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Figure 1: An overview of AdapTutAR workflow. (a) An expert records a tutorial. (b) The tutorial is represented as an avatar
and animated components with arrows. The expert can edit the tutorial by adding subtask description and expectation of step.
c) The same tutorial is adaptively shown to two learners. The learner in (c-1) is given less tutoring contents than the learner
in (c-2) due to the difference of their experience and learning progress.

ABSTRACT

Modern manufacturing processes are in a state of flux, as they adapt
to increasing demand for flexible and self-configuring production.
This poses challenges for training workers to rapidly master new
machine operations and processes, i.e. machine tasks. Conventional
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in-person training is effective but requires time and effort of experts
for each worker trained and not scalable. Recorded tutorials, such
as video-based or augmented reality (AR), permit more efficient
scaling. However, unlike in-person tutoring, existing recorded tu-
torials lack the ability to adapt to workers’ diverse experiences
and learning behaviors. We present AdapTutAR, an adaptive task
tutoring system that enables experts to record machine task tutori-
als via embodied demonstration and train learners with different
AR tutoring contents adapting to each user’s characteristics. The
adaptation is achieved by continually monitoring learners’ tutorial-
following status and adjusting the tutoring content on-the-fly and
in-situ. The results of our user study evaluation have demonstrated
that our adaptive system is more effective and preferable than the
non-adaptive one.
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1 INTRODUCTION

Human workers are the most flexible part of the production pro-
cess [64]. In the ongoing trend known as Industry 4.0 [19], workers
are expected to operate diverse machinery and other equipment
in constantly changing working environments [37]. To meet these
challenges, workers must rapidly master the machine operating
procedures, referred as machine tasks. Numerous tutoring sys-
tems have been developed to facilitate the training [7, 9, 20, 49, 58].
These novel tutoring systems show potential to eventually elimi-
nate real-human one-on-one tutoring, which will greatly lower the
training cost and increase the scalability of workforce training.

Recorded tutorials permit more efficient scaling than live tutor-
ing which requires in-person training. Prior studies [29, 39, 63]
have compared tutoring effects between one-on-one live training
and recorded tutorial-based training. Their results indicate that
tutorial-based training is effective in efficient remote distribution
and scalability, however, traditional one-on-one training has signif-
icant better training outcomes. This is because unlike a recorded
tutorial which is mostly fixed and static once created, a live tutor
can adapt to learners uncertainly during the training and adjust
the tutoring content to achieve better results.

This concept of adaptation is particularly important in the ma-
chine task tutoring scenario, since workers are expected to be more
versatile with various machine operations and processes, and the
machine task environments are highly dynamic and spatial. Fur-
thermore, each worker has their own different innate capability
and strengths/weaknesses. In order to achieve better machine task
skill transfer, it is crucial to design tutoring systems with capability
of adapting to the ever changing working environment, as well as
each individual worker.

In terms of tutoring presence, prior works have demonstrated
the strength of humanoid avatar as a virtual representation of the
user [7], for enhancing his/her bodily-expressive human-human
communication. Besides, augmented reality naturally supports spa-
tially and contextually aware instructions for interacting with the
physical environment. Researchers have shown promises to use
AR avatar as a virtual media for machine task tutoring applica-
tions [7, 57]. On the other hand, annotations [26, 65, 66] and ani-
mated components [2, 17, 30] have been widely used in prior AR
research to provide tutoring content and guide users.

To this end, we present AdapTutAR, a machine task tutorial
system with four kinds of AR elements that focuses on adaptation.
Our system achieves adaptation by actively monitoring both the
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machine state as well as the user state during the tutoring process.
We leverage the benefits of AR in spatial and contextual content
visualization, and deep learning in object recognition as well as
user activity recognition. The key contributions of this paper are
as follows:

e The design of the adaptation model that focuses on spatial
and bodily visual presence for machine task tutoring.

e The design of corresponding features that enable adaptive
tutoring in the recorded-tutorial environment based on ma-
chine task state and user activity recognition.

e The system implementation that achieves AR avatar tutorial
recording, adaptive visualization and state recognition, and
evaluation results from our user study

2 RELATED WORK

This section discusses prior approaches to adaptive tutoring for
general contexts, and the sources and targets of adaptation for
AR/VR specific tutoring systems. These works inform our system
design and features.

2.1 General Strategies for Adaptive Tutoring

In human-based tutoring systems, instructors perform a multi-
dimensional role, from providing classroom instructions, providing
feedback to trainees (questioning, suggesting hints or direct orders)
and even varying the difficulty of the training to suit the trainee
[54]. Adaptive instructional systems aim to replicate these roles in
the absence of a human tutor. These computer-based systems guide
learning experiences by tailoring instruction and recommendations
based on the goals, needs and preferences of individual learners in
the context of domain learning objectives [51]. Thus, the goal of
adaptive tutoring is not just to facilitate, but optimize the learning,
retention and transfer of skills for users between the training and
real-world environment.

Instructional strategies for adaptive tutoring can be grouped
into two general approaches: macro-adaptive and micro-adaptive
[16, 35]. Macro-adaptive approaches provide adaptation based on
metrics collected prior to training. Generally, they use metrics such
as learner preference and experience to establish methods for indi-
vidualized task selection or content difficulty [60]. Micro-adaptive
use real-time metrics to provide adaptations in a dynamic fashion.
They perform adaptations during the training using factors such
as user performance, behavior and errors to provide guidance and
feedback [12, 18]. However, to determine which adaptive approach
should be used, it is useful to understand the possible sources and
targets of adaptation.

Sources of adaptation pertain to factors which cause or trigger
the adaptation to occur. They largely stem from learner-based met-
rics such as individual performance, working memory capacity [38],
prior expertise [50], learning preference and traits [18]. Intelligent
tutoring systems usually employ a learner model [10, 41] which
collects learner data to ascertain their knowledge state, recognize
errors and generate adaptations. Targets of adaptation represent
those instructional components which actively change based on the
source of adaptation. Broadly, these targets can include the feed-
back, visual representation of information, sequence of workflow,
learning pace and others [18]. Effective and personalized feedback
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is important for learning due to the different characteristics of users,
as shown in the works by Gutierrez and Atkinson [21] and Bimba
et al.[4]. Alternatively, Brusilovsky and Su [5] explored the relation
between adaptive visualization and learner knowledge levels, while
Beyyoudh et al. [3] focused on providing the optimal sequence of
pedagogical steps.

The sources and targets of adaptation define the general adaptive
approach of the tutoring. While AdapTutAR uses a combination of
macro and micro-adaptive approaches for adaptation, the following
sections discuss the different sources and targets of adaptation
specific to the AR/VR context.

2.2 Source of Adaptation in AR/VR

AR/VR applications have shown benefits to communication and
learning by displaying effective and adaptive information that en-
hances users’ understanding of subjects. While adaptation within
the AR/VR context has not been studied extensively, some sources
of adaptation in AR/VR tutoring systems can include learner perfor-
mance, expertise, behavior (gaze, distraction, emotion), task-type
and spatial location. From the previous section it can be seen that
generic tutoring systems largely monitor user-based factors. In the
case of AR/VR, these factors can be classified into two groups: User
and Environment [32].

