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ABSTRACT. In this article, we use cohomological techniques to obtain an
algebraic version of Toda’s theorem in complexity theory valid over alge-
braically closed fields of arbitrary characteristic. This result follows from a
general ‘connectivity’ result in cohomology. More precisely, given a closed
subvariety X C P™ over an algebraically closed field k, and denoting by
JPI(X) = J(X,J(X,---,J(X, X)) the p-fold iterated join of X with it-
self, we prove that the restriction homomorphism on (singular or ¢-adic etale)
cohomology Hi(PN) — H(JIPI(X)), with N = (p+ 1)(n+ 1) — 1, is an iso-
morphism for 0 < 7 < p, and injective for ¢ = p. We also prove this result in
the more general setting of relative joins for X over a base scheme S, where S
is of finite type over k. We give several other applications of this connectivity
result including a cohomological version of classical quantifier elimination in
the first order theory of algebraically closed fields of arbitrary characteristic,
and to obtain effective bounds on the Betti numbers of images of projective
varieties under projection maps.
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1. INTRODUCTION

The main goal of this article is to obtain a geometric proof of an algebraic ver-
sion of Toda’s theorem in complexity theory valid over algebraically closed fields
of arbitrary characteristic. We obtain this result as an application of some coho-
mological properties of (ruled) joins of projective schemes. These cohomological
results are also applied to obtain a cohomological version of quantifier elimination
as well as give bounds for the Betti numbers of projective varieties under projection
maps. We describe our main results, the motivation behind these results, and their
connections with prior work in the following paragraphs.

1.1. Cohomological connectivity of joins. Let X C P™ and Y C P™ denote
two non-empty closed sub-schemes over an algebraically closed field k.! Then the
(ruled) join J(X,Y) is a closed subscheme of P"*™+1. Moreover, one can show that
J(X,Y) is connected. One can interpret the latter topological connectivity result
as the following cohomological connectivity result:

The restriction map induces an isomorphism H°(P"*™+1) — HO(J(X,Y)).

Our first main theorem generalizes this cohomological connectivity result to iterated
joins. Given X; C P™ (0 < i < p), let JPI(X) := J(Xo,...,X,) C PN denote the

P
iterated (ruled) join. Here N = Z(nl +1)-1.

i=0
Theorem (cf. Theorem 2.17). Let for 0 < i < p, X; C P™ be non-empty closed
P
subschemes. Then the inclusion JP)(X) — PN (with N = Z(nl +1) — 1) induces
i=0

an isomorphism

(1.1) H/(PY) — H'(JPI(X))

for all 7,0 < j < p, and an injective homomorphism for j = p.

The cohomology groups appearing in the Theorem may be taken to be ¢-adic etale
cohomology with ¢ a fixed prime not equal to the characteristic of the base field. We

also prove a similar result under assumptions of ‘higher’ cohomological connectivity
of the given schemes. More precisely, we prove the following result:

Theorem (cf. Theorem 2.27). Let for 0 < i < p, X; C P™ be non-empty closed
subschemes, and d; € Zso, such that the restriction homomorphisms HJ(P") —
HY(X;) are isomorphisms for for 0 < j < d;, and injective for j = d;. Then the
restriction homomorphism

(1.2) H (PV) — H (JIP/(X))

1Here P is the usual n-dimensional projective space over k. Sometimes we denote this by P}
in order to make the base field explicit.
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P
is an isomorphism for 0 < j < d+ p, and injective for j = d+ p, where d = Z d;.
i=0
Note that topological connectivity properties (in the Zariski topology) of joins
of projective varieties have been considered by various authors (see for example
the book [FOV99]). The main emphasis in these previous works was on studying
Grothendieck’s notion of ‘d-connectedness’. A projective variety V' is d-connected if
dim X > d and X \'Y is connected for all closed subvarieties Y of dimension < d. It
is a classical result [FOV99, §3.2.4], that if X is d-connected and Y is e-connected
then J(X,Y) is (d+ e+ 1)-connected. One can easily generalize this to the setting
of multi-joins. While this result is philosophically similar to the aforementioned co-
homological connectivity of the join, one cannot infer Theorem 2.9 from this result.
In particular, it is easy to come up with examples of projective varieties X C P™,
such that X is d-connected, but the restriction homomorphism H*(P") — H*(X) is
not an isomorphism for some 4,0 < ¢ < d.

The notion of cohomological connectivity considered in this paper is distinguished
from Grothendieck connectivity in another significant way. We prove relative ver-
sions (see Theorems 2.19 and 2.22) of our connectedness theorems where the join
is replaced by the relative join. This relative version (namely, Theorem 2.19) is in
fact the key to the main applications of our connectivity theorem. It allows us to
relate the Poincaré polynomial of the image of a closed projective scheme with that
of the iterated relative join (relative to the projection morphism). * More precisely,
we obtain:

Theorem (cf. Theorem 2.32). Let S =P, X C P*" xP™, and 7 : P*" x P — P™
the projection morphism. Then,

POUP(X) = P@(X)(1+T2+T4+ -+ TA@E+DE+D-D) 04 77,

(Here, J(S[p](~) denote the p-fold iterated relative join over S, and P(-) the Poincaré
polynomial.)

The cohomological connectivity property of the iterated relative join of a complex
algebraic set X C P x Pg relative to the proper morphism 7 : X — P@ (the re-
striction of the projection P x P — P{ to X) was first investigated in [Bas12|. A
complex version of Theorem 2.32 valid for singular cohomology was obtained there
(though not stated in the language of cohomological connectivity). The motivation
in loc. cit. was to prove an analog of a certain result from the theory of computa-
tional complexity (Toda’s theorem [Tod91]) in the complex algebraic setting. The
relation between Poincaré polynomials in the above theorem was the key input in
the proof of the complex analog of Toda’s theorem. However, the argument in loc.
cit. was topological, and heavily used the analytic topology of complex varieties.
Our result extends the topological result in loc. cit. to the setting of etale cohomol-
ogy of projective schemes of finite type over a base field of arbitrary characteristic.
This significantly widens the applicability of our main results. For example, using
our more general result we are now able to extend Toda’s theorem to algebraically
closed fields of arbitrary characteristic.

2 Note that we define P(X)(T) = 3, dimg, H'(X, Q)T (2.31).
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We also give several other applications of our results. These applications are mostly
quantitative in nature and impinges on model theory as well as on the theory of
computational complexity. We discuss these applications in the next paragraphs.

1.2. Cohomological quantifier elimination. Our first application is related to
the topic of ‘quantifier elimination’ in the first order theory of algebraically closed
fields. It is a well known fact in model theory that the first order theory of alge-
braically closed fields (for any fixed characteristic) admits quantifier elimination.
This is also known as Chevalley’s theorem. More precisely, for k£ an algebraically
closed field and with tuples of variables X = (X3,...,X,,),Y = (Y1,...,Y,), a
quantifier-free first order formula in the language of the field k is a Boolean formula
with atoms of the form P(X,Y) = 0,P € k[X,Y]. A first order formula in the
language of the field k is of the form

PX,Y) = (QuX1) - (QmXom )Y (X, Y),

where v is a quantifier-free first order formula and each Q; is a quantifier belonging
to {3,v}. ?

Any first order formula ¢(Y) in the language of an algebraically closed field k
defines (in an obvious way) a subset R(¢) of A™, where n is the length of the tuple
Y.* If the n = 0 (i.e. the set of free variables Y is empty), then the formula ¢ is
called a sentence, and there are only two possibilities for R(¢). Either R(¢) = A?,
in which case we say that ¢ is True (or equivalently ¢ belongs to the first order
theory of k), or R(¢) = (), in which case we say that ¢ is False (or —¢ belongs to
the first order theory of k). The quantifier elimination property of the theory of
algebraically closed fields can now be stated as:

Theorem A (Quantifier-elimination in the theory of algebraic closed fields). Let
k be an algebraically closed field. Then, every first order formula

¢(Y) = (QIXI) T (Qme)lb(X,Y),
in the language of the field k, there exists a quantifier-free formula ¢'(Y) such that

R(9) = R(&).

At the cost of being redundant (for reasons that will become apparent in the fol-
lowing paragraphs) we state the following corollary of Theorem A in the case Y is
empty. With the same hypothesis as in Theorem A:

Corollary A.
¢ & (R(¢') = A”).

We introduce in this paper a cohomological variant of quantifier elimination. We
restrict our attention to what we call proper formulas (cf. Definition 3.2). Just like
a first order formula defines a constructible subset of A™, a proper formula defines
an algebraic subset of some products of P*’s. Given a (possibly quantified) proper

3We refer the reader who is unfamiliar with model theory terminology to the book [Poi00] for
all the necessary background that will be required in this article.
4Here, A™ denotes the usual n-dimensional affine space over k.
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formula v over an algebraically closed field (of arbitrary characteristic), we produce
a quantifier-free formula

(1.3) U= J(¥)

(also proper) from . (The notation J(-) and its connection to the join will be clear
from its definition given in Notation 3.8 in Section 3.) While not being equivalent
to 1) in the strict sense of model theory, v’ is related to 1) via a cohomological invari-
ant (closely related to the Poincaré polynomial which we call the ‘pseudo-Poincaré
polynomial’).

This invariant of 1) can be recovered from that of the quantifier-free formula )’
using only arithmetic over Z. More precisely, we prove that there exists an operator
F“ : Z|T| — Z[T] (whose definition we omit right now but can be found in (3.11))
which depends only on the sequence, w, of quantifiers and the block sizes in the
proper quantified formula 1, such that the following equality holds:

Theorem B (cf. Theorem 3.12).

Q) = F*(QY)).
Here, Q(¢) denotes the pseudo-Poincaré polynomial (see (3.5) for definition of
Q(@)) of the algebraic set defined by ¢ for any proper formula ¢.

The above theorem deserves the moniker ‘quantifier elimination’ once we substitute
the realization map R(-), which takes formulas to constructible sets in Theorem A,
by the map Q(-) which takes formulas to Z[T]. While we have an absolute equality
R(¢) = R(¢') in Theorem A, in Theorem B, the polynomials Q(¢)) and Q(¢')
are related via the map F“. In the case of sentences (i.e. when the set of free
variables is empty) we have the (perhaps even more suggestive) corollary (compare
with Corollary A):

Corollary B.
¥ e (F(QMW)) =1).

The main advantage of the cohomological variant over usual quantifier elimination
becomes apparent when viewed through the lens of ‘complexity’. In the tradi-
tional quantifier elimination (Theorem A above) the quantifier-free formula ¢’ can
be potentially much more complicated than ¢ — for instance, the degrees of the
polynomials appearing in the atoms of ¢’ could be much bigger than those of the
polynomials appearing in the atoms of ¢ (see for example [Hei83]) — and there is
no direct way of producing ¢’ from ¢ without using algebraic constructions such as
taking resultants of polynomials appearing in ¢ etc. (see Example 1.4 below).

Bounding the ‘complexity’ of the quantifier-free ¢’ in terms of that of ¢ is an ex-
tremely well-studied question (see for example [Hei83] for the state-of-the-art) with
many ramifications. Indeed, the well known P vs NP question in computational
complexity — say in the Blum-Shub-Smale (henceforth, B-S-S) model of computa-
tion [BCSS98| — is fundamentally about comparing the complexities of sequences
of varieties which belong to an ‘easy’ class (i.e. the B-S-S complexity class P), with
the complexities of sequences obtained by taking images under certain projections
of sequences belonging to the ‘easy’ class (by taking the images under projections
of sequences in the class P one obtains the B-S-S complexity class NP). A formal
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definition of P, NP in the B-S-S sense can be found in [Bas12] and will not be re-
peated here.

