

1 **VC DENSITY OF DEFINABLE FAMILIES OVER VALUED**
2 **FIELDS**

3 SAUGATA BASU AND DEEPMAL PATEL

ABSTRACT. We prove a tight bound on the number of realized 0/1 patterns (or equivalently on the Vapnik-Chervonenkis codensity) of definable families in models of the theory of algebraically closed valued fields with a non-archimedean valuation. Our result improves the best known result in this direction proved by Aschenbrenner, Dolich, Haskell, Macpherson and Starchenko, who proved a weaker bound in the restricted case where the characteristics of the field K and its residue field are both assumed to be 0. The bound obtained here is optimal and without any restriction on the characteristics.

We obtain the aforementioned bound as a consequence of another result on bounding the Betti numbers of semi-algebraic subsets of certain Berkovich analytic spaces, mirroring similar results known already in the case of o-minimal structures and for real closed, as well as, algebraically closed fields. The latter result is the first result in this direction and is possibly of independent interest. Its proof relies heavily on recent results of Hrushovski and Loeser on the topology of semi-algebraic subsets of Berkovich analytic spaces.

4

CONTENTS		
5	1. Introduction	2
6	1.1. Combinatorial definitions	2
7	1.2. Brief History	3
8	2. Main results	5
9	2.1. Model theory of algebraically closed valued fields	5
10	2.2. New Results	6
11	3. Proofs of the main results	7
12	3.1. Outline of the methods used to prove the main theorems	7
13	3.2. Proof of Theorem 2	9
14	3.3. Proof of Theorem 1	32
15	3.4. Proof of Corollary 1	34
16	Appendix A.	35
17	A.1. Review of Singular Cohomology	35
18	A.2. Recollections from Hrushovski-Loeser	37
19	Acknowledgments	40
20	References	40

S.B. would like to acknowledge support from the National Science Foundation awards and DMS-1620271, CCF-1618918 and CCF-1910441. D.P. would like to acknowledge support from the National Science Foundation award DMS-1502296.

21
1. INTRODUCTION

22 In this article, we prove a tight bound on the number of realized 0/1 patterns
 23 (or equivalently on the Vapnik-Chervonenkis codensity) of definable families in
 24 models of the theory of algebraically closed valued fields with a non-archimedean
 25 valuation (henceforth referred to just as ACVF). This result improves on the best
 26 known upper bound on this quantity previously obtained by Aschenbrenner et al.
 27 in [ADH⁺16]. Our result is a consequence of a topological result giving an upper
 28 bound on the Betti numbers of certain semi-algebraic sets obtained as Berkovich
 29 analytifications of definable sets in certain models of ACVF which we will recall
 30 more precisely in the next section.

31

32 In order to state our main combinatorial result we need to introduce some preliminary
 33 notation and definitions.

34 **1.1. Combinatorial definitions.** Suppose V and W are sets, and $X \subset V \times W$
 35 is a subset. Let $\pi_V : X \rightarrow V, \pi_W : X \rightarrow W$ denote the restriction to X of the
 36 natural projection maps. For any $v \in V, w \in W$, we set $X_v := \pi_W(\pi_V^{-1}(v))$, and
 37 $X_w := \pi_V(\pi_W^{-1}(w))$.

38 **Notation 1.1.1.** For each $n > 0$, we define a function

$$\chi_{X,V,W;n} : V \times W^n \rightarrow \{0, 1\}^n$$

as follows. For $\bar{w} := (w_1, \dots, w_n) \in W^n$ and $v \in V$, we set

$$(\chi_{X,V,W;n}(v, \bar{w}))_i := \begin{cases} 0 & \text{if } v \notin X_{w_i} \\ 1 & \text{otherwise.} \end{cases}$$

39 (Note that in the special case when $n = 1$, $\chi_{X,V,W;1}$ is just the usual characteristic
 40 function of the subset $X \subset V \times W$).
 41 For $\bar{w} \in W^n$ and $\sigma \in \{0, 1\}^n$, we will say that σ is *realized by the tuple* $(X_{w_1}, \dots, X_{w_n})$
 42 *of subsets of* V if there exists $v \in V$ such that $\chi_{X,V,W;n}(v, \bar{w}) = \sigma$. We will often
 43 refer to elements of $\{0, 1\}^n$ colloquially as ‘0/1 patterns’.

44 Finally, we define the function

$$\chi_{X,V,W} : \mathbb{N} \rightarrow \mathbb{N}$$

by

$$\chi_{X,V,W}(n) := \max_{\bar{w} \in W^n} \text{card}(\chi_{X,V,W;n}(V, \bar{w})).$$

45 The function $\chi_{X,V,W}$ is closely related to the notion of *VC-codensity of a set*
 46 *system*. Since some of the prior results (for example, those in [ADH⁺16]) have
 47 been stated in terms of VC-codensity it is useful to recall its definition here.

48 **Definition 1.1.2.** Let X be a set and $\mathcal{S} \subset 2^X$. The *shatter function* of \mathcal{S} , $\pi_{\mathcal{S}} : \mathbb{N} \rightarrow \mathbb{N}$, is defined by setting

$$\pi_{\mathcal{S}}(n) := \max_{A \subset X, \text{card}(A)=n} \text{card}(\{A \cap Y \mid Y \in \mathcal{S}\}).$$

50 We denote

$$\text{vcd}_{\mathcal{S}} := \limsup_{n \rightarrow \infty} \frac{\log(\pi_{\mathcal{S}}(n))}{\log(n)}.$$

51 Given a definable subset $X \subset V \times W$ in some structure, we will denote

$$\text{vcd}(X, V, W) := \text{vcd}_{\mathcal{S}},$$

52 where $\mathcal{S} = \{X_v \mid v \in V\} \subset 2^W$. We will call (following the convention in [ADH⁺16]),
 53 $\text{vcd}(X, V, W)$, the *VC-codensity* of the family of subsets, $\{X_w \mid w \in W\}$, of V . More
 54 generally, if $\phi(\bar{X}, \bar{Y})$ is a first-order formula (with parameters) in the theory of some
 55 structure M , we set

$$\text{vcd}(\phi) := \text{vcd}(S, M^{|\bar{X}|}, M^{|\bar{Y}|}),$$

56 where $S \subset M^{|\bar{X}|} \times M^{|\bar{Y}|}$ is the set defined by ϕ . (Here and elsewhere in the paper,
 57 $|\bar{X}|$ denotes the length of the finite tuple of variables \bar{X} .) Note also that if M is an
 58 NIP structure (see for example [Sim15, Chapter 2] for definition), then $\text{vcd}(\phi) < \infty$
 59 for every (parted) formula ϕ .

60

61 The problem of proving upper bounds on $\text{vcd}(X, V, W)$ of a definable family can be
 62 reduced to proving upper bounds on the function $\chi_{X, V, W}$ (see Proposition 3.4.1
 63 below). We will henceforth concentrate on the problem of obtaining tight upper
 64 bounds on the function $\chi_{X, V, W}$ for the rest of the paper.

65 **1.2. Brief History.** For definable families of hypersurfaces in \mathbb{F}^k of fixed degree
 66 over a field \mathbb{F} , Babai, Ronyai, and Ganapathy [RBG01] gave an elegant argument
 67 using linear algebra to show that the number of 0/1 patterns (cf. Notation 1.1.1)
 68 realized by n such hypersurfaces in \mathbb{F}^k is bounded by $C \cdot n^k$, where C is a constant
 69 that depends on the family (but independent of n). This bound is easily seen to
 70 be optimal. A more refined topological estimate on these realized 0/1 patterns (in
 71 terms of the sums of the Betti numbers) is given in [BPR09], where the methods
 72 are more in line with the methods in the current paper.

73

74 A similar result was proved in [BPR05] for definable families of semi-algebraic sets
 75 in \mathbb{R}^k , where \mathbb{R} is an arbitrary real closed field. For definable families in M^k , where
 76 M is an arbitrary o-minimal expansion of a real closed field, the first author [Bas10]
 77 adapted the methods in [BPR05] to prove a bound of $C \cdot n^k$ on the number of 0/1
 78 patterns for such families where C is a constant that depends on the family (see
 79 also [JL10]). These bounds were obtained as a consequence of more general results
 80 bounding the individual Betti numbers of definable sets defined in terms of the
 81 members of the family, and more sophisticated homological techniques (as opposed
 82 to just linear algebra) played an important role in obtaining these bounds.

83

84 If K is an algebraically closed valued field, then the problem of obtaining tight
 85 bounds on $\text{vcd}(\phi)$ for parted formulas, $\phi(\bar{X}, \bar{Y})$, in the one sorted language of valued
 86 fields with parameters in K was considered by Aschenbrenner et al. in [ADH⁺16].
 87 They obtained the nontrivial bound of $2|\bar{X}|$ on $\text{vcd}(\phi)$ in the case when the char-
 88 acteristic pair of K (i.e. the pair consisting of the characteristic of the field K and
 89 that of its residue field) is $(0, 0)$ [ADH⁺16, Corollary 6.3]. In terms of 0/1 patterns
 90 (cf. Proposition 3.4.1) their result can be restated as saying that for each $k > 0$
 91 and any fixed definable family of subsets of K^k , there exists $C > 0$ (depending on
 92 the family) such that for all $n > 0$ the number of 0/1 patterns realized by any n
 93 sets of the family is bounded from above by $C \cdot n^{2k}$.

94

95 Given that the model-theoretic/algebraic techniques used thus far do not imme-
 96 diately yield the tight upper bound of $|\bar{X}|$ on $\text{vcd}(\phi(\bar{X}, \bar{Y}))$ for valued fields, it
 97 is natural to consider a more topological approach as in [Bas10]. However, for
 98 definable families over a (complete) valued field, it is not a priori clear that there
 99 exists an appropriate well-behaved cohomology theory (i.e. with the required finite-
 100 ness/cohomological dimension properties) that makes the approach in [Bas10] fea-
 101 sible in this situation. For example, ordinary sheaf cohomology with respect to the
 102 Zariski or Étale site for schemes are clearly not suitable. Fortunately, the recent
 103 break-through results of Hrushovski and Loeser [HL16] give us an opening in this
 104 direction. Instead of considering the original definable subset of an affine variety
 105 V defined over K , we can consider the corresponding *semi-algebraic* subset of the
 106 Berkovich analytification $B_{\mathbf{F}}(V)$ of V (see §A.2 below for the definitions). These
 107 semi-algebraic subsets have certain key topological tameness properties which are
 108 analogous to those used in the case of o-minimal structures, and moreover cru-
 109 cially they are homotopy equivalent to a simplicial complex of dimension at most
 110 $\dim(V)$. Therefore, their cohomological dimension is at most $\dim(V)$. In particular,
 111 the singular cohomology of the underlying topological spaces satisfies the requisite
 112 properties. Thus, in order to bound the number of realizable 0/1 patterns of a
 113 finite set of definable subsets of V , we can first replace the finite set of definable
 114 subsets of V by the corresponding semi-algebraic subsets of $B_{\mathbf{F}}(V)$, and then try
 115 to make use of their tame topological properties to obtain a bound on the number
 116 of 0/1 patterns realized by these semi-algebraic subsets. An upper bound on the
 117 latter quantity will also be an upper bound on the number of 0/1 patterns realized
 118 by the definable subsets that we started with (this fact is elucidated later in Ob-
 119 servation 3.3.1 in § 3.3).

120

121 Using the results of Hrushovski and Loeser, one can then hope to proceed with the
 122 o-minimal case as the guiding principle. While the arguments are somewhat simi-
 123 lar in spirit, there are several technical challenges that need to be overcome – for
 124 example, an appropriate definition of “tubular neighborhoods” with the required
 125 properties (see §3.1 below for a more detailed description of these challenges). The
 126 bounds on the sum of the Betti numbers of the semi-algebraic subsets of Berkovich
 127 spaces that we obtain in this way are exactly analogous to the ones in the alge-
 128 braic, semi-algebraic, as well as o-minimal cases. The fact that the cohomological
 129 dimension of the semi-algebraic subsets of $B_{\mathbf{F}}(V)$ is bounded by $\dim(V)$ is one key
 130 ingredient in obtaining these tight bounds.

131

132 Our results on bounding the Betti numbers of semi-algebraic subsets of Berkovich
 133 spaces are of independent interest, and the aforementioned results seem to sug-
 134 gest a more general formalism of cohomology associated to NIP structures. For
 135 example, one obtains bounds (on the Betti numbers) of the exact same shape and
 136 having the same exponents for definable families in the case of algebraic, semi-
 137 algebraic, o-minimal and valued field structures. Moreover, in each of these cases,
 138 these bounds are obtained as a consequence of general bounds on the dimension of
 139 certain cohomology groups. Therefore, it is perhaps reasonable to hope for some
 140 general cohomology theory (say for NIP structures which are fields) which would
 141 in turn give a uniform method of obtaining tight bounds on VC-density via coho-
 142 mological methods. More generally, it shows that cohomological methods can play

143 an important role in model theory in general.

144

145 As a consequence of the bound on the Betti numbers (in fact using the bound
 146 only on the 0-th Betti number) we prove that $\text{vcd}(\phi(\bar{X}, \bar{Y}))$ over an arbitrary algebraically closed valued field is bounded by $|\bar{X}|$. One consequence of our methods
 147 (unlike the techniques used in [ADH⁺16]) is that there are no restrictions on the
 148 characteristic pair of the valued field K .

150

151 Finally note that in [ADH⁺16] the authors also obtain a bound of $2|\bar{X}| - 1$ on
 152 $\text{vcd}(\phi(\bar{X}, \bar{Y}))$, over \mathbb{Q}_p , where ϕ is a formula in Macintyre's language [Mac76].
 153 However, our methods right now do not yield results in this case.

154

155 **Outline of the paper:** In §2 we first introduce the necessary technical background
 156 (in §2.1), and then state the main results of the paper, namely Theorems 1 and 2,
 157 and Corollary 1 (in §2.2). The proofs of the main results appear in §3. We first
 158 give an outline of the proofs in §3.1. We next prove the main topological result of
 159 the paper (Theorem 2) in in §3.2, and prove Theorem 1 and Corollary 1 in §3.3 and
 160 §3.4 respectively.

161

162 In order to make the paper self-contained and for the benefit of the readers, we
 163 include in an appendix (Appendix §A) a review of some very classical results about
 164 singular cohomology (in §A.1), as well as much more recent ones related to semi-
 165 algebraic sets associated to definable sets in models of ACVF proved by Hrushovski
 166 and Loeser [HL16] (in §A.2). These results are used heavily in the proofs of the
 167 main theorems.

168

2. MAIN RESULTS

169 **2.1. Model theory of algebraically closed valued fields.** In this section, K
 170 will always denote an algebraically closed non-archimedean valued field, and the
 171 value group of K will be denoted by Γ . Let $R := K[X_1, \dots, X_N]$ and $\mathbb{A}_K^N =$
 172 $\text{Spec}(R)$. Given a closed affine subvariety $V = \text{Spec}(A)$ of $\mathbb{A}_K^N = \text{Spec}(R)$ and an
 173 extension K' of K , we will denote by $V(K') \subset \mathbb{A}_K^N(K')$ the set of K' points of V .

174

175 We denote by \mathcal{L} the two-sorted language

$$(0_K, 1_K, +_K, \times_K, |\cdot| : K \rightarrow \Gamma \cup \{0_\Gamma\}, \leq_\Gamma, \times_\Gamma),$$

176 where the subscript K denotes constants, functions, relations etc., of the field sort
 177 and the subscript Γ denotes the same for the value group sort. When the context
 178 is clear we will drop the subscripts. The constant 0_Γ is interpreted as the valuation
 179 of 0 (and does not technically belong to the value group).

180

181 Now suppose that $\phi(X_1, \dots, X_n)$ is a quantifier-free formula with parameters in
 182 $(K; \Gamma \cup \{0_\Gamma\})$ in the language \mathcal{L} with free variables only of the field sort. Then, ϕ
 183 is a quantifier-free formula with atoms of the form $|F| \leq \lambda \cdot |G|$ where $F, G \in R$
 184 and $\lambda \in \Gamma \cup \{0_\Gamma\}$. The formula ϕ gives rise to a definable subset of \mathbb{A}_K^N and, in
 185 particular, ϕ defines a subset of $\mathbb{A}_K^N(K')$ for every valued extension K' of K . We
 186 will denote the intersection of this subset with V by $\mathcal{R}(\phi, V)$, and by $\mathcal{R}(\phi, V)(K')$

187 the corresponding subset of $V(K')$.

188
189 Let ϕ be a formula with parameters in $(K; \Gamma \cup \{0_\Gamma\})$ in the language \mathcal{L} with free
190 variables only of the field sort. Note that every such formula is equivalent modulo
191 the two-sorted theory of $(K; \Gamma \cup \{0_\Gamma\})$ to a quantifier-free formula (see for example
192 [HHM08, Theorem 7.1 (ii)]). Because of this fact, we can assume without loss of
193 generality in what follows that ϕ is a quantifier-free formula, and is thus a quantifier-
194 free formula with atoms of the form $|F| \leq \lambda \cdot |G|$ where $F, G \in R$ and $\lambda \in \Gamma \cup \{0_\Gamma\}$.
195

196 **2.2. New Results.** Our main result is the following.

197 **Theorem 1** (Bound on the number of 0/1 patterns). *Let K be an algebraically
198 closed valued field with value group Γ . Suppose that $V \subset \mathbb{A}_K^N$ and $W \subset \mathbb{A}_K^M$ are
199 closed affine subvarieties and let*

$$\phi(X_1, \dots, X_N; Y_1, \dots, Y_M)$$

200 *be a formula with parameters in $(K; \Gamma \cup \{0_\Gamma\})$ in the language \mathcal{L} (with free variables
201 only of the field sort). Then there exists a constant $C = C_{\phi, V, W}$, such that for all
202 $n > 0$,*

$$\chi_{\mathcal{R}(\phi, (V \times W))(K), V(K), W(K)}(n) \leq C \cdot n^k,$$

203 *where $k = \dim V$.*

204 As an immediate corollary of Theorem 1 we obtain the following bound on the
205 VC-codensity for definable families over algebraically closed valued fields.

206 **Corollary 1** (Bound on the VC-codensity for definable families over ACVF). *Let
207 K be an algebraically closed valued field with value group Γ . Let $\phi(\bar{X}, \bar{Y})$ be a
208 formula with parameters in $(K; \Gamma \cup \{0_\Gamma\})$ in the language \mathcal{L} . Then,*

$$\text{vcd}(\phi) \leq |\bar{X}|.$$

209 Theorem 1 will follow from a more general topological theorem which we will now
210 state. Before we state the theorem, we recall some more notation.

