, @). The technique for
achieving this is an adaptation of the topological methods used to prove a similar
result in the o-minimal category in [Bas10] (Theorem 2.1). We recall here the main
steps of the proof of Theorem 2.1 in [Bas10].

We assume that V = RV, W = RM, where R is a real closed field and X C V x W
is a closed definable subset in an o-minimal expansion of R.

Step 1. The first step in the proof is to construct definable infinitesimal tubes
around the fibers Xy, ,..., Xy, -
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Let o0 € {0,1}", and C be a connected component of

() Xu.n [ (V\Xu).

o(1)=1 o(1)=0

One proves that there exists a unique connected component D of the com-
plement of the boundaries of the tubes constructed in Step 1 such that C
is homotopy equivalent to D. The homotopy equivalence is proved using
the local conical structure theorem for o-minimal structures.

As a consequence of Step 2, in order to bound ) _b;(R(c,w)), it suffices
(using Alexander duality) to bound the Betti numbers of the union of the
boundaries of the tubes constructed in Step 1.

Bounding the Betti numbers of the union of the boundaries of the tubes
is achieved using certain inequalities which follow from the Mayer-Vietoris
exact sequence (cf. Properties A.1.1 (5)). In these inequalities only the
Betti numbers of at most k-ary intersections of the boundaries play a role.
One then uses Hardt’s triviality theorem for o-minimal structures to get
a uniform bound on each of these Betti numbers that depends only on
the definable family under consideration i.e. on X,V , and W. Thus, the
only part of the bound that grows with n comes from certain binomial
coefficients counting the number of different possible intersections one needs
to consider.

The method we use for proving Theorem 2 is close in spirit to the proof of Theorem
2.1 in [Bas10] as outlined above but different in many important details. For each of
the steps enumerated above we list the corresponding step in the proof of Theorem

2.
Step 1’.

Step 2'.

Step 3.

Step 4'.
Step 5.

We construct again certain tubes around the fibers and give explicit de-
scriptions of the tubes in terms of the formula ¢ defining the given semi-
algebraic set ﬁ(o,u’)). The definition of these tubes is somewhat more
complicated than in the o-minimal case (see Notation 3.2.2). The use of
two different infinitesimals to define these tubes is necessitated by the sin-
gular behavior of the semi-algebraic set defined by |F| < A|G| near the
common zeros of F' and G.

The homotopy equivalence property analogous to Step 2 above is proved
in Proposition 3.2.6, and the role of local conical structure theorem in the
o-minimal case is now played by a corresponding result of Hrushovski and
Loeser (see Theorem A.3 below).

We avoid the use of Alexander duality by directly using a Mayer-Vietoris
type inequality giving a bound on the Betti numbers of intersections of
open sets in terms of the Betti numbers of up to k-fold unions (cf. Propo-
sition 3.2.47).

This step is subsumed by Step 3'.

Finally, instead of using Hardt’s triviality to obtain a constant bound on
the Betti numbers of these ‘small’ unions, we use a theorem of Hrushovski
and Loeser which states that the number of homotopy types amongst the
fibers of any fixed map in the analytic category that we consider is finite
(cf. Theorem A.4 below).

We apply Theorem 2 directly to obtain the VC-codensity bound in the case of the
theory of ACVF (using Observation 3.3.1). One extra subtlety here is in removing
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the assumption on the formula ¢ (which occurs in the hypothesis of Theorem 2).
Actually, in order to prove Corollary 1 in general it suffices only to consider ¢ of
the special form having just one atom of the form |F| < A- |G| or |F| = X - |G|.
This reduction from the general case to the special case is encapsulated in a combi-
natorial result (Proposition 3.3.2). With the help of Proposition 3.3.2, Corollary 1
becomes a consequence of Theorem 2 and Observation 3.3.1.

We now give the proofs in full detail. In the next subsection (§3.2) we give the
proof of Theorem 2. In §3.3, we show how to deduce Theorem 1 from Theorem 2.
Finally, in §3.4 we show how to deduce Corollary 1 from Theorem 2.

3.2. Proof of Theorem 2. In the following, K will be a fixed algebraically closed
non-archimedean (complete real-valued) field and V is an affine variety over K. We
shall freely use the results of Hrushovski and Loeser [HL16] on the spaces Bg(X)
associated to definable subsets X C V. For the reader’s convenience, an exposition
(with references) of the results we require below is provided in §A.2. We shall also
make use of some standard facts about singular cohomology of topological spaces;
we refer the reader to §A.1 for a review of these facts.

Notation 3.2.1. (closed cube) For R € R,R > 0, and N > 0, we denote by
Cubey (R) the semi-algebraic subset R(¢, AY), where

b=\ IXi<R,
1<i<N

and AY = Spec(K[X1,---,Xy]) is usual affine space. Notice that Cubey(R) is
a closed topological space since the |X;| are continuous functions (see A.2.2(4),
A.2.2(5)). Moreover, it is a compact topological space (see A.2.2(6)). If V =
Spec(A) C A¥ is a closed subvariety, then we set Cubey (R) := Cubey (R)NBg (V).
Note that this a closed semi-algebraic subset of Bp(V).

Notation 3.2.2. (Open, closed (g,&’)-tubes) Suppose ¢(+) is a formula in disjunc-
tive normal form without negations and with atoms of the form |F| < A - |G|, with
F,G e K[Xq,...,Xn] and A € Ry :=R>q. We denote by

¢°(5 T, 1)
the formula obtained from ¢ by replacing each atom |F| < A- |G| with A\, G # 0 by
the formula
(IFl<X-T)-1G) Vv ((IF| <T") A(IG] < T),
and each atom |F| < X-|G| with A =0 or G = 0 by the formula
|F| <T,
where T, T’ are new variables of the value sort. Similarly, we denote by
¢° (5T, T")
the formula obtained from ¢ by replacing each atom |F'| < X - |G| by the formula
(IFI<A-T)- GV ((IF| < T) A (G < T),

if A\, G # 0 and by the formula
|F| <T,
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10 SAUGATA BASU AND DEEPAM PATEL
if A\=0 or G =0. Here again T,T" are new variables of the value sort.

For € > 1,/ > 0, and V a closed subvariety of AY we set
Tube}, ,(e,€) = R(¢°(:i¢,€"), V),
Tubey, 4(¢,€’) == R(¢°(-;e,€), V).
For each R > 0, we set

(3.2.3) Tubey, 4(e,€’, R) := Cubey (R) N Tubey, 4(¢,€'),
(3.2.4) Tubey, 4(e,€’, R) := Cubey (R) N Tubey, 4(¢,€’).
We set

TubeComply, 4(¢,€’, R) := Cubey (R) — Tubey, 4(¢,€’, R).
Notice that by definition, Tubey, ,(¢,&’, R) (resp. TubeComply, 4(g,&’, R)) is an
open (resp. closed) subset of Cubey (R). Moreover, both of these are semi-algebraic
as subsets of Bg(V).

Finally, we set
TubeBoundaryy, 4(e, ', R) := Tubey, 4 (¢, &', R) N TubeComply, 4(¢, &', R).

Remark 3.2.5. Note that our notation for the ‘tubes’ above is structured so that
a superscript o (resp. c¢) in the notation indicates that the corresponding tube is
open (resp. closed).

The next proposition is the key ingredient for the proof of Theorem 2.

Proposition 3.2.6. Let V C AY and W C A¥ be closed affine subvarieties. Let
o(,+) be a formula in disjunctive normal form without negations and with atoms
of the form |F| < X\-|G| where F,G € K[X1,...,XnN,Y1,...,Yym]|. For each w €
W(K)", o € {0,1}", and for all sufficiently large R > 0 and 6,8 ,e,&' € Ry
satisfying, 0 < d — 1 < ¥ e -1k «1,

H*(R(o,w)) = H*(S,(3,6,¢,€', R)),
where Sy (0,8’e, &', R) is defined by
S,(0,8",e,e',R) := m Tubey, 4. ;) (6,0, R)N ﬂ TubeComply, 4. ) (€, €', R),
i,0(i)=1 i,0()=0
and R(o, @) is as in (2.2.2).
The proof of Proposition 3.2.6 will use the following lemma.

Lemma 3.2.7. With notation as in Proposition 3.2.6:

1. For every fixzed &' e,e', R € Ry, there exists §o = 60(d',e,€', R) > 1 such that for
all 1 <ty <9 < &y, the inclusion map Sy(t1,d',¢,€’, R) < Sy (t2,8,e,&', R) is
a homotopy equivalence.

2. For every fized €,&', R € Ry, there exists 6, = §(e,&’, R) > 0 such that for all
0 <ty <t <4, the inclusion map

() So(t:th, 6.6, R) = () So(t, th,e, €', R)
t>1 t>1
i$ a homotopy equivalence.
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3. Let
S! (e,e',R) := ﬂ Sy(t,t' e, R).
£>1,6/>0
For every fized ', R € Ry, there exists ¢9 = eo(¢’,R) > 1 such that for all
1 < s1 < 89 < gg, the natural inclusion
S! (s2,€',R) <= S! (s1,¢', R)

18 a homotopy equivalence.
4. For every fited R € Ry, there exists e = €((R) > 0 such that for all 0 < s} <
sh < &, the natural inclusion

U S’ (s, 85, R) — U S! (s, 81, R)
s>1 s>1

is a homotopy equivalence.
5. The following equality holds:

R(o,w) N Cubey(R) = ) S,(s,5, R).
s>1,s">0

6. There exists Ry > 0, such that for all R > Rg, the natural inclusion
R (o, w) N Cubey (R) < R(o, ®)
18 a homotopy equivalence.

Remark 3.2.8. (1) The subsets S,(t,¢',¢,¢e’, R) form an increasing sequence in
tie. if t1 < to, then S,(t1,d",e,¢', R) C Sy(t2,d’,¢,¢', R). The analogous
assertion also holds for S, (4,t',e,&’, R) (with ¢’ replacing t).