The notion of ‘complexity’ of a formula that we use is made precise later (cf. Def-
inition 4.2). However any reasonable notion of ‘complexity’ (for example, taking
it to be the maximum of the degrees of polynomials that appear in it) suffices for
the following discussion. The best known upper bound on the ‘complexity’ of ¢’
is exponential in that of ¢ [Hei83], even when the number of blocks of quantifiers
is fixed and it is considered highly unlikely that this could be improved (see Ex-
ample 1.4 below). The crucial advantage of ‘cohomological quantifier elimination’
over ordinary quantifier elimination (i.e. Theorem B over Theorem A) is that the
quantifier-free formula v’ has ‘complexity’ which is bounded polynomially in that
of 1 (when the length of w is fixed). This fact follows from the fact that ¢’ can
be expressed in terms of v in a uniform way — without having to do any algebraic
operations. Thus, while the relation between the quantifier-free formula ¢’ and
is weaker than in the case of quantifier elimination in the usual sense, it is obtained
much more easily from ¢ without paying the heavy price inherent in the quantifier
elimination process.

Example 1.4. A classical example of the blow-up in complexity on passing from
¢ to ¢’ is illustrated in the following well-studied example.

Let k be an algebraically closed field, V4, = (Symd(k"+1)
k"t Let ¢pan(fo,. .., £,,X) be the proper formula

®(n+1)
*) ,and W,, =

n

(3X) A\ £:(X) =0,

=0

(identifying elements of Sym®(k"+1)* with the vectors of coefficients of forms of
degree d). Let X be the subvariety of P(Vy,) x P(W,,) defined by

(1.5) Xan ={([(fo, ..., 1)}, [x]) | fo([x]) = --- = £a([x]) = 0},
and
(1.6) Tan : P(Van) x P(Wy) — P(Va,p)

the projection morphism. Then the image, 74, (X4, ), is a subvariety (hypersur-
face) of P(Vy,,) defined by a polynomial R(fy,...,f,) (the resultant of the forms
fo,...,f,) of degree (n + 1)d™ (see for example [GKZ08, Chapter 13, Prop. 1.1]).
Notice that 74, (Xgn) = R(¢an), and in this case a quantifier-free formula ¢£1,n
equivalent to ¢gq, is given by ¢, = (R(f,...,f,) = 0). If one measures the
complexity of a formula by the maximum degree of the polynomials appearing in
it, we see that in this case the complexity of ¢4, is bounded by d, while that of
Gy 18 (n+ 1)d™ which is exponentially large. In contrast, in this case it follows
from the definition of J(-) (Notation 3.8 in Section 3) that the complexity of the
quantifier-free formula J(¢g4,) (cf. (1.3)) is bounded by d. Moreover, the operator
F*“ appearing in Theorem B in this simple example reduces to multiplication by
the polynomial (1 —T) followed by truncation of the resulting polynomial to degree
dim V4, — 1. This illustrates the advantage of Theorem B over Theorem A from
the point of view of complexity. This last feature of Theorem B is the key to our
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second application of Theorem 2.32 that we discuss below — namely, an algebraic
analog of Toda’s theorem.

We note that a version of Theorem B in a less precise form over the field of complex
numbers and using singular cohomology appears in [Basl12]. The results of this
section hold over algebraically closed fields of arbitrary characteristic, and etale
cohomology and so is much more general than the result in loc. cit. Also, while the
techniques used in the proof of Theorem B are somewhat similar to those used in
loc. cit., the proof differs in several key points — so we prefer to give a self-contained
proof of Theorem B at the cost of some repetition.

1.3. Algebraic Toda’s theorem. The ‘cohomological quantifier elimination’ the-
orem discussed above has applications in the theory of computational complexity. In
the classical theory of computational complexity, there is a clear analog of Kleene’s
arithmetical hierarchy in logic — namely, the polynomial hierarchy PH (consisting
of the problems of deciding sentences with a fixed number of quantifier alterna-
tions). This connection, and especially the relation to quantifiers is made precise in
Section 4 below. Another important topic studied in the theory of computational
complexity is the complexity of counting functions. A particularly important class
of counting functions is the class #P (introduced by Valiant [Val84]) associated
with the decision problems in NP: it can be defined as the set of functions f(z)
which, for any input z, return the number of accepting paths for the input x in
some non-deterministic Turing machine. A theorem due to Toda relates these two
different complexity classes by an inclusion (which expresses the fact that ability
to ‘count’ is a powerful ‘computational resource’). The precise result is:

Theorem 1.7 (Toda [Tod91]). PH C P#F.

Thus, Toda’s theorem asserts that any language in the polynomial hierarchy can
be decided by a Turing machine in polynomial time, given access to an oracle with
the power to compute a function in #P. (Only one call to the oracle is required in
the proof.) We refer the reader to [Pap94] for precise definitions of these classes in
terms of Turing machines, and also that of oracle computations, but these defini-
tions will not be needed for the results proved in the current paper.

As mentioned previously, an important feature of Theorem 3.12 is that the quantifier-
free formula J (1) obtained from the quantified formula ¢ has an easy description in

terms of ¢ (in contrast to what happens in classical quantifier elimination). Making

this statement quantitative leads to a result which is formally analogous to Theo-

rem 1.7, and which we discuss below.

As stated above Toda’s theorem deals with complexity classes in a discrete setting.
Blum, Shub and Smale [BCSS98], and independently Poizat [Poi95], proposed a
more general notion of complexity theory valid over arbitrary rings. The classical
discrete complexity theory reduces to the case when this ring is a finite field. The
complexity classes (corresponding to the discrete complexity classes such as P, NP
etc.) consists of sequences of constructible sets.

Example 1.8. For example, over any field k£, and for any fixed d, the sequence
of algebraic sets (Xq,n),~o, Where Xg,, is defined as in (1.5) will belong to the
complexity class Pj. This is because it is possible to check membership in the sets
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Xa,n (by a Blum-Shub-Smale machine [BCSS98|) with number of steps bounded by
a polynomial in n (for fixed d). On the other hand, the sequence (7q,n(Xdn), >
(cf. (1.6)) belongs to the class NPy, since its elements are obtained as images of
projections of the sets belonging to the class Pj. We refer the reader to Section 4.1
for the precise definitions of complexity classes that we will use in this paper, but
the two examples given above can be considered to be the prototypical examples of
members of the classes Pj, and NPy, respectively (also of the classes P§ and NP
where the superscript ¢ indicates that the elements of the sequence are compact in
the case k = R, C). (Also note that in Section 4.1, the class NP§ above is denoted by
Z,lg’c in order to place it in its right position in the polynomial hierarchy, but in this

introductory section we will continue to use the more commonly used nomenclature
NP§.)

An interesting question that arises in this context is whether an analog of Toda’s
result hold for complexity classes defined over rings other than finite fields. While
the polynomial hierarchy has an obvious meaning in the more general B-S-S setting,
the meaning of the counting class #P is less clear — boiling down to the question
what does it mean to ‘count’ a semi-algebraic set (for B-S-S theory over R) or a
constructible set (for B-S-S theory over C). An equivalent definition of the classical
(discrete) complexity class #P (which is more amenable to amenable to generaliza-
tions to an algebraic setting) is that a sequence of functions (f, : {0,1}" = Z), -,
belong to the class #P if the functions f,, count the cardinalities of the fibers of
the projections maps restricted to a sequence of sets in P. Making the reasonable
choice that ‘counting’ over R or C should mean computing the Poincaré polyno-
mial, and defining the class #P appropriately, real and complex versions of Toda’s
theorem were proved in [BZ10] and [Bas12], respectively.

The proofs of the results in [BZ10, Bas12| were topological and used the euclidean
topology of real and complex varieties. Since the approach in the current paper
is purely algebraic, we are now able obtain a similar result in all characteristics.
The algebraic approach is also different in certain important technical details. Ad-
ditionally, in order to make our result independent of the technical details which
are inherent in any description of a computing machine (such as B-S-S or Turing
machines) we state and prove our result in the non-uniform setting of circuits —
and reformulate Toda’s theorem as a containment of two non-uniform complexity
classes of constructible functions instead. This does not affect the main mathemati-
cal content of the theorem, viz. a polynomially bounded reduction of the quantifier
elimination problem in the theory of algebraically closed fields to the problem of
computing the Poincaré polynomial of certain algebraic set built in terms of the
given formula. As an added advantage, this lessens the burden on the reader un-
familiar with B-S-S machines. We prove the following inclusion, where the precise
definitions of the complexity classes on both sides can be found in Section 4.1
and should be thought of as the non-uniform, constructible function analogs of the
classes appearing in Toda’s original theorem.

Theorem (cf. Theorem 4.11).
1PH; C #P3.

The precise definitions are given in Section 4.1 below. The left hand side of the
inclusion is the class of sequences of characteristic functions of the algebraic analog
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of languages in the polynomial hierarchy, and the right hand side is the algebraic
analog of the class P#F as in Toda’s theorem.

Example 1.9. We will define counting complexity classes of sequences of functions
#P¢ over arbitrary algebraically closed fields later in Section 4.1. But the following
example of a sequence in #P¢ over an algebraically closed field k is instructive. We
use the same notation as in Examples 1.4 and 1.8.

The following sequence of functions is an example of a sequence in #P¢:

(fn : P(Van) = Z[T)),,5

where

Fn([fo, ..., £a]) P(manlx,  ([fo,-- - £a])

= P(V(fy,....f)),

P(-) = > ,50bi(-)T" denotes the Poincaré polynomial, and V(fy,...,f,) C P} is
the algebraic set defined by fy = --- = f,, = 0. Notice that the value of the function
fn at a point in P(Vy,,) is the Poincaré polynomial of the fiber above the point of
the map 74x|x,,, and the sequence (Xg,,) belongs to the Pf. In this sense the
functions f,, are ‘counting’ the fibers of projection maps restricted to a a sequence
in P¢, analogous to the discrete case.

On the other hand the sequence (74, (Xgn)), s, in Example 1.8 belongs to the
class NP¢, and hence also belongs to the class PH¢. So as an application of
Theorem 4.11 we obtain that the sequence of characteristic functions

(lﬂd,n(Xd,n) : P(den) — {Ov 1} - Z[T])nzo
belongs to the class #Pj.

If Toda’s original theorem expresses the ‘power of counting’, one could say similarly,
that Theorem 4.11 is about the ‘expressive power of cohomology’.

1.4. Uniform bounds on Betti numbers of varieties. As a final application
of our results on the connectivity of joins, we consider the well studied problem
of proving effective upper bounds on the Betti numbers of algebraic sets in terms
of the parameters defining them. This problem has many applications, and has
attracted a lot of attention in different settings. For example, in the context of
real algebraic and semi-algebraic sets, such bounds were first proved by Oleinik
and Petrovskii [PO49], Thom [Tho65] and Milnor [Mil64], who used Morse theory
and the method of counting critical points of a Morse function to obtain a singly
exponential upper bound on the Betti numbers (dimensions of the singular coho-
mology groups) of real varieties. Over arbitrary fields, Katz [Kat01], proved similar
results for the f-adic Betti numbers of both affine and projective varieties, using
prior results of Bombieri [Bom78a| and Adolphson-Sperber [AS88a] on exponential
sums. Theorem 2.32 proved in this paper relates the Betti numbers of the image
m(X), of a projective subscheme X C P™ x P", with those of X itself. Thus, it
is natural to ask if this allows one to extend the results of Katz, to the images
of projective subschemes of P™ x P™ under projection map. One obvious way to
prove upper bounds on 7(X) is to first describe 7(X) in terms of polynomials using
effective quantifier elimination (see for example [Hei83]), and then applying Katz’s
bound to the resulting description. However, the inordinately large complexity of
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quantifier elimination implies that such an upper bound would be very pessimistic.