211

212 We now assume that K is an algebraically closed complete valued field with a
213 non-archimedean valuation whose value group Γ is a subgroup of the multiplicative
214 group $\mathbb{R}_{>0}$.

215

216 Given an affine variety V as before, Hrushovski-Loeser [HL16] associate to V a
217 locally compact Hausdorff topological space, denoted by $B_F(V)$. More generally,
218 they associate a locally compact Hausdorff topological space $B_F(X)$ to any definable
219 subset $X \subset V$ which is functorial in definable maps. In the present setting,
220 $B_F(V)$ can be identified with the Berkovich analytic space associated to V and has
221 an explicit description in terms of valuations. We refer the reader to Appendix A.2
222 for a brief review of this construction and its main properties.

223

224 **Notation 2.2.1.** If $V \subset \mathbb{A}_K^N$ is a affine closed subvariety, and ϕ a formula in the
225 language with parameters in $(K; \Gamma \cup \{0_\Gamma\})$ in the language \mathcal{L} with free variables
226 only of the field sort, we will denote $\tilde{\mathcal{R}}(\phi, V)$ the *semi-algebraic* subset $B_F(\mathcal{R}(\phi, V))$
227 of $B_F(V)$.

228

229 Suppose now that $V \subset \mathbb{A}_K^N$ and $W \subset \mathbb{A}_K^M$ are closed affine subvarieties and let
230 $\phi(\cdot, \cdot)$ be a formula in disjunctive normal form without negations and with atoms
231 of the form $|F| \leq \lambda \cdot |G|$, $F, G \in K[X_1, \dots, X_N, Y_1, \dots, Y_M]$, $\lambda \in \Gamma \cup \{0_\Gamma\}$. Then for
232 each $w \in W(K)$, $\tilde{\mathcal{R}}(\phi(\cdot, w), V)$ is a semi-algebraic subset of $B_F(V)$.

233

234 For $\bar{w} = (w_1, \dots, w_n) \in W(K)^n$ and $\sigma \in \{0, 1\}^n$, we set

$$(2.2.2) \quad \tilde{\mathcal{R}}(\sigma, \bar{w}) := \tilde{\mathcal{R}}(\phi_\sigma(\bar{w}), V),$$

235 where

$$\phi_\sigma(\bar{w}) := \bigwedge_{i, \sigma(i)=1} \phi(\cdot, w_i) \wedge \bigwedge_{i, \sigma(i)=0} \neg \phi(\cdot, w_i).$$

236 Given a topological space Z , we denote by $H^i(Z)$ the corresponding i -th singular
237 cohomology group of Z with rational coefficients. We refer the reader to § A.1 for a
238 brief recollection of the main properties of these cohomology groups. We note that
239 for $Z = \tilde{\mathcal{R}}(\sigma, \bar{w})$ these cohomology groups are finite dimensional \mathbb{Q} -vector spaces.

240 Let

$$b_i(\tilde{\mathcal{R}}(\sigma, \bar{w})) = \dim_{\mathbb{Q}} H^i(\tilde{\mathcal{R}}(\sigma, \bar{w}))$$

241 denote the corresponding i -th Betti number.

242

243 The following theorem, mirroring a similar theorem in the o-minimal case [Bas10],
244 is the main technical result of this paper.

245 **Theorem 2** (Bound on the Betti numbers). *Let K be an algebraically closed
246 complete valued field with a non-archimedean valuation whose value group Γ is
247 a subgroup of the multiplicative group $\mathbb{R}_{>0}$. Suppose that $V \subset \mathbb{A}_K^N$ and $W \subset
248 \mathbb{A}_K^M$ are closed affine subvarieties and let $\phi(\cdot, \cdot)$ be a formula in disjunctive
249 normal form without negations and with atoms of the form $|F| \leq \lambda \cdot |G|$, $F, G \in
250 K[X_1, \dots, X_N, Y_1, \dots, Y_M]$, $\lambda \in \Gamma \cup \{0_\Gamma\}$. Let $\dim(V) = k$. Then, there exists
251 a constant $C = C_{\phi, V, W} > 0$ such that for all $\bar{w} \in W(K)^n$, and $0 \leq i \leq k$,*

$$\sum_{\sigma \in \{0, 1\}^n} b_i(\tilde{\mathcal{R}}(\sigma, \bar{w})) \leq Cn^{k-i}.$$

252

3. PROOFS OF THE MAIN RESULTS

253 In this section we prove our main results. Before starting the formal proof we first
254 give a brief outline of our methods.

255 **3.1. Outline of the methods used to prove the main theorems.** Our main
256 technical result Theorem 2 gives a bound, for each $i, 0 \leq i \leq k$, and $\bar{w} \in W(K)^n$,
257 on the sum over $\sigma \in \{0, 1\}^n$ of the i -th Betti numbers of $\tilde{\mathcal{R}}(\sigma, \bar{w})$. The technique for
258 achieving this is an adaptation of the topological methods used to prove a similar
259 result in the o-minimal category in [Bas10] (Theorem 2.1). We recall here the main
260 steps of the proof of Theorem 2.1 in [Bas10].

261

262 We assume that $V = R^N, W = R^M$, where R is a real closed field and $X \subset V \times W$
263 is a closed definable subset in an o-minimal expansion of R .

264 Step 1. The first step in the proof is to construct definable infinitesimal tubes
265 around the fibers X_{w_1}, \dots, X_{w_n} .

Step 2. Let $\sigma \in \{0,1\}^n$, and C be a connected component of

$$\bigcap_{\sigma(i)=1} X_{w_i} \cap \bigcap_{\sigma(i)=0} (V \setminus X_{w_i}).$$

One proves that there exists a unique connected component D of the complement of the boundaries of the tubes constructed in Step 1 such that C is homotopy equivalent to D . The homotopy equivalence is proved using the local conical structure theorem for o-minimal structures.

Step 3. As a consequence of Step 2, in order to bound $\sum_{\sigma} b_i(R(\sigma, \bar{w}))$, it suffices (using Alexander duality) to bound the Betti numbers of the union of the boundaries of the tubes constructed in Step 1.

Step 4. Bounding the Betti numbers of the union of the boundaries of the tubes is achieved using certain inequalities which follow from the Mayer-Vietoris exact sequence (cf. Properties A.1.1 (5)). In these inequalities only the Betti numbers of at most k -ary intersections of the boundaries play a role.

Step 5. One then uses Hardt's triviality theorem for o-minimal structures to get a uniform bound on each of these Betti numbers that depends only on the definable family under consideration i.e. on X, V , and W . Thus, the only part of the bound that grows with n comes from certain binomial coefficients counting the number of different possible intersections one needs to consider.

The method we use for proving Theorem 2 is close in spirit to the proof of Theorem 2.1 in [Bas10] as outlined above but different in many important details. For each of the steps enumerated above we list the corresponding step in the proof of Theorem 2.

Step 1'. We construct again certain tubes around the fibers and give explicit descriptions of the tubes in terms of the formula ϕ defining the given semi-algebraic set $\tilde{R}(\sigma, \bar{w})$. The definition of these tubes is somewhat more complicated than in the o-minimal case (see Notation 3.2.2). The use of two different infinitesimals to define these tubes is necessitated by the singular behavior of the semi-algebraic set defined by $|F| \leq \lambda|G|$ near the common zeros of F and G .

Step 2'. The homotopy equivalence property analogous to Step 2 above is proved in Proposition 3.2.6, and the role of local conical structure theorem in the o-minimal case is now played by a corresponding result of Hrushovski and Loeser (see Theorem A.3 below).

Step 3'. We avoid the use of Alexander duality by directly using a Mayer-Vietoris type inequality giving a bound on the Betti numbers of intersections of open sets in terms of the Betti numbers of up to k -fold unions (cf. Proposition 3.2.47).

Step 4'. This step is subsumed by Step 3'.

Step 5'. Finally, instead of using Hardt's triviality to obtain a constant bound on the Betti numbers of these 'small' unions, we use a theorem of Hrushovski and Loeser which states that the number of homotopy types amongst the fibers of any fixed map in the analytic category that we consider is finite (cf. Theorem A.4 below).

We apply Theorem 2 directly to obtain the VC-codensity bound in the case of the theory of ACVF (using Observation 3.3.1). One extra subtlety here is in removing

310 the assumption on the formula ϕ (which occurs in the hypothesis of Theorem 2).
 311 Actually, in order to prove Corollary 1 in general it suffices only to consider ϕ of
 312 the special form having just one atom of the form $|F| \leq \lambda \cdot |G|$ or $|F| = \lambda \cdot |G|$.
 313 This reduction from the general case to the special case is encapsulated in a combi-
 314 natorial result (Proposition 3.3.2). With the help of Proposition 3.3.2, Corollary 1
 315 becomes a consequence of Theorem 2 and Observation 3.3.1.

316

317 We now give the proofs in full detail. In the next subsection (§3.2) we give the
 318 proof of Theorem 2. In §3.3, we show how to deduce Theorem 1 from Theorem 2.
 319 Finally, in §3.4 we show how to deduce Corollary 1 from Theorem 2.

320 **3.2. Proof of Theorem 2.** In the following, K will be a fixed algebraically closed
 321 non-archimedean (complete real-valued) field and V is an affine variety over K . We
 322 shall freely use the results of Hrushovski and Loeser [HL16] on the spaces $B_{\mathbf{F}}(X)$
 323 associated to definable subsets $X \subset V$. For the reader's convenience, an exposition
 324 (with references) of the results we require below is provided in §A.2. We shall also
 325 make use of some standard facts about singular cohomology of topological spaces;
 326 we refer the reader to §A.1 for a review of these facts.

327

328 **Notation 3.2.1.** (closed cube) For $R \in \mathbb{R}, R > 0$, and $N > 0$, we denote by
 329 $\text{Cube}_N(R)$ the semi-algebraic subset $\tilde{\mathcal{R}}(\psi, \mathbb{A}_K^N)$, where

$$\psi = \bigwedge_{1 \leq i \leq N} |X_i| \leq R,$$

330 and $\mathbb{A}_K^N = \text{Spec}(K[X_1, \dots, X_N])$ is usual affine space. Notice that $\text{Cube}_N(R)$ is
 331 a closed topological space since the $|X_i|$ are continuous functions (see A.2.2(4),
 332 A.2.2(5)). Moreover, it is a compact topological space (see A.2.2(6)). If $V =$
 333 $\text{Spec}(A) \subset \mathbb{A}_K^N$ is a closed subvariety, then we set $\text{Cube}_V(R) := \text{Cube}_N(R) \cap B_{\mathbf{F}}(V)$.
 334 Note that this a closed semi-algebraic subset of $B_{\mathbf{F}}(V)$.

335 **Notation 3.2.2.** (Open, closed $(\varepsilon, \varepsilon')$ -tubes) Suppose $\phi(\cdot)$ is a formula in disjunc-
 336 tive normal form without negations and with atoms of the form $|F| \leq \lambda \cdot |G|$, with
 337 $F, G \in K[X_1, \dots, X_N]$ and $\lambda \in \mathbb{R}_+ := \mathbb{R}_{\geq 0}$. We denote by

$$\phi^o(\cdot; T, T')$$

338 the formula obtained from ϕ by replacing each atom $|F| \leq \lambda \cdot |G|$ with $\lambda, G \neq 0$ by
 339 the formula

$$(|F| < (\lambda \cdot T) \cdot |G|) \vee ((|F| < T') \wedge (|G| < T')),$$

340 and each atom $|F| \leq \lambda \cdot |G|$ with $\lambda = 0$ or $G = 0$ by the formula

$$|F| < T',$$

341 where T, T' are new variables of the value sort. Similarly, we denote by

$$\phi^c(\cdot; T, T')$$

342 the formula obtained from ϕ by replacing each atom $|F| \leq \lambda \cdot |G|$ by the formula

$$(|F| \leq (\lambda \cdot T) \cdot |G|) \vee ((|F| \leq T') \wedge (|G| \leq T')),$$

343 if $\lambda, G \neq 0$ and by the formula

$$|F| \leq T',$$

344 if $\lambda = 0$ or $G = 0$. Here again T, T' are new variables of the value sort.

345

For $\varepsilon > 1, \varepsilon' > 0$, and V a closed subvariety of \mathbb{A}_K^N we set

$$\text{Tube}_{V,\phi}^o(\varepsilon, \varepsilon') := \tilde{\mathcal{R}}(\phi^o(\cdot; \varepsilon, \varepsilon'), V),$$

$$\text{Tube}_{V,\phi}^c(\varepsilon, \varepsilon') := \tilde{\mathcal{R}}(\phi^c(\cdot; \varepsilon, \varepsilon'), V).$$

For each $R > 0$, we set

$$(3.2.3) \quad \text{Tube}_{V,\phi}^o(\varepsilon, \varepsilon', R) := \text{Cube}_V(R) \cap \text{Tube}_{V,\phi}^o(\varepsilon, \varepsilon'),$$

$$(3.2.4) \quad \text{Tube}_{V,\phi}^c(\varepsilon, \varepsilon', R) := \text{Cube}_V(R) \cap \text{Tube}_{V,\phi}^c(\varepsilon, \varepsilon').$$

346 We set

$$\text{TubeCompl}_{V,\phi}^c(\varepsilon, \varepsilon', R) := \text{Cube}_V(R) - \text{Tube}_{V,\phi}^o(\varepsilon, \varepsilon', R).$$

347 Notice that by definition, $\text{Tube}_{V,\phi}^o(\varepsilon, \varepsilon', R)$ (resp. $\text{TubeCompl}_{V,\phi}^c(\varepsilon, \varepsilon', R)$) is an
348 open (resp. closed) subset of $\text{Cube}_V(R)$. Moreover, both of these are semi-algebraic
349 as subsets of $B_F(V)$.

350

351 Finally, we set

$$\text{TubeBoundary}_{V,\phi}^c(\varepsilon, \varepsilon', R) := \text{Tube}_{V,\phi}^c(\varepsilon, \varepsilon', R) \cap \text{TubeCompl}_{V,\phi}^c(\varepsilon, \varepsilon', R).$$

352 *Remark 3.2.5.* Note that our notation for the ‘tubes’ above is structured so that
353 a superscript o (resp. c) in the notation indicates that the corresponding tube is
354 open (resp. closed).

355 The next proposition is the key ingredient for the proof of Theorem 2.

356 **Proposition 3.2.6.** *Let $V \subset \mathbb{A}_K^N$ and $W \subset \mathbb{A}_K^M$ be closed affine subvarieties. Let
357 $\phi(\cdot, \cdot)$ be a formula in disjunctive normal form without negations and with atoms
358 of the form $|F| \leq \lambda \cdot |G|$ where $F, G \in K[X_1, \dots, X_N, Y_1, \dots, Y_M]$. For each $\bar{w} \in$
359 $W(K)^n$, $\sigma \in \{0, 1\}^n$, and for all sufficiently large $R > 0$ and $\delta, \delta', \varepsilon, \varepsilon' \in \mathbb{R}_+$
360 satisfying, $0 < \delta - 1 \ll \delta' \ll \varepsilon - 1 \ll \varepsilon' \ll 1$,*

$$H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \cong H^*(S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)),$$

361 where $S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$ is defined by

$$S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R) := \bigcap_{i, \sigma(i)=1} \text{Tube}_{V,\phi(\cdot, w_i)}^o(\delta, \delta', R) \cap \bigcap_{i, \sigma(i)=0} \text{TubeCompl}_{V,\phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R),$$

362 and $\tilde{\mathcal{R}}(\sigma, \bar{w})$ is as in (2.2.2).

363 The proof of Proposition 3.2.6 will use the following lemma.

364 **Lemma 3.2.7.** *With notation as in Proposition 3.2.6:*

- 365 1. *For every fixed $\delta', \varepsilon, \varepsilon', R \in \mathbb{R}_+$, there exists $\delta_0 = \delta_0(\delta', \varepsilon, \varepsilon', R) > 1$ such that for
366 all $1 < t_1 \leq t_2 \leq \delta_0$, the inclusion map $S_\sigma(t_1, \delta', \varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(t_2, \delta', \varepsilon, \varepsilon', R)$ is
367 a homotopy equivalence.*
- 368 2. *For every fixed $\varepsilon, \varepsilon', R \in \mathbb{R}_+$, there exists $\delta'_0 = \delta'_0(\varepsilon, \varepsilon', R) > 0$ such that for all
369 $0 < t'_1 \leq t'_2 \leq \delta'_0$, the inclusion map*

$$\bigcap_{t>1} S_\sigma(t, t'_1, \varepsilon, \varepsilon', R) \hookrightarrow \bigcap_{t>1} S_\sigma(t, t'_2, \varepsilon, \varepsilon', R)$$

370 *is a homotopy equivalence.*

371 3. Let

$$S'_\sigma(\varepsilon, \varepsilon', R) := \bigcap_{t > 1, t' > 0} S_\sigma(t, t', \varepsilon, \varepsilon', R).$$

372 For every fixed $\varepsilon', R \in \mathbb{R}_+$, there exists $\varepsilon_0 = \varepsilon_0(\varepsilon', R) > 1$ such that for all
373 $1 < s_1 \leq s_2 \leq \varepsilon_0$, the natural inclusion

$$S'_\sigma(s_2, \varepsilon', R) \hookrightarrow S'_\sigma(s_1, \varepsilon', R)$$

374 is a homotopy equivalence.

375 4. For every fixed $R \in \mathbb{R}_+$, there exists $\varepsilon'_0 = \varepsilon'_0(R) > 0$ such that for all $0 < s'_1 \leq$
376 $s'_2 \leq \varepsilon'_0$, the natural inclusion

$$\bigcup_{s > 1} S'_\sigma(s, s'_2, R) \hookrightarrow \bigcup_{s > 1} S'_\sigma(s, s'_1, R)$$

377 is a homotopy equivalence.

5. The following equality holds:

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R) = \bigcup_{s > 1, s' > 0} S'_\sigma(s, s', R).$$

378 6. There exists $R_0 > 0$, such that for all $R > R_0$, the natural inclusion

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R) \hookrightarrow \tilde{\mathcal{R}}(\sigma, \bar{w})$$

379 is a homotopy equivalence.

380 *Remark 3.2.8.* (1) The subsets $S_\sigma(t, \delta', \varepsilon, \varepsilon', R)$ form an *increasing* sequence in
381 t i.e. if $t_1 < t_2$, then $S_\sigma(t_1, \delta', \varepsilon, \varepsilon', R) \subset S_\sigma(t_2, \delta', \varepsilon, \varepsilon', R)$. The analogous
382 assertion also holds for $S_\sigma(\delta, t', \varepsilon, \varepsilon', R)$ (with t' replacing t).
383 (2) The subsets $S_\sigma(\delta, \delta', s, \varepsilon', R)$ form a *decreasing* sequence in s i.e. if $s_1 < s_2$,
384 then $S_\sigma(\delta, \delta', s_2, \varepsilon', R) \subset S_\sigma(\delta, \delta', s_1, \varepsilon', R)$. The analogous assertion also
385 holds for $S_\sigma(\delta, \delta', \varepsilon, s', R)$.
386 (3) Then sequence of subsets $S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$ is increasing in R .