User refers to the person using the application. User’s perfor-
mance is widely used in directing the tutoring workflow, initiating
appropriate feedback [31, 54, 62], or in selecting macro and micro-
adaptive strategies [52]. Fender et al. leveraged user behavior and
object position to adapt the position [14] and size [15] of AR dis-
plays. Learner gaze can be used as a measure of transparency [56],
allowing the tutoring agent to make inferences about the learner
confidence, whether or not guidance is necessary and what they
are likely to do next. [50]. Finally, Rodenburg et al. elaborate on
the correlation between learner expertise and level of fidelity in
simulation based tutoring environments [47].

Environment refers to the physical context where users are
interacting. When dealing with machine environments, Cao et al.
[7] in their exploratory study categorize the steps of machine tasks
into three types depending on the physical actions performed: local,
spatial and body-coordinated tasks. Their user study suggests that
users prefer different visual abstractions of the AR avatar tutors
depending on the task type. Lages and Bowman [32] used infor-
mation about physical surroundings and relative positions of the
environment layout to focus on position-adaptation. Additionally,
Herbert et al. [26] use spatial 3-D information from the real-world
to detect errors, provide feedback and sequence tasks.

By taking information from the user and environment into ac-
count, AdapTutAR generates adaptive tutorials for machine tasks.
The next section describes the various targets of adaptation in
AR/VR for machine tasks.

2.3 Target of Adaptation in AR/VR for Machine
Tasks
Machine tasks can be defined as a sequence of physical and spatial

operations involving machines in a production environment [7].
Some examples of AR-based tutoring for machine environments
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include usage of industrial machinery [8, 46, 68], facility monitor-
ing [34, 67] and vehicle maintenance [11, 24]. Considering that
most machine task operations involve human motion, the targets
of adaptation must focus on using the right type of visualization
content for the tutoring and the level of detail.

AR/VR visualizations include the usage of annotations, ani-
mated components and virtual avatars. While annotations [26, 65,
66] and animated components [2, 17, 25, 30] have been used ex-
tensively in prior AR research to adapt feedback and guide users,
avatars have been used to provide effective feedback for learning
tasks that primarily require human motion. For example, Tai-Chi
training platforms where learners learn from virtual coaches have
been researched extensively [22, 42]. Cao et al. suggested the use
of avatar as an additional instructional mode [7] after exploring
the presence of avatar for tutoring machine tasks. Similarly, Pi-
umsomboon et al. studied the presence of an adaptive avatar to
facilitate the collaboration between a local AR user and a remote
VR user [43, 44]. Recently, Loki [57], a bi-directional mixed-reality
telepresence system for teaching physical tasks, used the avatar to
represent status of the learner and instructor in different physical
spaces. By offering customized feedback from the avatar, users gain
deeper understanding within synchronous learning.

Level of Detail (LoD) relates to the questions of when, and how
much information should be presented to the user for optimal tu-
toring. Lindlbauer et al. report an optimization approach leveraging
cognitive load and the task environment to adapt MR interfaces
to fit the user’s context. [36]. Wegerich and Rétting [61] outline a
context-aware adaptation system for spatial AR with the goal of
displaying unambiguous information at the right time to the user,
based on user attributes such as position and perception. For AR
browsers, Tatzgern et al. [55] presented an adaptive information
density display which used a level-of-detail structure to balance
information against potential clutter on the display.

Prior works use these targets of adaptation to provide users
with optimal amount of information for tutoring. The different
sources of adaptation reviewed in the previous section are linked to
various targets of adaptation in our work. AdapTutAR significantly
expands on these targets and presents an adaptation model that
targets the optimal level of detail based on a combination of user
and environmental sources.

3 AR TUTORING ELEMENTS

In our work, we mainly focus on the tutoring of machine tasks [7], in
which a production process involves a compound sequence of local,
spatial, and body-coordinated human-machine interactions [27, 53].

AdapTutAR aims to transfer the general process of machine tasks
to workers, such as what component (e.g., knob, lever) to operate,
in what order, the exact state to change, and the expected outcome
on each operation. Based on the prior work of AR visualization
and the nature of machine tasks, AdapTutAR chooses four types of
tutoring elements to convey such sequential and logical knowledge
to a learner (Figure 2).

(1) Avatar. Since machine tasks often involve spatial and body-
coordinated human-machine interactions, the presence of
AR avatar has shown benefits in machine task tutoring by
improving learners’ spatial attention and understanding of
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potential movement [7]. Specifically, the humanoid avatar
can demonstrate the location of the interaction, the navi-
gation path, and the body pose/gestures to accomplish a
step.

(2) Animated component and arrow. Given that each step
of a machine task involves manipulating one or more ma-
chine components—such as knobs, buttons [28]-AdapTutAR
animates the virtual representation of these interactable com-
ponent(s). Nonetheless, when the animation is repeated in a
loop, users may feel confused about the actual direction of
the animation (e.g., clockwise or counter-clockwise). Hence
an arrow is added to clarify the direction. The animation and
arrow help indicate how the component will look like when
it is manipulated by a user.

(3) Expectation of step. When it comes to steps that require a
user to set the machine to a specific state or parameter, it
is often inadequate to convey the expected value by purely
using animated components or arrows. To complement that,
AdapTutAR shows expectation (e.g., the yellow text in Figure
2) right next to the animated component to indicate the
expected value, such as “Set the printer head temperature to
500 F”. The expectation of step has more formats than text.
For some steps, AdapTutAR shows a virtual model as the
expected value, such as a virtual car to be 3D printed or a
tool to be used.

(4) Subtask description. A machine task consists of multiple
steps. Some consecutive steps may represent a cohesive sub-
goal, which is called a subtask. For example, a subtask "Re-
place the 3D printer head" involves loosing the safety lock,
removing the existing printer head, picking up the expected
one, installing it, and tightening the safety lock. A subtask
description is shown at the top-left corner of a user’s view
to help the user build a higher-level understanding of the
machine task.

4 FORMATIVE STUDY ON AR
VISUALIZATION

To inform the design of the adaptation model, we aimed to under-
stand the performance of a user while learning a machine task using
AR tutorials. A key objective was to elicit the users’ preferences of
exploiting the four tutoring elements and the requirements to the
tutorial throughout the learning process.

4.1 Participants and Procedure

We recruited six participants (5 male, 1 female) aged 23 to 30. Four
participants had experience with AR/VR systems while two did
not. No participants had used AR/VR based tutoring systems before
attending this study. (Participant: P)

We designed a laser cutting machine task consisting of interac-
tions with physical interfaces and spatial navigation within AR
environment. The participants were asked to learn the task using
a pre-authored AR tutorial where all four tutoring elements were
available in each step and the participants could manually toggle
on/off any of them and browse along the steps using Oculus hand
controllers [1]. Meanwhile, the participants were informed to learn
the task in any way they felt efficient and comfortable by utilizing
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(d)

Figure 2: Tutoring elements: (a) Avatar, (b) Animated com-
ponent and arrow, (c) Expectation of step, and (d) Subtask de-
scription.

the tutoring elements, and the final goal was to remember and
conduct the whole task without external assistance. The learning
might go over for several times and end when a participant told the
researcher he/she had mastered the whole task. The first-person
view of the participants was screen-recorded and after the learn-
ing period, we interviewed the participants regarding the learning
experience and our observations on their performance.