We utilize Theorem 2.32 to prove uniform bounds on the Betti numbers of the image
m(X) of an algebraic set X C P™ x P™ in terms of the number of equations defining
X and their degrees. We are thus able to extend prior results of Katz ([Kat01])
on bounding Betti numbers of projective algebraic sets in terms of the number of
equations defining them and their degrees, to bounding those of the image 7(X)
in terms of the same parameters. Our main result in this direction is the following
theorem.

Theorem (cf. Theorem 5.2). Let X C P™ x P™ be an algebraic set defined by
r bi-homogeneous polynomials F;(Xo, ..., Xn, Yo, ..., Ym) of bi-degree (dy,ds), and
m P x P™ — P™ the projection morphism. Then, for all p > 0,

p—1 9 p—1
dobu(r(X)) < =N b(IF(X))
h=0 p h=0
2
< = > B(i+j,r(p+1),d + da).
Pocicminpen-1
0<j<m
Here, B(n,r,d) is a certain function defined precisely in Section 5.1, coming from
the works of Bombieri [Bom78a|, Adolphson-Sperber [AS88a], and Katz [Kat01],
giving an upper bound on the ¢-adic Betti numbers (with compact support) of an al-
gebraic subset X C AV, defined by r polynomial equations of degrees bounded by d.

An alternative method for bounding the Betti numbers of the image 7(X), in terms
of the defining parameters of X, is by bounding the Es-terms of the spectral se-
quence associated to the hypercovering of 7(X) given by the iterated products of
X fibered over m. We show in some situations (Section 6.1), the hypercovering
inequality can be loose by an exponentially large factor. In such situations it might
be better to first express the sum of the Betti numbers of 7(X) in terms of certain
Betti numbers of the join (cf. Eqns. (6.3) and (6.4)) and then use the bounds due
to Katz (thus the only source of looseness of the obtained bound is that coming
from Katz’s inequality).

We also give an example of a situation where the join inequality can give the exact
Betti numbers (up to some dimensions) of the image w(X). As an application
of Theorem 2.32 combined with a weak Lefschetz type argument, we prove the
following theorem.

Theorem (cf. Theorem 6.5). Let X C PN x P be a subvariety defined by N +r
bi-homogeneous forms. Let m: PN x P" — P™ be the projection morphism. Then,
for alli,0 <i <[],

bi(m(X)) = 1ifiis even,

bi(m(X)) = 0ifiis odd.
Remark 1.10. Theorem 6.5 can be useful in determining the Betti numbers in small
dimensions of varieties described as the image, 7(X), where X C P* x P’ is a subva-

riety and 7 : P® x P? — P®. In many situations, while X may be cut out by a small
number of equations, the image, 7(X), might need many more equations to define
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(this number is determined by the arithmetic rank of the elimination ideal). In
particular, a repeated application of classical Artin vanishing directly to m(X) (cf.
Lemma 6.6) might not give any useful information. However, the interval of dimen-
sions for which Theorem 6.5 gives us information does not depend on the arithmetic
rank of the elimination ideal but just on the number of equations needed to cut out
the variety X. In particular the result here is purely topological, and this could be
useful in situations where we do not have good knowledge of the arithmetic rank
of the elimination ideal.

An instructive example is the following. Let m > n, and let V' = k™*™ denote
the vector space of m x n matrices, and W = k™. Let X C P(V) x P(W) be the
subvariety defined by

X ={(ALly]) e B(V) x P(W) | Ay = 0},

and let
m:P(V)x P(W) = P(V)

be the projection morphism. Then 7(X) C P(V) is the projectivization of the
subvariety of m X n matrices of rank at most n — 1. Notice that the number
of equations needed to define X is clearly < m, while the number of equations
needed to define m(X) could be much larger. In this particular situation, the
arithmetic rank of the ideal defining 7(X) is well studied, and it is known that it
is bounded from above by mn — (n — 1)? + 1 [BV88, Corollary 5.21] (which could
be much larger than m). In this particular example, the information about the
Betti numbers obtained by using Theorem 6.5 can be recovered using Lemma 6.6
directly in conjunction with the upper bound on the arithmetic rank mentioned
above. However, in more general situations knowledge of a good upper bound on
the arithmetic rank of the elimination ideal could be missing, and in such situations
Theorem 6.5, whose proof is purely topological, can still give useful information.
Finally, note that it is not possible to derive Theorem 6.5 from the upper bound
obtained from the hypercover inequality.

The rest of the paper is organized as follows. In Section, 2, we state and prove
our main theorems on joins and relative joins. We state and prove a key inequality
(Theorem 2.32) in Section 2.5. In Section 3, we state and prove our theorem
on ‘cohomological quantifier elimination’, and in Section 4, we give the promised
application of cohomological quantifier elimination to prove a version of Toda’s
theorem valid over all algebraically closed fields. In Section 5, we discuss bounds on
Betti numbers and in Section 6 we compare the efficacies of using the hypercovering
vs the join inequalities.

2. COHOMOLOGICAL CONNECTIVITY PROPERTIES OF THE JOIN

In this section, we prove our main result on the cohomological connectivity of the
join. In the following, we shall fix an algebraically closed base field k (except in
subsection 2.4). All our schemes will be of finite type over the base field k.

2.1. Joins of schemes. We recall some basic properties of the join construction
for the convenience of the reader. We refer the reader to [AKT75] for the details.
Let S be a scheme of finite type over k. Let C(S) denote the category of positively
graded quasi-coherent Og-algebras T := @;-, T; such that 7 is generated in degree
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1, each component is a coherent Og-module, and the degree zero component is Og.
We let e : T — Og denote the corresponding projection. Given T, P € C(S), let
X :=Proj(T) and Y := Proj(P) denote the corresponding projective schemes. The
relative join of X and Y over S, denoted Jg(X,Y), is by definition Proj(T ®o, P).
Here are some basic properties of this construction:

1. The relative join construction can be viewed as a bi-functor as follows. Any
surjection u : T — T of graded Og-algebras induces a linear embedding

P(u) : Proj(T") < Proj(T).

Since the tenor product is right exact, the join can be viewed as a bi-functor
Js(—=,—) : C(S) x C(S) — Schg with morphisms in C(S) given by surjective
morphisms of Og-algebras. Here Schg denotes the category of S-schemes.

2. Applying this construction to the the morphism e ® Id, where Id : P — P is
the identity, gives a natural embedding ix : X < Proj(T ®o4 P) = Jg(X,Y) of
schemes over S. Similarly, one has a natural embedding ¥ < Proj(7 ®o4 P).

3. Given a morphism S’ 7. § and an object T € C(S), let T’ € C(S’) denote the
corresponding pull back. Since the Proj construction is compatible with base
change, the relative join is also compatible with base change. In particular, one
has a cartesian diagram:

Proj(T’ ®og, P') —— Proj(T ®os P)

l |

S’ S

We can iterate the join construction and consider the p-fold join J%} (X). More
precisely, let JE;”(X) = Js(X, X), and set Jg’](X) = JS(Jg)fl](X),X). This con-
struction is the same as Jg(X,---,X). Note that a surjection P — T € C(S)
———
p+1
induces an imbedding J [;3] (X) = Jg)] (Y) for all p.

More generally, given Pi,...,P; € C(S), we can consider the multi-join:

Js(Pi,--+,Pj) = Proj(P1@--- @ P)).

As before, one has closed embeddings Proj(P;) <= Js(P1,---,P;).

Suppose & is a vector bundle on S and X is a closed sub-scheme of P(£). Recall,
P(£) is Proj of the symmetric algebra Symg, (£Y), where £Y is the dual bundle.
In this case, X is given by applying the Proj construction to an object F in C(S).
More precisely, F is a quotient of Symg_ (€ V). In particular, we have a natural em-

bedding Jg’] (X) — P(E9®P*D). We note that the construction of Jg’] (X)) depends
on F and, in particular, on the embedding of X in P(&).

We can generalize the previous paragraph to the setting of multi-joins. Suppose &;
(0 < i < p) are vector bundles on S, and X; C P(&;) are closed subschemes. Then
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each X; = Proj(F;), and we can define the multi-join Jg(Xo, - ,X,) as before.
Note that the previous constructions give a natural embedding

p

Js(Xo, -+, Xp) < P(@£¢)~

i=0

Given Xo,---, X, as above, we shall denote the multiple join Jg(Xo, -+ ,X,) by
Js(X).

Let X; — P(&;) as above, m; : X; — S denote the structure map, and m;(X;)
denote the corresponding scheme theoretic image. Note that, since m; is proper,
the underlying set of 7;(X) is the set theoretic image. Let E := @ &, and
let m(X) denote the union of the subschemes ;(X;). Consider the base change

diagram:

P(E)r(x) — P(E)
S.

Lemma 2.1. With notation as above, the structure map Js(X) — S factors through
m(X).

(X)) ——

Proof. One can proceed by induction on p. Suppose p = 1. Then by ([AK75], B.3),
there is a natural retraction Jg(Xo, X1) \ Xo — X3 (i.e. a section of the natural
embedding X; — Jg(Xo, X1)). It follows that the image of J(Xo, X1) \ Xo in S is
contained in 7 (X;) and similarly for Xy. This proves the result in the case that
p = 1. The general case follows by induction. (I

As a consequence of the previous lemma, and the universal property of fiber prod-
ucts, one has a commutative diagram:

Js(X) —— P(E)r(x)

Lk

In the case of X C P(£) and Jg’] (X) C P(E9PHD) | we get a commutative diagram:

J[Siﬂ (X) . Ip)(g@(p-&-l))

Remark 2.2. Note that P(E®®PFD) v is canonically isomorphic to P(F®®+1)
where F = £|(x) is the restricted bundle.

Remark 2.3. If £ is the trivial bundle of rank n+1, then we may identify P(£®(P+1))
with PO D=L
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2.2. Joins and cones. Suppose now that S = Spec(k). In the following, we shall
drop the subscript S from our notation in the setting of S = Spec(k) (unless we
need to specify the field). Let X C P™ and Y C P™ denote two fixed projective
subschemes. If A (resp. B) is the homogeneous coordinate ring of X (resp. Y),
then we defined join of X and Y as the projective scheme J(X,Y") := Proj(A®y B).
Note that this is naturally a closed subscheme of P*+m+1,

The cone of X, denoted by C(X), is by definition the affine scheme Spec(A) C A"T1.
We shall denote by ox € C(X) the cone point. In the following, we shall sometimes
drop the subscript and simply denote by o the cone point. One has a canonical
isomorphism:

(2.4) C(J(X,Y)) = C(X) x4 C(Y).

2.3. Proofs of cohomological connectivity of joins. In the following, we shall
prove connectivity (i.e. cohomology vanishing) results for iterated relative joins.
By cohomology, we shall mean etale cohomology theory on the category of schemes
over k. Moreover precisely, given a prime £ not equal to the characteristic of the
field k, we shall consider the etale cohomology groups H¢,(X,Z/("Z), H:, (X, Zy)
or HY, (X, Q). We shall usually drop the coefficients (and subscript) and denote
these simply by H*(X).

