
Adaptive Code Generation for Data-Intensive Analytics
Wangda Zhang
Columbia University
zwd@cs.columbia.edu

Junyoung Kim
Columbia University

junyoung2@cs.columbia.edu

Kenneth A. Ross
Columbia University
kar@cs.columbia.edu

Eric Sedlar
Oracle Labs

eric.sedlar@oracle.com

Lukas Stadler
Oracle Labs

lukas.stadler@oracle.com

ABSTRACT
Modern database management systems employ sophisticated query
optimization techniques that enable the generation of efficient plans
for queries over very large data sets. A variety of other applications
also process large data sets, but cannot leverage database-style
query optimization for their code. We therefore identify an oppor-
tunity to enhance an open-source programming language compiler
with database-style query optimization. Our system dynamically
generates execution plans at query time, and runs those plans on
chunks of data at a time. Based on feedback from earlier chunks,
alternative plans might be used for later chunks. The compiler
extension could be used for a variety of data-intensive applica-
tions, allowing all of them to benefit from this class of performance
optimizations.

PVLDB Reference Format:
Wangda Zhang, Junyoung Kim, Kenneth A. Ross, Eric Sedlar, and Lukas
Stadler. Adaptive Code Generation for Data-Intensive Analytics. PVLDB,
14(6): 929-942, 2021.
doi:10.14778/3447689.3447697

1 INTRODUCTION
The increasing main-memory capacity of contemporary hardware
allows query execution in a database management system (DBMS)
to occur entirely in RAM. Analytical query workloads that are
typically read-only need no disk access after the initial load. In
response to this trend, several commercial and research DMBSs
have been designed (or re-designed) for memory-resident data [18].
Examples of recent systems include H-Store/VoltDB [29], Hekaton
[41], HyPer [32], IBM BLINK [5], DB2 BLU [53], SAP HANA [19],
Vectorwise [70], Oracle TimesTen [39], MonetDB [7], HYRISE [20],
Peloton [48], HIQUE [37], LegoBase [35] and Quickstep [47]. A
variety of advanced query processing and optimization techniques
have been developed in these and other systems, several of which
we will discuss in detail later in this paper.

Other data-intensive applications have also scaled to the point
where they are processing very large RAM-resident data collections.
Examples include data visualization systems [61], stream processing
systems [11], time-series analysis systems [25] biological sequence

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447697

processing systems [62] and array processing systems [60]. Many
of these applications require DBMS-like functionality, such as scan-
ning, filtering, cross-referencing (joining), and aggregating data.
Most of these applications do not use a DBMS as the underlying data
storage framework. This choice could be for performance reasons,
or because relational tables are not the most natural abstraction for
the data being modeled by the application. Nevertheless, the low-
level operations (scanning, aggregating etc.) can still potentially
benefit from the kinds of optimizations done in state-of-the-art
DBMSs.

Additional applications may be written by programmers who
do not want the overhead of dealing with an external application.
Instead they simply write direct code to store and process arrays of
data. For example, a weather analysis application may store data
about rainfall measurements. Suppose that the application records
the output from a large collection of field sensors that each report
rain accumulations each minute, but only when the measurement
is nonzero. The data is represented using three arrays: ID[i] that
represents the identifier of the sensor making the measurement,
time[i] that represents the time the measurement was taken, and
rain[i] that represents the actual rain measurement. The time[i]
values are nondecreasing, reflecting incremental appends of new
measurements over time. When there are many sensors spread
over a large geographic region, there may be billions of data values
stored per day.While there are alternative (e.g., partitioned/sharded)
representations of this data, the given representation is actually
well-suited if the common query pattern is something like “where
and how much has it rained in a given time interval?” Such queries
could drive the generation of real-time animations of recent (or
historical) rainfall. A query coded in the application might have an
inner loop that looks something like:

for(i=0;i<total;i++)
if (time[i]>start && interesting([ID[i]]))

combine(accum[],ID[i],rain[i],time[i]);

In this code fragment, interesting is a dynamically defined
user-defined function that indicates which sensors the user is in-
terested in. The user-defined combine function describes how the
rainfall values should be grouped and accumulated/aggregated into
the accum array. This query is asking for the aggregate rainfall for
sensors that are interesting, over a time window between start
and the current time. (These aggregates would be normalized at the
end according to the interesting sensor count in each grouping
region.)