4.2 Findings

We analyzed the participant records in terms of the overall per-
formance and the detailed actions in order to reveal the users’
preference to the machine task learning. We analyzed 1) the pattern
of step changing and tutorial following, 2) the timings when the par-
ticipants toggled on/off the tutoring elements, 3) the combination
of the tutoring elements at each step, and 4) the choices above at
different learning stages. In addition, we analyzed the participants’
bodily performance including their standing location, attention
allocation, and so on. Finally, we distilled the higher-level design
goals from our observations and the participant feedback.

4.2.1 Overall Learning Flow (F1). Although the participants were
able to navigate back and forth along the whole tutorial using the
hand controllers, all six participants learned the task by following
the tutorial step by step and repeated the whole task for multiple
times. "I think the order of these steps is critical to understanding the
whole task. So, instead of mechanically remembering every single step,
I learned them as an integrated story." (P6) Moreover, all participants
would only progress to the next step after ensuring the current
step was completed correctly. "I'd feel more confident if the system
could tell me whether I did it correctly.” (P3) The performance and
responses highlight that the adaptive tutoring model should be
able to recognize the correctness of an operation in real-time and
actively lead him/her to move forward in the task to ensure a fluent
learning flow.
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4.2.2  Combination of the Tutoring Elements (F2). Overall, all partic-
ipants agreed that the provided four tutoring elements were useful
and sufficient for the learning. Yet, at different stages of the learn-
ing process, the participants chose different combinations of the
tutoring elements. All six participants kept all four elements in the
first trial, and went through every element in each step. "The avatar
was important when I first learned the task because it told me where
should I focus on. And I also read the subtask description to briefly
understand the purpose of the task.” (P5) All participants agreed that
as they were more practiced, the required tutoring elements shifted
from specific demonstration to high-level description. "After I knew
those operations, the avatar was not that useful, but distracted me. So
I'turned it off" (P2) These findings revealed that at different learning
stages, the importance of each tutoring element varies. So the sys-
tem should dynamically change the displaying tutoring elements
as the learning progressed.

4.2.3  When to Show/Hide Tutoring Elements (F3). We asked the
participants to only keep the necessary tutoring elements while
learning. First, we noticed that all toggle-off actions happened
at the beginning of a step when a participant was clear he/she
could master it. However, we observed that the toggle-on actions
happened in more complicated scenarios. Compared to the toggle-
off cases, before toggling on an element, the participants performed
additional actions such as walking around the machine, attempting
to operate an interface, correcting an operation rapidly and so on.
"Actually I was first trying to look around to find the next target,
then if I couldn’t, I turned on more." (P1) This disclosed a need for
the adaptation model first to understand the current state of the
learner, then either provide more tutoring elements or reduce them.
Additionally, we observed that timings when they turned on the
tutoring elements varies at different learning progresses. "When I
almost learned everything, if I was stuck, I'd first recall the step, then
turn on the elements. But initially, I didn’t know much, so directly
turned them on." (P4) It unfolded another requirement for the model
to adjust the timing to change tutoring elements accordingly.

4.2.4 Step-dependent Behaviors (F4). For different steps, the partic-
ipants selected different tutoring elements in the same trial. Mean-
while, when repeating the same step in different trials, and doing
similar steps in the same trial, we observed that all participants
gradually reduced the tutoring elements. "The steps were different
in some cases, so I'd like to use different elements. But there were
some similar ones, maybe the system could show me the previous
choice." (P1) Meanwhile, when a step required spatial movements
or complicated body-coordinated actions, the participants would
spend more time for learning. "Some steps were harder to learn, so
I needed more time before I could turn off some tutoring elements.”
(P3) Inspired by these findings, the model should also consider the
nature of each step and the transition between any two steps.

5 ADAPTATION MODEL

To develop a tutoring system that can dynamically adapt the tutor-
ing elements to match what a user actually needs, we organized
the tutoring elements into five levels of details (LoDs), and further
developed an adaptation model to adjust the LoDs in real-time
(Figure 3). The key model includes four phases. Firstly, the system
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presents the tutorial at a given LoD. Secondly, the system collects
the inputs from a user and environment in real time. Thirdly, the
system performs low-level state recognition that recognizes the
machine state, the user’s basic mode, and region of interest (ROI).
Finally, the system uses the low-level state to estimate the user’s
higher-level state, such as being stuck or not. Such estimation is
transferred back to adapt the LoDs in the first phase.

5.1 Features to Adapt: Level Of Detail

The formative study confirms that each tutoring element serves a
different role in conveying information, and further indicates that
their necessity varies at different stages of the learning process
(F2). Therefore, we organize the tutoring elements into five levels
of details (LoDs) as below.

LoD 5: show all four tutoring elements.

LoD 4: exclude avatar from LoD 5.

LoD 3: exclude animated components and arrows from LoD

4. This essentially means it only shows expectation and sub-

task description.

e LoD 2: exclude step expectation from LoD 3, namely, just
showing subtask description.

e LoD 1: show nothing.

When the LoD decreases, the tutoring elements are hiding gradu-
ally. The difficulty increases since there are fewer hints. In particular,
for LoD 1 and 2, learners do not get direct hints about what com-
ponent to operate nor what state to set to, which forces them to
recall the details instead of being informed directly. On the other
hand, learners who have gone through the same operations for
multiple times may not need the detailed information provided in
high LoDs.

As the first phase of each step, the system loads the historical
LoD to determine what tutoring elements to present. If there is no
historical data, the system shows the step with a default LoD (5).

5.2 Sensing Input

In this phase, AdapTutAR keeps collecting two categories of in-
formation: user and environment. User information includes the
position and orientation of the AR headset as well as the first-person
view of the user. Environment information includes the positions,
orientations, and dimensions of the animated components and
avatar.

5.3 Low-level State Recognition

In this phase, the inputs are used to recognize machine component
state and user’s basic state, which is further used to perform the
higher-level state recognition in next phase.

5.3.1 Recognizing Machine Component State. The goal of machine
state recognition is to detect what state the user has set the physical
component to. This is required because the physical machine may
not have sensor itself that could report the current state. In order
to control the playback of the tutorial, its state change must be
detected.