Remark 2.5. We remind the reader that by definition
Hit (Xa Zf) = I&HH;& (Xv Z/[nZ)

and H, (X, Q) = H.,(X,Z¢) ®z, Q. In the following, we will prove statements at
the level of torsion coefficients, and then pass to inverse limits to obtain statements
at the level of Z,-coefficients (and, after tensoring with Qy, for Q-coefficients).

Remark 2.6. If 0 : k — C is a fixed embedding, the we may also consider the
singular cohomology H*(X 2™, 7). The results of this section also hold in this setting.

2.3.1. Connectivity over a point. In this subsection, we shall work with schemes S
of finite type over a separably closed field k, and H*(S) will denote the etale coho-
mology groups as in the previous paragraph. Let X C P" be a closed subscheme
and consider JPI(X) c Pr+D(+1)—1,

Definition 2.7. Let X C P" be a closed subscheme and d an integer such that
d <n. Then X is cohomologically d-connected if the restriction homomorphism

H'(P") — H'(X)
is an isomorphism for all ¢ < d, and an injection for i = d.
Remark 2.8. We note that, if char(k) = 0, standard results show that this notion
will be independent of the prime ¢. In characteristic p, this would follow from
Deligne’s proof of the Weil conjectures if X is also smooth. In general, it would

follow from certain standard conjectures in algebraic geometry. For our purposes,
we have simply fixed a prime £ not equal to the characteristic of k.



CONNECTIVITY OF JOINS AND COHOMOLOGICAL QUANTIFIER ELIMINATION 15

We begin by proving the following connectivity property of the join. The analogous
statement in the setting of singular cohomology was proven by the first author in
([Bas12]). Our goal here is to give a ‘motivic proof’ of this statement which is
applicable to any Weil cohomology theory.

Theorem 2.9. Let X C P™ be a closed subscheme. Then JIP/(X) c PP+D(n+1)-1
is cohomologically p-connected. In particular, the restriction homomorphism

Hj(p(p+1)(n+1)—1) N Hi(J[p] (X))
is an isomorphism for 0 < j < p, and an injection for j = p.

We begin with some preliminary remarks. In the following, for any closed subscheme
X C P" weset C'(X) := C(X)\ox. Note that one has a natural cartesian diagram:

(2.10) C/(X) —— A"\ 0

| ]

X ———DP"

In particular, the natural projection C’'(X) — X is a G,-bundle.

The following lemma is well-known. Over the complex numbers, it follows directly
from the contractibility of the cone. We provide a proof here applicable to any
‘good cohomology theory’ due to a lack of reference.

Lemma 2.11. The natural inclusion ox — C(X) induced an isomorphism on
cohomology:

H'(C(X)) = H(ox).

Proof. Let Y denote the blow-up of C(X) at ox. Then it is a standard fact that
there is a natural map m : ¥ — X which realizes Y as a line bundle over X.
Moreover, the exceptional fiber E of the blow-up Y is canonically identified with
the zero section of . In particular, H(Y) = H'(X) and H(E) = H(X). On
the other hand, one has the usual long exact sequence for the cohomology of the
blow-up ([Sta20, E

= H(C(X)) = H(ox) @ H(Y) —» H(E) - HT(C(X)) = -,

where the arrows are induced by the natural pull-back maps on cohomology. Since
the restriction homomorphism H(Y) — H*(FE) is an isomorphism (by the remarks
above), the natural restriction homomorphisms H?(C(X)) — H!(ox) must be iso-
morphisms. (Il

Lemma 2.12. With notation as above, one has
HY(C'(JPN (X)) =0 for all 0 < i < p
and
HO(C'(JPI(X))) = H (o).

Before proving the lemma, we give two proofs of Theorem 2.9. The first uses a
spectral sequence argument, while the second proof uses the following standard
Gysin long exact sequence.


https://stacks.math.columbia.edu/tag/0EW5
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Lemma 2.13. [SGAT77, Corollaire 1.5, Exposé VII| Let Z be a scheme, and X — Z
be a rank r vector bundle. Let U C X denote the complement of the zero section.
Then there is a long exact sequence in cohomology:

= HT?(Z)(—r) = H(X) —» HY(U) — -
We are now in a position to prove Theorem 2.9.

Proof of Theorem 2.9. The conclusion follows by an application of Lemma 2.12 to
the Leray spectral sequences for the G, bundle 7 : C'(JIP/(X)) — JPI(X). More
precisely, the cartesian diagram 2.10 of G,,-bundles gives rise to a commutative
diagram of spectral sequences:

E;’j (X) = Hi(J[p] (X), Rinm, (Z/0"7) Hi+j(C/(J[P] (X))

T T

Eg’j (P(p+1)("+1)*1) — Hi(P(p+1)(n+1)71’ Rjﬂ*(Z/K"Z))) X Hi+j(A(p+1)(n+1) \ 0)

Here, by abuse of notation, we use the same notation 7 to denote the natural maps
AP+ g — ple+D () =1 and ¢/ (JP(X)) — JPI(X). Since 7 is a G,,-bundle,
Rim,(Z/0"Z) is a local system with stalk at z € JPI(X) given by H/(G,,), and sim-
ilarly for x € P@TD(+1-1 N\oreover, in the case of PPTD(M+D=1 it is the trivial
local system. Since R/, (Z/¢"Z) on JP/(X) is the restriction of the correspond-
ing local system on P(P+1)(n+1)—1 (due to the fact that the base change map is an
isomorphism for zariski or etale local G-torsors as a consequence of the Kunneth
formula, and the fact that 2.10 is cartesian), it is also a trivial local system. In
particular, the cohomology groups E;j (X) are zero for j # 0,1, and otherwise
one has E5°(X) = H/(JIP/(X)) and ES'(X) = H/(JP/(X)) @ H'(G,,), and simi-
larly for E57 (P+D(+1)-1)  Note that one can identify H'(JP!(X)) ® HY(G,,) =
Hi (I (X)) (—1).

It follows that both spectral sequences are concentrated in two columns and degen-
erate at E3. In particular, they give rise to a commutative diagram of long exact
sequences:

(2.14)
S HH(EOP (X)) 5 H2(P(X)(-1) » HEPI(X) 5 B(COPX0) »

| T |

— H7LAN\0) — H72(PN-1(-1) — HY(PY1) — HY(AN\0) —

where N = (p+ 1)(n + 1). The result is now an easy consequence of Lemma 2.12,
and an application of the five lemma to the commutative diagram of long exact
sequences above. O

Alternate proof of Theorem 2.9 using the Gysin. Let X’ = JP/(X) and Y/ — X’
be the line bundle in the proof of Lemma 2.11. Similarly, let X" := Pe+D(n+1)-1
and Y — X" the corresponding line bundle. Note that, in the case of X”, this is
simply the tautological line bundle (i.e. the bundle given by the locally free sheaf
O(—1) on X"). Since Y is simply the restriction of Y to X', it follows that Y’
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is the line bundle associated to the locally free sheaf Ox/(—1). We can now apply
Lemma 2.13 to both Y/ — X’ and Y — X" to get a commutative diagram of long
exact sequences:

s HEP(X))(—1) ——— HP(X)) —— H(CIP(X) — -

T T T

RN Hi_Q(P(p+1)(n+1)_1)(—1) N Hi(ﬁn(p-i—l)(n-ﬁ-l)—l) > Hi(A(p-l—l)(n-ﬁ-l) \O) 3.

Here we have identified H*(Y’) with H*(X’) (since this is a line bundle over X’),
and similarly for Y and P®+1)(+1)=1 " Thig diagram is the same as diagram 2.14,
and one can proceed now as in the previous lemma. ([l

In the following, we shall make repeated use of the Kiinneth formula for cohomology
with coefficients in a principal ideal domain. We recall it here for the convenience of
the reader. In particular, given schemes X and Y over k (separably closed) one has
the following Kiinneth short exact sequence for etale cohomology with R = Z/¢"Z-
coefficients ([Sta20, D:®

(2.15)

0= P HX)erH(Y) - H(X xY)—» @ Torf(H(X),H*(Y)) — 0.

r+s==k r+s=k+1

If R = Qy, then the Tor term vanishes and one has the following simplified formula
(see for example [Mil80, page 267]):

P H(X)@rH(Y) = HNX x V).
r+s=k

Proof of Lemma 2.12. We shall prove this by induction on p. In the following, we
denote by o the cone point.

Step 1. Suppose p = 1. In this case, we are reduced to showing that C'(J(X, X)) =
(C(X) x C(X)) \ 0 is connected. This is follows from Grothendieck’s proof
of Zariski’s main theorem (or by hand). In fact, this is true more generally
for C'(JIM(X)).

Step 2. Suppose p = 2. In this case, we are reduced to showing that H*(C(X)*3\
0) = 0. Let U := (C(X)*?\ 0) x C(X) and V := C(X)*? x C'(X).
Then {U,V} is an open cover of C(X)*3\ 0 and the intersection U NV =
(C(X)*2\ 0) x C'(X). The Mayer-Vietoris sequence (and Step 1) gives an
exact sequence:

0— HY(C(X)*3\ o) - H (U)o H (V) - HUNV) = -

Note that the left most arrow is an injection, since the previous arrow in
the Mayer-Vietoris sequence must be a surjection by Step 1. By 2.15 and
2.11, HY(U) = HY(C(X)*2? \ 0). Note that the cohomology of the point is

S5Note that in loc. cit. it is shown that RI'(X, R) @ RI'(Y, R) = RI'(X X Y, R). This gives rise
to the standard Tor spectral sequence. If R = Z/¢™Z, then all Tor"’s vanish for ¢ > 1, and the
spectral sequence gives the Kunneth short exact sequence.
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zero except in degree 0, where it is simply the coefficient ring R; in par-
ticular, the Tor;-terms in the Kiinneth exact sequence vanish. Similarly,
HY(V) = HY(C/(X)). Another application of the Kiinneth exact sequence
shows that the third arrow in the above sequence is an injection. It follows
that H(C(X)*3\ 0) = 0.

Step 3. Suppose the Proposition is known for all m < p. We need show that
HY(C'(JPN (X)) =0 forall 0 < i < p. Let U = C’'(JP~1(X)) x C(X) and
V = C(X)*? x C/(X). Note that {U,V} is an open cover of C’'(JP/(X))
and UNV = C¢’'(JP~1U(X)) x C'(X). By an application of the Kiinneth
exact sequence:
(a) HY(U)=0forall0<i<p-—1,
(b) HY(V) = HY(C/(X)) for all i >0,
(c) HH(UNV) =H{(C'(X) for all i < p— 1.
Therefore, an application of Mayer-Vietoris shows that H*(C’(JP!(X))) = 0
for all 0 < ¢ < p— 1. Moreover, in degree p — 1 one has an exact sequence:

0 — HP~H(C'(IP(X)) = HP N (U)o HP-Y(V) = HPHUNV) — - - .

An argument via Kiinneth, as in Step 2, shows that the third arrow is
injective and the result follows.

O

Remark 2.16. The result only uses formal properties of a cohomology theory (Kiin-
neth, Mayer-Vietoris, Leray /Gysin) and contractibility of the cone.

Note that the proof of Theorem 2.9 holds verbatim in the multi-join setting of the
following theorem.

Theorem 2.17. Let for 0 <i < p, X; C P™ be closed subschemes. Then JP)(X) C
PN (with N = >F_ (n; +1) — 1) is cohomologically p-connected.