Despite the relative compactness of this code fragment, there
are several performance opportunities (and pitfalls) that might be

929

https://doi.org/10.14778/3447689.3447697
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447697

taken advantage of (or avoided) by the compiler that generates
machine code from this loop. Performance diversity can be caused
by variations in the data distribution and/or physical data ordering,
influencing branch-related and cache-related stalls. Different algo-
rithmic choices (reordering of operations, use of SIMD instructions)
can improve or worsen performance. Details of these opportunities
and pitfalls will be discussed at more length later in Section 3.

Our work builds on the dynamic query execution scheme pio-
neered by Vectorwise [55] (discussed in Section 2). Multiple plans
are precompiled for a particular operation. As the operation pro-
gresses over a very large data set, performance information from
the early stages of execution can be used to guide the choice of plan
for later stages. Plan switching allows for robustness in the face of
errors in query cost estimation, and also allows a dynamic change
of plans if the data distribution changes within the dataset. Details
of our adaptive code generation are given in Section 4.

Existing query optimization techniques for in-memory process-
ing are limited in several ways: (a) they are not extensively used
outside relational database management systems; (b) they are lim-
ited to a handful of relational operators, and do not cover access pat-
terns or dynamically-defined functions found in other data-analysis
scenarios; (c) they treat the underlying compiler as a black-box,
with unpredictable performance depending on which compiler is
used with which compiler settings; (d) they often bake-in design
choices that may be appropriate for usage within a particular DBMS,
but not for more general cases. We address these challenges by op-
timizing data-analysis style queries expressed as tight loops in a
conventional imperative programming language.

We extend an open-source compiler (GraalVM compiler [65] and
Truffle [64]) with both known and novel optimization techniques
that can automatically be applied whenever the compiler identifies
that a loop is time-consuming. GraalVM is an ecosystem and shared
runtime offering performance advantages for a variety of program-
ming languages [45]. Interpreted code is automatically transformed
into compiled code when the system detects a performance hot-spot.
The GraalVM Compiler is a dynamic just-in-time (JIT) compiler
that performs sophisticated code analysis and optimization. The
Truffle API allows programming languages to be combined in a
shared runtime using an abstract syntax tree representation. Inter-
preted code is associated with nodes in the abstract syntax tree, and
the Graal compiler automatically compiles the performance-critical
parts of the code to speed up execution. Details of the Graal/Truffle
implementation are provided in Section 5.

Integration into the compiler enables many applications to ef-
ficiently process large data sets. The system supports dynamic
queries involving user-defined functions and arbitrary access pat-
terns. Database-style and compiler optimizations co-exist, eliminat-
ing some of the mismatches that happen when the compiler is used
as a black-box by a DBMS. The system tunes a variety of run-time
execution parameters automatically, with minimal guidance from
the programmer.

We evaluate our system using the TPC-H benchmark, weather
visualization, and microbenchmark queries, over datasets with vari-
ous kinds of ordering/clustering properties. The experimental eval-
uation (Section 6) shows that:

• Our system can dynamically respond to changes in the data
distribution, choosing the best plan for the current data.

• Our system can invoke SIMD optimizations for code, even
though they do not always improve performance. In our
system, the SIMD version will be used if it is better, and the
scalar version will be used otherwise.

• The system can select a small but representative set of plans
that cover the search space well enough to respond to various
parameter combinations that may not have been known at
query compilation time.

• It is possible to dynamically achieve a balance between ex-
ploration (trying out a variety of plans) and exploitation
(maximally employing the best plan).

2 BACKGROUND
2.1 Prior Work on Compiling Query Plans
Our work builds upon the dynamic query execution scheme de-
veloped as part of the Vectorwise system [55]. The Vectorwise
implementers observed that query performance could vary signifi-
cantly due to low-level performance effects. Different query plans
might perform best under different regions of parameter space, yet
the parameter values may not be known at compile time. Different
compilers for the same programming language might give better
or worse results, depending on the query. Data distribution effects
(that may change as the system progresses through the data) may
affect query performance, so that one plan is best for parts of the
data, while another plan is best for other parts.

The Vectorwise team also observed that it is hard to estimate
the cost function, not just because of the data distribution effects
and parameter estimation inaccuracies mentioned above. Different
run-time platforms may have different performance characteristics,
such as the relative cost of a SIMD instruction to a scalar instruc-
tion or the relative impact of a branch misprediction. Further, the
overlapping of various latencies (e.g., cache misses) makes it hard
to identify their true impact on elapsed time. Rather than estimate
the cost, Vectorwise chose to measure the actual cost.