Prior works mostly focused on object detection and recognition
(such as [45]), while a few focused on recognizing the specific states
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Figure 3: The Adaptation Model. Green boxes indicate the phases of adaptation.

of an object [13]. However, these methods cannot be directly ap-
plied to our case where multiple identical objects may be visible
on the same machine interface. For example, two knobs and two
buttons are visible in Figure 5. The challenge is that after recog-
nizing the states of these objects, the system needs to know which
state belongs to which object. Inspired by LabelAR [33], AdapTu-
tAR leverages the AR components that are aligned to the physical
components. Besides the primary role of giving animations as in-
structions, AR components serve an additional role in providing
the positions and dimensions in the world space, then AdapTutAR
can obtain their 3D bounding boxes and further compute the 2D
bounding boxes on the screen. Such bounding boxes help identify
an object uniquely even when there are multiple identical objects
within the scene. Finally, a Convolutional Neural Network (CNN)
model is trained to recognize their object states within each bound-
ing box. The detail is discussed in the Implementation section.

5.3.2  Recognizing User’s Basic Mode. The goal of user state recog-
nition is to identify what basic mode the user is in, including static
observation, navigation, and interaction. To classify interaction mode,
the key is to know whether a user touches the physical component
or not. An approach similar to the aforementioned machine state
recognition is used. For all visible machine components, the sys-
tem crops out the camera images based on their bounding boxes,
groups them into a batch, and predicts hand touching in parallel.
If any component is touched by the user, the mode is classified as
interaction. The user’s state of static observation or navigation is
predicted using the AR headset’s position and orientation using a
pretrained Support Vector Machine (SVM) model.

5.3.3 Classifying Region of Interest (ROI). To classify whether a
user is looking within ROI or outside of ROI, we first get the location
of the target object(s) and avatar for a particular step, and compute
whether they are visible by the user. This is essentially checking
whether any of these objects is within the field of view (FOV) of
the AR headset. If none of them is within FOV, the system classifies
the user as looking outside of ROI; otherwise, within ROL

5.4 Higher-level State Recognition and
Adaptation
In this phase, the system estimates the user’s state by forming a

finite state machine and using the low-level recognition as inputs
to drive the state transition.

5.4.1 Scenarios and States. We leverage the findings from the for-
mative study (F3) and identify four scenarios in which users decided
to turn on more tutoring elements, including (S1) unaware of the

target, (S2) unaware of the operation, (S3) interact with wrong
interface, and (S4) interact with the correct object for too long
without setting to the expected state. The core of adaptation is to
estimate whether a user is currently under one of four scenarios
and thus needs more tutoring content. To that end, we develop a
finite state machine that takes the lower-level state recognition as
input to help infer the states of a user (Figure 4). The four scenarios
correspond to the exceptions of four higher-level states, including
"Viewing outside of ROI", "Viewing within ROI", "Manipulating
wrong object”, and "Manipulating correct object". Due to their high
correspondence, we also denote the four states as S1-5S4, respec-
tively. By monitoring how long a user stays in each state, the system
determines whether the user enters one of the four scenarios.

5.4.2 State Transition. At the beginning of a step, the user imme-
diately transits into one of three states: "Viewing outside of ROI",
"Viewing within ROI", and "Changing perspective". The first state
requires that the user is in static mode and looking outside of ROI,
while the second state requires that the user is in static mode and
looking within ROI. When the user is in navigation mode (e.g., walk
or move head), their state will be transited to "Changing perspec-
tive". Once the user pauses walking or moving head, the state will
be transit into the first or second state accordingly.

When the user touches a machine component, the user state
transits into one of two states: "Manipulating wrong object” and
"Manipulating correct object". This transition depends on whether
or not the touched component is the expected one in the current
step. While the user is manipulating the correct object, our sys-
tem keeps recognizing the machine state and comparing it to the
expected one. If matched, the current step is done. If not and the
user stops manipulating, the user state transits back to one of three
states related to viewing and changing perspective.

Each state has an independent timer which resets at the begin-
ning of each step. When a user transits from one state to another,
the timer of the original state pauses while the timer of the new
state starts ticking. If a user remains in one state for too long (i.e.,
accumulated time > threshold), the system estimates that a user
may be stuck in one of four scenarios. For example, if a user stays
in "Viewing outside of ROI" state for time longer than threshold;,
the system estimates that the user is "unaware of the target" (51).
Likewise, if a user stays in "Viewing within ROI" state for time
longer than thresholds, the user is inferred to be "unaware of the
operation" (S2). Consequently, an event is triggered to increase
the level of detail (LoD) and reset all timers. The calculation of
thresholds can be found in section 5.4.3.

Finally, if a user completes a step, the LoD is decreased by 1 (F3)
and saved into user’s profile for future reference. Note that the
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Figure 4: Inferred state of a user in a single step via Finite State Machine.

LoD data is tied to a component, not to a step. This is because a
component may be involved in multiple steps of the same tutorial
or be shared in different tutorials that involve the same machine.
Therefore, binding LoD data to a component rather than a step
supports better reuse of the user’s learning record. As mentioned
in the first phase earlier, the system loads the historical LoD at the
beginning of each step. Here, it only loads the most recent LoD of
the component, and ignores the older LoD record(s) if any.

In summary, the adaptation model leverages both the informa-
tion from the historical record and the real-time inputs, which is a
combination of macro and micro-adaptive approaches [16, 35].

5.4.3 Timer Threshold. The key is to find a proper threshold for
each state/scenario. The first empirical observation is that the
threshold should refer to the actual time spent by the expert in
each step. A more complicated step takes longer time than an easy
step so that the former should have a larger threshold than the
latter. Based on section 5.3.2, the total time spent in step i can be fur-
ther decomposed into the time spent in observation (observeTime;),
navigation (navigateTime;), and interaction (interactTime;). More-
over, the threshold of each state should refer to the most relevant
type of time. For example, the states related to manipulating objects
(S3 and S4) should refer to the interaction time, while the states
related to viewing (S1 and S2) should refer to observation and nav-
igation time. Therefore, let Re ferenceTime; denote the reference
time of states (S1-S4) in step i:

11 11

Ly 1 observeTime;
ReferenceTime; = tiS3 =lo o navigateTime;| (1)

L interactTime;

e I (0 '

For example, the reference time of manipulating correct object (S4)
in step i is tiS4 = interactTime;. Also, when a learner is manipulat-
ing a wrong object (S3), it is supposed to have a smaller threshold

so that the hints can be shown faster. Therefore, an empirical value
(0.5) is chosen so that tiS3 = 0.5 X interactTime;.

Lastly, the current LoD matters. A larger LoD implies that a user
is less proficient in this step so that the system should tolerate a
larger threshold. Let Threshold; denote the thresholds for states
S$1-54 in step i:

thresholdis 1
))hresholdf2
thresholalis3
thr«esholdl.S4

Threshold; = = f(LoD;) x ReferenceTime; (2)

where f(x) is a factor that scales the reference time based on the
current LoD. In this project, we take:

f(LoD) =1+ logs(LoD) (3)

When LoD=5, f(x) is 2, which means the threshold is twice of the
reference time. This is because at LoD 5, a learner is inferred as a
novice so that they may spend 1 X re ferenceTime in purely watch-
ing the tutorial and 1 X re ferenceTime in following the tutorial. On
the other hand, when LoD=1, f(x) is 1 because the system infers
the user as proficient to this step and tolerates the same time as the
reference time. Using a log function rather than a linear function is
to make the threshold decrease slower in large LoD (4 and 5) and
faster in small LoD (1 and 2).