We shall now extend the connectivity result above to the relative setting. Suppose
now that S is a scheme of finite type over a field k and £ is a vector bundle on S. Let
X be a closed subscheme of P(E). Then, as before, we have a natural embedding

Jg] (X) < P(£9(@P+1)). Recall, we have a commutative diagram

(2.18) TH(X) —— PE2ETD) 1y
(X)) ——n(X).

where P(€®P+1)_ 1) is canonically isomorphic to P(F®P+D) with F = €| (x).

We have the following relative version of Theorem 2.9. We state the proposition
for etale cohomology with Z/¢ (or Zy or Q) coefficients with ¢ not equal to the
characteristic of k. However, as will be clear from the proof, the same result holds in
any good cohomology theory. The proof only uses the proper base change theorem
and existence of a Leray spectral sequence.
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Theorem 2.19. With notation as above, the natural map
Hy, (PO ) — H, (1(X))
is an isomorphism for 0 < i < p, and an injection for ¢ = p.
Proof. The commutative diagram (2.18) gives rise to a morphism of sheaves
Rigs.(Z)0) = Riq1 .(Z)).

Note that this map is an isomorphism on stalks for all ¢ < p. To see this, we
use the proper base change theorem to compute the stalks. In that case, one has
isomorphisms:

RiQI,*(Z/E)s = Hit(J[p] (X)s) = Hit(J[p] (X))

The first is a consequence of proper base change, and the second follows from the
base change property for joins. Similarly, we have isomorphisms:

Rz (Z/0) = Hy, (B(FOPHY) ) 2 H, (PPHD (D)

where n + 1 is the rank of £. An application of Theorem 2.9 now shows that the
above higher direct images are isomorphisms for j < p. A Leray spectral sequence
argument now gives the desired result. O

Example 2.20. Suppose S = P™ and consider the trivial bundle £ of rank n + 1
over S. Then P(£) = P™ x P". In that case, for X C P(£), the above result gives
an isomorphism

B, (n(X) x PErDO0=1) gt (g0 x)).
Here J#/(X) C P x PG+D+1)-1

We conclude this section by noting that the proof of Theorem 2.19 also works in
the relative multi-join setting. Let &; (0 < i < p) be vector bundles of rank r; on
S. For each i, let X; be a closed subscheme of P(€;). Then, as before, we have a
natural embedding J5(X) — P(@D, &) = P(E) (recall that we denote by Jg(X) the

multiple join Jg(Xo, -+ ,X,)) and a commutative diagram
(2.21) J5(X) —— P(B)
th qu
m(X) 7(X).

where P(E (x)) is canonically isomorphic to P(F) with F := E|(x).

Theorem 2.22. With notation as above, the natural map
He (P(F)) — Hy, (Js(X))
is an isomorphism for 0 < j < p, and an injection for j = p.

Proof. We can argue as in the proof of the previous result, given Theorem 2.17.
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2.3.2. A generalization of the cohomological connectivity result. In this section, we
prove analogs of the results of the previous setting where a ‘higher’ cohomological
connectivity of the X is assumed. We fix a separably closed base field k as before.
Moreover, we only consider etale cohomology with Qg-coefficients.

In this setting, we have the following analog of the Theorem 2.9.

Theorem 2.23. Let X C P" be a cohomologically d-connected closed subscheme.
Then JPI(X) c PPHDO+D=1 45 cohomologically ((p + 1)d + p)-connected. In par-
ticular, the restriction homomorphism

Hi(p(p+1)(n+l)—1, Q) — Hi(J[p] (X), Q)
is an isomorphism for 0 <1i < (p+ 1)d + p, and an injection for i = (p+ 1)d + p.

Proof. One can use the Gysin sequence, as in the second proof of Theorem 2.9,

given Lemma 2.25 below.
O

Remark 2.24. (1) The weak Lefschetz theorem states that any smooth com-
plete intersection X in P is cohomologically (dim(X) — 1)-connected.

(2) The Barth-Larsen theorem [BL72| (and its generalization due to Ogus
[Ogu75], Hartshorne-Speiser [HS77]) states that any local complete inter-
section projective variety X C P™ of dimension r is (2r —n)-cohomologically
connected.

(3) We note that, even if X is smooth, the iterated join will generally be not
smooth. In particular, neither the weak Lefschetz nor the Barth-Larsen
theorem apply in order to obtain cohomological connectivity results for the
join.

(4) On the other hand, we obtain many examples of X satisfying the hypoth-
esis of Theorem 2.23 by applying the previous remark in either the weak
Lefschetz or Barth-Larsen settings.

Lemma 2.25. Let X C P" be a cohomologically d-connected closed subscheme.
Then one has the following vanishing for the punctured cone:

H'(C'(JPN(X)), Q) =0 for all 0 < i < (p+ 1)d + p.
If i =0, then HO(C'(JP/(X))) = H%(0).

Proof. For simplicity, we drop the coefficients Q, from the notation. One can argue
as in the proof of Lemma 2.12. We will show the main case of p = 1, which follows
from Lemma 2.26 below. The rest of the proof then proceeds exactly in the proof
of Lemma 2.12. So we suppose that p = 1.

As before, we are interested in C'(J(X, X)) = (C(X) x C(X))\o. Let U = C'(X)
C(X)and V = C(X)xC/'(X). Note that UUV = C'(J(X, X)), and UNV = C'(X)
C’(X). By the Kiinneth exact sequence, H™(U) = H™(C'(X)) and H™(V)
H™(C'(X)) for all m. In particular, both groups vanish for 0 < m < d, and are
given by the coefficients R in degree 0. The Kiinneth formula applied to U NV
gives and isomorphism:

P H(C'X) e c(X)) S H™UNY).

i+j=m

X
X
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If m < 2d, then by the previous remarks, the left term is equal to H™(U) ®@ H™ (V).
In particular, an application of Mayer-Vietoris proves the desired result for m < 2d.
In degree m = 2d, one obtains a short exact sequence:

0— HYUUV) - B4YU)pHYV) - H2UNV).

The right arrow is injective by the previous remarks. This completes the proof in
the case p = 1.

We briefly discuss the case of p > 1. Suppose the result is known for all m < p.
We need show that H(C/(JIP/(X)) = 0 forall 0 < i < (p+1)d +p. Let U =
C'(JP=1(X)) x C(X) and V = C(X)*? x C'(X). Note that {U,V} is an open
cover of C'(JP/(X)) and U NV = C’(JP~1(X)) x C'(X). By an application of the
Kiinneth formula:

(a) H(U)=0forall0 <i<dp+ (p—1),

(b) HY(V) = H(C'(X)) for all i > 0,

(c) HUNV) 2 @, H(U) @ H"(C'(X)) for all i > 0.

Moreover, by Lemma 2.26, H (V) = 0 for all 0 < i < d. As before, using these facts
and Mayer-Vietoris gives the desired vanishing. O

Lemma 2.26. Let X C P" be a cohomologically d-connected closed subscheme.
Then one has the following vanishing for the punctured cone:

HY(C'(X)) =0 for all 0 < i < d.
In degree 0, H*(C"(X)) = R (where R is the ring of coefficients).
Proof. Let Y — X be the line bundle as in the proof of Lemma 2.11. We can now

apply Lemma 2.13, and argue as in the ‘alternate’ proof to Theorem 2.9 to get a
commutative diagram of long exact sequences:

s — H72(X)(-1) — HY(X) — HY(C'(X)) — H"1(X)(~-1) — ---

T 1

- — H72(P")(-1) — HY(P") — HY(A"TE\ 0) — HL(P)(—1) — -+
The result now follows by induction and the five lemma. O

We note that the previous result can also be adapted to the setting of multi-joins
and also the relative setting. Here we only state the result in the multi-join setting,
and leave the proof to the reader.

Theorem 2.27. Let for 0 < i <p, X; C P™ be closed cohomologically d;-connected
subschemes. Then J(X) C PV is cohomologically (d + p)-connected, where d =
P odiand N =3%" (n;+1)—1.

2.4. Cohomological connectivity over non-algebraically closed fields. We
discuss the case where k is possibly a non-algebraically closed field. Let k denote
a fixed separable closure of k, and G denote the corresponding Galois group. For
X/k, we denote by Xy, its base change to k. We fix a prime ¢ # char(k), and
let HY(X) denote the etale cohomology with Q-coefficients. Note that there is a
natural continuous action of G on H*(X3).

The results of the previous sections give the following natural connectivity of the
join with Galois action.
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Corollary 2.28. Let X; C IP}" (0 <i <p) be closed cohomologically d;-connected
subschemes. Then J(X); C PY is cohomologically (d + p)-connected, where d =
P odi and N = (3°F_on; +1) — 1. In particular,

(2.29) H (PY) — H'(J(X)z)
is an isomorphism of Galois modules for 0 < j < d+ p, and injective for j = d+p.

Proof. This is a direct consequence of the functoriality of the restriction map, and
the fact that the join construction is compatible with base extension. More precisely,
J(X5) = J(X);. |

In this setting, one has the usual Hochschild-Serre spectral sequence:
Ey = H' (G, (X})) = H(X)

where H'(G, H7(X})) is the Galois cohomology of G = Gal(k/k) with coefficients
in the Galois module H7 (X}).

Corollary 2.30. With notation and assumptions as in the previous corollary, the
subscheme J(X) C PV is cohomologically (d + p)-connected.

Proof. One has a commutative diagram of spectral sequences:

EyY (X) := H'(G, H/ (J(X);)) == HH (J(X)) .

T T

Ey7 (PN) = HY(G, H/ (PY)) == H+J (PV)

By the previous corollary, the EZQJ -terms are isomorphic for 0 < j < d + p, and
therefore also on the corresponding E., terms. O

2.5. Cohomological connectivity and Poincaré polynomials. We now prove
a key inequality relating the Poincaré polynomial of a closed subscheme X C P x
P™ with that of 7(X) where 7 : P™ x P — P™ is the projection morphism.

Definition 2.31 (Poincaré Polynomial). For any scheme of finite type X over a
field k, we will denote

P(X) =Y b:(X)T" € Z|TY,
where b;(X) := dimg, (H (X, Qy)), and ¢ is a prime not equal to the characteristic
of the field k.
We have the following direct consequence of Theorem 2.19.

Theorem 2.32. With notation as in Theorem 2.19, let S =P™, X C P™ x P™,
and w : P" x P™ — P™ the projection morphism. Then,

PIP(X) = P@X)A+T*+T -+ THEHD0HD-1) 104 TP,

Proof. Direct consequence of Theorem 2.19. (]



CONNECTIVITY OF JOINS AND COHOMOLOGICAL QUANTIFIER ELIMINATION 23

3. QUANTIFIER ELIMINATION, COHOMOLOGY AND JOINS

In this section, we state and prove our result on cohomological quantifier elimina-
tion. Let k be a fixed algebraically closed field. We consider etale cohomology with
coefficients in Qg with ¢ # char(k).

Notation 3.1. For any finite tuple n = (nq,...,n,,) € N, we denote:

(1) nf =23,
(2) P =P™ x ... x Pm,

In the following we will denote by bold letters W (#7-) X (%:3:--) tuples of variables
and we will denote by |W(3++)| |X(#:)| the lengths of the corresponding tuples.

Definition 3.2 (Proper formulas). Let ¢(X™);...; X)) (with each X(?) denoting
a tuple of variables (X, o,...,X;n,)) be a quantifier-free first order formula in the
language of fields with parameters in k. We say that ¢ is a quantifier-free proper
formula (with n homogeneous blocks) if its atoms are of the form P = 0, where
P e k[X(l); e ;X(")] is a multi-homogeneous polynomial, and ¢ does not contain
any negations.