(2) The subsets S, (4,8, s,&’, R) form a decreasing sequence in s i.e. if s1 < s,
then S, (0,8, s2,¢", R) C S,(8,¢,81,¢’, R). The analogous assertion also
holds for S,(d,¢,e,5', R).
(3) Then sequence of subsets S, (9,9, &,¢’, R) is increasing in R.
Proof of Lemma 3.2.7. We prove each part separately below.
Proof of Part (1). Let
SL(&' e, ', R) = U Sy (t, 8 e,&', R).
t>1

First observe that S1(§’,¢,¢’, R) is a semi-algebraic subset of Bg(V). To see this

let

Doge(3T)i= N\ FCusTaA N A uwseeNa N\ (X < R),

i,o(i)=1 4,0 (1)=0 1<i<N

and let

DL s co()i=ETNT > 1) A Pygrcer(5T).

By A.2.2(7),

S;((sl, g, 5/, R) - R(q);,é’,&s/? V)

It follows that SL(¢’,¢,¢’, R) is a semi-algebraic subset of Bp(V). Now consider

the function f: R(®} 5 . ., V) — Ry defined by

fz) =

inf t.
{(@t) | @5 50,0 (w5t)}



394

395

396

397

398

399
400

401

402

404
405

406

407

409

410

12 SAUGATA BASU AND DEEPAM PATEL

It is clear that f is definable. Note that
So(t, 8" e,6',R) = R(DL 5 AN f 2L, V).
The claim now follows as a direct consequence of Theorem A.3. O

Proof of Part (2). Let

S%(e,e',R) = U ﬂSU(t,t',e,e’,R).

t'>0t>1

Then, S2(e,¢’, R) is a semi-algebraic subset of Bg(V). To see this let
Voer T = N\ #CuslTIN A ~(#Cuse e A\ (X <R),

o(1)=1 o(1)=0 1<i<N
and
(I>3

o,e,e’

():=3T')N(T >0) A2 __(+T).

o,e,e’

As in the previous part,

S2(8',e,€', R) = R(®3

0,6,

V).

In particular, S2(¢’,¢,¢’, R) is semi-algebraic.
Moreover, let g : R(@isvel, V) — R4 be the map defined by

g(x) = inf .
{(ast’) | @2 (wsit)}

Clearly, g is definable and
S%(t',e,e',R) = ﬁ(@i,m/ Ng >t V).
As in the previous part, the result follows from an application of Theorem A.3 to

the map g. O

Proof of Part (3). First note that the union S2(¢’, R) = (U ., S, (s, €', R) is a semi-
algebraic subset of Bg(V'). To see this let
(b?ne’(';‘s’) = /\ (bc('vwi; 1’0) A /\ _‘((bo("wi;s’ EI)) A /\ (|Xl| < R)
o(1)=1 o(1)=0 1<i<N
and
() =39S > AP (59).
Then,
S3(e',R) = R(®5 ., V).
In particular, S3(¢’, R) is semi-algebraic.
Let h: R(®; ., V) = Ry be given by
h(z) = sup s.
{(wss) |7, (w:5)}
Clearly, h is definable. Moreover,
Si(s,e\R) =R(®5 . N >s,V).

and therefore also semi-algebraic. Now apply Theorem A.3. (]
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Proof of Part (4). Let S2(R) := Uy0S3(s’, R), and consider
0o () = (3)(S" > 0) A P, 5 ().
Then,
S5 (R) = R(25, V).
In particular, S2(R) is semi-algebraic. We can now consider the function h :
R(®5,V) — R, be given by

h(x) = sup s
{(wss) 125 (=)}
One can now argue as in Part (3). O
Proof of Part (5). This follows from the definition of S/ (s,s’, R). O

Proof of Part (6). This part follows immediately from Theorem A.3. For example,
consider the definable function h on 75,(0, w) given by

1
max;(max(1, |x;]))’

h(z) =
where x;’s are the coordinates. Then, h(z) > 0forallz € V,and foralle,0 < e < 1,
hzr)>eexe Cubev(é).
Then there exists 0 < g9 < 1 such that for all 0 < € < g the natural inclusions

R (o, @) N Cubev(é) s R(o,w) = R(o,w) N Bp(h > 0)

are homotopy equivalences. Now we set Ry := é > 0, and for any R > Ry, we
consider e(R) := % to obtain the desired conclusion. O
This completes the proof of Lemma 3.2.7. O

We now prove Proposition 3.2.6. Since the proof is long and technical, we be-
gin by giving a general outline. Because of the nature of the argument the steps
enumerated do not actually occur in the same order as in the list below.

Step 1. By Lemma 3.2.7 (Part (6)), there exists an Ry > 0 such that for all R > Ry
the natural inclusion

R (o, w) N Cubey (R) — R(c, ®)
induces an isomorphism:
H*(R (0, ®)) — H*(R(o,w) N Cubey (R)).
So we fix some R > 0 large enough and consider only the semi-algebraic
set R(o,w) N Cubey (R).
Step 2. By Lemma 3.2.7 (Part (5)), we have natural inclusions
Si(s,8,R) = | J Si(s,5',R) = R(0,w) N Cubey (R).
s>1,8'>0

We shall see in Claim 4 below that this induces an isomorphism

H*(R(o,w)) N Cubey (R)) @@H*(s;(s, s',R)).
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Step 3. We shall see in Claim 1 below that the natural inclusions
S (e,e',R) <= S,(t,t',e,e', R)
induce an isomorphism

lim lim H* (S, (t,t',¢,&', R)) =2 H* (S (¢,€', R)).
i

Step 4. In order to conclude, we shall show that the direct and inverse limits ap-
pearing in Step 2 (proved in Claim 6) and Step 3 (proved in Claim 3)
‘stabilize’. This stabilization will result as a consequence of the homotopy
equivalences proved in Lemma 3.2.7, and is proved in two intermediate
steps (Claims 4 and 5 for Step 2, and Claims 2 and 3 for Step 3).

The proofs involving commutation of the limit (or colimit) functors with cohomol-
ogy in Steps 2 and 3 all rely on proving that a certain increasing family of compact
subspaces Sy C T, of a semi-algebraic set T, indexed by a real parameter A\, are
cofinal in the family of all compact subspaces of S := UyxSy in T (the families are
different for different steps). Omne then uses Lemma A.1.2 to obtain the desired
commutation of various limits (or colimits) with cohomology. The proofs of all
these cofinality statements rely on the following basic lemma that we extract out
for clarity.

Lemma 3.2.9. Let T be a compact Hausdorff space, A a partially ordered set,
(C\)aea an increasing sequence of compact subsets of T', and S := U\C\. Suppose
that there is a continuous function 6 : S — Ry U {oo} such that the following
property holds:

For each 0y € R, there exists a N(6p) € J such that x € Cy,) if

Then the family (Cx)xea s cofinal in the family of compact subsets of S in T.

(3.2.10)

Proof. Let C C S be a compact subset of S in T. We need to show that there is a
A such that C C C). Since C' is compact, F'|c attains its minimum 6y > 0 on C.
Let A(6p) be as in the proposition. Clearly,

zeC=0(x)>0y=zx¢€ C/\(90)'
It follows that C' C C)(g,), and so the family (Cx)xeca is cofinal in the family of
compact subsets of S in T (]
Proof of Proposition 3.2.6.
Claim 1. The natural inclusions
(3.2.11) Si(e.e \R):= (] Solt,t'e,&,R)— Sy(t,t',c,&', R)

t>1,t/>0

induce an tsomorphism

(3.2.12) H*(S! (¢,¢',R)) = ligH*(So(t,t’,e,s’, R)).

£t/
As an immediate consequence we also have

(3.2.13) H*(S! (¢,¢',R)) = lim limg H* (S, (¢, t' e, R)).
th ot
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(Here the inductive limit in (3.2.12) is taken over the poset R<; X Ry, partially
ordered by
(t1,t)) =X (t2,th) if and only if t5 < #; and 5, < #],
and for (t1,t]) = (t2,t5), the morphism
H*(S,(t1,t),¢,&", R)) — H* (S, (ta, th,e,€", R))
is induced from the inclusion S, (to,t5,€,e’, R) < Sy (t1,t],e,¢’, R).)

Proof of Claim 1. First note that the isomorphism (3.2.13) is an immediate conse-
quence of the isomorphism (3.2.12), and the fact that

hgth*(Sa(t,t’,e,e’,R)) = ligH*(Sg(t,t’,a,e',R)).
t ot

£t/
(see for example [SGAT2, Expose 1, page 13] for the last isomorphism).
We now proceed to prove the isomorphism (3.2.12). Let
T = ﬂ TubeComply, 4. 1. (€, €', R).
4,0 (i)=0
Since each TubeCompl§’¢(,7wi) (e,€', R) is compact, T is a compact Hausdorff space.

Notice that for each ¢t > 1,¢' > 0, S,(t,t',e,¢',R) C T.
We will now show that for fixed e,&’, R, the family of semi-algebraic sets

(3.2.14) (S, (t,t' e €, R))is1050
is a cofinal system of open neighborhoods of
ﬂ Sy (t,t',e,e', R)
t>1,6/>0

in T. Assuming this fact, the claim follows from Part (1) of Lemma A.1.2.

In order to prove the cofinality statement for the family (3.2.14), we first prove the
following cofinality statement from which the cofinality of (3.2.14) will follow.

Suppose that I is a finite set, and let for each i € I, F;,G; € K[X1,...,Xy], and
Ai € Ry. Let V be as before, R > 0, TM a compact semi-algebraic subset of
Cubey (R). We define

S(l) (t, t/, R) = T(l) n ﬂ TUbe€/7|Fq‘,‘§>\i'|Gi‘ (t, t/, R)
il
Notice that for each t > 1,/ > 0, SM(¢,#', R) ¢ T™), and hence
N sYt,RycT®
t>1,t/>0

as well.