6 ADAPTIVE TUTORING SYSTEM

To support effective apprenticeship for machine tasks in workshops
or factories, we designed and implemented AdapTutAR. AdapTutAR
is an AR-based authoring and tutoring system that enables an expert
to record a tutorial that can be learned by different workers in an
adaptive way.

6.1 Workflow Illustration (Overview)

AdapTutAR consists of three modes: 1) Authoring Mode in which
an expert can record a tutorial; 2) Edit Mode in which the expert
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can edit the tutorial; and 3) Learning Mode in which workers can
learn the tutorial.

6.1.1  Prerequisite: Setup Training Environment. Before an expert
can record a tutorial for a machine, they need to set up the training
environment first. This requires that a machine has a digital copy
aligned with the physical counterparts, and also the machine state
recognition model has been trained. However, since the focus of
this paper is not about setting up the environment but the adaptive
tutoring within the environment, for simplicity, we assume the
experts are given a machine that has already been set up. Without
losing generality, an expert can also use the following process
to set up a new training environment. First, the expert uses the
hand-held controllers to align the virtual components with their
physical counterparts in the AR world. Secondly, they can follow
the pipeline mentioned in the later subsubsection 6.2.2 to collect a
dataset for machine state recognition. Once enough data is collected,
our system can fine-tune the CNN model with the dataset. The
dataset only need to be collected once for one type of machine.

6.1.2  Authoring Mode. Tutorials are authored using an natural
embodied movement, where the system records the expert’s body
motion by tracking the position and orientation of the AR headset
and two hand-held controllers (Figure 1a). In addition, the expert
can manipulate the virtual component(s) through different gestures
of virtual hands powered by the controllers. During the operating
process, the human motion and the 6 DoF poses of the virtual
components are recorded. The recorded human motion will be
represented as avatars while the recorded pose sequences of the
virtual components will become AR animations. To partition the
entire tutorial into steps, the expert needs to explicitly starts and
stops recording each step by pressing the joystick on the controllers.

6.1.3 Editing Mode. Once all steps are recorded, the expert can
enter the Edit Mode to label descriptions. The expert can pick a
step to add expectation or select several consecutive steps to add a
subtask description. To add a subtask description, the expert can
enter a short sentence via virtual keyboard. To add an expectation,
the expert first creates the text in a similar way and then uses
controllers to anchor it to the proper position in the environment.

6.1.4 Learning Mode. A learner wears the AR headset and starts
to follow the first step of the tutorial without hand-held controllers
(Figure 1c). Four types of tutoring elements may be shown/hidden
dependent on the current LoD. By default, a user starts with LoD
5 so that they are given all elements to guide how to operate. As
a learner may need to repeat the tutorial for multiple trials before
comprehending it, the system keeps adapting the tutoring content
for each step based on their historical learning progress and the
current behavior. This is achieved by the aforementioned Adapta-
tion Model that is running in the background. It also monitors if the
learner has set the component to the expected state. The tutoring
elements remains until the learner operates correctly (F1).

6.2 Implementation

6.2.1 System Hardware and Software Setup. The see-through AR
platform is built by attaching a stereo camera (ZED Dual 4MP, 720p)
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in front of a VR headset (Oculus Rift [1]). Four external Oculus IR-
LED sensors are used to track the human body motion with an
effective area of 3 x 3m. Two Oculus Touch Controllers enable
authoring by an expert. The main AR interfaces are developed
with Unity3D [59], and the predictions are made with a backend
server running aiohttp! web framework in Python. The backend
server loads the models trained by Tensorflow (v2.1) and SVM.
Both Unity3D and backend server run on the same PC (Intel Core
i7-9700K 3.60GHz CPU, 32GB RAM, NVIDIA GeForce RTX 2070).
The stereo camera provides built-in streaming functionality that
can be accessed by the server. Unity3D sends data to the server
via Socket.IO, including the objects to be tracked, their bounding
boxes, and the positional data of the headset. In return, the server
sends the predicted machine state and user state back to Unity3D
via Socket.IO.

6.2.2  Recognizing Machine Component State. As mentioned earlier,
we leverage the bounding boxes of virtual components to uniquely
identify physical components. As there are different types of ma-
chine components, we developed an efficient pipeline to collect
dataset based on video streaming and bounding boxes. Note that if
some components are identical, users only need to collect dataset
based on their type (e.g., knob, lever), rather than individual com-
ponents. First, a user sets a physical component to a specific state
or sets multiple components to specific states, such as "1" for knob
in Figure 5. Then the user selects their virtual counterpart(s) in our
system, sets the state(s) to match the physical one(s), and starts
video streaming of ZED camera. The video stream is automatically
cropped into RGB-D images based on the bounding boxes and also
labelled with the current states and types. To make the dataset
comprehensive, the user needs to look at the object(s) from vari-
ous heights, places, and angles. Such process can be repeated to
cover the remaining states of the component(s) as well as other
interactable components of the machine.

The collected images are used to train a CNN model for state
recognition, as shown in Figure 5. First, each image is resized to
100x100x3. Then data augmentation is done by adding random
hue (max_delta=.2), saturation (0.1~2.0), contrast (0.3~1.0), and
brightness (max_delta=.5). The feature extraction of the CNN model
is based on MobileNetV2 [48]. After feature extraction, the output
size of the base model is 4x4x1280, which follows by layers of
MaxPooling2D, Flatten, two fully connected layers (units=1024 and
64) with Relu activation, Dropout(0.5), and a fully connected layer
(units=number_of component_types) with "softmax" as activation.
The loss function is "tf.keras.losses.SparseCategoricalCrossentropy”
and the optimizer is SGD.

softmax
| I “Knob_1"

~64
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5120

Maxpool
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Feature extraction Flatt
by MobileNet @ en
100x100x3

Figure 5: CNN model for machine state prediction based on
bounding boxes.
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6.2.3 Recognizing Hand Touching. This is similar to the machine
state recognition above. The difference here is that instead of set-
ting the state of a component, a user needs to act two states on
each component type, including "hand not touching” and "hand
touching". Overall, 130k images were collected for 9 component
types by four volunteers. Finally, the images cropped out by the
bounding boxes were used to train a different CNN model.

6.2.4 Recognizing Static Observation and Navigation. We used Sup-
port Vector Machines (SVMs) to recognize the static observation
and navigation, which have demonstrated high performance when
applied to human and animal activity recognition tasks [23, 40].
The feature vector is computed by taking the magnitude difference
between kth and 0th frames in a window (k = 0, ..., windowSize)
for each user head position R and orientation R* vector. If the
absolute magnitude difference is greater than the threshold, fea-
tures describing changes in the head position and orientation are
set to true. Optimal magnitude thresholds were determined by grid
search. Three volunteers generated 90 samples for these two states
in which each sample lasted about 10-20s. By performing a grid
search, our features were extracted using a window size of 1.3s
with an overlap of 0.56s (stride).