We say that a first order formula in the language of fields with parameters in k

(possibly with quantifiers)

(WD WY = (QeX W) (Qu X)W,y W) X, ()
Qe {3,v}1<i<n,

is a proper formula (with m homogeneous blocks), if ¢ is a quantifier-free proper

formula.

A proper formula

(WO, ... ;W(m)> — (QOX(D) e (an(n))w(w(l); ces WO x .;X(”))7
Qi e{3vh1<i<n,

defines an algebraic subset of P™, where m = (|[w)| —1,...,|w(™)| — 1) whose
k-points are described by

(QixM e PFVI=1(E)) o (Qux™ € PRI (k) )p(w?); - s w ™ x @ x (™))
We denote this algebraic set by R(¢) (the realization of ¢).
Notation 3.3. Given P =Y. a;T" € Z[T], we write

P def ppeven (T2) + TPodd (T2),

where
Peven — § a2ZTZ’
i>0
and
odd § i
P = a2i+1T .
i>0

Following [Bas12|, we introduce for any subscheme V' C P™, a polynomial, Q(V) €
Z|T), which we call the pseudo-Poincaré polynomial of V' defined as follows.
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QV) = (baj (V) = b1 (V))TV.
j=0
In other words,

(3.4) Q(V) = P(V)¥» — TP(V)°dd,

For any proper formula ¢, we will denote:

(3.5) Q(¢) = Q(R(9)).
Note that for each n > 0,
(3.6) QP =1+T+---+1T™

We introduce below notation for several operators on polynomials that we will use
later.

Notation 3.7 (Operators on polynomials). (1) For any finite tuple n of nat-
ural numbers, we denote by Recy : Z[T|<ajn| — Z[T]|<2n|, the map defined
by

Recn(Q) = Q(P™) — T*MQ(1/T).
(2) For 0 < m < n, we denote by Trunc,,, : Z[T]< [ l<m and @ €

Z[T)<n, we denote the map defined by: for Q = >"" ja; T € Z[T)<n,

Trunc, »,(Q) = Z a;T*.

0<i<m

Now let p(W1; ... ; W), X(1D). - X (")) be a quantifier-free proper formula with
m + n homogeneous blocks. For 1 <i < m, let e; = |W(i)| —1,and 1 < j <m, let
fi= |X)| — 1, and define N;,d;, m; by the formulas:

m
dy = E €,
i=1

N = 1,
di = do+Ni(2(do+1)(fr +1)—1),
mi = 2(do+1)(f1+1)-1),
and for 2 < j < m,
N; = 2Nj_1(dj_2 +1),
dj = dj—1+N;2(d+1)(f5+1) - 1),
m; = 2(dj_1+1)(f;+1)— 1.

Notation 3.8. We will denote by Jp, (%) the quantifier-free proper formula (with
m + 37, N; homogeneous blocks) defined by

2do+1 2dp—1+1

3.9 Jmn@) = N o A WO WO X)X i)y
i1=0 in=0
Whereforeachtuple (i1,..+yij—1) € [0,2do+1]x---x[0,2d;_ 2+1] | X (50t5-1,0) | =

|X(Zl* Sij—1,2d5— 1+1 ‘ — fjv and the tuples (X('L clj— 1’0) :X(ils"ﬂijfldejflJrl))
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represent homogeneous coordinates in P™i. If V' = R(v), then we will denote by
Jm,n(v) = R(Jm,n(d’))'

Remark 3.10. Notice that the realization, R(Jm, (%)), is an algebraic subset of

Pt x .o x PO x P oo x P - X P X X P X P
——— N———’

N; Ny,

Also notice that for each j,2 < j <n, N, = H{L:2(2(dh_2 + 1)) and we will index
the factors of the product P™ x --- x P" by tuples (i1,...,%;-1) € [0,2dy + 1] x
N —

N;
e X [072dj,2 + 1]

For each 7,1 < i < n, let

m; = (el,...,em,ml,mg,...,mg,...,mi,...,mi).

For w € {3,V}[1" we denote
YWD W)Y = ()X D) - (w(n) X)Wy W) X x ()
and for 1 <i <n,

Fiw = Truncdiydi+l+Ni+1 o (1 - T)NHla if W(Z) =4,

= Recm,; o Truncy, 4, ,+N:,, © (1 = T)Vi+* o Recp, ,,, if w(i) = V.
We denote:
(3.11) F*=FoF;o---0F/.

With the above notation we have the following theorem which relates the pseudo-
Poincaré polynomial of a quantified proper formula, *, with that of the quantifier-
free proper formula J,, ,(¥).

Theorem 3.12. For each w € {3,V}Ln],

(Notice that in the statement of Theorem 3.12 the quantifier-free formula J,, »(v)
does not depend on the sequence of quantifiers w, and only the operator F'“ depends
on w.)

The following special case of Theorem 3.12 will be important in the application of
Theorem 3.12 in the proof of an algebraic version of Toda’s theorem. With the
same notation as in Theorem 3.12, suppose additionally that m = 0. In this case,
the formula v has no free variables and is a sentence, and we have:

Corollary 3.13.
¥ & (F(Q(Joa(¥))) = 1).

Proof. Follows immediately from Theorem 3.12. (]
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3.1. An example. Before we prove Theorem 3.12 it is instructive to consider an
example.

Example 3.14. Let m =1,n =2, e; = f; = fo = 1, and consider the quantifier-
free proper formula:

SWD, XD, X@))
((Wl,O - Wl,l = 0) A (XI,O — X171 = O))

V

((WLO — 2W171 = 0) A\ (Xl,O — 2X171 = 0) A\ (XQ,O — 2X211 = O))

The values of the various N;, d;, m;m; are displayed in the following table.

0 1 - -
1 8 |7 @7
2

1
4 148 |35 | (1,7,35%)

It is easy to check that R(J12(¢)) is an algebraic subset of P! x P7 x P35 x P3% x
P35 x P3%, and

QUia() = QP x B% x P x P¥ x %) + QP x P17 x P17 x P17 x PV)
1-THA-T%)" (1-TH(1-T)1
(3.15) e L

Let w,w’ € {3,V}? be defined by

w(l)=3,w(2) =V,
W'(l)=V,w'(2) =3
It is easy to check that
QW*) = 1,
QW) = 0

Moreover, using Eqn. (3.11) we have that:

FY = Truncigo(1-T),

Fy = Rec(,7) o Truncg 52 0 (1 — T) o Rec(1,7,351),
Fl“’, = Rec(yy o Truncy g o (1 = T') o Recy 7y,

F¢ = Truncgspo (1 —T)%

A calculation using the package Maple now yields:

F(Q(h2(®)) = 1,
FQ(I2(®) = 0.
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3.2. Proof of the cohomological quantifier elimination theorem. Before we
prove Theorem 3.12 we need a few preliminary facts.

Theorem 3.16 (Alexander duality). Let V' C P™ be a closed subscheme. Then for
each odd i, 1 < i < |n|:

(317) bifl(V) - bz,Q(V) = bQ‘nlfi(]P)n \ V) - b2|n|,i+1(Pn \ V) + bi71<ﬂmn).
Proof. Let X =P™ and U = X \ V. Then, there is a long exact sequence

-- = Hy(X) - H(X) - H(U) — - -
and Alexander duality gives,

HY (X) = H2MP (1),

Eqn. (3.17) now follows f that HP(X) = H?(P") = 0 for all odd p. O
Corollary 3.18. Let V C P™ be a closed subscheme.
Then,

Q(V) = Q(P") — Recpn (Q(P™ \ V).
Theorem 3.19. Let n = (ny,...,ny,), V. C P* a closed subscheme. Let W =
P2\ V. For each p > 0, and 0 < i < p, we have that
1.
Hi(p(m-i-l)(p-i-l)—l X a1 (V) = Hi(Jp (V)

Tn,1

and

HY (P DD (W) — HY(PN\ L (V)
are isomorphisms.

Proof. The proof of Part (1) follows from the argument in Example 2.20 with S
replaced by P*', and omitted. We now prove Part (2). Let U = my 1 (W) and let

Z =JiP (V) @rmrDEE=1 g,
There is a long exact sequence
RN HiZ(]p(an)(pH)*l x U) — Hi(p(mﬂ)(zﬁl)*l x U) —
HZ(W) N HiZ+1 (P(n1+1)(17+1)—1 « U) .
Using Alexander duality one has
H, (Pt D)1 o 1) o~ HQ((n1+1)(p+1)—1+\n'\)—i(Z).
Moreover,
dimZ < (n1+1)(p+1)—1+|n'| = (p+1),
which implies that
H’iZ+1(IP>(n1+1)(p+1)71 % U) ~ H2((n1+1)(p+1)71+|n'\)71‘71(Z) =0
whenever
2((ni + D) (p+1) =1+ 0'|)—i—1>2((ng+1)(p+1)—1+|n'| - (p+1)) & i < p,
and in this case
HiZ(P(mH)(p-i-l)—l xU)=0

as well. O
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With the same notation as in Theorem 3.19:

Corollary 3.20. Let p=2m + 1 with m > 0. Then

(3:21) Q(raa (V) = (1-T7)QUE! (V) mod T,
(3.22) Q(ma (W) = (1-T)QPN -JI (V)) mod 7.

We will also need the following lemma.

Lemma 3.23. Letp > 0, and for each 1 < i <mn, let V; C P™ be a closed subscheme,
and W; =P*\V;. For1 <i<mn, let m; : P" x--- x P* = P" denote the canonical
surjection to the i-th factor.
1. Suppose that the restriction homomorphism B (P™) — H? (V;) is an isomorphism
for 0 < j <p. Then, the restriction homomorphism
n
HY (P - x P") — HY () ;1 (V)
i=1
is an isomorphism for 0 < j < p.
2. Suppose that the restriction homomorphism H (P™) — HY(W;) is an isomor-
phism for 0 < j < p. Then, the restriction homomorphism

n

HJ(IP)H X oeee X IP") — H](U Wﬁl(Wi))

i
i=1

s an isomorphism for 0 < j < p.

Proof. Easy. O

Proof of Theorem 3.12. For 0 < j < n, let (Z)‘]‘-’(W(l); c W) X ) X (eds) )
denote the formula

(@0 + DX08) (o) X)) (W5 WO X0y X ),
and let ¢’ denote the formula

2dp+1 2dj_1+1

/\ /\ ¢;f(w(1);... W) X 0, X (eta)y
11=0 i;=0

Notice that

(3.24) vy = Y,

(325) w:;) = Jm,n(¢)

We prove by induction on j that

(3.26) QW*) = Fo--- o FP(Q(YY))

Notice that (3.26) is true for j = 0 using (3.24), and implies the theorem in the
case j = n using (3.25).

Now assume that (3.26) holds for j > 0 and we prove it for j + 1, thus completing
the inductive step.