Claim la. The family of semi-algebraic sets
(S(1>(t,t’, R))

is a cofinal system of open neighborhoods of

N sYwt.R)

t>1,t/>0

t>1,t">0
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in T,

Proof of Claim la. Proving cofinality of the family (S(l)(t,t’,R))t>1 oo 0 the

partially ordered family of open neighborhoods of

(N sYt.R)

t>1,t/>0

is equivalent to proving the cofinality of the family of compact subsets

(T(l) (A R))
t>1,6/>0

in the partially ordered family of compact subsets of T(1) — ﬂt>1,t/>0 SM(t, ¢ R).

For proving the latter we use Lemma 3.2.9, with A = Ry x Ry, and the family

(Cr)ren = (TW — S (¥, R))(1.1/yen of compact semi-algebraic subsets of the

compact set T(1).

We now define a continuous function 6 : T™) — Nis1.050 SW(t, ¢, R) — Rsq. We
first introduce the following auxiliary functions which will be used in the definition
of the function 6. For A > 0, let Hy(u,v) : R>¢ x R>¢g — R be defined as follows.
If A =0, then

Ho(u,v) = u,
and if A >0
(3.2.15) Hy(u,v) = min(max(u,v), max(0, % —1)),if v #0,
(3.2.16) = u, else.

It is easy to check that the functions H)y(u,v) are continuous.
For each i € I, let 0, : T(M) — ﬂt>1’t/ S (t,#', R) — Rx¢ be the function defined
by

>0

0i(z) = Hx, (|Fi(z)l, |Gi(2)]),
and let 0 : TW — N, 1100 SW(¢, 1, R) = Rxg be defined by
O(z) = iealxei(x).
Notice that each 6#;, and hence also 6 are continuous, since they are compositions
of continuous functions.

In order to apply Lemma 3.2.9 it remains to check that 6 is positive, and that it
satisfies (3.2.10) in Lemma 3.2.9.

(1) 6(z) > 0 for each x € TV — N, oo SV (L, 1, R):
Suppose that 6(x) = 0. This implies that 6;(z) = 0 for each i € I.
If \; = 0, then 0;(x) = 0 implies that |F;(z)] = 0. If A\; > 0, then
0;(z) = 0 implies that either |F;(x)| = |Gi(z)| = 0 or |F;(z)|/(Ni-|Gi(2)]) <
1 or equivalently |Fi(x)| < A; - |Gi(z)|. Together they imply that = €
Nis1.050 SP (¢ ¢, R), which is a contradiction.
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(2) 6 satisfies (3.2.10) in Lemma 3.2.9, with A defined by A(6p) = (1 + 6o, 6p):
Suppose 8(z) > y. First note that

T(l) \S(l)(1+9(),00,R) = T(l) \ ﬂTube?,v‘Fi‘S)ﬂG”(l+90,00,R)
i€l

71 N U TubeComply, g <1, ¢ (1 + 0o, 0o, R),
iel
which is equal to the set
TN JRF] = A - (1460) - |G]) A ((IF] = 60) V (1G] = 60))).
iel
Since 6(z) > 6y, there exists an i such that 6(z) = 6;(z) = 6p. This
implies that |F;(z)| and |G;(z)| are not simultaneously 0. We have two
cases. If A\; = 0, then we have that

|Fi(z)| = 0:(x) > 0o,
which implies that
z € R(IF;| = (X - (1460) - |Gil) A ((IF:] > 60) V (G| > o)
Otherwise, A; > 0. If |G;(x)| # 0, we have that
max(|F(z)|, |Gi(x)]) = 0i(z) > 0o,
e Fi(2)
Fi(x
— 27 1) > 6;(x) > b,
maX(O, )\zlgz(x)l ) = (l’) = Yo
which again implies that
v € R(IF| = (\i - (14 60) - [GI) A ((IF| = 60) V (1G] = b).
If |G;(x)| = 0, then |F;(x)| = 0y, and we have again
z € R(|IF| = (A - (1+60) - |G]) A ((IF| = 60) V (|G| > 6).
This completes the proof that 6 satisfies Property (3.2.10) in Lemma 3.2.9 with A
defined by A(6y) = (1 4 9, 6p), hence completing the proof of Claim 1a. O

Now we return to the proof the Claim 1. Let ¢ = \/, .4 #M), where each ¢ is a
conjunction of weak inequalities, |Fjx| < Ajn-|Gjnl, j € Jn, and H, Jy, are finite sets.

Let I, = {i € [1,n] | 0; = 1} and H!> denote the set of maps v : I, — H. Note
that

So(t,t' e, R) = (V[ U (1) Tubel i, w8 R) | N
I, heH jeJy,

(Recall that
T = ﬂ TubeComply, 4. . (€, ", R)
i,Ui:O
is a compact semi-algebraic set.) Then,
Sy(t,t',e,e',R) = U SW(t,t' e, e, R),
YeEH o
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where for ¢ € Hl~
SNt e, R)=Tn () Tube, yv () (65 R)-

i,o’i:1
An open neighborhood U of (1,5 45 94 (t,t',€,€’, R) in T is clearly also an open
neighborhood of ﬂt>1)t,>0 S((,w)(t,t’,a,a’, R) for each ¢ € H'-.
Fixing a ¢ € H'», we apply Claim la, with

T = T,
I = {(]7w(l)) | 1€ IU7j S Jz,/}(z)}a

and for ig = (4,9 (7)) € I,

Fi, = Fjy@),
Giy = Gy,
Aig = A

We obtain that for each 1) € HI~, there exists 9(()@ > 0, such that
S (1 468,65 e,¢',R) C U.
Now take 0y = minc o 9(()11))_ Then,
So(1+00,00,¢,¢,R)= ) S (1+60,00,c,¢,R) CU.
YeHIo
This proves (3.2.12) and concludes the proof of Claim 1. O

Claim 2. The natural inclusions

m So'(t7 tl’ 67 6/7 R) (% Sa(t7 tl? 57 6/’ R)

t>1
induce for each firedt' >0, >1,¢ >0, R> 0, an isomorphism
(3.2.17) H* ([ So(t,1',6,¢', R)) = lim H* (S, (1, ', 2, €', R)).

t>1 t
Proof of Claim 2. The proof is structurally similar to the proof of Claim 1. Let
T = ﬂ TubeComply, 4. ) (6,6, R).
i,0(1)=0

Then T is compact. We will now show for fixed ¢',e,¢’, R, the family of semi-
algebraic sets

(3.2.18) (Sy(t,t' e, R))
is a cofinal system of open neighborhoods of

() So(t,t ¢, R)

t>1

t>1

in T. Assuming this fact, the claim follows from Part (1) of Lemma A.1.2.

In order to prove the cofinality statement for the family (3.2.18), we first prove the
following cofinality statement from which the cofinality of (3.2.18) will follow.
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Suppose that I is a finite set, and let for each i € I, F;,G; € K[X;,...,Xy], and
X\ € Ry. Let V be as before, R > 0, and T® a compact semi-algebraic subset of
Cubey (R). We define

S(z) (t,t/, R) = T(2) N ﬂ TubeovﬁlFi‘SAini‘(t, t/, R)
i€l

Claim 2a. The family of semi-algebraic sets
(s@.t.R))

s a cofinal system of open neighborhoods of

(S® (.t R)

t>1

t>1

in T@.
Proof of Claim 2a. To prove that the family of semi-algebraic sets
(8(2) (t,t, R))

is a cofinal system of open neighborhoods of

(S@ (.t R)

t>1

t>1

is equivalent to proving that the family of compact semi-algebraic sets,
(T@) — 5@, R))

is cofinal in the family of compact subsets of T —,_, S@ (¢, ¢, R).
Let

t>1

SP (¢, R = T® N TubeCompl§, f s, . (t. 1 R)
= TOAR((F| >t N\ |Gi]) A
(|F] = ') v (|G| = 1)), V), if A >0,
= TAOAR((F|>1t),V), if \; = 0.

Note that
T@ 5O, R) =] S (t,t, R),
el
and
™ - s, R) =S .t Ry
t>1 el t>1

The last cofinality statement would follow if for each ¢ we can show that the family
of compact semi-algebraic sets (Si(Q) (t, ¢, R)C) is cofinal in the family of compact
t>1

subspaces of | J,~, 51(2) (t,t', R)°. This is because if for each compact subspace
ccT® - 5@t R =J st re
t>1 i€l t>1

and i € I, there exists to; > 1, such that CN{J,~, SZ-(Q) (t,t',R)° C SZ-(Q) (tos,t', R)°,
then C' C T(Q) - 5(2) (to, t/, R) with to = mini toﬂ'.
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We now proceed to show the cofinality of the family (Si(z) (t,t, R)C) . in the family
>

of compact subspaces of (J,-, SZ@)(L‘, t', R)¢ using Lemma 3.2.9.

For each i € I, consider the continuous function 6; : ( J,~, SZ-(2) (t,t',R)* - Ry U{o0}
defined by

91(1‘) = |Fz(.’L‘)| if )\z = 0,
. F@l
(3.2.19) 0;(x) WAL £ > 0.