6.3 Preliminary System Evaluation

AdapTutAR relies on the capabilities of the low-level state recog-
nition. To evaluate these capabilities, we conducted a preliminary
system evaluation.

6.3.1 Accuracy of Machine State Recognition. We built a mockup
machine with 9 types of machine components to train and test
the model. Figure 5 shows one side of the mockup machine. By
using the pipeline in section 6.2.2, three volunteers collected 171K
images for 9 component types with 31 distinct states. For example,
a knob has 6 states, a key hole has two states (inserted or not), and
a switch has two states (on or off). Given that the video streaming
is 60 FPS and the user keeps changing the view angles, we save one
image every 8 frames to avoid identical images. The training took
10 hours on an NVIDIA GeForce RTX 2070. Before the test, each
component of the mockup machine was set to a particular state
that was entered into the system as ground truth. During the test,
the tester wore the AR headset and looked at the component from
different angles for approximately 3 seconds. The video stream was
cropped out based on the bounding boxes and sent to the trained
model directly. Each batch of images took about 0.11s in prediction.
Then the predicted states were compared with the ground truth.

Three researchers participated in the test and produced about
2k results for all the 31 states of 9 component types. The overall
classification accuracy was 89.1%. Specifically, the levers and knobs
produced small errors (95.5% accuracy) while sliders and key holes
produced larger errors (85.3% accuracy). In general, the system can
satisfy the requirements of machine state recognition.

6.3.2 Accuracy of Hand Touching. A similar approach was used
to test the accuracy of hand touching. The difference was that for
each component type, the tester’s left and right hands alternatively
touched the component. Three researchers participated in the test
and produced 913 results. The overall classification accuracy was
93.4%, which validated the feasibility of our system in accurately
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recognizing hand touching on machine interfaces. A typical error
happened when the hand was close to, but had not touched the
component. Such scenario was often mis-classified as hand touched.
Fortunately, such error did not greatly affect the adaptation model
because if a user moved the hand close to a component, it implied
that the user intended to touch it.

6.3.3 Accuracy of Classifying Static Observation and Navigation.
During the test, participants performed three actions: 1) standing
still and moving head slowly; 2) standing still and moving head
drastically; and 3) walking. The first action should be classified as
static observation and the last two actions should be navigation.
During the test, three researchers performed each action for roughly
5 seconds, and repeated for 3 times. By splitting the sequences by
the window size (1.3s) and stride (0.56s), there were 241 predictions.
The overall accuracy was 92.1%. The errors were partly due to the
transition from one state to another. This result indicates that the
system can detect the user’s basic mode accurately.

7 USER STUDY

7.1 Study Setup

Complying with the requirements of social distancing for COVID-
19, we conducted a 2-session remote user study in Virtual Reality
(VR). Since the remote users had no access to the real machines, we
built a virtual multi-function machine that enables 3D printing and
painting (Figure 6), which was inspired by prior works [6, 36] that
validated key features of AR systems in VR. The virtual machine
and the two tooling tables were located within a 3m X 4m virtual
space. The VR application was sent to the users and the user study
was completed using their own VR devices.

During the user study, the users learned a 28-step plastic toy
fabrication task using the virtual machine (Table 1). The users had
to set the machine parameters using knobs, buttons, switchers or
sliders (local tasks e.g. step 1 to 5), to deliver correct raw materials
(spatial tasks, e.g. step 7, 8, 10, 11) and to assemble the tools properly
(body-coordinate tasks, e.g. step 8, 19, 21). The adjacent steps that
served a high-level purpose were grouped into one subtask, e.g. the
purpose of step 6 to 9 was tooling installation. Some of the steps (e.g.
step 8) could be accomplished only if some previous steps (e.g. step
6) were conducted correctly. The users were interacted with the
machine using VR hand controllers. Note that in the VR simulation,
we directly used the collision between the VR controllers and the
machine components to detect the interactions rather than the
image classification technique in AR environment. Consequently,
the accuracy of machine state and hand touching recognition in VR
reaches 100%, which is different from the aforementioned accuracy
in AR. We discuss the limitations and mitigation in the next section.

We recruited 24 users (19 male, 5 female, aged 18 to 35) to our
remote user study. 19 out of 24 users have engineering background
while the other 5 have science background. 11 users have AR/VR
experience and 15 users have hands-on machine operation experi-
ence. Nine users owned VR devices and shared with their friends
or roommates for our user study. Specifically, 14 users used Oculus
Rift [1] while 10 users used Oculus Rift S [1]. None of the users had
experience with our system before. All the users were compensated
with a $20 gift card for the 1.5-hour user study.
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Table 1: Tutorial used in the user study that involves 3D printing and painting. Widget # is referring to Figure 6.

7.2 Study Design

We evaluated the benefits and limitations of our adaptation model
by comparing an adaptive VR tutorial (noted as adaptive) with a
similar VR tutorial that had no adaptive features (noted as non-
adaptive) through a within-subject study. In adaptive tutorials, the
VR tutorial elements were adjusted following the strategy proposed
in section ADAPTATION MODEL, while in non-adaptive tutorials,
the VR tutorial elements were displayed at a fixed LoD of 5 (none
of the tutorials elements were hidden). The users were requested
to learn two machine tasks (Table 1) in two sessions with the two
types of AR tutorials respectively.

Both the two machine tasks were plastic toy fabrication tasks but
differed in fabricated models (step 1), materials (step 2, 10), sizes
(step 3 to 5), colors (step 11) and machine parameters (step 8 to 10,
26, 27) to avoid the users from remembering the task in the last
session. However, both tasks shared similar machine interfaces and
step orders. To counter-balance the learning effects, we separated
the users into two groups randomly. Specifically, 12 users followed
the adaptive tutorial in session 1 and the non-adaptive tutorial in

session 2. In contrast, the other 12 users followed the non-adaptive
tutorial in session 1 and the adaptive tutorial in session 2. The users
were not informed with the tutorial conditions.

Each session contains a tutoring section and a testing section. In
tutoring section, the users had up to 30 minutes to learn the task by
following the tutorial and performing machine interactions. Both
of the tutorials were able to proceed to the next step automatically
when the user conducted a step correctly. The tutorial repeated
from the beginning when a user completed the last step. After the
users claimed they had understood and remembered the task, or
reached the time limitation, the researcher terminated the tutoring
section. Then the users entered the testing section after a 3-minute
rest. In the testing section, the users completed the task with all
the AR tutoring elements hidden.

In each session, users repeated the tutorial multiple times be-
fore they entered the testing section. After session 1, users would
change from novice, who had little experience in the machine and
environment, to proficient, who could clearly describe the task pur-
pose and complete the required operations without external hints.
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Note that those proficient users were not considered as proficient
in all machine tasks but only in the second task, provided that the
second task shared similar machine operations and step orders with
the first task. Thus, we were able to evaluate the user performance
under different conditions, e.g., novice with adaptive, proficient with
adaptive, novice with non-adaptive, and so on.