There are two cases to consider.
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Case 1. w(j + 1) = 3. For each (W;X) € P™ (where w = (w1 ... w(™) ¢ Pe1 x

...X]P)em7)_( — ()_(17 7)_(,7)7 andforl S h §j7)_(h — ( ;X(i17~--1ih—1);...) c
Ph o ... x P™) and each tuple (i1, ...,3;) € [0,2do+1] x---x [0, 2d,_1],
[y —

Ny

let VV—E,Z;( %) denote the algebraic set
R( ;,UH(W(l);... cw (M) x (i), (in02). ;X(ilv“vij—l);X(’il,...,ij))) C P
Notice that, for 0 < ¢ < 2d;, the restriction homomorphism
HY (P1) — H (V)

is an isomorphism using Part (1) of Theorem 3.19.
Also, observe that denoting by

ﬂ‘(ilaﬂ]) : ]P)mj+l X oo X ij+1 _> Ip)mj+17

Njt1
the projection on the (i1,...,%;)-th factor,
g . —1 (41,.--535)
R 1 (Wi %; ) = N Toan iy (Ve ).
(i1,0105)€]0,2d0+1] X % [0,2d; 1]

Now using Part (1) of Lemma 3.23 we get that for each point (W;X) €
R(¢¢) C P, and for 0 < i < 2d; the restriction homomorphisms

Hi(ijJrl X oo X ij+1) — HZ(R(lﬂﬁl (WQ)_(; )))

Njt1

are isomorphisms.
Finally using proper base change, and the fact that R( ;}H(W; %)) #0
if and only if (W;X) € R(¢)¥), we get that the restriction homomorphisms
HZ(R(w;U) X IP)mj+1 X oo X ]P)mj+1) N H’L(R( ;j_,’_l))

Njt1

are isomorphisms for 0 < ¢ < 2d;, from which it follows using (3.21) that
Q) = Fii1 QY1)

which completes the inductive step in this case.
Case 2. w(j +1) = V. For each (w;X) € P™ (where w = (w(1); ... w(m) ¢ Per x
cooxPem % = (Xq;-++ ;%) and for 1 < h < §, %, = (- s x(insnin=). L e
P x ... x P™") and each tuple (i1,...,7;) € [0,2do+1] x--- % [0,2d;_4],
Np
let Wiy ) = prmes \ Vi),
Notice that, for 0 <7 < 2d;, the restriction homomorphism

H(P™t) — HY (W)

is an isomorphism using Part (2) of Theorem 3.19.
Also, observe that denoting by

Tin,iy) P PTITE X X P 5 P

Njt1
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the projection on the (i1,...,%;)-th factor,
R($54 (W% ) = U Tk W),
(21,5, ij)€[0,2d0+1]X---X[O,Qd]‘_l]

Now using Part (2) of Lemma 3.23 we get that for each point (w;X) €
P™i \ R(y¢) C P™, and for 0 < i < 2d; the restriction homomorphisms

Hi(P7”J’+1 X oo X PM1) Hi(P"”j+1 X o P R ;?+1(‘7V; %))

Njt1 Njt1

are isomorphisms.
Finally using proper base change, and the fact that

P+l L. PN \R( ;7)+1(W§ X; )) 7& 0

Nj1

if and only if (W; %) € P™ —R(¢)¥), we get that the restriction homomor-
phisms
HI (B — R(Y2)) x PP x o x P o T (B \ R($, )

Nj+1

are isomorphisms for 0 < ¢ < 2d;. From this it follows using Theorem 3.16
twice, and (3.22), that

Qw;)) = Fjw-s-l(Q( 3‘)4-1)),

which completes the inductive step in this case.

4. AN ALGEBRAIC VERSION OF T'ODA’S THEOREM OVER ALGEBRAICALLY
CLOSED FIELDS

As mentioned previously, an important feature of Theorem 3.12 (and Corollary 3.13)
is that the quantifier-free formula J,, ,,(¢) obtained from the quantified formula
has an easy description in terms of ¢ (in contrast to what happens in classical
quantifier elimination). Making this statement quantitative leads to a result which
is formally analogous to a classical result in discrete complexity theory — namely,
Toda’s theorem.

4.1. The classes P§, PH;, #Pf. We fix an algebraically closed field k for the
rest of this section. In order to prove our algebraic analog of Toda’s theorem we
first need algebraic analogs of the complexity classes appearing in Toda’s theorem.
In order to motivate the definition of the polynomial hierarchy it is instructive to
first consider the following set-theoretic definitions.

Recall that any map f: X — Y between sets X and Y induces three functors

Ly
Pow(X) /* Pow(Y).
=,
in the poset categories of their respective power sets Pow(X),Pow(Y). The
functors f*, f3, f¥ are defined as follows. For all A € Ob(Pow(X)) and B €
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Ob(Pow(Y)),
f(B) = f (B,
f34) = {yeY | (EBze X)((f(z)=y)A(z € A)},
fo(4) = {yeY | (Ve e X)((f(z)=y) = (z€A))}

Now, suppose that X =P* x P™, Y =P™ and 7 : P x P"* — P™. Let V be an
algebraic subset of X. Then, m3(V), my(V) are both algebraic subsets of P".
However, as is well known from computational algebraic geometry, elimination is
a costly procedure, and as a result the ‘complexity’ of m3(V') and my (V) could in-
crease dramatically compared to that of V. Here, by complexity one can take for
instance the number and degrees of the polynomials appearing in the descriptions
of these sets. A more precise definition of complexity and formalization in terms
of sequences of algebraic sets rather than just one, leads to variants of the famous
P vs NP (respectively, P vs co-NP) question albeit over the field k£ [BCSS93|.
Alternating the functors 73, 1y a fixed number of times leads to the so called poly-
nomial hierarchy of complexity classes whose lowest level consists of the class P
of sequences of objects with polynomially bounded growth in complexity. We now
make more precise the notion of ‘complexity’ that we are going to use. We begin
with some notation.

Notation 4.1. For any finite tuple n = (nq,...,n,,) € N™ we denote:
(1) 09 = (nj41,...,npm) for 0 < j < m (we will denote n’ = n(!) for conve-
nience);

(2) Ty P — P“(j), the projection map.

Definition 4.2 (Complexity of algebraic sets and polynomial maps). Following
[UT18], we define the complexity, ¢(V'), of an algebraic subset V' C P™, to be the
size of the smallest arithmetic circuit [B00] computing a tuple of multi-homogeneous
polynomials (fi,...,fs) such that V. = Z(f1,...,fs). The complexity c(g) of a
polynomial map g : Z™ — Z" is the size of the smallest arithmetic circuit computing

g.

Remark 4.3. We will often identify for convenience Z™ with the Z-module, Z[T <, -1,
of polynomials of degree at most m — 1.

Notation 4.4 (Characteristic function). Let L = (V; C P™);cn be a tuple indexed
by N, where each V; is an algebraic subset of P™:.
We will denote by 1, the tuple of constructible functions

(lvi P {0, 1} CZC Z[T])iEN7

where 1y denotes the characteristic function of V (k).
Definition 4.5 (The class P{ and Pz). Following [UI18|, we will say that

L=V, CP"),eny € Py,
if ¢(V;), |n;| are polynomially bounded functions of . Similarly, we will say that
a sequence G = (g; : Z™ — Z™)en € Py if ¢(g;), mi,n; are all polynomially
bounded functions of i.
Example 4.6. For each fixed d, consider the sequence

Ly= (Vi CP™), o,
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where

and
Vm:{(xvfm-'wfm) | fl(x):(),ngSm},

where we identify p("i) with the projectivization of the space of non-zero homo-
geneous polynomials of degree d in m + 1 variables. It is an easy exercise to check
that Ly € P for each d > 0.

We now define the algebraic analog #P{, of the discrete complexity class #P. Note
that in the classical theory the class #P consists of ‘counting functions’ counting the
number of solutions of the ‘fibers’ of some Boolean satisfiability problem belonging
to P. As remarked before, a natural analog of counting in the algebraic context
is computing the Poincaré polynomial of algebraic sets (or some easily computable
polynomial function of the Poincaré polynomial). Thus, it is natural to define the
algebraic analog of #P as sequences of constructible functions whose values are the
Poincaré polynomials (with respect to etale cohomology) of the fibers of sequences
of proper morphisms. The sequence of codomains of the morphisms defining an
element of the class #P¢, should itself belong to P{,.

More formally, we define:

Definition 4.7 (The class #P¢). A sequence F = (F; : P — ZNi),cy, where
each F; is a constructible function, is in the class #P¢, if and only if there exists
L= (Vi CP™)y € P,
j:N—=N,

and

ieN ’
such that for all 7 € N,
Fi(Z) = gi(Pﬂ_—l (z))

m;,j(4)
Notation 4.8 (3L and VL). For a tuple L = (V; C P™ ),y of algebraic subsets of
P, we denote by
AL := (mn, 1 (Vi) € P™)ien,
and , )
VL = (M, 1v(Vi) € Ppt)ien = (P™ — i, 1(P™ \ V;) C P™ )ien.

Definition 4.9 (Polynomial hierarchy). For ¢ > 0, we define HZ’i, ZZ’i as follows.

1) =% =P

(2) For i > 0, we define ¥, as the smallest class of sequences L = (V; C
P2 )ien satisfying:
(a) Ty° € 277 and
(b) Lexith® = 3L e oyt

(3) Similarly, we define H;’jl’c as the smallest class of sequences L = (V; C
P7)ien satisfying:
(a) Yp¢ CI,7°, and
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(b) L et = VL e ILTH°.

(4) Finally, we define
pH; = | (e usye),
>0
and

1PHE = {1L L e PHE}

Remark 4.10. Notice that it follows from Definition 4.9 that L € PHj, if and only
if there exists L' € P¢, n > 0, and Qg,...,Q, € {3,V}, such that

L=Q QL.

With the algebraic analogs of the classes #P, and PH in place (cf. Definitions 4.7
and 4.9 respectively), we are now in a position to state an algebraic analog of Toda’s
theorem.

Theorem 4.11 (Algebraic analog of Toda’s theorem).
lpHi C #P5.
4.2. Proof of algebraic version of Toda’s theorem.

Lemma 4.12. Let L = (V; C P™ x P™);eny € PY, with m; = (e;1,...,€im,;) €
N™ n; = (fi1,.-., fin) € N*. Then,

(S n(V3))ien € P,

Proof. First observe that it follows from Definitions 4.5 and 4.2 that for each i € N
there exists a tuple f; = (fi1,..., fix;,) of multi-homogeneous polynomials such
that there exists an arithmetic circuit computing f; of size C; which is polynomially
bounded in ¢, and such that V; is defined by the proper quantifier-free formula
k-.
Ui N\ (fi; =0).
j=1
It now follows from Notation 3.8 that
(1) m“n(wz> = /\Kl Vi, where
(2) K; =2" H (d ij—1+1),and d; o, ...d; n,—1 are defined as in Notation 3.8;
(3) for each j € [1 n], the sequence (d; j—1)ien is polynomially bounded in i;
(4) for each i,j, ¥;; = /\h 1(Fij,n = 0) for some multi-homogeneous polyno-
mials F; ; p, and
(5) there exists an arithmetic circuit of size C;; computing the tuple

(Fijas- s Fijik),
and for each j € [1,n], the sequence (C; ;)ien is polynomially bounded in
7.
This shows that
n
C(Jmiﬂl H 3,5 —1 + 1 YK

and hence the sequence (c(Jm“n(Vi)))ieN is polynomially bounded in i, since n is
a constant, and the sequences (d; j)ien and (Cjj)ien are bounded polynomially in
i, as observed previously. This proves the lemma. ([
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Lemma 4.13. The following sequences belong to Py.

(1) (Recn, : Z[T)<n,| = Z[T)<n,|)ien, for any sequence (0;)sen such that the
sequence (|n;|)ien is polynomially bounded.