It is an easy exercise to check that the functions 6; positive and satisfies Prop-
erty (3.2.10) in Lemma 3.2.9, with the map A defined by

AOo) = tifx =0,
= 6y if \; > 0.
satisfy the hypothesis of Lemma 3.2.9. This finishes the proof of Claim 2a. O

The proof of Claim 2 follows from the proof of Claim 2a, in exactly the same manner
as the proof of Claim 1 from Claim la and is omitted. (]

Claim 3. For every fixed € > 1,&' > 0 and R > 0, there exists 6, > 0 and for each
0 < &' <6, there exists §p(8') > 1 (depending on &) such that the inclusion
S(/J'(E7 5/7 R) — 50(67 617 g, 5/7 R)
induces an isomorphism
(3.2.20) H*(S! (e,¢', R)) ® H*(S,(8,0",e,&', R))
for all 1 < 6 < p(d).
Proof of Claim 3. We fix € > 1,/ > 0 and R > 0. First, note that it follows from
(3.2.13) in Claim 1 that

(3.2.21) H*(S! (¢,€',R)) = lit_lirgli%}nH*(Sa(t,t’,s,s’, R)).
By Lemma 3.2.7 (Part (2)) there exists d(, such that for all 0 <t < ¢} < §{, the
inclusion map
() So(tsth,e&',R) = () So(t,11,2,¢', R)
t>1 t>1
induces an isomorphism

H*((1) So(t, t1, 6,6, R)) = H*([) So(t, th,e,¢', R)).

t>1 t>1
It follows that, for any 0 < §’" < .
(3.2.22) lim H*(() S5 (t,¢', 2., R)) = H*([] S5 (t,0",2,¢', R))
t’ t>1 t>1
Moreover, it follows from (3.2.17) that
(3.2.23) H* () So(t,t, ., R)) = li_:>nH*(Sa(t,t’,€,E’,R))
t>1

for each fixed ¢/ >0, e > 1, ¢ > 0 and R > 0. Hence, from (3.2.21), (3.2.22), and
(3.2.23) we get an isomorphism
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(3.2.24) H*(S,(e,¢', R)) = im H" (S, (¢,0,¢,&', R))

t
It again follows from Lemma 3.2.7 (Part (1)) that for each fixed ¢', there exists
dp(8’) such that for all 1 < ¢t < 3 < do(d6”) the inclusion map S, (t2,0",¢,¢’, R) —
Sy (t1,8’,e,&’, R) induces an isomorphism

H*(Sﬂ(tlﬂ 5/7 g, 5/7 R)) - H*(Sa(t27 5,7 g, 5/3 R))a
which implies that
(3.2.25) lim H" (S (t, 8, e,e',R)) 2 H*(S,(to,0',e,&', R))

t

for all 1 <ty < 6g(6’). Claim 3 follows from (3.2.24) and (3.2.25), after taking 4,
and dg(d’) as above. O

Claim 4. The inclusions
U Si(s,s",R) = R(0,w)) N Cubey (R)
s>1,8">0

induce an isomorphism

(3.2.26) H*(R(0,w) N Cubey (R)) = lim H* (S, (s, 5', R)).

’

s’,s

As an immediate consequence we also have the isomorphism

(3.2.27) H*(R(o,w) N Cubey (R)) = l&n@H*(S;(s, s', R)).
s’ s
(Here the projective limit is taken over the poset R<; x Rsq, partially ordered by
(s1,8]) =< (s2,sh) if and only if s < s1 and s, < si,
and for (s1,s)) = (s2,s5), the morphism
H* (S5 (s2, 53, R)) = H" (S5 (s1, 51, R))
is induced from the inclusion S’ (s1, s}, R) < S/ (s2, 85, R).)

Proof of Claim 4. First note that the isomorphism (3.2.27) is an immediate conse-
quence of the isomorphism (3.2.26), and the fact that

@@H"(S{,(s, s', R)) = im H"(S; (s, 5", R)).

(see for example [SGAT72, Expose 1, page 13] for the last isomorphism). Note that
the semi-algebraic sets S (s, s’, R) are compact for each choice of s > 1,5 > 0 and
R > 0. In order to see this, recall that by definition (see (3.2.11)) S/ (s,s’, R) is
the intersection of (; ;=1 MNi=1,0r50 Tubey 4. ) (¢, ', R), with the compact semi-
algebraic set (; ;=0 Ni>1,¢50 TubeComply, 4. .y (s, 8", R). Therefore, it suffices
to prove that the semi-algebraic set
() Tubef g0t t, R)
t>1,¢/>0

is compact for each i. In general, ¢ = Vcgd™ where each ¢ is a conjunction
of weak inequalities |Fjn| < A\jn|Gjnl, j € Jn where H and Jj are finite sets. It
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follows that the semi-algebraic set (), ;- Tubey, 4. ., (¢, ', R) is the union over
H of the intersection over Jj, of the semi-algebraic sets

'
m Tube(‘)/,‘th(‘,’wi)|§>\jh'|Gjh('7wi)| (t,1, R)

t>1,¢/>0
604 We claim that
(3.2.28)
[N Tubed my, . <nsniGon s = Cubev (RINRAFn (- wi)l < AjnelGin (- wi)]),
t>1,¢/>0

05 and the latter set is easily seen to be compact. Verifying the equality in (3.2.28) is
606 an easy exercise starting from the definition in (3.2.3). It follows that

R(o,w) N Cubey(R) = | J Si(s,5,R)

s>1,s'>0

s0r where each S/, (s, s', R) is a compact subset of R(o, @))NCubey (R)). We now prove
eos that the family

(3229) (Sé(s7slaR))s>1,s’>0

600 is cofinal in the family of compact subspaces of

R(o,w) N Cubey (R) = U Sl (s,s', R).

s>1,s">0

610 Then the isomorphism (3.2.26) will follow from Part (2) of Lemma A.1.2.

611 In order to prove the cofinality statement for the family (3.2.29), we first prove the
612 following cofinality statement from which the cofinality of (3.2.29) will follow.

613

614 Suppose that I is a finite set, and let for each i € I, F;,G; € K[Xq,...,Xn], and
615 A € Ry,

616 Let V and R > 0 be as before. We define

S®(s,s',R) = U’IhbeComplf/JF”S)\i_‘Gi‘(s,s',R)
el
= Cubey(R)N|JR((F;] > §),V), if \; =0,
el
= Cubey(R)N|JR((F| =5 |Gi])
el

AN|F| > 8"V |G| > &), V), if \; > 0.

617 Claim 4a. The family of semi-algebraic sets
(S(?’)(s,s’,R))
618 s cofinal in the directed family of compact subspaces of

U S"(s,s', R).

s>1,s'>0

s>1,8">0
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Proof of Claim 4a. One can deduce this formally from Claim la by taking comple-
ments and setting T = Cubey (R). On the other hand, once can also proceed via
Lemma 3.2.9 using the function

6 : U 5G)(s,5', R) = Rxg
s>1,8">0

defined as follows. For each i € I, let 6; : |J
function defined by

5>1,8'>0 S®(s,s',R) — R>o be the

0i(z) = Hy, (|Fi(z)|, |Gi(z)])

(see (3.2.15) to recall definition of Hy,(-,-)), and let 6 : |
R3¢ be defined by

5>1,8/>0 S(?’)(s, s'R) —

O(x) = max 0;(x).

One can now directly verify that 0 is positive and satisfies (3.2.10) in Lemma 3.2.9,
with the map A defined by A\(0y) = (14 60y,00). We leave the details to the reader.
This concludes the proof of Claim 4a. O

The proof of Claim 4 from Claim 4a is formally analogous to the similar derivation
of Claim 1 from Claim la and is omitted. O

Claim 5. The natural inclusions
S! (s,s',R) < U S/ (s,s',R)
s>1
induce for each fized s' > 0 and R > 0, an isomorphism
(3.2.30) H* (| S5 (s, 8, R)) = lim H (S (s, 8/, R)).
s>1 s

Proof of Claim 5. The proof is structurally similar to the proof of Claim 4.
We will now show for fixed s’, R, the family of semi-algebraic sets

(3.2.31) (So(s, 8", R)) o1
is a cofinal system of compact subsets of
ﬂ Sy (5,8, R).
s>1

in S. Assuming this fact, the claim follows from Part (2) of Lemma A.1.2.

In order to prove the cofinality statement for the family (3.2.31), we first prove the
following cofinality statement from which the cofinality of (3.2.31) will follow.

Suppose that I is a finite set, and let for each i € I, F;,G; € K[X1,..., Xy], and
Ai € Ry. Let V and R > 0 be as before. We define

SW(s, s, R) = U TubeComply, | <x, |64 (5,5, R)-
il

Claim 5a. The family of semi-algebraic sets

(S(4) (s,8, R))

s>1
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is a cofinal system of compact semi-algebraic subsets of
U SW(s, s, R).
s>1

Proof of Claim 5a. One can deduce this formally from Claim 2a by taking comple-
ments and T?) = Cubey (R). Alternatively, one can argue directly as follows.
Let for each 7 € I,

Si(4)(s, s,R) = TubeCompl?/,‘Fi‘S/\”GH (s,s', R)
= Cubey(R)NR((|F,| > ¢),V), if \; =0,
= Cubey(R) NR((|Fi > s i - |Gi])
AF] = )V (1G] = ), V) if A > 0.

Note that
§W(s,s', R) = (s, 5", B),
el
and
s, s, Rr) =] s s, R).
s>1 i€l s>1

Note that the cofinality statement in our claim would follow if for each ¢ we can

show that the family of compact semi-algebraic sets (SZ-(4) (s, 9, R)) is cofinal in
s>1

the family of compact subspaces of | J, -, Si(4) (s,s’, R). To see this, suppose that we
have proven the latter cofinality statement (for each 7). Let C C ., S¥W(s,s', R)
be a compact subspace. Then C; := C N,
and by hypothesis for each ¢ € I, there exists sg ; > 1 such that C; C SZ.(4) (s0,i,8", R).
It follows that C' € S (sg, s’, R) with sy = min; 50,-

S§4)(s, s’, R) is a compact subspace

We now proceed to show the cofinality of the family (Si(4)(s,s',R)> . in the
s>

family of compact subspaces of | J S§4)(s,s’,R) using Lemma 3.2.9. For each

s>1

i € I, consider the continuous function 6; : (J,-, 51(4)(37 §',R) = R4 U{oo} defined
by
[Fi(z)] .
O;(x) = ,if A >0
S v AT]

It is an easy exercise to check that the functions 6; are positive and satisfy Prop-
erty (3.2.10) in Lemma 3.2.9, with the map A defined by A(6p) = 6. This completes
the proof of Claim ba. O

The proof of Claim 5 follows from the proof of Claim 5a, in exactly the same manner
as the proof of Claim 1 from Claim la and is omitted. (]

Claim 6. Let R > 0. Then there exists ¢4(R) > 0 (depending on R), and for each
0 <& <ey(R), there exists e9(e’) > 1 (depending on €’) such that

(3.2.32) H*(R(o,w) N Cubey (R)) = H*(S, (¢,€', R))
for all 1 < e <ego(e).
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Proof of Claim 6. Tt follows from (3.2.27) in Claim 4 that
* (> - ~ 1 . * /
(3.2.33) H*(R(o,w) N Cubey (R)) & l%an (S! (s,8", R)).