387 *Proof of Lemma 3.2.7.* We prove each part separately below.

388 *Proof of Part (1).* Let

$$S_\sigma^1(\delta', \varepsilon, \varepsilon', R) = \bigcup_{t > 1} S_\sigma(t, \delta', \varepsilon, \varepsilon', R).$$

389 First observe that $S_\sigma^1(\delta', \varepsilon, \varepsilon', R)$ is a semi-algebraic subset of $B_{\mathbf{F}}(V)$. To see this
390 let

$$\Phi_{\sigma, \delta', \varepsilon, \varepsilon'}(\cdot; T) := \bigwedge_{i, \sigma(i)=1} \phi^o(\cdot, w_i; T, \delta') \wedge \bigwedge_{i, \sigma(i)=0} \neg(\phi^o(\cdot, w_i; \varepsilon, \varepsilon')) \wedge \bigwedge_{1 \leq i \leq N} (|X_i| \leq R),$$

391 and let

$$\Phi_{\sigma, \delta', \varepsilon, \varepsilon'}^1(\cdot) := (\exists T)(T > 1) \wedge \Phi_{\sigma, \delta', \varepsilon, \varepsilon'}(\cdot; T).$$

By A.2.2(7),

$$S_\sigma^1(\delta', \varepsilon, \varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \delta', \varepsilon, \varepsilon'}^1, V).$$

392 It follows that $S_\sigma^1(\delta', \varepsilon, \varepsilon', R)$ is a semi-algebraic subset of $B_{\mathbf{F}}(V)$. Now consider
393 the function $f : \mathcal{R}(\Phi_{\sigma, \delta', \varepsilon, \varepsilon'}^1, V) \rightarrow \mathbb{R}_+$ defined by

$$f(x) := \inf_{\{(x, t) \mid \Phi_{\sigma, \delta', \varepsilon, \varepsilon'}(x; t)\}} t.$$

394 It is clear that f is definable. Note that

$$S_\sigma(t, \delta', \varepsilon, \varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \delta', \varepsilon, \varepsilon'}^1 \wedge f \geq t, V).$$

395 The claim now follows as a direct consequence of Theorem A.3. \square

396 *Proof of Part (2).* Let

$$S_\sigma^2(\varepsilon, \varepsilon', R) = \bigcup_{t' > 0} \bigcap_{t > 1} S_\sigma(t, t', \varepsilon, \varepsilon', R).$$

397 Then, $S_\sigma^2(\varepsilon, \varepsilon', R)$ is a semi-algebraic subset of $B_{\mathbf{F}}(V)$. To see this let

$$\Phi_{\sigma, \varepsilon, \varepsilon'}^2(\cdot; T') = \bigwedge_{\sigma(i)=1} \phi^c(\cdot, w_i; 1, T') \wedge \bigwedge_{\sigma(i)=0} \neg(\phi^o(\cdot, w_i; \varepsilon, \varepsilon')) \wedge \bigwedge_{1 \leq i \leq N} (|X_i| \leq R),$$

398 and

$$\Phi_{\sigma, \varepsilon, \varepsilon'}^3(\cdot) := (\exists T')(T' > 0) \wedge \Phi_{\sigma, \varepsilon, \varepsilon'}^2(\cdot; T').$$

As in the previous part,

$$S_\sigma^2(\delta', \varepsilon, \varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \varepsilon, \varepsilon'}^3, V).$$

399 In particular, $S_\sigma^2(\delta', \varepsilon, \varepsilon', R)$ is semi-algebraic.

400 Moreover, let $g : \mathcal{R}(\Phi_{\sigma, \varepsilon, \varepsilon'}^3, V) \rightarrow \mathbb{R}_+$ be the map defined by

$$g(x) := \inf_{\{(x; t') \mid \Phi_{\sigma, \varepsilon, \varepsilon'}^2(x; t')\}} t'.$$

401 Clearly, g is definable and

$$S_\sigma^2(t', \varepsilon, \varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \varepsilon, \varepsilon'}^3 \wedge g \geq t', V).$$

402 As in the previous part, the result follows from an application of Theorem A.3 to
403 the map g . \square

404 *Proof of Part (3).* First note that the union $S_\sigma^3(\varepsilon', R) = \bigcup_{s > 1} S_\sigma'(s, \varepsilon', R)$ is a semi-
405 algebraic subset of $B_{\mathbf{F}}(V)$. To see this let

$$\Phi_{\sigma, \varepsilon'}^4(\cdot; S) = \bigwedge_{\sigma(i)=1} \phi^c(\cdot, w_i; 1, 0) \wedge \bigwedge_{\sigma(i)=0} \neg(\phi^o(\cdot, w_i; S, \varepsilon')) \wedge \bigwedge_{1 \leq i \leq N} (|X_i| \leq R).$$

406 and

$$\Phi_{\sigma, \varepsilon'}^5(\cdot) := (\exists S)(S > 1) \wedge \Phi_{\sigma, \varepsilon'}^4(\cdot; S).$$

Then,

$$S_\sigma^3(\varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \varepsilon'}^5, V).$$

407 In particular, $S_\sigma^3(\varepsilon', R)$ is semi-algebraic.

408 Let $h : \mathcal{R}(\Phi_{\sigma, \varepsilon'}^5, V) \rightarrow \mathbb{R}_+$ be given by

$$h(x) = \sup_{\{(x; s) \mid \Phi_{\sigma, \varepsilon'}^4(x; s)\}} s.$$

409 Clearly, h is definable. Moreover,

$$S_\sigma'(s, \varepsilon', R) = \tilde{\mathcal{R}}(\Phi_{\sigma, \varepsilon'}^5 \wedge h \geq s, V).$$

410 and therefore also semi-algebraic. Now apply Theorem A.3. \square

411 *Proof of Part (4).* Let $S_\sigma^4(R) := \cup_{s' > 0} S_\sigma^3(s', R)$, and consider

$$\Phi_\sigma^6(\cdot) := (\exists S')(S' > 0) \wedge \Phi_{\sigma, S'}^5(\cdot).$$

Then,

$$S_\sigma^4(R) = \tilde{\mathcal{R}}(\Phi_\sigma^6, V).$$

412 In particular, $S_\sigma^4(R)$ is semi-algebraic. We can now consider the function $h :$
413 $\mathcal{R}(\Phi_\sigma^6, V) \rightarrow \mathbb{R}_+$ be given by

$$h(x) = \sup_{\{(x; s') \mid \Phi_{\sigma, s'}^5(x)\}} s'.$$

414 One can now argue as in Part (3). \square

415 *Proof of Part (5).* This follows from the definition of $S'_\sigma(s, s', R)$. \square

416 *Proof of Part (6).* This part follows immediately from Theorem A.3. For example,
417 consider the definable function h on $\tilde{\mathcal{R}}(\sigma, \bar{w})$ given by

$$h(x) = \frac{1}{\max_i(\max(1, |x_i|))},$$

418 where x_i 's are the coordinates. Then, $h(x) \geq 0$ for all $x \in V$, and for all $\varepsilon, 0 < \varepsilon \leq 1$,

$$h(x) \geq \varepsilon \Leftrightarrow x \in \text{Cube}_V\left(\frac{1}{\varepsilon}\right).$$

Then there exists $0 < \varepsilon_0 < 1$ such that for all $0 < \varepsilon \leq \varepsilon_0$ the natural inclusions

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V\left(\frac{1}{\varepsilon}\right) \hookrightarrow \tilde{\mathcal{R}}(\sigma, \bar{w}) = \tilde{\mathcal{R}}(\sigma, \bar{w}) \cap B_{\mathbf{F}}(h \geq 0)$$

419 are homotopy equivalences. Now we set $R_0 := \frac{1}{\varepsilon_0} > 0$, and for any $R \geq R_0$, we
420 consider $\varepsilon(R) := \frac{1}{R}$ to obtain the desired conclusion. \square

421 This completes the proof of Lemma 3.2.7. \square

422 We now prove Proposition 3.2.6. Since the proof is long and technical, we be-
423 gin by giving a general outline. Because of the nature of the argument the steps
424 enumerated do not actually occur in the same order as in the list below.

Step 1. By Lemma 3.2.7 (Part (6)), there exists an $R_0 > 0$ such that for all $R > R_0$
the natural inclusion

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R) \hookrightarrow \tilde{\mathcal{R}}(\sigma, \bar{w})$$

induces an isomorphism:

$$H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \xrightarrow{\cong} H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)).$$

425 So we fix some $R > 0$ large enough and consider only the semi-algebraic
426 set $\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)$.

Step 2. By Lemma 3.2.7 (Part (5)), we have natural inclusions

$$S'_\sigma(s, s', R) \hookrightarrow \bigcup_{s > 1, s' > 0} S'_\sigma(s, s', R) = \tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R).$$

427 We shall see in Claim 4 below that this induces an isomorphism

$$H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \cap \text{Cube}_V(R) \cong \varprojlim_{s'} \varprojlim_s H^*(S'_\sigma(s, s', R)).$$

428 Step 3. We shall see in Claim 1 below that the natural inclusions

$$S'_\sigma(\varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(t, t', \varepsilon, \varepsilon', R)$$

induce an isomorphism

$$\varinjlim_{t'} \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)) \cong H^*(S'_\sigma(\varepsilon, \varepsilon', R)).$$

429 Step 4. In order to conclude, we shall show that the direct and inverse limits ap-
430 pearing in Step 2 (proved in Claim 6) and Step 3 (proved in Claim 3)
431 ‘stabilize’. This stabilization will result as a consequence of the homotopy
432 equivalences proved in Lemma 3.2.7, and is proved in two intermediate
433 steps (Claims 4 and 5 for Step 2, and Claims 2 and 3 for Step 3).

434 The proofs involving commutation of the limit (or colimit) functors with cohomol-
435 ogy in Steps 2 and 3 all rely on proving that a certain increasing family of compact
436 subspaces $S_\lambda \subset T$, of a semi-algebraic set T , indexed by a real parameter λ , are
437 cofinal in the family of all compact subspaces of $S := \cup_\lambda S_\lambda$ in T (the families are
438 different for different steps). One then uses Lemma A.1.2 to obtain the desired
439 commutation of various limits (or colimits) with cohomology. The proofs of all
440 these cofinality statements rely on the following basic lemma that we extract out
441 for clarity.

442 **Lemma 3.2.9.** *Let T be a compact Hausdorff space, Λ a partially ordered set,
443 $(C_\lambda)_{\lambda \in \Lambda}$ an increasing sequence of compact subsets of T , and $S := \cup_\lambda C_\lambda$. Suppose
444 that there is a continuous function $\theta : S \rightarrow \mathbb{R}_{>0} \cup \{\infty\}$ such that the following
445 property holds:*

(3.2.10) *For each $\theta_0 \in \mathbb{R}_{>0}$, there exists a $\lambda(\theta_0) \in \Lambda$ such that $x \in C_{\lambda(\theta_0)}$ if
 $\theta(x) \geq \theta_0$.*

446 *Then the family $(C_\lambda)_{\lambda \in \Lambda}$ is cofinal in the family of compact subsets of S in T .*

447 *Proof.* Let $C \subset S$ be a compact subset of S in T . We need to show that there is a
448 λ such that $C \subset C_\lambda$. Since C is compact, $F|_C$ attains its minimum $\theta_0 > 0$ on C .
449 Let $\lambda(\theta_0)$ be as in the proposition. Clearly,

$$x \in C \Rightarrow \theta(x) \geq \theta_0 \Rightarrow x \in C_{\lambda(\theta_0)}.$$

450 It follows that $C \subset C_{\lambda(\theta_0)}$, and so the family $(C_\lambda)_{\lambda \in \Lambda}$ is cofinal in the family of
451 compact subsets of S in T . \square

452 *Proof of Proposition 3.2.6.*

453 **Claim 1.** *The natural inclusions*

$$(3.2.11) \quad S'_\sigma(\varepsilon, \varepsilon', R) := \bigcap_{t>1, t'>0} S_\sigma(t, t', \varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(t, t', \varepsilon, \varepsilon', R)$$

454 *induce an isomorphism*

$$(3.2.12) \quad H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong \varinjlim_{t, t'} H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)).$$

455 *As an immediate consequence we also have*

$$(3.2.13) \quad H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong \varinjlim_{t'} \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)).$$

456 (Here the inductive limit in (3.2.12) is taken over the poset $\mathbb{R}_{>1} \times \mathbb{R}_{>0}$, partially
457 ordered by

$$(t_1, t'_1) \preceq (t_2, t'_2) \text{ if and only if } t_2 \leq t_1 \text{ and } t'_2 \leq t'_1,$$

458 and for $(t_1, t'_1) \preceq (t_2, t'_2)$, the morphism

$$H^*(S_\sigma(t_1, t'_1, \varepsilon, \varepsilon', R)) \rightarrow H^*(S_\sigma(t_2, t'_2, \varepsilon, \varepsilon', R))$$

459 is induced from the inclusion $S_\sigma(t_2, t'_2, \varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(t_1, t'_1, \varepsilon, \varepsilon', R)$.)

460 *Proof of Claim 1.* First note that the isomorphism (3.2.13) is an immediate conse-
461 quence of the isomorphism (3.2.12), and the fact that

$$\varinjlim_{t'} \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)) \cong \varinjlim_{t, t'} H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)).$$

462 (see for example [SGA72, Expose 1, page 13] for the last isomorphism).

463 We now proceed to prove the isomorphism (3.2.12). Let

$$T = \bigcap_{i, \sigma(i)=0} \text{TubeCompl}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R).$$

464 Since each $\text{TubeCompl}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$ is compact, T is a compact Hausdorff space.

465 Notice that for each $t > 1, t' > 0$, $S_\sigma(t, t', \varepsilon, \varepsilon', R) \subset T$.

466 We will now show that for fixed $\varepsilon, \varepsilon', R$, the family of semi-algebraic sets

$$(3.2.14) \quad (S_\sigma(t, t', \varepsilon, \varepsilon', R))_{t > 1, t' > 0}$$

467 is a cofinal system of open neighborhoods of

$$\bigcap_{t > 1, t' > 0} S_\sigma(t, t', \varepsilon, \varepsilon', R)$$

468 in T . Assuming this fact, the claim follows from Part (1) of Lemma A.1.2.

469

470 In order to prove the cofinality statement for the family (3.2.14), we first prove the
471 following cofinality statement from which the cofinality of (3.2.14) will follow.

472

Suppose that I is a finite set, and let for each $i \in I$, $F_i, G_i \in K[X_1, \dots, X_N]$, and
 $\lambda_i \in \mathbb{R}_+$. Let V be as before, $R > 0$, $T^{(1)}$ a compact semi-algebraic subset of
 $\text{Cube}_V(R)$. We define

$$S^{(1)}(t, t', R) := T^{(1)} \cap \bigcap_{i \in I} \text{Tube}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^o(t, t', R).$$

473 Notice that for each $t > 1, t' > 0$, $S^{(1)}(t, t', R) \subset T^{(1)}$, and hence

$$\bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R) \subset T^{(1)}$$

474 as well.

475 **Claim 1a.** *The family of semi-algebraic sets*

$$\left(S^{(1)}(t, t', R) \right)_{t > 1, t' > 0}$$

476 *is a cofinal system of open neighborhoods of*

$$\bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R)$$

477 in $T^{(1)}$.

478 *Proof of Claim 1a.* Proving cofinality of the family $(S^{(1)}(t, t', R))_{t > 1, t' > 0}$ in the
479 partially ordered family of open neighborhoods of

$$\bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R)$$

480 is equivalent to proving the cofinality of the family of compact subsets

$$\left(T^{(1)} - S^{(1)}(t, t', R) \right)_{t > 1, t' > 0}$$

481 in the partially ordered family of compact subsets of $T^{(1)} - \bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R)$.

482 For proving the latter we use Lemma 3.2.9, with $\Lambda = \mathbb{R}_{>1} \times \mathbb{R}_{>0}$, and the family
483 $(C_\lambda)_{\lambda \in \Lambda} := (T^{(1)} - S^{(1)}(t, t', R))_{(t, t') \in \Lambda}$ of compact semi-algebraic subsets of the
484 compact set $T^{(1)}$.

485

486 We now define a continuous function $\theta : T^{(1)} - \bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R) \rightarrow \mathbb{R}_{\geq 0}$. We
487 first introduce the following auxiliary functions which will be used in the definition
488 of the function θ . For $\lambda \geq 0$, let $H_\lambda(u, v) : \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ be defined as follows.
489 If $\lambda = 0$, then

$$H_0(u, v) := u,$$

490 and if $\lambda > 0$

$$(3.2.15) \quad H_\lambda(u, v) = \min(\max(u, v), \max(0, \frac{u}{\lambda v} - 1)), \text{ if } v \neq 0,$$

$$(3.2.16) \quad = u, \text{ else.}$$

491 It is easy to check that the functions $H_\lambda(u, v)$ are continuous.

492 For each $i \in I$, let $\theta_i : T^{(1)} - \bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R) \rightarrow \mathbb{R}_{\geq 0}$ be the function defined
493 by

$$\theta_i(x) = H_{\lambda_i}(|F_i(x)|, |G_i(x)|),$$

and let $\theta : T^{(1)} - \bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R) \rightarrow \mathbb{R}_{\geq 0}$ be defined by

$$\theta(x) = \max_{i \in I} \theta_i(x).$$

494 Notice that each θ_i , and hence also θ are continuous, since they are compositions
495 of continuous functions.

496

497 In order to apply Lemma 3.2.9 it remains to check that θ is positive, and that it
498 satisfies (3.2.10) in Lemma 3.2.9.

499

500 (1) $\theta(x) > 0$ for each $x \in T^{(1)} - \bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R)$:

501 Suppose that $\theta(x) = 0$. This implies that $\theta_i(x) = 0$ for each $i \in I$.

502 If $\lambda_i = 0$, then $\theta_i(x) = 0$ implies that $|F_i(x)| = 0$. If $\lambda_i > 0$, then
503 $\theta_i(x) = 0$ implies that either $|F_i(x)| = |G_i(x)| = 0$ or $|F_i(x)|/(\lambda_i \cdot |G_i(x)|) \leq$
504 1 or equivalently $|F_i(x)| \leq \lambda_i \cdot |G_i(x)|$. Together they imply that $x \in$
505 $\bigcap_{t > 1, t' > 0} S^{(1)}(t, t', R)$, which is a contradiction.