(2) (Truncy,, », : ZMTt — Zmith),cy, for any pair of polynomially bounded
sequences (m;)ien, (Ni)ien;

(3) (Mu_pyn: 2 Z[T)a, — Z[T]a;+n, )ien, where (d;), (Ni)ien are two polyno-
mially bounded sequences, for f € Z[T], Ms(g) = fg;

(4) (pseudo,,, : Z[T|<on, — Z[T|n,)ien, for any polynomially bounded sequence
(n;)ien, where pseudo maps a polynomial P(T) to P¢ve™ — T Podd,

Proof. Obvious. O

Proof of Theorem 4.11. Suppose that L = (V; C P™i),eny € PHS. It follows from
Remark 4.10 that there exists n > 0 L' = (V/ C P™ x P™);ey € P¢, with
m; € N n; € N” for some fixed n, and Qq,...,Q, € {3,V}, such that

L:QlQnLl

This implies that for each i € N, V; = (V/)¥, where w; € {3,V}['" is defined by
w;(j) = Q;. Lemma 4.12 now implies that (Jp, »(V/))ien € P

Let Tm;n; @ Vi — P™i (respectively, J(Tm;n;) : Jm;n(Vy) — P™) denote the
restriction of the projection morphism to V; (respectively, Jp, n(V{)).

Let wmi’ni’w:Vi”w — {w} (respectively, J(Tm; n;w) : Jmin(Vi)w — P™) denote
the pull-back of Ty, n; (respectively, J(mm; n;)) under the inclusion {w} «— P™i.
Observe that,

(Jm“n(v;/))w = JO,N(‘/;/,W)'

Theorem 3.12 now implies that
1Vi =P (Q(JOW(VZ,W))) =P Opseudodi,n (P(JO,n(‘/zl,w)))a

where F'“ is the operator appearing in Theorem 3.12.

It follows also from the definition of the operator F“¢ (as in Theorem 3.12) and
Lemma 4.13, that the two sequences of operators (F“*);cn € Pz, (pseudoy,  )ien are
in Pz, and so is the sequence of their compositions. It now follows from Definition
4.7 that the sequence (1y,);en € #P5. O

5. BOUNDS ON BETTI NUMBERS

As before, we work over an algebraically closed field k. We fix a prime number
¢ # char(k), and work with etale cohomology with Q-coefficients. Let X C P™ xP"
be an algebraic subset. In this section, we will apply the results of the previous
section to obtain bounds on sums of the Betti numbers of the image m(X) under
the projection to P™ in terms of those of the relative join. Finally, we compare this
bound with those achieved through an application of classical elimination theory.

5.1. Classical results on bounds for sums of Betti numbers of algebraic
sets. In this subsection, we recall some classical results on bounds of (sums of)
Betti numbers for algebraic subsets of A™ and P". The results here are due to
Oleinik and Petrovskii, Thom, Milnor, Bombieri, Adolphson-Sperber, and Katz.
We follow closely the paper of Katz ([Kat01]).
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Given an algebraic set X, let
B(X) = dim(H'(X, Q)

(resp. hi(X) := dim(HL(X,Qy))). Let h(X) = Y, h*(X) and h.(X) = Y, hi(X).
Finally, we denote by x(X) and x.(X) the Euler characteristic (resp. compactly
supported Euler characteristic) of X. With this notation, one has the following
classical bounds on sums of Betti numbers and Euler characteristics.

(1) Suppose char(k) = 0. If X C A™ (n > 1) defined by r > 1 equations F; with
deg(F;) < d, then Oleinik and Petrovskil [PO49], Thom [Tho65] and Milnor
[Mil64] showed that

h(X) < d(2d —1)*" 1.
While the result in loc. cit. is stated for singular cohomology with coefficients
in Q, standard arguments give the same result for ¢-adic cohomology over any
algebraically closed field of characteristic zero. Standard arguments ([Kat01])
now show that
he(X) <27(1 + rd)(1 4 2rd)?" 1.

(2) In general, Bombieri [Bom78b]| gave the explicit upper bound
Xe(X)] < (4(1 +d) +5)"*".
(3) Bombieri’s bounds were improved upon by Adolphson and Sperber ([AS88Db]).
They considered the homogeneous polynomial
Dn,r(XOu cee 7Xn) = E|W\:nXW7
and showed that
Ixc(X) <2"D,, (1,1 4+d,1+d,...,14+d) <2"(r +1+rd)".

(4) In [Kat01], Katz derived bounds on sums of Betti numbers given any universal
bound
IXe(X)| < E(n, 7, d).
More precisely, let
n—1
A(n,r,d) == E(n,r,d) +2+2 Z E(i,r,d),
i=1
and
B(n,r,d) =1+ Z An+1,1,1 4+ d(#59)).
0£SC{1,2,....r}
Then for X as before, Katz showed [Kat01, Theorem 1] that
he(X) < B(n,r,d).

(5) Suppose now that X C P is defined by the vanishing of » > 1 homogeneous
polynomials of degree at most d. Then [Kat01, Theorem 3| gives:

he(X)=h(X) <1+ E B(i,r,d).
i=1
Here are some explicit versions of this bound.

(1) Bombieri’s bound, gives

B(n,r,d) < 2" x (5/4) x (4(2 + rd + 5)"*2.
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(2) The Adolphson-Sperber bound gives
B(n,r,d) <2" x3x2x (2+ (14 7rd))" .
In particular, one has the following bounds due to Katz:
(1) For X C A™ defined by r polynomials of degree < d, the Adolphson-Sperber
bound gives:
he(X) <27 x3x2x (24 (1 +rd)"H.
(2) For X C P"™ defined by r homogeneous polynomials of degree < d, the
Adolphson-Sperber bound gives:
he(X) =h(X) < (3/2) x 2" x 3 x2x (2+ (1 +rd))" .
We can apply these results to obtain bounds on sums of the Betti numbers for
X C P* xP™ defined by a bi-homogeneous system F; = F;(Xo,..., X, Yo, ..., Y,)
with bi-homogeneous degree bounded by (di, d2). The above bounds then give the
following:

Proposition 5.1. Let X C P*xP™ be an algebraic set defined r by bi-homogeneous
polynomials F;(Xo,..., XN, Yo,...,Yar) of bi-degree (dy,ds2). Then one has:

he(X) =h(X) < > B(r,di+da,i+ ).

0<i<n
0<j<m

Here, for i+ j =0, we set B(r,d; +ds,0) = 1.

Proof. We may decompose P x P™ = (A" x P™)[[(P"~! x P™). This gives a
decomposition X = (X N (A" x P™))[[(X N (P"~! x P™)). One now argues recur-
sively. ([

5.2. Bounds on the Betti numbers of images via relative joins. As a direct
consequence of Proposition 5.1 and Theorem 2.32 we obtain:

Theorem 5.2. Let X C P" xP"™ be an algebraic subset defined r by bi-homogeneous
polynomials F;(Xo, ..., Xn, Yo,...,Ym) of bi-degree (dy,ds), and 7 : P* xP™ — P™
the projection morphism. Then, for all p > 0,

p—1 9 p—1
D ob((X) < =) b (X))
h=0 p h=0
2
< = > B(i + j,r(p+1),dy + d).
P ocicninprn-1
0<j<m

Proof. The first inequality follows from Theorem 2.32, and the second from Propo-
sition 5.1. O

6. RELATIVE JOINS VERSUS PRODUCTS

In Section 5, upper bounds on the Betti numbers of m(X), where X C PV x P is
an algebraic subset and 7 : PV x P* — P" were derived in terms of the join J2(X).
There is another more direct way to obtain an upper bound on 7 (X): namely from
the spectral sequence associated to the hypercover

X§:XXWXEXXWXXWX§H~
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one obtains the inequality for each ¢ > 0

(6.1) bi(r(X)) < p.%::i by (X xw(];l)x,r X).

In this section we compare the upper bounds on Betti numbers coming from con-
sidering the relative join with that coming from inequality (6.1).

6.1. Exponentially large error for the hypercovering inequality. Let X C
P™ x P™ and 7 : P™ x P* — P" the projection. Then, for each p > 0, it follows
from Theorem 2.32 that

P(r(X)) = (1 - T)POIP(X)) mod T,
from which it follows that
(6.2) bi(m(X)) = b (I (X)) — b2 (IW(X)),0 < i < p.
Telescoping Eqn. (6.2) we obtain for all odd p > 0,
(6.3) D bui(r(X)) = b (IP(X)),
2i<p

(6.4) D7 bya(m(X) = by (JF(X)).

2i—1<p

Inequalities (6.3) and (6.4) sometime give more information on the Betti numbers
of m(X) than what can be inferred from inequality (6.1).

For instance, consider the projection map P! xP® — P, and X = P! xP". Applying
inequality (6.1) one gets

1 = ba(n(X))
= by, (P")
Z by(X Xy X X)

pa=2n (p+1)

= Z by(Pp x -+ x P xP™)
— —
pHq=2n (r41)

SN

0<p<n 0<;j<2(n—p)

IN

This example shows that the difference between the two sides of the inequality (6.1)
can be exponentially large in n.

On other hand, it follows from the fact that JE"™(x X) = P2@n+2)=1 5 P and
Eqn. (6.3), that with p =2n +1

3 bai(r(X) = be(IEHI(X)),
2i<p
= by (PEEMTT py)
= n+1.
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6.2. Joins and defects. We discuss another way in which the relative join gives
better information on the Betti numbers of the image under projection of an alge-
braic set than what can be gleaned from inequality (6.1). We prove the following
theorem.

Theorem 6.5. Let X C PN x P" be a subvariety defined by N +r bi-homogeneous
forms. Let m: PN x P — P" be the projection morphism. Then, for all i,0 < i <

Ln;TJf

bi(n(X)) = 1ifiis even,
bi(m(X)) = 0ifiis odd.

We first need a preliminary result.

Lemma 6.6. Let Y :=P* x P’ and X C Y be a closed subvariety defined by r-bi-

homogeneous forms. Then the natural restriction restriction map on cohomology
HY(Y) — HY(X)

is an isomorphism for all i < dim(Y") —r.

Proof. Suppose r = 1. Then, since the complement of the zeros of a bi-homogeneous

form in Y is an affine variety, the result follows from usual Artin vanishing for affine

schemes. In general, the complement of X is covered by a union of r affine open
sets. One can now argue as in ([GL09, 3.2]). O

Proof of Theorem 6.5. For any p > 0, JI! (X) is an algebraic subset of PP+ (N+1) =1
P™. Thus the ambient dimension, M, of hjid (X) equals (p +1)N + p+n. Since X
is defined by N + r equations, it follows that the number of equations F needed to
define J¥(X) is (p+ 1)(N + 7).
Using Lemma 6.6, we deduce that for
0 <i < dimJP(X)—(E-codimJP/(X))
= M-FE
= (P+DON+p+n—(p+ 1N +7)
= p+tn—(p+1)r
n—r—pr—1),
we have
bi(JPN(X)) = by (PPHDNHD =1 o pry,
On other hand
bi(m(X)) = bi(J¥ (X)) — bio (JP(X)),
for 0 < i < p. It follows that for 0 < ¢ < min(p,n —r — p(r — 1)),
bl(’iT(X)) _ bi(P(erl)(NJrl)fl x Pn) _ bi_Q(P(p+1)(N+1)71 « ]Pm).

The integral value of p that maximizes the function min(p,n —r — p(r — 1)) equals
| 2= from which we deduce that for 0 < i < pg = | 2X],

(6.7) bi(m(X)) = by(PPotDINFD =1y pny _p, o (PPoFDINFD=1 o pry,
The theorem follows from (6.7). O
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