S

It follows from Lemma 3.2.7 (Part (2)) that there exists ¢((R) such that for all
0 < s5 < s} <ef(R), the inclusion map

U S (s, 81, R) — U S! (s, sh, R)

s>1 s>1

induces an isomorphism

H*(U S! (s, 85, R)) — H*(U S! (s, 81, R)).

s>1 s>1
It follows that
(3.2.34) lim H* (| 85(s, ', R)) = H (| S, (5,¢", R))
s’ s>1 s>1

for all 0 < &’ < g((R).
Moreover, it follows from (3.2.30) that
(3.2.35) H* (| S, (s,', R)) = Lim H* (S, (s,€’, R))
s>1 S
Hence, from (3.2.33), (3.2.34), and (3.2.35) we get an isomorphism

(3.2.36) H*(R(o,)) N Cubey (R))) = lim H* (S} (s, ', R))

It again follows from Lemma 3.2.7 (Part (1)) that for each fixed s’, and hence for
s' = ¢, there exists £9(¢’) > 1 such that for all 1 < s3 < s1 < gg(e’), the inclusion
map S’ (s1,¢’, R) < S! (s2,¢’, R) induces an isomorphism

H*(S! (s2,¢', R)) — H*(S! (s1,¢', R)),
which implies that

(3.2.37) l'&lH*(S{,(s,s’, R)) =2 H"(S,(e,€', R)).
for all 1 < e < ¢gg(e’). Claim 6 follows from (3.2.36) and (3.2.37). O

We now return to the proof of Proposition 3.2.6. Using Lemma 3.2.7 (Part (6)),
we have that there exists Ry > 0 such that for all R > Ry, one has

(3.2.38) H*(R(o,w) N Cubey (R)) = H*(R(0, w)).

Fix R > Ry. It follows from (3.2.32) that there exists £j(R) > 0, and for each
0 < & < ¢gj(R), there exists g9(¢’) > 1 (depending on €’) such that for all 1 < e <
eo(€),

(3.2.39) H*(R (o, w) N Cubey (R)) = H*(S,(e,€', R)).

Fix &’ and ¢, satisfying 0 < ¢’ < e((R), and 1 < € < gg(e’).

Now it follows from (3.2.20) that there exists dj(e,e’, R) > 0 and for each 0 < §’ <
0 (e, €', R), there exists dp(6’) > 1 (depending on ¢’) such that for all 1 < ¢ < §p(d'),

H* (Scly(€7 6/3 R)) = H*(SU(& 6/3 g, 5/7 R))
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Choose ¢', § satisfying 0 < ¢’ < §((e,e’, R) and 1 < d < dp(d”). It is now clear that
with the above choices of R,¢’,¢,d’,d, we have that
H*(R(0, ) = H*(S,(3,8',2,¢', R)).
This concludes the proof of Proposition 3.2.6. O
We introduce some notation before stating the next Proposition. As in the hypoth-
esis Proposition 3.2.6, let V C AY and W C AY be closed affine subvarieties and
¢(+,-) a formula in disjunctive normal form without negations and with atoms of
the form |F| < A- |G| where F,G € K[X1,..., XN, Y1,..., Y]
For §,¢ > 1 and ¢§',¢’ > 0 let
S8, e,€', R) m Tubey, 4. ;) (6,0, R) — U Tubey, g ;) (€5 €)-
i,0(1)=1 i,0(1)=0
Notice that it follows from the above definition that for all ,e > 1 and ¢’,¢’ > 0,
S7(5,0',e,e',R) C S5(6,8",¢,¢', R).
Note that that the sets S7(9,0',e,&’,R) and S,(d,0’,¢,¢’, R) shrink as 4, (5’ de-
creases, and they grow with decreasing ¢,&’. More precisely, for all 5“ 0l e, el i=
1,2 satisfying 1 < &1 < 62,0 < 8] < 85,1 < €3 < 1,0 < €} < &}, we have the
inclusions
50(617 617 €1, 8117 R) - SG'<62a 6/27 £2, 5/27 R)7
S(’,'(él,éi,sl,s’l,R) C Sg((52,5/2,52,él2,R).
Proposition 3.2.40. With notation as above, for all 6,0 ¢, € Ry satisfying
0<d—1<d <e—1<¢é, every connected component of S(5,8',e,&', R) is a
connected component of the semi-algebraic set
(3.2.41) Upss ccrr = m (Uie,er, e NUi 550 R),
1<i<n
where for 1 <i<n, andt > 1, >0,
Uit.r := Cubey (R) \ TubeBoundaryy, 4. ,.y(t, ', R).
Before proving Proposition 3.2.40, we note that Proposition 3.2.40 and Proposi-
tion 3.2.6 imply:

Proposition 3.2.42. For eachw € W (K)", there exists § > 1,6’ > 0,e > 1,¢' > 0,
and R > 0 such that for each o € {O 1}” and 0 < i < k, one has

(3.2.43) Z bi( ) <b0i(Up 56 eeR)
oce{0,1}n

Proof. By Proposition 3.2.6 and using the same notation as in the proof of Propo-
sition 3.2.6, we have that there exist an R > 0, an ¢/(R) > 0 (depending on R),
and for each 0 < &’ < g((R), there exists an gq(¢’) > 1 such that

(3.2.44) H*(R(o,w)) N Cubey (R))) = H* (S (¢,', R)).

for all 1 < e < go(¢'). Fix ¢} and g; (i = 1,2), satisfying 0 < &} < &} < £((R),
and 1 < g1 < &2 < min(gg(e]),e0(e%)). Now recall that it follows from (3.2.20)
that there exists d}(e;, e}, R) > 0 and for each 0 < ¢ < §((e;, €}, R), there exists
6((,1) (0") > 1 (depending on ¢’ and &((&;, e}, R)) such that for all 1 < ¢ < 5(()1)(5’)7

H*(Scly(gi,gi'a R)) = H*(SU(& 6/357;76;7R))'
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Let &’ be such that
0<d < min(66(517 6/17 R)a 6(/)(627 5/25 R))

and
1< 6§ < min(6{"(8"),6(8")).
With the above choices of R, &}, ¢&;,0,d, we have

IR

H* (R(O-v w)) = H*(Sa'(da 5/7 €y 5;7 R))

On the other hand, let T; = S, (6,0, ¢;,¢;, R) and T} = S/ (6,0",¢;,€;, R) . Then
T, C T{' C T1, and the by the previous remarks the natural map

HY(T)) — HY(T3)

is an isomorphism. On the other hand, this map factors through H*(T}’) and
therefore the natural map

HY(TY') — H(Th)
is surjective. It follows that b;(71) < b;(T7y"). Since the connected components

of the T7" (as o varies) are connected components of Uy 5.5 .z (by Proposition
3.2.40), the inequality (3.2.43) follows immediately. O

Proof of Proposition 3.2.40. Recall that ¢ is a disjunction of the formulas ¢y, h €
H, where H is a finite set, and each ¢; is a conjunction of weak inequalities
|Frjl < AnjlGhjl,j € Jn, where Jj, is a finite set. As before for each ¢ we let
Finj := Frj(-,wi), Ging = Grj (-, w;).

We first observe that S7(0,¢",¢,e’,R) C Ug s.6e.er,r- TO see this, for ¢/ > 0,t > 1,
and i € [1,n], let 6; . : Br(V) — R be the continuous function defined by

24 (2) = o
(3.2.45) Oit,0 () MAX 1IN 1510 (z),
where
tingie () =t —|Fipj(x)], if Anj =0,

max(A; -t - |Ging ()| — [Finj ()],

min(t/ — |Fihj($)|,t/ — ‘Gzh](x)|))7 if >\hj > 0.
The formula defining 6; ; »+ might seem a little formidable at first glance, but be-
comes easier to understand with the observation that each occurrence of max and
min in (3.2.45) corresponds to an occurrence of respectively \/ and A in the formula

@°(; T, T") (cf. Notation 3.2.2). With this observation, and the obvious facts that
for any A C R,

\/(a>0) < maxa > 0,

cA a€cA

a

A (a>0) & mina>0,
acA a€A

it is easy to verify that
x € Tubey, 4. ) (6,0") & bi 56 () >0,
xr € Tubef,@(,ﬂui)(é, (S/) ~ 917575/(1}) > O,
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and finally that for any R > 0,
(3.2.46)
z € TubeBoundaryy, 4. ., (6, 8, R) < x € Cubey (R) A (056 (x) = 0).

Now let z € S;(d,6',¢,€’, R). Then, for each i with o(i) = 1, z € Tubey, 4. ,,,1(d,6", R),
and hence z ¢ TubeBoundaryy, 4. ..., (0,9, R).