506

507 (2) θ satisfies (3.2.10) in Lemma 3.2.9, with λ defined by $\lambda(\theta_0) = (1 + \theta_0, \theta_0)$:
 508 Suppose $\theta(x) \geq \theta_0$. First note that

$$\begin{aligned} T^{(1)} \setminus S^{(1)}(1 + \theta_0, \theta_0, R) &= T^{(1)} \setminus \bigcap_{i \in I} \text{Tube}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^o(1 + \theta_0, \theta_0, R) \\ &= T^{(1)} \cap \bigcup_{i \in I} \text{TubeCompl}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^c(1 + \theta_0, \theta_0, R), \end{aligned}$$

509 which is equal to the set

$$T^{(1)} \cap \bigcup_{i \in I} \tilde{\mathcal{R}}(|F_i| \geq \lambda_i \cdot (1 + \theta_0) \cdot |G_i|) \wedge ((|F_i| \geq \theta_0) \vee (|G_i| \geq \theta_0)).$$

510 Since $\theta(x) \geq \theta_0$, there exists an i such that $\theta(x) = \theta_i(x) = \theta_0$. This
 511 implies that $|F_i(x)|$ and $|G_i(x)|$ are not simultaneously 0. We have two
 512 cases. If $\lambda_i = 0$, then we have that

$$|F_i(x)| = \theta_i(x) \geq \theta_0,$$

513 which implies that

$$x \in \tilde{\mathcal{R}}(|F_i| \geq (\lambda_i \cdot (1 + \theta_0) \cdot |G_i|) \wedge ((|F_i| \geq \theta_0) \vee (|G_i| \geq \theta_0)).$$

514 Otherwise, $\lambda_i > 0$. If $|G_i(x)| \neq 0$, we have that

$$\max(|F_i(x)|, |G_i(x)|) \geq \theta_i(x) \geq \theta_0,$$

515 and

$$\max(0, \frac{|F_i(x)|}{\lambda_i |G_i(x)|} - 1) \geq \theta_i(x) \geq \theta_0,$$

516 which again implies that

$$x \in \tilde{\mathcal{R}}(|F| \geq (\lambda_i \cdot (1 + \theta_0) \cdot |G|) \wedge ((|F| \geq \theta_0) \vee (|G| \geq \theta_0)).$$

517 If $|G_i(x)| = 0$, then $|F_i(x)| = \theta_0$, and we have again

$$x \in \tilde{\mathcal{R}}(|F| \geq (\lambda_i \cdot (1 + \theta_0) \cdot |G|) \wedge ((|F| \geq \theta_0) \vee (|G| \geq \theta_0)).$$

518 This completes the proof that θ satisfies Property (3.2.10) in Lemma 3.2.9 with λ
 519 defined by $\lambda(\theta_0) = (1 + \theta_0, \theta_0)$, hence completing the proof of Claim 1a. \square

520 Now we return to the proof the Claim 1. Let $\phi = \bigvee_{h \in H} \phi^{(h)}$, where each $\phi^{(h)}$ is a
 521 conjunction of weak inequalities, $|F_{jh}| \leq \lambda_{jh} \cdot |G_{jh}|$, $j \in J_h$, and H, J_h are finite sets.

522 Let $I_\sigma = \{i \in [1, n] \mid \sigma_i = 1\}$ and H^{I_σ} denote the set of maps $\psi : I_\sigma \rightarrow H$. Note
 523 that

$$S_\sigma(t, t', \varepsilon, \varepsilon', R) = \bigcap_{I_\sigma} \left(\bigcup_{h \in H} \bigcap_{j \in J_h} \text{Tube}_{V, |F_{jh}(\cdot, w_i)| \leq \lambda_{jh} \cdot |G_{jh}(\cdot, w_i)|}^o(t, t', R) \right) \cap T.$$

524 (Recall that

$$T = \bigcap_{i, \sigma_i=0} \text{TubeCompl}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$$

525 is a compact semi-algebraic set.) Then,

$$S_\sigma(t, t', \varepsilon, \varepsilon', R) = \bigcup_{\psi \in H^{I_\sigma}} S_\sigma^{(\psi)}(t, t', \varepsilon, \varepsilon', R),$$

527 where for $\psi \in H^{I_\sigma}$

$$S_\sigma^{(\psi)}(t, t', \varepsilon, \varepsilon', R) = T \cap \bigcap_{i, \sigma_i=1} \text{Tube}_{V, \phi^{(\psi(i))}(\cdot, w_i)}^o(t, t', R).$$

528 An open neighborhood U of $\bigcap_{t>1, t'>0} S_\sigma(t, t', \varepsilon, \varepsilon', R)$ in T is clearly also an open

529 neighborhood of $\bigcap_{t>1, t'>0} S_\sigma^{(\psi)}(t, t', \varepsilon, \varepsilon', R)$ for each $\psi \in H^{I_\sigma}$.

530 Fixing a $\psi \in H^{I_\sigma}$, we apply Claim 1a, with

$$\begin{aligned} T^{(1)} &= T, \\ I &= \{(j, \psi(i)) \mid i \in I_\sigma, j \in J_{\psi(i)}\}, \end{aligned}$$

531 and for $i_0 = (j, \psi(i)) \in I$,

$$\begin{aligned} F_{i_0} &= F_{j, \psi(i)}, \\ G_{i_0} &= G_{j, \psi(i)}, \\ \lambda_{i_0} &= \lambda_{j, \psi(i)}. \end{aligned}$$

532 We obtain that for each $\psi \in H^{I_\sigma}$, there exists $\theta_0^{(\psi)} > 0$, such that

$$S_\sigma^{(\psi)}(1 + \theta_0^{(\psi)}, \theta_0^{(\psi)}, \varepsilon, \varepsilon', R) \subset U.$$

533 Now take $\theta_0 = \min_{\psi \in H^{I_\sigma}} \theta_0^{(\psi)}$. Then,

$$S_\sigma(1 + \theta_0, \theta_0, \varepsilon, \varepsilon', R) = \bigcup_{\psi \in H^{I_\sigma}} S_\sigma^{(\psi)}(1 + \theta_0, \theta_0, \varepsilon, \varepsilon', R) \subset U.$$

534 This proves (3.2.12) and concludes the proof of Claim 1. \square

535 **Claim 2.** *The natural inclusions*

$$\bigcap_{t>1} S_\sigma(t, t', \varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(t, t', \varepsilon, \varepsilon', R)$$

536 induce for each fixed $t' > 0$, $\varepsilon > 1$, $\varepsilon' > 0$, $R > 0$, an isomorphism

$$(3.2.17) \quad H^*(\bigcap_{t>1} S_\sigma(t, t', \varepsilon, \varepsilon', R)) \cong \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)).$$

537 *Proof of Claim 2.* The proof is structurally similar to the proof of Claim 1. Let

$$T = \bigcap_{i, \sigma(i)=0} \text{TubeCompl}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R).$$

538 Then T is compact. We will now show for fixed $t', \varepsilon, \varepsilon', R$, the family of semi-

539 algebraic sets

$$(3.2.18) \quad (S_\sigma(t, t', \varepsilon, \varepsilon', R))_{t>1}$$

540 is a cofinal system of open neighborhoods of

$$\bigcap_{t>1} S_\sigma(t, t', \varepsilon, \varepsilon', R)$$

541 in T . Assuming this fact, the claim follows from Part (1) of Lemma A.1.2.

542

543 In order to prove the cofinality statement for the family (3.2.18), we first prove the

544 following cofinality statement from which the cofinality of (3.2.18) will follow.

545

Suppose that I is a finite set, and let for each $i \in I$, $F_i, G_i \in K[X_1, \dots, X_N]$, and $\lambda_i \in \mathbb{R}_+$. Let V be as before, $R > 0$, and $T^{(2)}$ a compact semi-algebraic subset of $\text{Cube}_V(R)$. We define

$$S^{(2)}(t, t', R) := T^{(2)} \cap \bigcap_{i \in I} \text{Tube}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^o(t, t', R).$$

546 **Claim 2a.** *The family of semi-algebraic sets*

$$\left(S^{(2)}(t, t', R) \right)_{t > 1}$$

547 *is a cofinal system of open neighborhoods of*

$$\bigcap_{t > 1} S^{(2)}(t, t', R)$$

548 *in $T^{(2)}$.*

549 *Proof of Claim 2a.* To prove that the family of semi-algebraic sets

$$\left(S^{(2)}(t, t', R) \right)_{t > 1}$$

550 *is a cofinal system of open neighborhoods of*

$$\bigcap_{t > 1} S^{(2)}(t, t', R)$$

551 *is equivalent to proving that the family of compact semi-algebraic sets,*

$$\left(T^{(2)} - S^{(2)}(t, t', R) \right)_{t > 1}$$

552 *is cofinal in the family of compact subsets of $T^{(2)} - \bigcap_{t > 1} S^{(2)}(t, t', R)$.*

553 *Let*

$$\begin{aligned} S_i^{(2)}(t, t', R)^c &:= T^{(2)} \cap \text{TubeComp}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^c(t, t', R) \\ &= T^{(2)} \cap \tilde{\mathcal{R}}((|F_i| \geq t \cdot \lambda_i \cdot |G_i|) \wedge \\ &\quad ((|F_i| \geq t') \vee (|G_i| \geq t')), V), \text{ if } \lambda_i > 0, \\ &= T^{(2)} \cap \tilde{\mathcal{R}}((|F_i| \geq t'), V), \text{ if } \lambda_i = 0. \end{aligned}$$

554 *Note that*

$$T^{(2)} - S^{(2)}(t, t', R) = \bigcup_{i \in I} S_i^{(2)}(t, t', R)^c,$$

555 *and*

$$T^{(2)} - \bigcap_{t > 1} S^{(2)}(t, t', R) = \bigcup_{i \in I} \bigcup_{t > 1} S_i^{(2)}(t, t', R)^c$$

556 *The last cofinality statement would follow if for each i we can show that the family*

557 *of compact semi-algebraic sets $\left(S_i^{(2)}(t, t', R)^c \right)_{t > 1}$ is cofinal in the family of compact*

558 *subspaces of $\bigcup_{t > 1} S_i^{(2)}(t, t', R)^c$. This is because if for each compact subspace*

$$C \subset T^{(2)} - \bigcap_{t > 1} S^{(2)}(t, t', R) = \bigcup_{i \in I} \bigcup_{t > 1} S_i^{(2)}(t, t', R)^c$$

559 *and $i \in I$, there exists $t_{0,i} > 1$, such that $C \cap \bigcup_{t > 1} S_i^{(2)}(t, t', R)^c \subset S_i^{(2)}(t_{0,i}, t', R)^c$,*

560 *then $C \subset T^{(2)} - S^{(2)}(t_0, t', R)$ with $t_0 = \min_i t_{0,i}$.*

561

562 We now proceed to show the cofinality of the family $\left(S_i^{(2)}(t, t', R)^c\right)_{t>1}$ in the family
 563 of compact subspaces of $\bigcup_{t>1} S_i^{(2)}(t, t', R)^c$ using Lemma 3.2.9.

564 For each $i \in I$, consider the continuous function $\theta_i : \bigcup_{t>1} S_i^{(2)}(t, t', R)^c \rightarrow \mathbb{R}_+ \cup \{\infty\}$
 565 defined by

$$(3.2.19) \quad \begin{aligned} \theta_i(x) &= |F_i(x)| \text{ if } \lambda_i = 0, \\ &= \frac{|F_i(x)|}{\lambda_i |G_i(x)|}, \text{ if } \lambda_i > 0. \end{aligned}$$

566 It is an easy exercise to check that the functions θ_i positive and satisfies Prop-
 567 erty (3.2.10) in Lemma 3.2.9, with the map λ defined by

$$\begin{aligned} \lambda(\theta_0) &= t' \text{ if } \lambda_i = 0, \\ &= \theta_0 \text{ if } \lambda_i > 0. \end{aligned}$$

568 satisfy the hypothesis of Lemma 3.2.9. This finishes the proof of Claim 2a. \square

569 The proof of Claim 2 follows from the proof of Claim 2a, in exactly the same manner
 570 as the proof of Claim 1 from Claim 1a and is omitted. \square

571 **Claim 3.** *For every fixed $\varepsilon > 1, \varepsilon' > 0$ and $R > 0$, there exists $\delta'_0 > 0$ and for each
 572 $0 < \delta' \leq \delta'_0$, there exists $\delta_0(\delta') > 1$ (depending on δ') such that the inclusion*

$$S'_\sigma(\varepsilon, \varepsilon', R) \hookrightarrow S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$$

573 induces an isomorphism

$$(3.2.20) \quad H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong H^*(S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R))$$

574 for all $1 < \delta \leq \delta_0(\delta')$.

575 *Proof of Claim 3.* We fix $\varepsilon > 1, \varepsilon' > 0$ and $R > 0$. First, note that it follows from
 576 (3.2.13) in Claim 1 that

$$(3.2.21) \quad H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong \varinjlim_{t'} \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R)).$$

577 By Lemma 3.2.7 (Part (2)) there exists δ'_0 such that for all $0 < t'_2 \leq t'_1 \leq \delta'_0$, the
 578 inclusion map

$$\bigcap_{t>1} S_\sigma(t, t'_2, \varepsilon, \varepsilon', R) \hookrightarrow \bigcap_{t>1} S_\sigma(t, t'_1, \varepsilon, \varepsilon', R)$$

579 induces an isomorphism

$$H^*\left(\bigcap_{t>1} S_\sigma(t, t'_1, \varepsilon, \varepsilon', R)\right) \rightarrow H^*\left(\bigcap_{t>1} S_\sigma(t, t'_2, \varepsilon, \varepsilon', R)\right).$$

580 It follows that, for any $0 < \delta' \leq \delta'_0$.

$$(3.2.22) \quad \varinjlim_{t'} H^*\left(\bigcap_{t>1} S_\sigma(t, t', \varepsilon, \varepsilon', R)\right) \cong H^*\left(\bigcap_{t>1} S_\sigma(t, \delta', \varepsilon, \varepsilon', R)\right)$$

581 Moreover, it follows from (3.2.17) that

$$(3.2.23) \quad H^*\left(\bigcap_{t>1} S_\sigma(t, t', \varepsilon, \varepsilon', R)\right) \cong \varinjlim_t H^*(S_\sigma(t, t', \varepsilon, \varepsilon', R))$$

582 for each fixed $t' > 0, \varepsilon > 1, \varepsilon' > 0$ and $R > 0$. Hence, from (3.2.21), (3.2.22), and
 583 (3.2.23) we get an isomorphism

$$(3.2.24) \quad H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong \varinjlim_t H^*(S_\sigma(t, \delta', \varepsilon, \varepsilon', R))$$

584 It again follows from Lemma 3.2.7 (Part (1)) that for each fixed δ' , there exists
 585 $\delta_0(\delta')$ such that for all $1 < t_2 \leq t_1 \leq \delta_0(\delta')$ the inclusion map $S_\sigma(t_2, \delta', \varepsilon, \varepsilon', R) \hookrightarrow$
 586 $S_\sigma(t_1, \delta', \varepsilon, \varepsilon', R)$ induces an isomorphism

$$H^*(S_\sigma(t_1, \delta', \varepsilon, \varepsilon', R)) \rightarrow H^*(S_\sigma(t_2, \delta', \varepsilon, \varepsilon', R)),$$

587 which implies that

$$(3.2.25) \quad \varinjlim_t H^*(S_\sigma(t, \delta', \varepsilon, \varepsilon', R)) \cong H^*(S_\sigma(t_0, \delta', \varepsilon, \varepsilon', R))$$

588 for all $1 < t_0 \leq \delta_0(\delta')$. Claim 3 follows from (3.2.24) and (3.2.25), after taking δ'_0
 589 and $\delta_0(\delta')$ as above. \square

590 **Claim 4.** *The inclusions*

$$\bigcup_{s>1, s'>0} S'_\sigma(s, s', R) \hookrightarrow \tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)$$

591 induce an isomorphism

$$(3.2.26) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong \varprojlim_{s', s} H^*(S'_\sigma(s, s', R)).$$

592 As an immediate consequence we also have the isomorphism

$$(3.2.27) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong \varprojlim_{s'} \varprojlim_s H^*(S'_\sigma(s, s', R)).$$

593 (Here the projective limit is taken over the poset $\mathbb{R}_{>1} \times \mathbb{R}_{>0}$, partially ordered by

$$(s_1, s'_1) \preceq (s_2, s'_2) \text{ if and only if } s_2 \leq s_1 \text{ and } s'_2 \leq s'_1,$$

594 and for $(s_1, s'_1) \preceq (s_2, s'_2)$, the morphism

$$H^*(S'_\sigma(s_2, s'_2, R)) \rightarrow H^*(S'_\sigma(s_1, s'_1, R))$$

595 is induced from the inclusion $S'_\sigma(s_1, s'_1, R) \hookrightarrow S'_\sigma(s_2, s'_2, R)$.)

596 *Proof of Claim 4.* First note that the isomorphism (3.2.27) is an immediate consequence of the isomorphism (3.2.26), and the fact that

$$\varprojlim_{s'} \varprojlim_s H^*(S'_\sigma(s, s', R)) \cong \varprojlim_{s, s'} H^*(S'_\sigma(s, s', R)).$$

598 (see for example [SGA72, Expose 1, page 13] for the last isomorphism). Note that
 599 the semi-algebraic sets $S'_\sigma(s, s', R)$ are compact for each choice of $s > 1, s' > 0$ and
 600 $R > 0$. In order to see this, recall that by definition (see (3.2.11)) $S'_\sigma(s, s', R)$ is
 601 the intersection of $\bigcap_{i, \sigma(i)=1} \bigcap_{t>1, t'>0} \text{Tube}_{V, \phi(\cdot, w_i)}^o(t, t', R)$, with the compact semi-
 602 algebraic set $\bigcap_{i, \sigma(i)=0} \bigcap_{t>1, t'>0} \text{TubeCompl}_{V, \phi(\cdot, w_i)}^c(s, s', R)$. Therefore, it suffices
 603 to prove that the semi-algebraic set

$$\bigcap_{t>1, t'>0} \text{Tube}_{V, \phi(\cdot, w_i)}^o(t, t', R)$$

is compact for each i . In general, $\phi = \vee_{h \in H} \phi^{(h)}$ where each $\phi^{(h)}$ is a conjunction
 of weak inequalities $|F_{jh}| < \lambda_{jh}|G_{jh}|$, $j \in J_h$ where H and J_h are finite sets. It

follows that the semi-algebraic set $\bigcap_{t>1, t'>0} \text{Tube}_{V, \phi(\cdot, w_i)}^o(t, t', R)$ is the union over H of the intersection over J_h of the semi-algebraic sets

$$\bigcap_{t>1, t'>0} \text{Tube}_{V, |F_{jh}(\cdot, w_i)| \leq \lambda_{jh} \cdot |G_{jh}(\cdot, w_i)|}^o(t, t', R)$$

604 We claim that

(3.2.28)

$$\bigcap_{t>1, t'>0} \text{Tube}_{V, |F_{jh}(\cdot, w_i)| \leq \lambda_{jh} \cdot |G_{jh}(\cdot, w_i)|}^o = \text{Cube}_V(R) \cap \tilde{\mathcal{R}}(|F_{jh}(\cdot, w_i)| \leq \lambda_{jh} \cdot |G_{jh}(\cdot, w_i)|),$$

605 and the latter set is easily seen to be compact. Verifying the equality in (3.2.28) is
606 an easy exercise starting from the definition in (3.2.3). It follows that

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R) = \bigcup_{s>1, s'>0} S'_\sigma(s, s', R)$$

607 where each $S'_\sigma(s, s', R)$ is a compact subset of $\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)$. We now prove
608 that the family

$$(3.2.29) \quad (S'_\sigma(s, s', R))_{s>1, s'>0}$$

609 is cofinal in the family of compact subspaces of

$$\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R) = \bigcup_{s>1, s'>0} S'_\sigma(s, s', R).$$

610 Then the isomorphism (3.2.26) will follow from Part (2) of Lemma A.1.2.

611 In order to prove the cofinality statement for the family (3.2.29), we first prove the
612 following cofinality statement from which the cofinality of (3.2.29) will follow.