7.3 Data Collection

During each tutoring section, we recorded the total time that the
user took and the times that the tutorial had repeated. To better
understand the user’s behavior, we also recorded the LoD of each
step and the reason if the LoD changed (e.g. hesitate for too long,
manipulate the wrong object). After the tutoring section, we let the
users to evaluate their learning progress using 5-point Likert-type
questions (Figure 7 left). For testing section, we used the time that
the user consumed as well as the number of mistakes to quantify
the learning outcome. After the two sessions, the users voted for
their favourite AR tutorial. Further, users rated their subjective
feelings about the adaptive features of AdapTutAR using another
5-point Likert-type questions. Finally, A conversational interview
was conducted and recorded regarding the the reason why the users
preferred an AR tutorial and the insights to improve the adaptive
features of AdapTutAR. Additionally, the users’ first personal view
in VR was recorded for further analysis.

7.4 Results

In this subsection, we present objective performance and the sub-
jective ratings of this study.

7.4.1  Self Rating on Learning Experience. After each tutorial sec-
tion, the users rated their learning experience of performing the
machine task using the 5-Point Likert Scale questionnaire (Figure 7).
We separated the users based on whether they were novice or pro-
ficient and which AR tutorial that they just used. All users reported
that they could operate the machine correctly (M = 4.71, SD = 0.50)
and understand how the machine works (M = 4.86,SD = 0.37).
Meanwhile, all users were generally confident to finish the task
without hints (M = 4.5, 5D = 0.69), and felt they remembered each
step of the task (M = 4.58,SD = 0.73). While the proficient users
who had used the adaptive tutorial rated themselves slightly higher
then other users, an one-way ANOVA performed on each group of
the ratings showed that there was no significant difference in the
ratings regarding "Accuracy” (p = 0.10), "Understanding”(p = 0.12),
"Memorization"(p = 0.46), and "Confidence"(p = 0.27). In spite of
the AR tutorials and the background, all users reported that they
had mastered that machine task.

7.4.2  Objective Performance. We compared the performance of the
novice users and proficient users respectively due to the cognitive
gap between the novice and the proficient regarding the machine
task. A t-Test was performed on each pair of the data. Regarding
the learning time, the novice users who used the adaptive tutorial
took significantly more time (M = 23.0,SD = 7.3) in tutoring
section than the ones who used the non-adaptive tutorial (M =
16.5,SD = 5.7,p = 0.023). A similar conclusion could also be
drawn from the proficient users (adaptive M = 10.1,SD = 2.9, non-
adaptive M = 7.6,SD = 1.7, p = 0.029). The novice users who were
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Figure 7: The users’ self-evaluation of the learning progress.

using the adaptive tutorial required more repeats of the tutorial
(M = 4.1,SD = 1.0) than the ones with the non-adaptive tutorial
(M =3.3,SD = 1.2,p = 0.017). The proficient users required similar
times of repetition (adaptive M = 2.6,SD = 1.2, non-adaptive
M = 23,SD = 0.5, p = 0.50 > 0.05). Consequently, the users
who used the adaptive tutorials needed more time (novice M =
7.2,SD = 2.2, proficient M = 3.6,SD = 1.0) than the user with
the non-adaptive tutorial to go through the tutorial for one time
(novice M = 4.5,SD = 1.7, proficient M = 2.7,SD = 1.0). In
the testing section, novice users using the adaptive tutorial took
slightly shorter time (M = 3.2,SD = 0.6) then the novice users
with the non-adaptive tutorial (M = 3.9,SD = 1.3,p = 0.13 >
0.05), while the proficient users took approximately same time
(adaptive M = 2.8,SD = 0.4, non-adaptive M = 3.2,SD = 0.9,
p = 0.27 > 0.05). Notably, the novice users who used the non-
adaptive tutorial made more mistakes (M = 2.17,SD = 1.52) than
the ones with the adaptive tutorial (M = 1.00,SD = 1.04,p = 0.039).
The difference between the proficient users was not obvious since
they were making few mistakes (adaptive M = 0.41,SD = 0.66,
non-adaptive M = 0.75,SD = 0.75,p = 0.26 > 0.05). The results are
presented in Figure 8.

7.4.3  User Preference Vote. The users voted for their favorite AR
tutorial based on their overall experience as well as considering the
training efficiency, the learner’s understanding of the task, and the
comfort of the learning experience respectively (The Figure 9 Left).
Overall, most of the users preferred the adaptive tutorial (21 out
of 24). Meanwhile, the users also agreed that the adaptive tutorial
delivered a more comfortable learning experience (21 out of 24). In
terms of the efficiency and understanding, a little more users (about
one-third) chose the non-adaptive tutorial, while the majority of
the users (about two-thirds) still preferred the adaptive tutorial.

7.4.4  Subjective Rating. The Likert-type ratings regarding the adap-
tive features collected from the user study are shown in Figure 9
right. In general, the users agreed that the adaptive tutorial pro-
vided appropriate information in time (Q7: M = 3.8,5SD = 0.9, Q8:
M = 4.8,SD = 0.4). "The adaptive tutorial showed the tutorial ele-
ments that met my requirements. The AR avatar is the most helpful
at first because it was straightforward and intuitive. Later I found
the subtask description was more helpful because it reminded me
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what to do next." (P16) Meanwhile, the users acknowledged that
the adaptive tutorial can properly hide the redundant information
that was not needed and consequently the AR visualization is clear
and non-distractive, especially compared with the non-adaptive
tutorial. (Q3: M = 4.2,SD = 1.0, Q4: M = 4.3,SD = 0.8) "Since I
already went through the last session, (as a proficient user) I thought
I didn’t need that much tutoring element, and the adaptive system
hided those not needed." (P7), With the adaptive system, my view was
clearer because there were less AR elements distracting me." (P6) The
users also appreciated the adaptive feature which helped them to
understand the task (Q5: M = 4.8,SD = 0.4,Q6: M = 4.7,SD = 0.5).
"After the avatar was hidden, I started to pay attention to the descrip-
tions and got to understand the logic behind each machine operation.”
(P1); When the adaptive tutorial let me do it by myself, my brain was
active and trying to understand the logic between the steps.” (P15)
Moreover, it was receptive by the users that the adaptive tutorial
made them better remember the tasks (Q1: M = 4.5,5D = 1.0, Q2:
M = 3.8,SD = 1.3). "The adaptive tutorial was gradually increasing
the difficulty, which force me to remember the steps.” (P14), "Although
I wasn’t sure about the parameters of that step, I tried to perform it
by myself and succeeded. This experience gave me a impression of
that step." (P16)

8 DISCUSSION, LIMITATIONS AND FUTURE
WORK

In this section we discuss the primary results of the study and also
provide design recommendations and insights for future adaptive
tutoring systems.