One can also check, using the fact that ¢’ < &’ and § < ¢, that 0; 55 () > 0 implies
that 0; . .- (z) > 0 as well. This in turn implies that

x € Tubey, 4. ,,,1(6,0", R) = = ¢ TubeBoundaryy, 4. ,,.)(¢,€’, R).
Hence, we have that
z ¢ TubeBoundaryy, 4. ., (9, ", R) U TubeBoundaryy, 4. ..\ (€, ", R)

for all ¢ with (i) = 1. In particular, x € U; ¢ e/ R NU; 5,67 R-

We now consider the case of all ¢ such that (i) = 0. Suppose that o(i) = 0. Then,
z € Cubey (R)—Tubey, 4. ,, (5 ¢, R), and hence x ¢ TubeBoundaryy, 4. ..y (€, €', R).
Also, if @ ¢ Tubey, 4. ) (5 €', R), then x ¢ TubeBoundaryy, . ,,)(d, 0’ R) since
clearly

TubeBoundaryy, 4. ,,.)(9,0", R) C Tubey, 4. . (¢,€", R),
and hence = ¢ TubeBoundaryy, 4. ,,,y(d, 0", R) either. Hence, we have that

z ¢ TubeBoundary?y, 4. ,, (5 &', R) U TubeBoundaryy, 4. ., (¢,€', R)

for all 4 with (i) = 0. Combining everything, we have « € Uy 5,6/ ¢’ .R-

Now let C be a connected component of S7(8,0’,¢,¢’', R), and D be the connected
component of Uy 55 ¢ r containing C. We claim that D = C'. Let x € D, and
let y be any point of C'. Then, since y € D and D is path connected, there exists a
path 7 : [0,1] — D, with v(0) = y and (1) = z, and ~([0,1]) C D. We claim that
~([0,1]) € S7(6,0",¢,¢’, R), which immediately implies that D = C'.

We first show that for each i with o(i) = 1, ([0,1]) C Tubey, 4. ) (0,9, R).
Consider for each ¢ with o(i) = 1, the continuous function ¢; : [0,1] — R defined
by

0:(t) = 055 (7(1))-
Notice that it follows from (3.2.46) that 6;(¢) = 0 implies that
7(t) € TubeBoundaryy, 4. .,y (9, 0, R).
Moreover, since
7([0,1]) € Cubey (R) \ TubeBoundary?y, 4. ,,.,(d, ", R)

for each i, 0; cannot vanish anywhere on [0,1]. Also notice that 6;(t) > 0 if and
only if v(t) € Tubey, 4. ,,)(6,0", R). Since, ¥(0) = y € S 55 .. g, this implies
that 6;(0) > 0, and hence 9 (t) > 0, for each ¢ € [0, 1], and hence

Y([0,1]) € () Tubed 4. (6,8, R).
i,0(1)=1
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Finally, we show that
v, 1) (CubeV(R) \Tube%,@(,,wi)(s,s’,R)) .
4,0 (8)=0
Consider for each ¢ with o(i) = 0, the continuous function y; : [0,1] — R defined
by
1i(t) = =i cer (7(1))-

Notice that p;(t) = 0 implies that 7(t) € TubeBoundaryy, 4. (¢, €", R), and hence
since ¥([0,1]) C Cubey (R) \ TubeBoundaryy, 4. ., (€,€’, R) for each i, 0; cannot

vanish anywhere on [0,1]. Moreover, also notice that u;(t) > 0 if and only if
v(t) € Cubey (R) \ Tubey, 4. . (€,€', R). Since, ¥(0) =y € S;(6,0",¢,€’, R), this

i

implies that p;(0) > 0, and hence y;(t) > 0, for each ¢ € [0, 1], and hence

v, 1) c (Cubev(R) - Tubeﬁ,ﬂz,(‘,wi)(a,e',R)) .

i,0(i)=0

This proves that D = C. O
Let X C V be a definable subset where V' is an affine variety of dimension k, and
Ui,...,U, open semi-algebraic subsets of Bg(X). For J C [1,n], we denote by
U’ .= UjEJ U; and Uy := njeJ U;. We have the following proposition, which is
very similar to [BPRon, Proposition 7.33, Part (ii)].
Proposition 3.2.47. With notation as above, for each i, 0 < i < k = dim(V),

—1

k
biUpm) < > biv; 1 (U7) + <kﬁi)bk(3F(V))'

j=1 JC[1,n],card(J)=4
Proof. We first prove the claim when n =1. If 0 < i < k — 1, the claim is
bi(Ur) < bi(Ur) + b (Br(V)),
which is clear. If ¢ = k, the claim is b (U;) < bi(Bg(V)), which is true using Part
(d) of Corollary A.6.

The claim is now proved by induction on n. Assume that the induction hypothesis
holds for all n — 1 open semi-algebraic subsets of Bgp(V'), and for all 0 <4 < k.
It follows from the standard Mayer-Vietoris sequence (cf. Properties A.1.1 (5)) that

(3248) bz(U[ln]) S bi(U[lﬂl_l]) + bz(Un) + bi+1(U[1,n—1] U Un)
Applying the induction hypothesis to the set Uy ,,—1), we deduce that

k—1
(3.2.49) bi(Unn-1) < Y > bivi1(U7)

Jj=1JC[1,n—1],card(J)=j
n—1
br(Bg(V)).
+ (k—z) k(Br(V))
Next, applying the induction hypothesis to the set,

Un-yUUn =[] (U;UU),
1<j<n—1
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we get that
k—i—1
b1 (U UU,) < Y > biﬂ-(U'JU{"})
Jj=1 JcC[l,n—1],card(J)=j
n
2. bi(B
(3.2.50) k:—z—l) k(Br(V)).

We obtain from inequalities (3.2.48), (3.2.49), and (3.2.50) that

k—1
Upn)) Y > biyj 1 (U7) + (ki )bk(BF(V))

j=1JC[1,n],card(J)=j
which finishes the induction. O
Proof of Theorem 2. Using Proposition 3.2.42 we obtain that, there exists § >

1,6’ > 0,e > 1,¢/ > 0,R > 0 (which we fix for the remainder of the proof)
such that for each 7,0 <1i <k,

(3.2.51) > bl ) < bi(Us6,50 20, R)-
oe{0,1}n
From the definition of Uy 54/ ¢/,r In (3.2.41), we have that Uy 56 ¢ g is an in-
tersection of the sets
Cubey (R) \ TubeBoundaryy, 4. ., (¢, €', R),

Cubey (R) \ TubeBoundaryy, 4. (90", R),
for 1 <j<n.
Now for each m > 1 and m’,m” > 0 with m/ +m” = m, let
1 (m)

(I)m’,m” (Y,? geee ,? 58, S/,t,tl, R) = (\1’1 Vv \112) N (\Ifg A\ \114),
where
_ Y VvV ) oY Vv )

v, o=\ (e E T ver (X758 8)),
1<j<m/

v =\ (e @YV ve @Y Vsiee)),
m/+1<j<m

\113 = @V(Y; R),

\114 — /\ @W(?(])),
1<j<m

@y (X; R) is a formula such that Cubey (R) = R(®y g), and @y (Y) is a formula
such that Bp(W) = R(®w).

Denote by X,/ ., the definable subset of V x W x --- x W xR5 defined by the
—_————

m
formula

(1)

®pr (X, Y, Y

;8a8/7tat/7R)7
and let
Wm/,m// N Xm/7m// — W X e X W XR5
———
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denote the projection map. It follows from Theorem A4 (with Y =W x .-+ x W,
—_———

m
V viewed as a quasi-projective variety in PV and X,/ m~ as above) that the number
of homotopy types amongst the semi-algebraic sets

BF(W;L}’m,,(w'l, w8 8 Lt R))

is finite, and moreover since each such fiber is homotopy equivalent to a finite
simplicial complex by Theorem A.5, there exists a finite bound C; yp/ m € Z>o,
such that

bi(BF(W';L}7m// (w/17 v ,U);n, S, Sl7 t, t/a R)) < Ci,m’,’m”a
for all (wf,...,w,) € W(K)™,s,s,t,t',R € R.
Let

(3.2.52) Oi,m = ,Hl@?(>0 Oi,m’,m”-
m’' m’ >
m’4+m” =m

Note that C; ,, depend only on V' and ¢.
Note observe that it follows from Notation 3.2.2, that for each j,1 < j < n, the
semi-algebraic set
R((—(¢°(X,wj;-,) V ¢°(X,wj; -, -)), V) N Cubey (R)
is equal to the set
Cubey (R) \ TubeBoundary?y, 4. .,y (", -+ R).
It follows that for any

J/ = (.]17 s ajéard(J'))a ‘]H = (jilv s 7.jgard(J”)) C [1,7’1]
with J' N J” = (), the semi-algebraic set
;535/567 6/7R)

R(®Peard(r).cara(s) (s Wiy =y wyr o wger e wg

is equal to the union of the two sets
U (Cubey (R) \ TubeBoundaryy, 4. ,, ) (€,€", R))
jeJ’
and
U (Cubey (R) \ TubeBoundaryy, 4. (3,0, R)).
jeJr

Also, since each m~ary union amongst the the semi-algebraic sets

Cubey (R) \ TubeBoundaryy, 4. ., y(€, €', R),

swy)
Cubey (R) \ TubeBoundaryy, 4. ,,.)(9,6", R),

is clearly homeomorphic to one of the sets BF(W;J)W, (w),...,w,, s, 8, t,t',R)),

m' +m” =m, (wi,...,w,) € W(EK)™,s,s,t,t,R R, the i-th Betti number of

every such union is bounded by Cj .
It now follows from (3.2.52) and Proposition 3.2.47 that

k—i

Z bi(R(o,w)) < Z (Zjn) Ciyj1,j+ <k2n z) b(Br(V)).

oce{0,1}" j=1
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The theorem follows after noticing that

2n :
o) < (2n)’,
() <t
for all n,j > 0. O

3.3. Proof of Theorem 1. We need a couple of preliminary results of a set-
theoretic nature starting with the following observation.

Observation 3.3.1. Let Y)Y, V,V/ W W’ be sets such that Y C V x W, Y’ C
VixW,VcV , WcW,andY' N(VxW)=Y. Then, for everyn >0,

XY,V,W(n) < XY/,VgW(”)

Proof. To see this note that a 0/1 pattern is realized by the tuple (Y,,..., Yy, )
in V, only if it is realized by the tuple (Y, Y, ) in V'. This follows from the

wyr ) Lwy,

fact that Y N (V x W) =Y, and therefore for all w € W, Y, NV =Y,,. O

Let V, W be sets, I a finite set, and for each o € I, let X, be a subset of V x W. Let

o Xo = V x W denote the inclusion map. Suppose that X is a subset of V- x W
obtained as a Boolean combination of the X,’s. Let W' =[] .; W, and for a € I
we jo : W < W' denote the canonical inclusion. Let X' =, c; Im((1y X ja)oia) C
V x W'. With this notation we have the following proposition.