613

614 Suppose that I is a finite set, and let for each $i \in I$, $F_i, G_i \in K[X_1, \dots, X_N]$, and
615 $\lambda_i \in \mathbb{R}_+$.

616 Let V and $R > 0$ be as before. We define

$$\begin{aligned} S^{(3)}(s, s', R) &:= \bigcup_{i \in I} \text{TubeCompl}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^c(s, s', R) \\ &= \text{Cube}_V(R) \cap \bigcup_{i \in I} \tilde{\mathcal{R}}(|F_i| \geq s', V), \text{ if } \lambda_i = 0, \\ &= \text{Cube}_V(R) \cap \bigcup_{i \in I} \tilde{\mathcal{R}}((|F_i| \geq s \cdot \lambda_i \cdot |G_i|) \\ &\quad \wedge (|F_i| \geq s' \vee |G_i| \geq s'), V), \text{ if } \lambda_i > 0. \end{aligned}$$

617 **Claim 4a.** *The family of semi-algebraic sets*

$$\left(S^{(3)}(s, s', R) \right)_{s>1, s'>0}$$

618 is cofinal in the directed family of compact subspaces of

$$\bigcup_{s>1, s'>0} S''(s, s', R).$$

619 *Proof of Claim 4a.* One can deduce this formally from Claim 1a by taking complements and setting $T^{(1)} = \text{Cube}_V(R)$. On the other hand, one can also proceed via
620 Lemma 3.2.9 using the function
621

$$\theta : \bigcup_{s>1, s'>0} S^{(3)}(s, s', R) \rightarrow \mathbb{R}_{\geq 0}$$

622 defined as follows. For each $i \in I$, let $\theta_i : \bigcup_{s>1, s'>0} S^{(3)}(s, s', R) \rightarrow \mathbb{R}_{\geq 0}$ be the
623 function defined by

$$\theta_i(x) = H_{\lambda_i}(|F_i(x)|, |G_i(x)|)$$

624 (see (3.2.15) to recall definition of $H_{\lambda_i}(\cdot, \cdot)$), and let $\theta : \bigcup_{s>1, s'>0} S^{(3)}(s, s', R) \rightarrow$
625 $\mathbb{R}_{\geq 0}$ be defined by

$$\theta(x) = \max_{i \in I} \theta_i(x).$$

626 One can now directly verify that θ is positive and satisfies (3.2.10) in Lemma 3.2.9,
627 with the map λ defined by $\lambda(\theta_0) = (1 + \theta_0, \theta_0)$. We leave the details to the reader.
628 This concludes the proof of Claim 4a. \square

629 The proof of Claim 4 from Claim 4a is formally analogous to the similar derivation
630 of Claim 1 from Claim 1a and is omitted. \square

631 **Claim 5.** *The natural inclusions*

$$S'_\sigma(s, s', R) \hookrightarrow \bigcup_{s>1} S'_\sigma(s, s', R)$$

632 induce for each fixed $s' > 0$ and $R > 0$, an isomorphism

$$(3.2.30) \quad H^*(\bigcup_{s>1} S'_\sigma(s, s', R)) \cong \varprojlim_s H^*(S'_\sigma(s, s', R)).$$

633 *Proof of Claim 5.* The proof is structurally similar to the proof of Claim 4.

634 We will now show for fixed s', R , the family of semi-algebraic sets

$$(3.2.31) \quad (S_\sigma(s, s', R))_{s>1}$$

635 is a cofinal system of compact subsets of

$$\bigcap_{s>1} S_\sigma(s, s', R).$$

636 in S . Assuming this fact, the claim follows from Part (2) of Lemma A.1.2.

637
638 In order to prove the cofinality statement for the family (3.2.31), we first prove the
639 following cofinality statement from which the cofinality of (3.2.31) will follow.

640
641 Suppose that I is a finite set, and let for each $i \in I$, $F_i, G_i \in K[X_1, \dots, X_N]$, and
642 $\lambda_i \in \mathbb{R}_+$. Let V and $R > 0$ be as before. We define

$$S^{(4)}(s, s', R) := \bigcup_{i \in I} \text{TubeCompl}_{V, |F_i| \leq \lambda_i \cdot |G_i|}^c(s, s', R).$$

643 **Claim 5a.** *The family of semi-algebraic sets*

$$\left(S^{(4)}(s, s', R) \right)_{s>1}$$

644 is a cofinal system of compact semi-algebraic subsets of

$$\bigcup_{s>1} S^{(4)}(s, s', R).$$

645 *Proof of Claim 5a.* One can deduce this formally from Claim 2a by taking complements and $T^{(2)} = \text{Cube}_V(R)$. Alternatively, one can argue directly as follows.

647 Let for each $i \in I$,

$$\begin{aligned} S_i^{(4)}(s, s', R) &= \text{TubeCompl}_{V, |F_i| \leq \lambda_i |G_i|}^c(s, s', R) \\ &= \text{Cube}_V(R) \cap \tilde{\mathcal{R}}(|F_i| \geq s'), V), \text{ if } \lambda_i = 0, \\ &= \text{Cube}_V(R) \cap \tilde{\mathcal{R}}(|F_i| \geq s \cdot \lambda_i \cdot |G_i|) \\ &\quad \wedge ((|F_i| \geq s') \vee (|G_i| \geq s')), V) \text{ if } \lambda_i > 0. \end{aligned}$$

648 Note that

$$S^{(4)}(s, s', R) = \bigcup_{i \in I} S_i^{(4)}(s, s', R),$$

649 and

$$\bigcup_{s>1} S^{(4)}(s, s', R) = \bigcup_{i \in I} \bigcup_{s>1} S_i^{(4)}(s, s', R).$$

650 Note that the cofinality statement in our claim would follow if for each i we can
651 show that the family of compact semi-algebraic sets $(S_i^{(4)}(s, s', R))_{s>1}$ is cofinal in
652 the family of compact subspaces of $\bigcup_{s>1} S_i^{(4)}(s, s', R)$. To see this, suppose that we
653 have proven the latter cofinality statement (for each i). Let $C \subset \bigcup_{s>1} S^{(4)}(s, s', R)$
654 be a compact subspace. Then $C_i := C \cap \bigcup_{s>1} S_i^{(4)}(s, s', R)$ is a compact subspace
655 and by hypothesis for each $i \in I$, there exists $s_{0,i} > 1$ such that $C_i \subset S_i^{(4)}(s_{0,i}, s', R)$.
656 It follows that $C \subset S^{(4)}(s_0, s', R)$ with $s_0 = \min_i s_{0,i}$.

657 We now proceed to show the cofinality of the family $(S_i^{(4)}(s, s', R))_{s>1}$ in the
658 family of compact subspaces of $\bigcup_{s>1} S_i^{(4)}(s, s', R)$ using Lemma 3.2.9. For each
659 $i \in I$, consider the continuous function $\theta_i : \bigcup_{s>1} S_i^{(4)}(s, s', R) \rightarrow \mathbb{R}_+ \cup \{\infty\}$ defined
660 by

$$\begin{aligned} \theta_i(x) &= |F_i(x)| \text{ if } \lambda_i = 0, \\ \theta_i(x) &= \frac{|F_i(x)|}{\lambda_i |G_i(x)|}, \text{ if } \lambda_i > 0 \end{aligned}$$

662 It is an easy exercise to check that the functions θ_i are positive and satisfy Prop-
663 erty (3.2.10) in Lemma 3.2.9, with the map λ defined by $\lambda(\theta_0) = \theta_0$. This completes
664 the proof of Claim 5a. \square

665 The proof of Claim 5 follows from the proof of Claim 5a, in exactly the same manner
666 as the proof of Claim 1 from Claim 1a and is omitted. \square

667 **Claim 6.** *Let $R > 0$. Then there exists $\varepsilon'_0(R) > 0$ (depending on R), and for each
668 $0 < \varepsilon' \leq \varepsilon'_0(R)$, there exists $\varepsilon_0(\varepsilon') > 1$ (depending on ε') such that*

$$(3.2.32) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong H^*(S'_\sigma(\varepsilon, \varepsilon', R))$$

669 for all $1 < \varepsilon \leq \varepsilon_0(\varepsilon')$.

670 *Proof of Claim 6.* It follows from (3.2.27) in Claim 4 that

$$(3.2.33) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong \varprojlim_{s'} \varprojlim_s H^*(S'_\sigma(s, s', R)).$$

671 It follows from Lemma 3.2.7 (Part (2)) that there exists $\varepsilon'_0(R)$ such that for all
672 $0 < s'_2 \leq s'_1 \leq \varepsilon'_0(R)$, the inclusion map

$$\bigcup_{s>1} S'_\sigma(s, s'_1, R) \hookrightarrow \bigcup_{s>1} S'_\sigma(s, s'_2, R)$$

673 induces an isomorphism

$$H^*\left(\bigcup_{s>1} S'_\sigma(s, s'_2, R)\right) \rightarrow H^*\left(\bigcup_{s>1} S'_\sigma(s, s'_1, R)\right).$$

674 It follows that

$$(3.2.34) \quad \varprojlim_{s'} H^*\left(\bigcup_{s>1} S'_\sigma(s, s', R)\right) \cong H^*\left(\bigcup_{s>1} S'_\sigma(s, \varepsilon', R)\right)$$

675 for all $0 < \varepsilon' \leq \varepsilon'_0(R)$.

676 Moreover, it follows from (3.2.30) that

$$(3.2.35) \quad H^*\left(\bigcup_{s>1} S'_\sigma(s, \varepsilon', R)\right) \cong \varprojlim_s H^*(S'_\sigma(s, \varepsilon', R))$$

677 Hence, from (3.2.33), (3.2.34), and (3.2.35) we get an isomorphism

$$(3.2.36) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong \varprojlim_s H^*(S'_\sigma(s, \varepsilon', R))$$

678 It again follows from Lemma 3.2.7 (Part (1)) that for each fixed s' , and hence for
679 $s' = \varepsilon'$, there exists $\varepsilon_0(\varepsilon') > 1$ such that for all $1 < s_2 \leq s_1 \leq \varepsilon_0(\varepsilon')$, the inclusion
680 map $S'_\sigma(s_1, \varepsilon', R) \hookrightarrow S'_\sigma(s_2, \varepsilon', R)$ induces an isomorphism

$$H^*(S'_\sigma(s_2, \varepsilon', R)) \rightarrow H^*(S'_\sigma(s_1, \varepsilon', R)),$$

681 which implies that

$$(3.2.37) \quad \varprojlim_s H^*(S'_\sigma(s, \varepsilon', R)) \cong H^*(S'_\sigma(\varepsilon, \varepsilon', R)).$$

682 for all $1 < \varepsilon \leq \varepsilon_0(\varepsilon')$. Claim 6 follows from (3.2.36) and (3.2.37). \square

683 We now return to the proof of Proposition 3.2.6. Using Lemma 3.2.7 (Part (6)),
684 we have that there exists $R_0 > 0$ such that for all $R \geq R_0$, one has

$$(3.2.38) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})).$$

685 Fix $R \geq R_0$. It follows from (3.2.32) that there exists $\varepsilon'_0(R) > 0$, and for each
686 $0 < \varepsilon' \leq \varepsilon'_0(R)$, there exists $\varepsilon_0(\varepsilon') > 1$ (depending on ε') such that for all $1 < \varepsilon \leq \varepsilon_0(\varepsilon')$,

$$(3.2.39) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w}) \cap \text{Cube}_V(R)) \cong H^*(S_\sigma(\varepsilon, \varepsilon', R)).$$

688 Fix ε' and ε , satisfying $0 < \varepsilon' \leq \varepsilon'_0(R)$, and $1 < \varepsilon \leq \varepsilon_0(\varepsilon')$.

Now it follows from (3.2.20) that there exists $\delta'_0(\varepsilon, \varepsilon', R) > 0$ and for each $0 < \delta' \leq \delta'_0(\varepsilon, \varepsilon', R)$, there exists $\delta_0(\delta') > 1$ (depending on δ') such that for all $1 < \delta \leq \delta_0(\delta')$,

$$H^*(S'_\sigma(\varepsilon, \varepsilon', R)) \cong H^*(S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)).$$

689 Choose δ', δ satisfying $0 < \delta' \leq \delta'_0(\varepsilon, \varepsilon', R)$ and $1 < \delta \leq \delta_0(\delta')$. It is now clear that
690 with the above choices of $R, \varepsilon', \varepsilon, \delta', \delta$, we have that

$$H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \cong H^*(S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)).$$

691 This concludes the proof of Proposition 3.2.6. \square

692 We introduce some notation before stating the next Proposition. As in the hypothesis
693 Proposition 3.2.6, let $V \subset \mathbb{A}_K^N$ and $W \subset \mathbb{A}_K^M$ be closed affine subvarieties and
694 $\phi(\cdot, \cdot)$ a formula in disjunctive normal form without negations and with atoms of
695 the form $|F| \leq \lambda \cdot |G|$ where $F, G \in K[X_1, \dots, X_N, Y_1, \dots, Y_M]$.

696 For $\delta, \epsilon > 1$ and $\delta', \varepsilon' > 0$ let

$$S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R) = \bigcap_{i, \sigma(i)=1} \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R) - \bigcup_{i, \sigma(i)=0} \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon').$$

697 Notice that it follows from the above definition that for all $\delta, \epsilon > 1$ and $\delta', \varepsilon' > 0$,

$$S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R) \subset S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R).$$

Note that the sets $S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$ and $S_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$ shrink as δ, δ' decreases, and they grow with decreasing $\varepsilon, \varepsilon'$. More precisely, for all $\delta_i, \delta'_i, \varepsilon_i, \varepsilon'_i, i = 1, 2$ satisfying $1 < \delta_1 < \delta_2, 0 < \delta'_1 < \delta'_2, 1 < \varepsilon_2 < \varepsilon_1, 0 < \varepsilon'_2 < \varepsilon'_1$, we have the inclusions

$$\begin{aligned} S_\sigma(\delta_1, \delta'_1, \varepsilon_1, \varepsilon'_1, R) &\subset S_\sigma(\delta_2, \delta'_2, \varepsilon_2, \varepsilon'_2, R), \\ S''_\sigma(\delta_1, \delta'_1, \varepsilon_1, \varepsilon'_1, R) &\subset S''_\sigma(\delta_2, \delta'_2, \varepsilon_2, \varepsilon'_2, R). \end{aligned}$$

698 **Proposition 3.2.40.** *With notation as above, for all $\delta, \delta', \varepsilon, \varepsilon' \in \mathbb{R}_+$ satisfying
699 $0 < \delta - 1 < \delta' < \varepsilon - 1 < \varepsilon'$, every connected component of $S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$ is a
700 connected component of the semi-algebraic set*

$$(3.2.41) \quad U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R} := \bigcap_{1 \leq i \leq n} (U_{i, \varepsilon, \varepsilon', R} \cap U_{i, \delta, \delta', R}),$$

where for $1 \leq i \leq n$, and $t > 1, t' > 0$,

$$U_{i, t, t', R} := \text{Cube}_V(R) \setminus \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(t, t', R).$$

701 Before proving Proposition 3.2.40, we note that Proposition 3.2.40 and Proposition
702 3.2.6 imply:

703 **Proposition 3.2.42.** *For each $\bar{w} \in W(K)^n$, there exists $\delta > 1, \delta' > 0, \varepsilon > 1, \varepsilon' > 0$,
704 and $R > 0$ such that for each $\sigma \in \{0, 1\}^n$ and $0 \leq i < k$, one has*

$$(3.2.43) \quad \sum_{\sigma \in \{0, 1\}^n} b_i(\tilde{\mathcal{R}}(\sigma, \bar{w})) \leq b_i(U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}).$$

705 *Proof.* By Proposition 3.2.6 and using the same notation as in the proof of Proposition
706 3.2.6, we have that there exist an $R > 0$, an $\varepsilon'(R) > 0$ (depending on R),
707 and for each $0 < \varepsilon' < \varepsilon'_0(R)$, there exists an $\varepsilon_0(\varepsilon') > 1$ such that

$$(3.2.44) \quad H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \cap \text{Cube}_V(R) \cong H^*(S'_\sigma(\varepsilon, \varepsilon', R)).$$

for all $1 < \varepsilon \leq \varepsilon_0(\varepsilon')$. Fix ε'_i and ε_i ($i = 1, 2$), satisfying $0 < \varepsilon'_1 < \varepsilon'_2 \leq \varepsilon'_0(R)$, and $1 < \varepsilon_1 < \varepsilon_2 \leq \min(\varepsilon_0(\varepsilon'_1), \varepsilon_0(\varepsilon'_2))$. Now recall that it follows from (3.2.20) that there exists $\delta'_0(\varepsilon_i, \varepsilon'_i, R) > 0$ and for each $0 < \delta' \leq \delta'_0(\varepsilon_i, \varepsilon'_i, R)$, there exists $\delta_0^{(i)}(\delta') > 1$ (depending on δ' and $\delta'_0(\varepsilon_i, \varepsilon'_i, R)$) such that for all $1 < \delta \leq \delta_0^{(i)}(\delta')$,

$$H^*(S'_\sigma(\varepsilon_i, \varepsilon'_i, R)) \cong H^*(S_\sigma(\delta, \delta', \varepsilon_i, \varepsilon'_i, R)).$$

708 Let δ' be such that

$$0 < \delta' \leq \min(\delta'_0(\varepsilon_1, \varepsilon'_1, R), \delta'_0(\varepsilon_2, \varepsilon'_2, R))$$

709 and

$$1 < \delta \leq \min(\delta_0^{(1)}(\delta'), \delta_0^{(2)}(\delta')).$$

710 With the above choices of $R, \varepsilon'_i, \varepsilon_i, \delta', \delta$, we have

$$H^*(\tilde{\mathcal{R}}(\sigma, \bar{w})) \cong H^*(S_\sigma(\delta, \delta', \varepsilon_i, \varepsilon'_i, R)).$$

711 On the other hand, let $T_i = S_\sigma(\delta, \delta', \varepsilon_i, \varepsilon'_i, R)$ and $T''_i = S''_\sigma(\delta, \delta', \varepsilon_i, \varepsilon'_i, R)$. Then
712 $T_2 \subset T''_1 \subset T_1$, and the by the previous remarks the natural map

$$H^i(T_1) \rightarrow H^i(T_2)$$

713 is an isomorphism. On the other hand, this map factors through $H^i(T''_1)$ and
714 therefore the natural map

$$H^i(T''_1) \rightarrow H^i(T_1)$$

715 is surjective. It follows that $b_i(T_1) \leq b_i(T''_1)$. Since the connected components
716 of the T''_1 (as σ varies) are connected components of $U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$ (by Proposition
717 3.2.40), the inequality (3.2.43) follows immediately. \square

718 *Proof of Proposition 3.2.40.* Recall that ϕ is a disjunction of the formulas $\phi_h, h \in$
719 H , where H is a finite set, and each ϕ_h is a conjunction of weak inequalities
720 $|F_{hj}| \leq \lambda_{hj}|G_{hj}|, j \in J_h$, where J_h is a finite set. As before for each i we let
721 $F_{ihj} := F_{hj}(\cdot, w_i), G_{ihj} := G_{hj}(\cdot, w_i)$.