Design of LoD. The design of LoD was first inspired by the
formative study finding (F2), and further proved to be receptive
through the user study. The users agreed that the arrangement of
the LoD fullfilled the needs at different learning stages. Yet, some
users raised an interesting point. "First, I pretty like the decrease of
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Figure 9: User votes and ratings for the features of the adap-
tive system.

the tutoring elements as I learned more. But I wonder if the system
could change the performance of the avatar or the animation accord-
ing to my performance.”" (P14) It reminds us that our adaptation
model could also drive the modification of the tutoring elements
in each LoD, not just hide or show. By leveraging the contextual
visualization of AR, the adaptation model could foster more flexible
designs of AR content for future adaptive tutoring systems.

Clear view of the adaptive system. The user study results
illustrate that the adaptive system can provide the exactly necessary
information according to the learning progress. "I think in most of
the time, the elements showed to me are what I needed. Only when I
forgot something, it showed me more." (P2) Additionally, some users
addressed another advantage of adaptively displaying the tutoring
elements. "Compared to the first (non-adaptive) system, not showing
the avatar and virtual animations really increased my learning speed.
Because if they were always there, then I tended to dodge them, and
they really distracted me." (P8)

Adaptive system reduces over-confidence of novice users.
Subjective ratings in confidence and memorization had no signifi-
cant difference between adaptive and non-adaptive system, which
meant they were all confident in remembering each step (Figure 7).
However, objective performance in testing errors showed signifi-
cant difference, especially for novice users (Figure 8). It revealed
that novice users tended to be over-confident using non-adaptive
system where all tutoring elements were always visible. "I fully sup-
port the adaptive system because when I first used the non-adaptive
one, I thought I remember everything. But I messed it up in testing.
But for adaptive one, it forced me to remember and recall by hiding
some elements." (P11) Yet, proficient users clearly knew which steps
needed more attention, so they had more accurate self-assessment.
This expertise-dependent variation enlightens a potential research
direction to developing a more sophisticated adaptation model to
better assess a learner’s performance.
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Adaptation timing. In our system, when to display additional
tutoring elements to the learners is determined by the time-sensitive
adaptation model. Most users welcomed the feature where the
system showed hints after they got stuck for a short period of
time. However, two users mentioned that the tutoring elements
sometimes appear too quickly while three users mentioned that the
tutoring elements appear too late. In addition, two users mentioned
that the timing of appearing tutoring elements should be more
flexible. "Maybe at the beginning, the hint can appear faster. And later,
the hint appears slower for me to recall." (P18) One potential solution
is to add manual control for users to manage tutoring elements, such
as using gestures (swiping their hand near the target component
to uncover more details) or using voice command. Meanwhile, the
system can collect the timing of manual control to fine-tune the
thresholds of the adaptation model. For example, when hints are
not shown, some users tend to recall without disruption, so the
thresholds could be increased. In contrast, some users tend to see the
hints more eagerly and may use manual control, so the thresholds
could be decreased accordingly. By gradually collecting more data
during the tutoring process, the system can minimize the need for
users to do manual control.

The patterns of LoD change. During the user study, we logged
the change of LoD for each user in the adaptive session. Referring
to Figure 10 (left), we noticed it took three trials for the proficient
users to reach level-2 LoD while four trials were taken for the
novices to reach level-3. The results align with our expectation
because the change of LoD is determined by the learners’ real-time
performance. The better a learner performs, the quicker the LoD
decreases. Such pattern of LoD variation can be used to analyze the
learners’ performance and also fine-tune the adaptation model for
further personalization.

The reasons of LoD increment. We counted the total occur-
rences of LoD increment (i.e., from i to i+1) for novice and proficient
users in the adaptive session and grouped them by reasons. Refer-
ring to Figure 10 (right), we noticed that the novice users’ LoDs
were mostly incremented due to the unawareness of the task, while
the proficient users’ LoDs were mostly incremented due to inter-
actions. This suggested that the proficient users tended to directly
operate the target that they felt correct, while novice users tended
to spend more time in observation. Such differences can be taken
into account in developing the future adaptive systems.

Evaluating AR system in VR. Under COVID-19 situation, we
conducted a remote VR study to evaluate AR features of the system,
which was inspired by prior works [6, 36]. Admittedly, due to the
difference between the accuracy of machine state and hand touch-
ing recognition in AR (89.1% and 93.4%) and VR (both 100%), the
user study may miss some findings caused by the failure cases of
recognition. However, the reported accuracy of low-level prediction
in section 6.3 was only based on a single prediction, which was not
the final accuracy to be leveraged in the high-level state prediction.
We adopted a majority voting mechanism in which each predic-
tion was decided by 5 consecutive predictions. The accuracy of
machine state and hand touching recognition was increased (~93%
and ~96%, respectively), and thus reduced the gap between the AR
and VR evaluation. Moreover, since many proposed features (e.g.,
high-level recognition, LoD design) can be evaluated orthogonal
to the low-level recognition, we can still obtain key findings from
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Figure 10: The patterns and reasons of LoD changes. (top)
The average LoD of each trail for novice and proficient users
in tutoring section. (bottom) The total number of LoD incre-
ment (i.e., from i to i + 1) grouped by reasons for novice and
proficient users.

the participants (e.g., the preference of adaptive vs. non-adaptive
systems, patterns of LoD change, adaptation timing, etc). In retro-
spect, a better approach would be to add some random failure to
the low-level recognition of VR system to simulate the AR system.

Generalizability of the system. Firstly, our system supports
three common types of machine tasks: local, spatial, and body-
coordinated interactions [27, 53]. Many manufacturing contexts
are a combination of these three types of tasks (e.g., machine tools
and CNC machines) [7]. Secondly, the recognition algorithm based
on images can be applied to various machines. For example, nine
common types of machine components (e.g., knobs, levers) were
covered in the preliminary evaluation. Thirdly, the workflow design
of chaining low-level and high-level recognition can be adapted to
future systems of machine tasks, rather than our system alone.

Hardware and deep learning setup. Currently, our CNN model
for machine state recognition works for discrete states of compo-
nents. We envision that more robust image based object recognition
networks, Internet of Things, and hand gesture and body skeleton
detection systems in the near future can provide more accurate and
plentiful input information to the adaptation model.

9 CONCLUSION

In this paper, we proposed an adaptation model that can automati-
cally adjust the level of detail of AR tutoring elements. The model
takes the input from the user and environment and performs low-
level and high-level state prediction based on deep neural network
and finite state machine. We also developed AdapTutAR, an AR-
based adaptive tutoring system for machine tasks that allows task
authoring and tutoring via bodily demonstration. We evaluated the
accuracy of the low-level state recognition on a mockup machine
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with 9 component types, and further evaluated the overall adapta-
tion model via a remote user study in VR environment. In the user
study, we invited 24 participants to learn tutorials using adaptive
and non-adaptive systems and collected their subjective ratings
and objective performance. Based on the results, we believe that
AdapTutAR provides important insights for future researchers in
creating an adaptive tutoring system which empowers an efficient,
flexible, and productive workforce.
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