Proposition 3.3.2.

Xxvw (™ < X xi v (card(I) - n).
Proof. For v € V, and S C W (resp. S’ € W’) we set S, := SN X, (resp.
S :=5"NX)). Let w € W". We claim that for v,v' € V,

XX,V,W;n(’U7w) # XX,V,W;n(v/7w) —
XX/ ZV,Wicard(I)-n (U ]n 7& XX’ VW scard(I)n ( /,jn(’w)),
where j, : Wtnl — W/Ix[Lnl ig defined by

Jn(wi, ... »wn)(a,i) = Ja(w;).

To prove the claim first observe that since XXVWn ,W) # XXVWn , ),
there exists ¢ € [1,n] such that v € X,,, © v & X,,.

Since X is a Boolean combination of the X,,a € I, there must exist a € I such
that v € (Xo)w, < v/ §Z ( o)w; - 1t now follows from the definition of X', W' that

XX/,V,W';card(I) (v, n(w)) # XX’ VW card(I)n (v, jn(w)). This implies that

Card(XX7V7Wm(VY’ ’lI))) < card XX’,V,W’;card(I)~n(‘/’j"(w)))'

It follows immediately that

XX VW < Xx VW/(Card( ) n).



845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

867

868
869
870
871
872
873
874

875

876

VC DENSITY OF DEFINABLE FAMILIES OVER VALUED FIELDS 33

Proof of Theorem 1. We make two reductions. We first claim that it suffices to
prove the theorem in the case of an algebraically closed complete valued field of
rank one i.e. the value group subgroup of the multiplicative group R;. Secondly,
we claim that we can assume without loss of generality that the formula ¢ is in
disjunctive normal form without negations and with atoms of the form |F| < A-|G|.

Reduction to complete algebraically closed field of rank one: The theory of alge-
braically closed valued fields in the two sorted language £ becomes complete once
we fix the characteristic of the field and that of the residue field. Moreover, for
each such characteristic pair (0,0), (0,p), or (p,p) (p a prime) there exists a model
(K;T) of the theory of algebraically closed valued field such that the value group
is a multiplicative subgroup of R, (i.e. of rank one) and K is complete. It follows
by a standard transfer argument it suffices to prove the theorem for such a model.

Reduction to the case of disjunctive normal form without negations and with atoms
of the form |F| < X\ -|G|: We now observe that it suffices to prove the theorem in
the case when the formula ¢ is equivalent to a formula in disjunctive normal form
without negations with atoms of the form |F| < A-|G|. Furthermore, using the first
reduction, we may assume that the value group is Ry and K is an algebraically
closed complete valued field. In particular, we assume that the atoms of ¢ are of
the form |F| < A\-|G|, with A € Ry, and F,G, € K[X,Y]. Let (¢a)acs be the finite
tuple of atomic formulas appearing in ¢. Denote by

¢" = (\/ (6aXT ) A (170~ 11 = 0>)> AV ba((Za)acr),

acl ael
where 0,((Za)acr) is the closed formula
(1Za =11 =0)A A (125 = 0).
B#a
Note that ¢” is equivalent to a formula in disjunctive normal form without nega-

tions and with atoms of the form |F| < X -|G|.

Let Xy := R(¢o,V x W)(K) and X = R(¢,V x W)(K). Then X is a Boolean
combination of the X,’s and we can define X’ C V(K) x W(K)" where X’ and
W(K)" are defined as in Proposition 3.3.2. In particular, we let 71 : X' — V(K)
and 7} : X’ — W(K)’ denote the natural projection maps. Similarly, we let

7 R(",V x W x ANYK) = W(K) x All(K)

and
T R(",V x W x A (K) = V(K)

denote the natural projection maps. Note that the diagram

R(¢",V x W x Al (K)

1
T
"
™
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is isomorphic to the diagram

Xl

V(K) Im(m3)

By isomorphism, we mean that there are natural bijections R(¢”, V xW x AU (K) —
X’ and Im(7})) — Im(7)}) making the resulting morphism of diagrams above com-
mute(with identity as the map on V(K)).

Using Proposition 3.3.2, we get that

n) <

< XX,’V(K)’(W(K)),(card(I) -n),

XR(dJ,(VXw))(K),V(K),W(K)(
and the right hand side of the above inequality clearly equals

XR(¢”,(V><WXA\I\))(K),V(K),W(K)XAU\(K) (card(I) - n).

So it suffices to prove that there exists a constant C' (depending only on V and ¢)
such that for all n,

. ,dim(V)
XR(6 (v x Wl (1), v (1) w () xal (i) () S € :

This shows that we can assume that ¢ is equivalent to a formula in disjunctive
normal form without negations and with atoms of the form |F| < X -|G].

We now use the special case of Theorem 2 obtained by setting ¢ = 0. In that
case, bo(R(o,w)) is the number of connected components, which is at least one
as soon as R(o,@) is non-empty. Now use Observation 3.3.1 with V' = Bg(V),
Y = Unew ) (ﬁ(qs(.,w),V) x {w}) and Y = R(¢, (V x W))(K), noting that
there exists a canonical injective map ¢ : V(K) < Bgp(V) such that for each
w € W(K) the following diagram of injective maps commutes:

V(K) ————— Bz(V)
This finishes the proof. ([
3.4. Proof of Corollary 1.

Proof of Corollary 1. Corollary 1 follows immediately from Theorem 1 and the fol-
lowing proposition (Proposition 3.4.1) which is well known, but whose proof we
include for the sake of completeness. O

Proposition 3.4.1. Suppose that there exists a constant C' > 0 such that for all
n>0, Xyyun<C: n*. Then, ved(X,V,W) < k.

Proof. Notice that forve Vandw e W, we X, ve X, Lt S={X, |v €
V},and A ={wy,...,w,} CW,and I C [1,n]. Forv eV, w; € X, for all i € I,
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and w; ¢ X, for all ¢ € [1,n] \ [ if and only if v € X,,, for all ¢ € I, and v & X,
for all ¢ € [1,n] \ I. This implies that

card{ANY [ Y €S} = Xy (Vo) <C- nk.

The proposition now follows from Definition 1.1.2. O

APPENDIX A.

A.1. Review of Singular Cohomology. In this section we recall some basic
statements about singular cohomology groups which are used throughout this ar-
ticle. These facts are all standard and we refer the reader to [Spa66] for their proofs.

Given any topological space X, one can associate to X the singular cohomology
groups H*(X, Q) (for i > 0) which satisfy the following general properties (see for
example [Spa66, page 238-240]):

Properties A.1.1.

1. The H (X, Q) are Q-vector spaces. If X is a finite dimensional simplicial com-
plex of dimension n, then each H (X, Q) is finite dimensional, and moreover
HY(X,Q) =0 for all i > n.

2. The singular cohomology groups are contravariant and homotopy invariant i.e.
a continuous morphism f : X — Y induces a linear map f* : H(Y,Q) —
HY(X,Q), and if f is a homotopy equivalence, then the induced map f* is an
isomorphism.

3. (Connected components) The dimension of H°(X,Q) equals the number of con-
nected components of X.

4. For any subspace Y C X, one can define relative cohomology groups

H'(X,Y;Q)
which fit into a long exact sequence:
= H(X,Y;Q) —» H(X,Q) —» H(Y,Q) -» H"(X,Y;Q) — -

5. (Mayer-Vietoris) If U,V C X are open subsets such that UUV = X | then there
s a long exact sequence of cohomology groups:

o H(X,Q) - H(U,Q) @ H(V,Q) = H(UNV,Q) - HHH(X,Q) - -
Note that this implies immediately that

Finally, we recall some properties of singular cohomology with regards to projective
and injective limits. These properties are used in the proof of Proposition 3.2.6.
Below, we drop the coefficients Q from the notation of singular cohomology groups.

Let I be a directed set, (U;);es be a directed system of topological spaces, and

denote the corresponding direct limit. In particular, for all ¢ < j (i,5 € I), we have

continuous maps f;;;U; — U; which induce morphisms f : H*(U;) — HFU;).
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The latter cohomology groups form an inverse system, and the natural continuous
maps U; — U induce a morphism

H*(U) — @Hk(Ui).

Similarly, an inverse system (U, );c 1 of topological spaces gives rise to a direct system
of corresponding cohomology groups and natural morphism

lim H*(U;) — H*(U),

where

K2

In this article, we only consider direct systems U; given by an increasing sequences
of subspaces of a space X or inverse systems U; given by a decreasing sequence of
subspaces. In the former case, the direct limit U is given by the union of these
spaces, and in the latter case the inverse limit is given by the intersection of these
subspaces. The following lemma is our main tool for understanding the correspond-
ing cohomology groups.

Lemma A.1.2. Let X be a paracompact Hausdorff space having the homotopy type
of a finite simplicial complex, and I a directed set.

1. Let {U;}icr be a decreasing sequence of open subspaces of X, and S := ), U;.
Suppose that the family U; is cofinal in the family of open neighborhoods of S in
X. Then the natural map

lig H*(U;) — H*(S)

is an isomorphism.

2. Let {C;}ier be an increasing sequence of compact subspaces of S, and S = J, C;.
Suppose that the family C; is cofinal in the family of compact subspaces of S.
Then the natural map

H*(S) — lim H*(C))
s an isomorphism.