722 We first observe that $S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R) \subset U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$. To see this, for $t' > 0, t > 1$,
723 and $i \in [1, n]$, let $\theta_{i,t,t'} : B_{\mathbf{F}}(V) \rightarrow \mathbb{R}$ be the continuous function defined by

$$(3.2.45) \quad \theta_{i,t,t'}(x) = \max_{h \in H} \min_{j \in J_h} \mu_{i,h,j,t,t'}(x),$$

725 where

$$\begin{aligned} \mu_{i,h,j,t,t'}(x) &= t' - |F_{ihj}(x)|, \text{ if } \lambda_{hj} = 0, \\ &= \max(\lambda_j \cdot t \cdot |G_{ihj}(x)| - |F_{ihj}(x)|, \\ &\quad \min(t' - |F_{ihj}(x)|, t' - |G_{ihj}(x)|)), \text{ if } \lambda_{hj} > 0. \end{aligned}$$

726 The formula defining $\theta_{i,t,t'}$ might seem a little formidable at first glance, but be-
727 comes easier to understand with the observation that each occurrence of \max and
728 \min in (3.2.45) corresponds to an occurrence of respectively \bigvee and \bigwedge in the formula
729 $\phi^o(\cdot; T, T')$ (cf. Notation 3.2.2). With this observation, and the obvious facts that
730 for any $A \subset \mathbb{R}$,

$$\begin{aligned} \bigvee_{a \in A} (a > 0) &\Leftrightarrow \max_{a \in A} a > 0, \\ \bigwedge_{a \in A} (a > 0) &\Leftrightarrow \min_{a \in A} a > 0, \end{aligned}$$

731 it is easy to verify that

$$\begin{aligned} x \in \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta') &\Leftrightarrow \theta_{i, \delta, \delta'}(x) > 0, \\ x \in \text{Tube}_{V, \phi(\cdot, w_i)}^c(\delta, \delta') &\Leftrightarrow \theta_{i, \delta, \delta'}(x) \geq 0, \end{aligned}$$

732 and finally that for any $R > 0$,

(3.2.46)

$$x \in \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R) \Leftrightarrow x \in \text{Cube}_V(R) \wedge (\theta_{i, \delta, \delta'}(x) = 0).$$

733 Now let $x \in S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$. Then, for each i with $\sigma(i) = 1$, $x \in \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R)$,
 734 and hence $x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R)$.

735
 736 One can also check, using the fact that $\delta' < \varepsilon'$ and $\delta < \varepsilon$, that $\theta_{i, \delta, \delta'}(x) > 0$ implies
 737 that $\theta_{i, \varepsilon, \varepsilon'}(x) > 0$ as well. This in turn implies that

$$x \in \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R) \implies x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R).$$

738 Hence, we have that

$$x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R) \cup \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$$

739 for all i with $\sigma(i) = 1$. In particular, $x \in U_{i, \varepsilon, \varepsilon', R} \cap U_{i, \delta, \delta', R}$.

740
 741 We now consider the case of all i such that $\sigma(i) = 0$. Suppose that $\sigma(i) = 0$. Then,
 742 $x \in \text{Cube}_V(R) - \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$, and hence $x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$.
 743 Also, if $x \notin \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$, then $x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R)$, since
 744 clearly

$$\text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R) \subset \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R),$$

745 and hence $x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R)$ either. Hence, we have that

$$x \notin \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R) \cup \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$$

746 for all i with $\sigma(i) = 0$. Combining everything, we have $x \in U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$.

747
 748 Now let C be a connected component of $S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$, and D be the connected
 749 component of $U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$ containing C . We claim that $D = C$. Let $x \in D$, and
 750 let y be any point of C . Then, since $y \in D$ and D is path connected, there exists a
 751 path $\gamma : [0, 1] \rightarrow D$, with $\gamma(0) = y$ and $\gamma(1) = x$, and $\gamma([0, 1]) \subset D$. We claim that
 752 $\gamma([0, 1]) \subset S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$, which immediately implies that $D = C$.

753
 754 We first show that for each i with $\sigma(i) = 1$, $\gamma([0, 1]) \subset \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R)$.
 755 Consider for each i with $\sigma(i) = 1$, the continuous function $\theta_i : [0, 1] \rightarrow \mathbb{R}$ defined
 756 by

$$\theta_i(t) = \theta_{i, \delta, \delta'}(\gamma(t)).$$

757 Notice that it follows from (3.2.46) that $\theta_i(t) = 0$ implies that

$$\gamma(t) \in \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R).$$

758 Moreover, since

$$\gamma([0, 1]) \subset \text{Cube}_V(R) \setminus \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\delta, \delta', R)$$

759 for each i , θ_i cannot vanish anywhere on $[0, 1]$. Also notice that $\theta_i(t) > 0$ if and
 760 only if $\gamma(t) \in \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R)$. Since, $\gamma(0) = y \in S''_{\sigma, \delta, \delta', \varepsilon, \varepsilon', R}$, this implies
 761 that $\theta_i(0) > 0$, and hence $\theta_i(t) > 0$, for each $t \in [0, 1]$, and hence

$$\gamma([0, 1]) \subset \bigcap_{i, \sigma(i)=1} \text{Tube}_{V, \phi(\cdot, w_i)}^o(\delta, \delta', R).$$

762 Finally, we show that

$$\gamma([0, 1]) \subset \bigcap_{i, \sigma(i)=0} \left(\text{Cube}_V(R) \setminus \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R) \right).$$

763 Consider for each i with $\sigma(i) = 0$, the continuous function $\mu_i : [0, 1] \rightarrow \mathbb{R}$ defined
764 by

$$\mu_i(t) = -\theta_{i, \varepsilon, \varepsilon'}(\gamma(t)).$$

765 Notice that $\mu_i(t) = 0$ implies that $\gamma(t) \in \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$, and hence
766 since $\gamma([0, 1]) \subset \text{Cube}_V(R) \setminus \text{TubeBoundary}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$ for each i , θ_i cannot
767 vanish anywhere on $[0, 1]$. Moreover, also notice that $\mu_i(t) > 0$ if and only if
768 $\gamma(t) \in \text{Cube}_V(R) \setminus \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R)$. Since, $\gamma(0) = y \in S''_\sigma(\delta, \delta', \varepsilon, \varepsilon', R)$, this
769 implies that $\mu_i(0) > 0$, and hence $\mu_i(t) > 0$, for each $t \in [0, 1]$, and hence

$$\gamma([0, 1]) \subset \bigcap_{i, \sigma(i)=0} \left(\text{Cube}_V(R) \setminus \text{Tube}_{V, \phi(\cdot, w_i)}^c(\varepsilon, \varepsilon', R) \right).$$

770 This proves that $D = C$. \square

771 Let $X \subset V$ be a definable subset where V is an affine variety of dimension k , and
772 U_1, \dots, U_n open semi-algebraic subsets of $B_{\mathbf{F}}(X)$. For $J \subset [1, n]$, we denote by
773 $U^J := \bigcup_{j \in J} U_j$ and $U_J := \bigcap_{j \in J} U_j$. We have the following proposition, which is
774 very similar to [BPRon, Proposition 7.33, Part (ii)].

775 **Proposition 3.2.47.** *With notation as above, for each i , $0 \leq i \leq k = \dim(V)$,*

$$b_i(U_{[1, n]}) \leq \sum_{j=1}^{k-i} \sum_{J \subset [1, n], \text{card}(J)=j} b_{i+j-1}(U^J) + \binom{n}{k-i} b_k(B_{\mathbf{F}}(V)).$$

776 *Proof.* We first prove the claim when $n = 1$. If $0 \leq i \leq k - 1$, the claim is

$$b_i(U_1) \leq b_i(U_1) + b_k(B_{\mathbf{F}}(V)),$$

777 which is clear. If $i = k$, the claim is $b_k(U_1) \leq b_k(B_{\mathbf{F}}(V))$, which is true using Part
778 (d) of Corollary A.6.

779

780 The claim is now proved by induction on n . Assume that the induction hypothesis
781 holds for all $n - 1$ open semi-algebraic subsets of $B_{\mathbf{F}}(V)$, and for all $0 \leq i \leq k$.

782 It follows from the standard Mayer-Vietoris sequence (cf. Properties A.1.1 (5)) that

$$(3.2.48) \quad b_i(U_{[1, n]}) \leq b_i(U_{[1, n-1]}) + b_i(U_n) + b_{i+1}(U_{[1, n-1]} \cup U_n).$$

783 Applying the induction hypothesis to the set $U_{[1, n-1]}$, we deduce that

$$(3.2.49) \quad \begin{aligned} b_i(U_{[1, n-1]}) &\leq \sum_{j=1}^{k-i} \sum_{J \subset [1, n-1], \text{card}(J)=j} b_{i+j-1}(U^J) \\ &\quad + \binom{n-1}{k-i} b_k(B_{\mathbf{F}}(V)). \end{aligned}$$

784 Next, applying the induction hypothesis to the set,

$$U_{[1, n-1]} \cup U_n = \bigcap_{1 \leq j \leq n-1} (U_j \cup U_n),$$

785 we get that

$$\begin{aligned}
 b_{i+1}(U_{[1,n-1]} \cup U_n) &\leq \sum_{j=1}^{k-i-1} \sum_{J \subset [1,n-1], \text{card}(J)=j} b_{i+j}(U^{J \cup \{n\}}) \\
 (3.2.50) \quad &+ \binom{n-1}{k-i-1} b_k(B_{\mathbf{F}}(V)).
 \end{aligned}$$

786 We obtain from inequalities (3.2.48), (3.2.49), and (3.2.50) that

$$b_i(U_{[1,n]}) \leq \sum_{j=1}^{k-i} \sum_{J \subset [1,n], \text{card}(J)=j} b_{i+j-1}(U^J) + \binom{n}{k-i} b_k(B_{\mathbf{F}}(V)),$$

787 which finishes the induction. \square

788 *Proof of Theorem 2.* Using Proposition 3.2.42 we obtain that, there exists $\delta > 1, \delta' > 0, \varepsilon > 1, \varepsilon' > 0, R > 0$ (which we fix for the remainder of the proof) 789 such that for each $i, 0 \leq i \leq k$,

$$(3.2.51) \quad \sum_{\sigma \in \{0,1\}^n} b_i(\tilde{\mathcal{R}}(\sigma, \bar{w})) \leq b_i(U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}).$$

791 From the definition of $U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$ in (3.2.41), we have that $U_{\phi, \delta, \delta', \varepsilon, \varepsilon', R}$ is an in- 792 tersection of the sets

$$\begin{aligned}
 793 \quad \text{Cube}_V(R) \setminus \text{TubeBoundary}_{V, \phi(\cdot, w_j)}^c(\varepsilon, \varepsilon', R), \\
 \text{Cube}_V(R) \setminus \text{TubeBoundary}_{V, \phi(\cdot, w_j)}^c(\delta, \delta', R),
 \end{aligned}$$

794 for $1 \leq j \leq n$.

795 Now for each $m \geq 1$ and $m', m'' \geq 0$ with $m' + m'' = m$, let

$$\Phi_{m', m''}(\bar{X}, \bar{Y}^{(1)}, \dots, \bar{Y}^{(m)}; s, s', t, t', R) = (\Psi_1 \vee \Psi_2) \wedge (\Psi_3 \wedge \Psi_4),$$

796 where

$$\begin{aligned}
 \Psi_1 &= \bigvee_{1 \leq j \leq m'} \left(\neg \phi^c(\bar{X}, \bar{Y}^{(j)}; s, s') \vee \phi^o(\bar{X}, \bar{Y}^{(j)}; s, s') \right), \\
 \Psi_2 &= \bigvee_{m'+1 \leq j \leq m} \left(\neg \phi^c(\bar{X}, \bar{Y}^{(j)}; t, t') \vee \phi^o(\bar{X}, \bar{Y}^{(j)}; t, t') \right), \\
 \Psi_3 &= \Phi_V(\bar{X}; R), \\
 \Psi_4 &= \bigwedge_{1 \leq j \leq m} \Phi_W(\bar{Y}^{(j)}),
 \end{aligned}$$

797 $\Phi_{V, R}(\bar{X}; R)$ is a formula such that $\text{Cube}_V(R) = \tilde{\mathcal{R}}(\Phi_{V, R})$, and $\Phi_W(\bar{Y})$ is a formula 798 such that $B_{\mathbf{F}}(W) = \tilde{\mathcal{R}}(\Phi_W)$.

799 800 Denote by $X_{m', m''}$ the definable subset of $V \times \underbrace{W \times \dots \times W}_m \times \mathbb{R}^5$ defined by the 801 formula

$$\Phi_{m', m''}(\bar{X}, \bar{Y}^{(1)}, \dots, \bar{Y}^{(m)}; s, s', t, t', R),$$

802 and let

$$\pi_{m', m''}: X_{m', m''} \rightarrow \underbrace{W \times \dots \times W}_m \times \mathbb{R}^5$$

denote the projection map. It follows from Theorem A.4 (with $Y = \underbrace{W \times \cdots \times W}_m$,

V viewed as a quasi-projective variety in \mathbb{P}^N and $X_{m',m''}$ as above) that the number of homotopy types amongst the semi-algebraic sets

$$B_{\mathbf{F}}(\pi_{m',m''}^{-1}(w'_1, \dots, w'_m, s, s', t, t', R))$$

is finite, and moreover since each such fiber is homotopy equivalent to a finite simplicial complex by Theorem A.5, there exists a finite bound $C_{i,m',m''} \in \mathbb{Z}_{\geq 0}$, such that

$$b_i(B_{\mathbf{F}}(\pi_{m',m''}^{-1}(w'_1, \dots, w'_m, s, s', t, t', R)) \leq C_{i,m',m''},$$

for all $(w'_1, \dots, w'_m) \in W(K)^m$, $s, s', t, t', R \in \mathbb{R}$.

Let

$$(3.2.52) \quad C_{i,m} = \max_{\substack{m',m'' \geq 0 \\ m'+m''=m}} C_{i,m',m''}.$$

Note that $C_{i,m}$ depend only on V and ϕ .

Note observe that it follows from Notation 3.2.2, that for each $j, 1 \leq j \leq n$, the semi-algebraic set

$$\tilde{\mathcal{R}}((\neg(\phi^c(\bar{X}, w_j; \cdot, \cdot) \vee \phi^o(\bar{X}, w_j; \cdot, \cdot)), V)) \cap \text{Cube}_V(R)$$

is equal to the set

$$\text{Cube}_V(R) \setminus \text{TubeBoundary}_{V,\phi(\cdot,w_j)}^c(\cdot, \cdot, R).$$

It follows that for any

$$J' = (j'_1, \dots, j'_{\text{card}(J')}), J'' = (j''_1, \dots, j''_{\text{card}(J'')}) \subset [1, n]$$

with $J' \cap J'' = \emptyset$, the semi-algebraic set

$$\tilde{\mathcal{R}}(\Phi_{\text{card}(J'),\text{card}(J'')}(\cdot, w_{j'_1}, \dots, w_{j'_{\text{card}(J')}}, w_{j''_1}, \dots, w_{j''_{\text{card}(J'')}}, \varepsilon, \varepsilon', \delta, \delta', R))$$

is equal to the union of the two sets

$$\bigcup_{j \in J'} (\text{Cube}_V(R) \setminus \text{TubeBoundary}_{V,\phi(\cdot,w_j)}^c(\varepsilon, \varepsilon', R))$$

and

$$\bigcup_{j \in J''} (\text{Cube}_V(R) \setminus \text{TubeBoundary}_{V,\phi(\cdot,w_j)}^c(\delta, \delta', R)).$$

Also, since each m -ary union amongst the the semi-algebraic sets

$$\text{Cube}_V(R) \setminus \text{TubeBoundary}_{V,\phi(\cdot,w_j)}^c(\varepsilon, \varepsilon', R),$$

$$\text{Cube}_V(R) \setminus \text{TubeBoundary}_{V,\phi(\cdot,w_j)}^c(\delta, \delta', R),$$

is clearly homeomorphic to one of the sets $B_{\mathbf{F}}(\pi_{m',m''}^{-1}(w'_1, \dots, w'_m, s, s', t, t', R))$, $m' + m'' = m$, $(w'_1, \dots, w'_m) \in W(K)^m$, $s, s', t, t', R \in \mathbb{R}$, the i -th Betti number of every such union is bounded by $C_{i,m}$.

It now follows from (3.2.52) and Proposition 3.2.47 that

$$\sum_{\sigma \in \{0,1\}^n} b_i(\tilde{\mathcal{R}}(\sigma, \bar{w})) \leq \sum_{j=1}^{k-i} \binom{2n}{j} C_{i+j-1,j} + \binom{2n}{k-i} b_k(B_{\mathbf{F}}(V)).$$

822 The theorem follows after noticing that

$$\binom{2n}{j} \leq (2n)^j,$$

823 for all $n, j \geq 0$. □

824 **3.3. Proof of Theorem 1.** We need a couple of preliminary results of a set-
825 theoretic nature starting with the following observation.