Proof of Part (1). This is Theorem 5 in [LR68]. O

Proof of Part (2). The statement follows from the fact that singular homology of
any space is isomorphic to the direct limit of the singular homology of its compact
subspaces [Spa66, Theorem 4.4.6], the fact that the singular cohomology group
H*(S, Q) is canonically isomorphic to Hom(H. (S, Q), Q) since Q is a field, and that
the dual of a direct limit of finite dimensional vector spaces is the inverse limit of
the duals of those vector spaces. ([l

Remark A.1.3. Note that a compact Hausdorfl space is paracompact Hausdorff.
In the applications considered in this paper, the previous lemma is applied in the
setting of compact Hausdorff spaces.
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A.2. Recollections from Hrushovski-Loeser. In this section we recall some
results from the theory of non-archimedean tame topology due to Hrushovski and
Loeser [HL16]. The main reference for this section is Chapter 14 of [HL16], but we
refer the reader to [Ducl6] for an excellent survey. In particular, we will deal with
the model theory of valued fields. We denote by K a complete valued field with
values in the ordered multiplicative group of the positive real numbers.

We consider a two sorted language with the two sorts corresponding to valued fields
and the value group. The signature of this two sorted language will be

(0717+K7XK7" |:K_>R+7§]R+7XR)7

where the subscript K denotes constants, functions, relations etc., of the field sort
and the subscript R denotes the same for the value group sort. When the context
is clear we will drop the subscripts.

We denote by || the valuation written multiplicatively. The valuation |- | satisfies:

lz+yl < max{[z] |y[},
lz-yl = |aflyl,
o] = o.

Remark A.2.1. Note that we follow Berkovich’s convention and write our valuations
multiplicatively. In particular, the terminology ‘valuation’ is somewhat abusive, and
here we really mean a non-archimedean absolute value. In [HL16], all valuations
are written additively.

Following [HL16, §14.1], we will denote by F the two sorted structure (K;R;)
viewed as a substructure of a model of ACVF (with value group R;). Given a
quasi-projective variety V defined over K and an F-definable subset X of V' x R,
Hrushovski and Loeser [HL16] associate to X (functorially) a topological space
Br(X). By definition, this is the space of types, in X, defined over F which are
almost orthogonal to the definable set R ;. Given a variety V as above, we say that
subset Z C Br(V) is semi-algebraic if it is of the form Bp(X) for an F-definable
subset X C V. We note that X itself can be identified in Br(X) as the set of
realized types, and hence there is a canonically defined injection X < Bp(X).

We now recall a description of the spaces Br(X) in some special cases and some of
their properties; these are the only properties which are used in this article.

Properties A.2.2.

1. ([HL16], 14.4.1) For every F-definable set X, By (X) is a Hausdorff topological
space which is locally path connected. This construction is functorial in defin-
able maps i.e. a definable map f : X — Y induces a continuous map of the
corresponding topological spaces.

2. ([HL16), 14.1, pg. 194) If V is an affine variety and X C 'V a definable subset,
then Br(X) is a subspace of Br(V). In fact, it is a semi-algebraic subset (in
the sense of Berkovich spaces, see Property 3 below).

3. ([HL16], 14.1, pg. 194) Suppose X is an affine variety Spec(A). In this case,
Bgp(X) can be identified with the Berkovich analytic space associated to X. Its



997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1019

1020
1021
1022
1023
1024
1025
1026
1027

1028

1029

38

SAUGATA BASU AND DEEPAM PATEL

points can be described in terms of multiplicative semi-norms as follows. A
point of Br(X) is a multiplicative map ¢ : A — Ry such that ¢(a +b) <
max(6(a), 6(b)).

With X = Spec(A), the topology on Br(X) is the one inherited from viewing it
as a natural subset of Rj‘:. If f € A, then f gives rise to a continuous function

f:Br(X) =Ry
defined as follows:
f(9) =o(f) eRy.

This follows from the previous observation and the definition of the topology on
Berkovich analytic spaces.

(([HL16], 14.1, pg. 194) Let V = Spec(A). Then any formula ¢ of the form
f <1 Ag, where f,g € A, A € Ry and <€ {<,<,>,>} gives a definable subset X
of V', and therefore a semi-algebraic subset By (X) of Br(V'). It can be described
in the language of valuations as the set {x € Bp(V)|f(x) > Ag(x)}. In general,
the semi-algebraic subset associated to a Boolean combination of such formulas is
the corresponding Boolean combination of the semi-algebraic subsets associated
to each formula. Moreover, a subset of Bp(V') is semi-algebraic if an only if it
is a Boolean combination of subsets of the form {x € Bp(X)|f(z) >x Ag(z)},
where f,g € A, A € Ry and e {<,<,>,>}.

([HL16], 14.1.2) If X is an F-definable subset of an algebraic variety V', then
Br(X) is compact if and only if Bp(X) is closed in Bgp(V') where V' is a
complete algebraic variety containing V.

Suppose that K is algebraically closed, V' = Spec(A) C A% is an affine sub-
variety, and ¢(X;T) (with X = (X1,...,Xn)) a formula with parameters in
F. Here X are free variable of the field sort and T is a free variable of the
value sort. Suppose a € Ry such that for all t,t' satisfying, a < t < t,
(K;Ry) Eo(X;t) — o(X,t). Let (X) be the formula

IT(T > a) A ¢(X, T).
Then,
Ry, V) = |JR($(:1), V).

a<t

Proof of Property 7. The inclusion | J,, _, R(¢(+1),V) C R(, V) is obvious, since
for each t > a, (K;Ry) = ¢(X,t) — ¥(X), which implies that R(¢(-;t),V) C
RE(), V). .

To prove the reverse inclusion, let p € R(¥, V). Then, by definition p is a
type which is almost orthogonal to the value group, and moreover, there exists
z € R(¢,V)(K'), such that x = p and (K',R;) is an elementary extension of
(K;R,) (since types which are orthogonal to R, can always be realized in such
a model). Hence, there exists tg > a,ty € Ry, such that (K',Ry) | ¢(x, tp),
and sop € ﬁ(qb(-,to), V). This proves that

Ry, V) C |JR($(:1), V).

a<t
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Given an F-definable map f : X — Ry, we will denote by Bp(f) : Bp(X) —
Br(R;) = R, the induced map. We will say that Bg(f) is a semi-algebraic map.

The following theorems which are easily deduced from the main theorems in [HL16,
Chapter 14] will play a key role in the results of this paper. We will use the same
notation as above.

Theorem A.3. [HL16, Theorem 14.4.4] Let V be a quasi-projective variety over
K, X C V be an F-definable subset and f : X — Ry be an F-definable map.
For t € Ry, let Bp(X)>; denote the semi-algebraic subset Bp(X N (f > t)) =
Br(X)N Br(f > t) of Br(V). Then, there exists a finite partition P of Ry
into intervals, such that for each I € P and for all ¢ < &' € I, the inclusion
Br(X)>er <= Br(X)>c is a homotopy equivalence.

Theorem A.4. [HL16, Theorem 14.3.1, Part (1)] Let Y be a variety and X C
Y xRY xP™ be an F-definable set. Letm : X — Y xR, be the projection map. Then
there are finitely many homotopy types amongst the fibers (Bg (7~ (y; t)))(y;t)erRg'

Theorem A.5. [HL16, Theorem 14.2.4] Let V' be a quasi-projective variety defined
over K, and X an F-definable subset of V' such that Bg(X) is compact. Then there
exists a family of finite simplicial complexes (X;)icr (where I is a directed partially
ordered set) embedded in By (X) of dimension < dim(V'), deformation retractions
i Xi = X;,7 < i, and deformation retractions m; : Bp(X) — X;, such that
mij o T = m; and the canonical map Bg(X) — lim, X; is a homeomorphism.

As an immediate consequence of Theorem A.5 we have using the same notation:

Corollary A.6. Let V. C A¥ be a closed affine subvariety, and let Bp(X) be a
semi-algebraic subset of V.

(a) Every connected component of By (X) is path connected.

(b) H(Br(X)) =0 for i > dim(V).

(c) dimH*(Bp(X)) < co.

(d) The restriction homomorphism H™V)(Bg (V) — HE™Y)(Bg(X)) is surjec-
tive.

Proof. Recall the definition of Cubey (R) (cf. Notation 3.2.1) and that Cubey (R) is
a compact topological space. Similar remarks apply to Cubey (R) N Br(X). More-
over, arguing as in Part (6) of Lemma 3.2.7, for sufficiently large R the natural
inclusions Cubey (R) N X < Bgp(X) and Cubey (R) — Bg(V) induce homotopy
equivalences. In the following, we fix such an R large enough such that both in-
clusions are homotopy equivalences. Note that Parts (a), (b) and (¢) now follow
directly from Theorem A.5. We shall now prove [Proof of Part (d)].

By the previous remarks, it is sufficient to prove that the natural induced morphism
HY™ (V) (Cubey (R)) — HY™(Y) (Cubey (R) N Bp (X))

is surjective.

By Theorem A.5, Cubey (R) has the homotopy type of a finite simplicial polyhe-

dron of dimension at most dim(V'). Since Cubey (R) is compact, it follows that
the cohomological dimension (in the sense of [Ive86, page 196, Definition 9.4]) of
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Cubey (R) is < dim(V).

It follows again from Theorem A.5 that there exists a compact polyhedron Z C
Cubey (R) N X such that Z is a deformation retract of Cubey (R) N Bp(X). Let
t: Z < Cubey (R)NBr(X) be the inclusion map. Note that ¢ induces isomorphisms
in cohomology. Since the inclusion of Z in Cubey (R) factors through ¢, and ¢
induces isomorphisms in cohomology, it follows (using the long exact sequence of
cohomology for pairs) that

H*(Cubey (R), Cubey (R) N Bp(X)) = H*(Cubey (R), Z).
We now prove that
HYm(V)+L (Cubey (R), Cubey (R) N Br (X)) = HE™(V)+ (Cubey (R), Z) = 0.

This gives the desired result by an application of the long exact sequence in coho-
mology associated to the pair (Cubey (R), Cubey (R) N Br(X)).

Recall that Cubey (R) is a Hausdorff space, and consequently that Z is a closed
subspace of Cubey (R). It follows now [Ive86, page 198, Proposition 9.7] that the
cohomological dimension of U := Cubey (R)) \ Z is also < dim(V). This implies
that HI™V)+L (1) > g4I+ (Cubey (R), Z) = 0, which finishes the proof. [
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