826 **Observation 3.3.1.** *Let Y, Y', V, V', W, W' be sets such that $Y \subset V \times W$, $Y' \subset$
827 $V' \times W'$, $V \subset V'$, $W \subset W'$, and $Y' \cap (V \times W) = Y$. Then, for every $n > 0$,*

$$\chi_{Y,V,W}(n) \leq \chi_{Y',V',W}(n).$$

828 *Proof.* To see this note that a 0/1 pattern is realized by the tuple $(Y_{w_1}, \dots, Y_{w_n})$
829 in V , only if it is realized by the tuple $(Y'_{w_1}, \dots, Y'_{w_n})$ in V' . This follows from the
830 fact that $Y' \cap (V \times W) = Y$, and therefore for all $w \in W$, $Y'_w \cap V = Y_w$. □

831 Let V, W be sets, I a finite set, and for each $\alpha \in I$, let X_α be a subset of $V \times W$. Let
832 $i_\alpha : X_\alpha \hookrightarrow V \times W$ denote the inclusion map. Suppose that X is a subset of $V \times W$
833 obtained as a Boolean combination of the X_α 's. Let $W' = \coprod_{\alpha \in I} W$, and for $\alpha \in I$
834 we $j_\alpha : W \hookrightarrow W'$ denote the canonical inclusion. Let $X' = \bigcup_{\alpha \in I} \text{Im}((1_V \times j_\alpha) \circ i_\alpha) \subset$
835 $V \times W'$. With this notation we have the following proposition.

Proposition 3.3.2.

$$\chi_{X,V,W}(n) \leq \chi_{X',V,W'}(\text{card}(I) \cdot n).$$

Proof. For $v \in V$, and $S \subset W$ (resp. $S' \subset W'$) we set $S_v := S \cap X_v$ (resp.
834 $S'_v := S' \cap X'_v$). Let $\bar{w} \in W^n$. We claim that for $v, v' \in V$,

$$\chi_{X,V,W;n}(v, \bar{w}) \neq \chi_{X,V,W;n}(v', \bar{w}) \implies$$

$$\chi_{X',V,W';\text{card}(I)\cdot n}(v, j_n(\bar{w})) \neq \chi_{X',V,W';\text{card}(I)\cdot n}(v', j_n(\bar{w})),$$

836 where $j_n : W^{[1,n]} \rightarrow W'^{I \times [1,n]}$ is defined by

$$j_n(w_1, \dots, w_n)_{(\alpha, i)} = j_\alpha(w_i).$$

837 To prove the claim first observe that since $\chi_{X,V,W;n}(v, \bar{w}) \neq \chi_{X,V,W;n}(v', \bar{w})$,
838 there exists $i \in [1, n]$ such that $v \in X_{w_i} \Leftrightarrow v' \notin X_{w_i}$.

839

840 Since X is a Boolean combination of the X_α , $\alpha \in I$, there must exist $\alpha \in I$ such
841 that $v \in (X_\alpha)_{w_i} \Leftrightarrow v' \notin (X_\alpha)_{w_i}$. It now follows from the definition of X', W' that
842 $\chi_{X',V,W';\text{card}(I)\cdot n}(v, j_n(\bar{w})) \neq \chi_{X',V,W';\text{card}(I)\cdot n}(v', j_n(\bar{w}))$. This implies that

$$\text{card}(\chi_{X,V,W;n}(V, \bar{w})) \leq \text{card}(\chi_{X',V,W';\text{card}(I)\cdot n}(V, j_n(\bar{w}))).$$

843 It follows immediately that

$$\chi_{X,V,W}(n) \leq \chi_{X',V,W'}(\text{card}(I) \cdot n).$$

844 □

845 *Proof of Theorem 1.* We make two reductions. We first claim that it suffices to
 846 prove the theorem in the case of an algebraically closed complete valued field of
 847 rank one i.e. the value group subgroup of the multiplicative group \mathbb{R}_+ . Secondly,
 848 we claim that we can assume without loss of generality that the formula ϕ is in
 849 disjunctive normal form without negations and with atoms of the form $|F| \leq \lambda \cdot |G|$.
 850

851 *Reduction to complete algebraically closed field of rank one:* The theory of algebraically closed valued fields in the two sorted language \mathcal{L} becomes complete once
 852 we fix the characteristic of the field and that of the residue field. Moreover, for
 853 each such characteristic pair $(0, 0)$, $(0, p)$, or (p, p) (p a prime) there exists a model
 854 $(K; \Gamma)$ of the theory of algebraically closed valued field such that the value group
 855 is a multiplicative subgroup of \mathbb{R}_+ (i.e. of rank one) and K is complete. It follows
 856 by a standard transfer argument it suffices to prove the theorem for such a model.
 857

858 *Reduction to the case of disjunctive normal form without negations and with atoms
 859 of the form $|F| \leq \lambda \cdot |G|$:* We now observe that it suffices to prove the theorem in
 860 the case when the formula ϕ is equivalent to a formula in disjunctive normal form
 861 without negations with atoms of the form $|F| \leq \lambda \cdot |G|$. Furthermore, using the first
 862 reduction, we may assume that the value group is \mathbb{R}_+ and K is an algebraically
 863 closed complete valued field. In particular, we assume that the atoms of ϕ are of
 864 the form $|F| \leq \lambda \cdot |G|$, with $\lambda \in \mathbb{R}_+$, and $F, G \in K[\bar{X}, \bar{Y}]$. Let $(\phi_\alpha)_{\alpha \in I}$ be the finite
 865 tuple of atomic formulas appearing in ϕ . Denote by
 866

$$\phi'' = \left(\bigvee_{\alpha \in I} \left(\phi_\alpha(\bar{X}, \bar{Y}^{(\alpha)}) \wedge (|Z_\alpha - 1| = 0) \right) \right) \wedge \bigvee_{\alpha \in I} \theta_\alpha((Z_\alpha)_{\alpha \in I}),$$

867 where $\theta_\alpha((Z_\alpha)_{\alpha \in I})$ is the closed formula

$$(|Z_\alpha - 1| = 0) \wedge \bigwedge_{\beta \neq \alpha} (|Z_\beta| = 0).$$

868 Note that ϕ'' is equivalent to a formula in disjunctive normal form without nega-
 869 tions and with atoms of the form $|F| \leq \lambda \cdot |G|$.
 870

871 Let $X_\alpha := \mathcal{R}(\phi_\alpha, V \times W)(K)$ and $X = \mathcal{R}(\phi, V \times W)(K)$. Then X is a Boolean
 872 combination of the X_α 's and we can define $X' \subset V(K) \times W(K)'$ where X' and
 873 $W(K)'$ are defined as in Proposition 3.3.2. In particular, we let $\pi_1 : X' \rightarrow V(K)$
 874 and $\pi'_1 : X' \rightarrow W(K)'$ denote the natural projection maps. Similarly, we let

$$\pi''_2 : \mathcal{R}(\phi'', V \times W \times \mathbb{A}^{|I|})(K) \rightarrow W(K) \times \mathbb{A}^{|I|}(K)$$

875 and

$$\pi''_1 : \mathcal{R}(\phi'', V \times W \times \mathbb{A}^{|I|})(K) \rightarrow V(K)$$

876 denote the natural projection maps. Note that the diagram

$$\begin{array}{ccc} & \mathcal{R}(\phi'', V \times W \times \mathbb{A}^{|I|})(K) & \\ \swarrow \pi''_1 & & \searrow \pi''_2 \\ V(K) & & \text{Im}(\pi''_2) \end{array}$$

877 is isomorphic to the diagram

$$\begin{array}{ccc}
 & X' & \\
 \pi'_1 \swarrow & & \searrow \pi'_2 \\
 V(K) & & \text{Im}(\pi'_2)
 \end{array}$$

878 By isomorphism, we mean that there are natural bijections $\mathcal{R}(\phi'', V \times W \times \mathbb{A}^{|I|})(K) \rightarrow$
 879 X' and $\text{Im}(\pi''_2) \rightarrow \text{Im}(\pi'_2)$ making the resulting morphism of diagrams above com-
 880 mutes (with identity as the map on $V(K)$).

881 Using Proposition 3.3.2, we get that

$$\chi_{\mathcal{R}(\phi, (V \times W))(K), V(K), W(K)}(n) \leq \chi_{X', V(K), (W(K))'}(\text{card}(I) \cdot n),$$

883 and the right hand side of the above inequality clearly equals

$$\chi_{\mathcal{R}(\phi'', (V \times W \times \mathbb{A}^{|I|}))(K), V(K), W(K) \times \mathbb{A}^{|I|}(K)}(\text{card}(I) \cdot n).$$

884 So it suffices to prove that there exists a constant C (depending only on V and ϕ)
 885 such that for all n ,

$$\chi_{\mathcal{R}(\phi'', (V \times W \times \mathbb{A}^{|I|}))(K), V(K), W(K) \times \mathbb{A}^{|I|}(K)}(n) \leq C \cdot n^{\dim(V)}.$$

886 This shows that we can assume that ϕ is equivalent to a formula in disjunctive
 887 normal form without negations and with atoms of the form $|F| \leq \lambda \cdot |G|$.

888

889 We now use the special case of Theorem 2 obtained by setting $i = 0$. In that
 890 case, $b_0(\tilde{\mathcal{R}}(\sigma, \bar{w}))$ is the number of connected components, which is at least one
 891 as soon as $\tilde{\mathcal{R}}(\sigma, \bar{w})$ is non-empty. Now use Observation 3.3.1 with $V' = B_{\mathbf{F}}(V)$,
 892 $Y' = \bigcup_{w \in W(K)} (\tilde{\mathcal{R}}(\phi(\cdot, w), V) \times \{w\})$ and $Y = \mathcal{R}(\phi, (V \times W))(K)$, noting that
 893 there exists a canonical injective map $\iota : V(K) \hookrightarrow B_{\mathbf{F}}(V)$ such that for each
 894 $w \in W(K)$ the following diagram of injective maps commutes:

$$\begin{array}{ccc}
 V(K) & \xrightarrow{\iota_V} & B_{\mathbf{F}}(V) \\
 \uparrow & & \uparrow \\
 \mathcal{R}(\phi(\cdot, w), V)(K) & \longrightarrow & \tilde{\mathcal{R}}(\phi(\cdot, w), V)
 \end{array}$$

895 This finishes the proof. □

896 3.4. Proof of Corollary 1.

897 *Proof of Corollary 1.* Corollary 1 follows immediately from Theorem 1 and the fol-
 898 lowing proposition (Proposition 3.4.1) which is well known, but whose proof we
 899 include for the sake of completeness. □

900 **Proposition 3.4.1.** *Suppose that there exists a constant $C > 0$ such that for all
 901 $n > 0$, $\chi_{X, V, W}(n) \leq C \cdot n^k$. Then, $\text{vcd}(X, V, W) \leq k$.*

902 *Proof.* Notice that for $v \in V$ and $w \in W$, $w \in X_v \Leftrightarrow v \in X_w$. Let $\mathcal{S} = \{X_v \mid v \in V\}$, and $A = \{w_1, \dots, w_n\} \subset W$, and $I \subset [1, n]$. For $v \in V$, $w_i \in X_v$ for all $i \in I$,

904 and $w_i \notin X_v$ for all $i \in [1, n] \setminus I$ if and only if $v \in X_{w_i}$ for all $i \in I$, and $v \notin X_{w_i}$
905 for all $i \in [1, n] \setminus I$. This implies that

$$\text{card}(\{A \cap Y \mid Y \in \mathcal{S}\}) = \chi_{X, V, W; n}(V, \bar{w}) \leq C \cdot n^k.$$

906 The proposition now follows from Definition 1.1.2. \square

907 APPENDIX A.

908 **A.1. Review of Singular Cohomology.** In this section we recall some basic
909 statements about singular cohomology groups which are used throughout this ar-
910 ticle. These facts are all standard and we refer the reader to [Spa66] for their proofs.
911

912 Given any topological space X , one can associate to X the singular cohomology
913 groups $H^i(X, \mathbb{Q})$ (for $i \geq 0$) which satisfy the following general properties (see for
914 example [Spa66, page 238-240]):
915

916 **Properties A.1.1.**

917

- 918 1. *The $H^i(X, \mathbb{Q})$ are \mathbb{Q} -vector spaces. If X is a finite dimensional simplicial com-
919 plex of dimension n , then each $H^i(X, \mathbb{Q})$ is finite dimensional, and moreover
920 $H^i(X, \mathbb{Q}) = 0$ for all $i > n$.*
- 921 2. *The singular cohomology groups are contravariant and homotopy invariant i.e.
922 a continuous morphism $f : X \rightarrow Y$ induces a linear map $f^* : H^i(Y, \mathbb{Q}) \rightarrow
923 H^i(X, \mathbb{Q})$, and if f is a homotopy equivalence, then the induced map f^* is an
924 isomorphism.*
- 925 3. *(Connected components) The dimension of $H^0(X, \mathbb{Q})$ equals the number of con-
926 nected components of X .*
- 927 4. *For any subspace $Y \subset X$, one can define relative cohomology groups*

$$H^i(X, Y; \mathbb{Q})$$

which fit into a long exact sequence:

$$\cdots \rightarrow H^i(X, Y; \mathbb{Q}) \rightarrow H^i(X, \mathbb{Q}) \rightarrow H^i(Y, \mathbb{Q}) \rightarrow H^{i+1}(X, Y; \mathbb{Q}) \rightarrow \cdots$$

5. *(Mayer-Vietoris) If $U, V \subset X$ are open subsets such that $U \cup V = X$, then there
is a long exact sequence of cohomology groups:*

$$\cdots \rightarrow H^i(X, \mathbb{Q}) \rightarrow H^i(U, \mathbb{Q}) \oplus H^i(V, \mathbb{Q}) \rightarrow H^i(U \cap V, \mathbb{Q}) \rightarrow H^{i+1}(X, \mathbb{Q}) \rightarrow \cdots$$

Note that this implies immediately that

$$b_i(U \cap V) \leq b_i(U) + b_i(V) + b_{i+1}(X).$$

928 Finally, we recall some properties of singular cohomology with regards to projective
929 and injective limits. These properties are used in the proof of Proposition 3.2.6.
930 Below, we drop the coefficients \mathbb{Q} from the notation of singular cohomology groups.
931

932 Let I be a directed set, $(U_i)_{i \in I}$ be a directed system of topological spaces, and

$$U = \varinjlim_i U_i$$

denote the corresponding direct limit. In particular, for all $i \leq j$ ($i, j \in I$), we have
continuous maps $f_{ij} : U_i \rightarrow U_j$ which induce morphisms $f_{ij}^* : H^k(U_j) \rightarrow H^k(U_i)$.

The latter cohomology groups form an inverse system, and the natural continuous maps $U_i \rightarrow U$ induce a morphism

$$H^k(U) \rightarrow \varprojlim_i H^k(U_i).$$

Similarly, an inverse system $(U_i)_{i \in I}$ of topological spaces gives rise to a direct system of corresponding cohomology groups and natural morphism

$$\varinjlim_i H^k(U_i) \rightarrow H^k(U),$$

933 where

$$U = \varprojlim_i U_i.$$

934

935

936 In this article, we only consider direct systems U_i given by an increasing sequences
937 of subspaces of a space X or inverse systems U_i given by a decreasing sequence of
938 subspaces. In the former case, the direct limit U is given by the union of these
939 spaces, and in the latter case the inverse limit is given by the intersection of these
940 subspaces. The following lemma is our main tool for understanding the correspond-
941 ing cohomology groups.

942 **Lemma A.1.2.** *Let X be a paracompact Hausdorff space having the homotopy type
943 of a finite simplicial complex, and I a directed set.*

1. *Let $\{U_i\}_{i \in I}$ be a decreasing sequence of open subspaces of X , and $S := \bigcap_i U_i$.
Suppose that the family U_i is cofinal in the family of open neighborhoods of S in X . Then the natural map*

$$\varinjlim_i H^k(U_i) \rightarrow H^k(S)$$

944 *is an isomorphism.*

2. *Let $\{C_i\}_{i \in I}$ be an increasing sequence of compact subspaces of S , and $S := \bigcup_i C_i$.
Suppose that the family C_i is cofinal in the family of compact subspaces of S . Then the natural map*

$$H^k(S) \rightarrow \varprojlim_i H^k(C_i)$$

945 *is an isomorphism.*

946 *Proof of Part (1).* This is Theorem 5 in [LR68]. □

947 *Proof of Part (2).* The statement follows from the fact that singular homology of
948 any space is isomorphic to the direct limit of the singular homology of its compact
949 subspaces [Spa66, Theorem 4.4.6], the fact that the singular cohomology group
950 $H^*(S, \mathbb{Q})$ is canonically isomorphic to $\text{Hom}(H_*(S, \mathbb{Q}), \mathbb{Q})$ since \mathbb{Q} is a field, and that
951 the dual of a direct limit of finite dimensional vector spaces is the inverse limit of
952 the duals of those vector spaces. □

953 *Remark A.1.3.* Note that a compact Hausdorff space is paracompact Hausdorff.
954 In the applications considered in this paper, the previous lemma is applied in the
955 setting of compact Hausdorff spaces.

956 **A.2. Recollections from Hrushovski-Loeser.** In this section we recall some
 957 results from the theory of non-archimedean tame topology due to Hrushovski and
 958 Loeser [HL16]. The main reference for this section is Chapter 14 of [HL16], but we
 959 refer the reader to [Duc16] for an excellent survey. In particular, we will deal with
 960 the model theory of valued fields. We denote by K a complete valued field with
 961 values in the ordered multiplicative group of the positive real numbers.

962

963 We consider a two sorted language with the two sorts corresponding to valued fields
 964 and the value group. The signature of this two sorted language will be

$$(0, 1, +_K, \times_K, |\cdot| : K \rightarrow \mathbb{R}_+, \leq_{\mathbb{R}_+}, \times_{\mathbb{R}}),$$

965 where the subscript K denotes constants, functions, relations etc., of the field sort
 966 and the subscript \mathbb{R}_+ denotes the same for the value group sort. When the context
 967 is clear we will drop the subscripts.

968

969 We denote by $|\cdot|$ the valuation written multiplicatively. The valuation $|\cdot|$ satisfies:

$$\begin{aligned} |x + y| &\leq \max\{|x|, |y|\}, \\ |x \cdot y| &= |x||y|, \\ |0| &= 0. \end{aligned}$$

970 *Remark A.2.1.* Note that we follow Berkovich's convention and write our valuations
 971 multiplicatively. In particular, the terminology 'valuation' is somewhat abusive, and
 972 here we really mean a non-archimedean absolute value. In [HL16], all valuations
 973 are written additively.

974 Following [HL16, §14.1], we will denote by \mathbf{F} the two sorted structure $(K; \mathbb{R}_+)$
 975 viewed as a substructure of a model of ACVF (with value group \mathbb{R}_+). Given a
 976 quasi-projective variety V defined over K and an \mathbf{F} -definable subset X of $V \times \mathbb{R}_+^n$,
 977 Hrushovski and Loeser [HL16] associate to X (functorially) a topological space
 978 $B_{\mathbf{F}}(X)$. By definition, this is the space of types, in X , defined over \mathbf{F} which are
 979 almost orthogonal to the definable set \mathbb{R}_+ . Given a variety V as above, we say that
 980 subset $Z \subset B_{\mathbf{F}}(V)$ is *semi-algebraic* if it is of the form $B_{\mathbf{F}}(X)$ for an \mathbf{F} -definable
 981 subset $X \subset V$. We note that X itself can be identified in $B_{\mathbf{F}}(X)$ as the set of
 982 realized types, and hence there is a canonically defined injection $X \hookrightarrow B_{\mathbf{F}}(X)$.

983

984 We now recall a description of the spaces $B_{\mathbf{F}}(X)$ in some special cases and some of
 985 their properties; these are the only properties which are used in this article.

986 Properties A.2.2.

987

- 988 1. ([HL16], 14.4.1) For every \mathbf{F} -definable set X , $B_{\mathbf{F}}(X)$ is a Hausdorff topological
 989 space which is locally path connected. This construction is functorial in definable
 990 maps i.e. a definable map $f : X \rightarrow Y$ induces a continuous map of the
 991 corresponding topological spaces.
- 992 2. ([HL16], 14.1, pg. 194) If V is an affine variety and $X \subset V$ a definable subset,
 993 then $B_{\mathbf{F}}(X)$ is a subspace of $B_{\mathbf{F}}(V)$. In fact, it is a semi-algebraic subset (in
 994 the sense of Berkovich spaces, see Property 3 below).
- 995 3. ([HL16], 14.1, pg. 194) Suppose X is an affine variety $\text{Spec}(A)$. In this case,
 996 $B_{\mathbf{F}}(X)$ can be identified with the Berkovich analytic space associated to X . Its

997 points can be described in terms of multiplicative semi-norms as follows. A
 998 point of $B_{\mathbf{F}}(X)$ is a multiplicative map $\phi : A \rightarrow \mathbb{R}_+$ such that $\phi(a + b) \leq$
 999 $\max(\phi(a), \phi(b))$.

4. With $X = \text{Spec}(A)$, the topology on $B_{\mathbf{F}}(X)$ is the one inherited from viewing it
 as a natural subset of \mathbb{R}_+^A . If $f \in A$, then f gives rise to a continuous function

$$f : B_{\mathbf{F}}(X) \rightarrow \mathbb{R}_+$$

defined as follows:

$$f(\phi) = \phi(f) \in \mathbb{R}_+.$$

1000 This follows from the previous observation and the definition of the topology on
 1001 Berkovich analytic spaces.

1002 5. ([HL16], 14.1, pg. 194) Let $V = \text{Spec}(A)$. Then any formula ϕ of the form
 1003 $f \bowtie \lambda g$, where $f, g \in A$, $\lambda \in \mathbb{R}_+$ and $\bowtie \in \{\leq, <, \geq, >\}$ gives a definable subset X
 1004 of V , and therefore a semi-algebraic subset $B_{\mathbf{F}}(X)$ of $B_{\mathbf{F}}(V)$. It can be described
 1005 in the language of valuations as the set $\{x \in B_{\mathbf{F}}(V) \mid f(x) \bowtie \lambda g(x)\}$. In general,
 1006 the semi-algebraic subset associated to a Boolean combination of such formulas is
 1007 the corresponding Boolean combination of the semi-algebraic subsets associated
 1008 to each formula. Moreover, a subset of $B_{\mathbf{F}}(V)$ is semi-algebraic if and only if it
 1009 is a Boolean combination of subsets of the form $\{x \in B_{\mathbf{F}}(X) \mid f(x) \bowtie \lambda g(x)\}$,
 1010 where $f, g \in A$, $\lambda \in \mathbb{R}_+$ and $\bowtie \in \{\leq, <, \geq, >\}$.
 1011 6. ([HL16], 14.1.2) If X is an \mathbf{F} -definable subset of an algebraic variety V , then
 1012 $B_{\mathbf{F}}(X)$ is compact if and only if $B_{\mathbf{F}}(X)$ is closed in $B_{\mathbf{F}}(V')$ where V' is a
 1013 complete algebraic variety containing V .
 1014 7. Suppose that K is algebraically closed, $V = \text{Spec}(A) \subset \mathbb{A}_K^N$ is an affine sub-
 1015 variety, and $\phi(X; T)$ (with $X = (X_1, \dots, X_N)$) a formula with parameters in
 1016 \mathbf{F} . Here X are free variable of the field sort and T is a free variable of the
 1017 value sort. Suppose $a \in \mathbb{R}_+$ such that for all t, t' satisfying, $a < t < t'$,
 1018 $(K; \mathbb{R}_+) \models \phi(X; t') \rightarrow \phi(X, t)$. Let $\psi(X)$ be the formula

$$\exists T (T > a) \wedge \phi(X, T).$$

1019 Then,

$$\tilde{\mathcal{R}}(\psi, V) = \bigcup_{a < t} \tilde{\mathcal{R}}(\phi(\cdot; t), V).$$

1020 Proof of Property 7. The inclusion $\bigcup_{a < t} \tilde{\mathcal{R}}(\phi(\cdot; t), V) \subset \tilde{\mathcal{R}}(\psi, V)$ is obvious, since
 1021 for each $t > a$, $(K; \mathbb{R}_+) \models \phi(X, t) \rightarrow \psi(X)$, which implies that $\tilde{\mathcal{R}}(\phi(\cdot; t), V) \subset$
 1022 $\tilde{\mathcal{R}}(\psi(\cdot), V)$.

1023 To prove the reverse inclusion, let $p \in \tilde{\mathcal{R}}(\psi, V)$. Then, by definition p is a
 1024 type which is almost orthogonal to the value group, and moreover, there exists
 1025 $x \in \mathcal{R}(\psi, V)(K')$, such that $x \models p$ and (K', \mathbb{R}_+) is an elementary extension of
 1026 $(K; \mathbb{R}_+)$ (since types which are orthogonal to \mathbb{R}_+ can always be realized in such
 1027 a model). Hence, there exists $t_0 > a, t_0 \in \mathbb{R}_+$, such that $(K', \mathbb{R}_+) \models \phi(x, t_0)$,
 1028 and so $p \in \tilde{\mathcal{R}}(\phi(\cdot, t_0), V)$. This proves that

$$\tilde{\mathcal{R}}(\psi, V) \subset \bigcup_{a < t} \tilde{\mathcal{R}}(\phi(\cdot; t), V).$$

1029

□

1030 Given an \mathbf{F} -definable map $f : X \rightarrow \mathbb{R}_+$, we will denote by $B_{\mathbf{F}}(f) : B_{\mathbf{F}}(X) \rightarrow$
 1031 $B_{\mathbf{F}}(\mathbb{R}_+) = \mathbb{R}_+$ the induced map. We will say that $B_{\mathbf{F}}(f)$ is a *semi-algebraic* map.
 1032

1033 The following theorems which are easily deduced from the main theorems in [HL16,
 1034 Chapter 14] will play a key role in the results of this paper. We will use the same
 1035 notation as above.

1036 **Theorem A.3.** [HL16, Theorem 14.4.4] *Let V be a quasi-projective variety over
 1037 K , $X \subset V$ be an \mathbf{F} -definable subset and $f : X \rightarrow \mathbb{R}_+$ be an \mathbf{F} -definable map.
 1038 For $t \in \mathbb{R}_+$, let $B_{\mathbf{F}}(X)_{\geq t}$ denote the semi-algebraic subset $B_{\mathbf{F}}(X \cap (f \geq t)) =$
 1039 $B_{\mathbf{F}}(X) \cap B_{\mathbf{F}}(f \geq t)$ of $B_{\mathbf{F}}(V)$. Then, there exists a finite partition \mathcal{P} of \mathbb{R}_+
 1040 into intervals, such that for each $I \in \mathcal{P}$ and for all $\varepsilon \leq \varepsilon' \in I$, the inclusion
 1041 $B_{\mathbf{F}}(X)_{\geq \varepsilon'} \hookrightarrow B_{\mathbf{F}}(X)_{\geq \varepsilon}$ is a homotopy equivalence.*

1042 **Theorem A.4.** [HL16, Theorem 14.3.1, Part (1)] *Let Y be a variety and $X \subset$
 1043 $Y \times \mathbb{R}_+^r \times \mathbb{P}^m$ be an \mathbf{F} -definable set. Let $\pi : X \rightarrow Y \times \mathbb{R}_+^r$ be the projection map. Then
 1044 there are finitely many homotopy types amongst the fibers $(B_{\mathbf{F}}(\pi^{-1}(y; t)))_{(y; t) \in Y \times \mathbb{R}_+^r}$.*

1045 **Theorem A.5.** [HL16, Theorem 14.2.4] *Let V be a quasi-projective variety defined
 1046 over K , and X an \mathbf{F} -definable subset of V such that $B_{\mathbf{F}}(X)$ is compact. Then there
 1047 exists a family of finite simplicial complexes $(X_i)_{i \in I}$ (where I is a directed partially
 1048 ordered set) embedded in $B_{\mathbf{F}}(X)$ of dimension $\leq \dim(V)$, deformation retractions
 1049 $\pi_{i,j} : X_i \rightarrow X_j$, $j < i$, and deformation retractions $\pi_i : B_{\mathbf{F}}(X) \rightarrow X_i$, such that
 1050 $\pi_{i,j} \circ \pi_i = \pi_j$ and the canonical map $B_{\mathbf{F}}(X) \rightarrow \varprojlim_i X_i$ is a homeomorphism.*

1051 As an immediate consequence of Theorem A.5 we have using the same notation:

1052 **Corollary A.6.** *Let $V \subset \mathbb{A}_K^N$ be a closed affine subvariety, and let $B_{\mathbf{F}}(X)$ be a
 1053 semi-algebraic subset of V .*

- 1054 (a) *Every connected component of $B_{\mathbf{F}}(X)$ is path connected.*
- 1055 (b) $H^i(B_{\mathbf{F}}(X)) = 0$ for $i > \dim(V)$.
- 1056 (c) $\dim H^*(B_{\mathbf{F}}(X)) < \infty$.
- 1057 (d) *The restriction homomorphism $H^{\dim(V)}(B_{\mathbf{F}}(V)) \rightarrow H^{\dim(V)}(B_{\mathbf{F}}(X))$ is surjec-
 1058 tive.*

1059 *Proof.* Recall the definition of $\text{Cube}_V(R)$ (cf. Notation 3.2.1) and that $\text{Cube}_V(R)$ is
 1060 a compact topological space. Similar remarks apply to $\text{Cube}_V(R) \cap B_{\mathbf{F}}(X)$. More-
 1061 over, arguing as in Part (6) of Lemma 3.2.7, for sufficiently large R the natural
 1062 inclusions $\text{Cube}_V(R) \cap X \hookrightarrow B_{\mathbf{F}}(X)$ and $\text{Cube}_V(R) \hookrightarrow B_{\mathbf{F}}(V)$ induce homotopy
 1063 equivalences. In the following, we fix such an R large enough such that both in-
 1064 clusions are homotopy equivalences. Note that Parts (a), (b) and (c) now follow
 1065 directly from Theorem A.5. We shall now prove [Proof of Part (d)].

1066
 1067 By the previous remarks, it is sufficient to prove that the natural induced morphism

$$H^{\dim(V)}(\text{Cube}_V(R)) \rightarrow H^{\dim(V)}(\text{Cube}_V(R) \cap B_{\mathbf{F}}(X))$$

1068 is surjective.

1069
 1070 By Theorem A.5, $\text{Cube}_V(R)$ has the homotopy type of a finite simplicial polyhe-
 1071 dron of dimension at most $\dim(V)$. Since $\text{Cube}_V(R)$ is compact, it follows that
 1072 the cohomological dimension (in the sense of [Ive86, page 196, Definition 9.4]) of

1073 $\text{Cube}_V(R)$ is $\leq \dim(V)$.

1074

1075 It follows again from Theorem A.5 that there exists a compact polyhedron $Z \subset$
 1076 $\text{Cube}_V(R) \cap X$ such that Z is a deformation retract of $\text{Cube}_V(R) \cap B_{\mathbf{F}}(X)$. Let
 1077 $\iota : Z \hookrightarrow \text{Cube}_V(R) \cap B_{\mathbf{F}}(X)$ be the inclusion map. Note that ι induces isomorphisms
 1078 in cohomology. Since the inclusion of Z in $\text{Cube}_V(R)$ factors through ι , and ι
 1079 induces isomorphisms in cohomology, it follows (using the long exact sequence of
 1080 cohomology for pairs) that

$$H^*(\text{Cube}_V(R), \text{Cube}_V(R) \cap B_{\mathbf{F}}(X)) \cong H^*(\text{Cube}_V(R), Z).$$

1081 We now prove that

$$H^{\dim(V)+1}(\text{Cube}_V(R), \text{Cube}_V(R) \cap B_{\mathbf{F}}(X)) \cong H^{\dim(V)+1}(\text{Cube}_V(R), Z) = 0.$$

1082 This gives the desired result by an application of the long exact sequence in coho-
 1083 mology associated to the pair $(\text{Cube}_V(R), \text{Cube}_V(R) \cap B_{\mathbf{F}}(X))$.

1084

1085 Recall that $\text{Cube}_V(R)$ is a Hausdorff space, and consequently that Z is a closed
 1086 subspace of $\text{Cube}_V(R)$. It follows now [Ive86, page 198, Proposition 9.7] that the
 1087 cohomological dimension of $U := \text{Cube}_V(R) \setminus Z$ is also $\leq \dim(V)$. This implies
 1088 that $H_c^{\dim(V)+1}(U) \cong H^{\dim(V)+1}(\text{Cube}_V(R), Z) = 0$, which finishes the proof. \square

1089 ACKNOWLEDGMENTS

1090 S.B. thanks Institut Henri Poincaré, Paris, for hosting him during the trimester
 1091 on “Model Theory, Combinatorics and Valued fields” where part of this work was
 1092 done. Both authors thank the anonymous referees for very detailed reports which
 1093 helped to substantially improve the paper.

1094 REFERENCES

- 1095 [ADH⁺16] Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei
 1096 Starchenko, *Vapnik-Chervonenkis density in some theories without the independence*
 1097 *property, I*, Trans. Amer. Math. Soc. **368** (2016), no. 8, 5889–5949. MR 3458402 [2](#), [3](#),
 1098 [5](#)
- 1099 [Bas10] S. Basu, *Combinatorial complexity in o-minimal geometry*, Proc. London Math. Soc.
 1100 (3) **100** (2010), 405–428. [3](#), [4](#), [7](#), [8](#)
- 1101 [BPR05] S. Basu, R. Pollack, and M.-F. Roy, *On the Betti numbers of sign conditions*, Proc.
 1102 Amer. Math. Soc. **133** (2005), no. 4, 965–974 (electronic). MR 2117195 (2006a:14096)
 1103 [3](#)
- 1104 [BPR09] ———, *An asymptotically tight bound on the number of connected components of*
 1105 *realizable sign conditions*, Combinatorica **29** (2009), 523–546. [3](#)
- 1106 [BPRon] ———, *Algorithms in real algebraic geometry*, Algorithms and Computation in
 1107 Mathematics, vol. 10, Springer-Verlag, Berlin, 2006 (second edition). MR 1998147
 1108 (2004g:14064) [29](#)
- 1109 [Duc16] Antoine Ducros, *About Hrushovski and Loeser’s work on the homotopy type of*
 1110 *Berkovich spaces*, Nonarchimedean and tropical geometry, Simons Symp., Springer,
 1111 [Cham], 2016, pp. 99–131. MR 3702309 [37](#)
- 1112 [HHM08] Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson, *Stable domination and*
 1113 *independence in algebraically closed valued fields*, Lecture Notes in Logic, vol. 30,
 1114 Association for Symbolic Logic, Chicago, IL; Cambridge University Press, Cambridge,
 1115 2008. MR 2369946 [6](#)
- 1116 [HL16] Ehud Hrushovski and François Loeser, *Non-archimedean tame topology and stably*
 1117 *dominated types*, Annals of Mathematics Studies, vol. 192, Princeton University Press,
 1118 Princeton, NJ, 2016. MR 3445772 [4](#), [5](#), [6](#), [9](#), [37](#), [38](#), [39](#)

1119 [Ive86] Birger Iversen, *Cohomology of sheaves*, Universitext, Springer-Verlag, Berlin, 1986.
 1120 MR 842190 [39](#), [40](#)

1121 [JL10] H. R. Johnson and M. C. Laskowski, *Compression schemes, stable definable families, and o-minimal structures*, Discrete Comput. Geom. **43** (2010), no. 4, 914–926.
 1122 MR 2610477 [3](#)

1123 [LR68] C. N. Lee and Frank Raymond, *Čech extensions of contravariant functors*, Trans. Amer. Math. Soc. **133** (1968), 415–434. MR 0234450 [36](#)

1124 [Mac76] Angus Macintyre, *On definable subsets of p -adic fields*, J. Symbolic Logic **41** (1976), no. 3, 605–610. MR 0485335 [5](#)

1125 [RBG01] L. Rónyai, L. Babai, and M. Ganapathy, *On the number of zero-patterns of a sequence of polynomials*, J. Amer. Math. Soc. **14** (2001), no. 3, 717–735 (electronic).
 1126 MR 1824986 (2002f:11026) [3](#)

1127 [SGA72] *Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos*, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652 [15](#), [21](#)

1128 [Sim15] Pierre Simon, *A guide to NIP theories*, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015.
 1129 MR 3560428 [3](#)

1130 [Spa66] Edwin H. Spanier, *Algebraic topology*, McGraw-Hill Book Co., New York, 1966.
 1131 MR 0210112 (35 #1007) [35](#), [36](#)

1132 [SGA4] DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET, WEST LAFAYETTE,
 1133 IN 47907, U.S.A.
 1134 1135 *E-mail address:* sbasu@math.psu.edu

1136 [Spa66] DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET, WEST LAFAYETTE,
 1137 IN 47907, U.S.A.
 1138 1139 *E-mail address:* patel471@purdue.edu