In Vectorwise, data chunks of about 1000 rows are processed as
a unit. A key innovation in Vectorwise is the analysis of the actual
running time over recent chunks of data using several different
candidate query plans in turn [55]. Each plan contributes to the
final result, but might take more or less time depending on data and
machine parameters. The plan that takes the least time is scheduled
to run for an extended number of chunks. After that, all candidate
plans are run again within a certain window to see if the data has
changed to the point that a different plan is best. The best plan is
then scheduled for an extended period, and the process repeats.

To summarize, the advantages of the approach pioneered by
Vectorwise are: (a) optimization happens on the basis of actual time
rather than predicted time, reducing the reliance on complex and
potentially inaccurate cost modeling; (b) most of the execution will
use the best plan among the candidates; (c) over time, as the data
changes, the chosen plan can adapt to those changes. Despite these
advantages, the Vectorwise approach has several limitations that
we will discuss next.

2.2 Limitations of the Vectorwise Approach
The first and most obvious limitation of the Vectorwise approach is
that the implementation effort has no wider impact beyond uses of

930

the Vectorwise system itself. It might be possible for a competing
DBMS to mimic the implementation described by Vectorwise, but
applications of the techniques beyond in-memory relational DBMSs
are unclear. In contrast, our approach embeds the optimization/exe-
cution decision making at the programming language level, making
the techniques broadly applicable to a wide variety of applications.

A second limitation is that the Vectorwise approach uses a few
hand-crafted code fragments that cover only the essential DBMS op-
erators. These code fragments are precompiled at DBMS build time.
Code fragments with in-lined user-defined code are not considered.
Access patterns in which there is interaction between consecutive
rows are common in applications such as time-series analysis, but
are essentially absent in a relational DBMS.We compile code frag-
ments at query-time, allowing user-defined code and arbitrary access
patterns that might not match a handful of predefined templates.

The paper describing the Vectorwise system describes how they
used several different compilers, with different optimization set-
tings, and observed varying performance results. The results were
so unpredictable that they were forced to compile multiple variants
of each code fragment: two compilers and two optimization settings
would require four compiled code variants to cover all of the cases.
The Vectorwise authors remarked that they resisted the temptation
to investigate why the compilers had such different behaviors [55],
presumably because they had no control to effect a change even of
they could identify an inefficiency. In our method, the compiler is not
an external black box. Instead, because DB-style optimizations and
traditional compiler optimizations happen in the same framework,
we can control code generation. If the compiler is unsure whether an
optimization helps or not, two variants of the code fragment could be
generated internally, by the compiler itself.

The Vectorwise system chooses somewhat arbitrary values for
parameters such as the window size to run the current best plan,
and the window size within which other candidate plans are run.
While these settings may have been adequate for the limited set of
operators considered by Vectorwise, it is not clear that such choices
would be optimal under the broader contexts considered in this paper.
We investigate principled ways for setting such parameters, allowing
them to vary based on performance feedback generated so far. Section 6
shows an experiment where the choice of window size matters.

3 PERFORMANCE DIVERSITY AND
REWRITING OPTIONS

Let us return to the loop introduced in Section 1, in which we first
specialize and in-line the definition of interesting, and combine.
The user has specified that an ID is interesting if its latitude is
greater than 30, and has stated that the way to combine rainfall
readings is to sum the rain amounts grouped by zipcode. zip[id]
represents the zipcode where the sensor having identifier id is
located, and lat[id] and long[id] represent the latitude and lon-
gitude of the sensor.

In database terminology this query applies two selection condi-
tions, performs two foreign key joins to the lat and zip “tables”,
and performs a grouped SUM aggregate of the rainfall. We assume
that total is very large, so that optimizing the loop is likely to have
a big performance impact. The hot-spot compiler will be triggered
relatively quickly to compile the code rather than continuing to run

it in interpretedmode.We describe some of the performance-related
choices that need to be made below.

Condition Ordering and Non-Branching Plans. Selection
condition order is important for in-memory query processing [54].
Branch misprediction effects contribute significantly to query pro-
cessing costs. Among the plans considered are plans that avoid
branches altogether by converting control dependencies to data
dependencies. For example, the plan above might be rewritten as
follows to avoid branches:

for(i=0;i<total;i++) {
// & rather than &&; no branches
test = (time[i]>start & lat[ID[i]] > 30);
// -1 = 0xFFFFFFFF; -0 = 0
mask = -test;
// 0 mask means add 0, i.e., no-op
accum[zip[ID[i]]] += (mask & rain[i]);

}

While branch-free code eliminates the branch misprediction
overhead, it is not always the best choice. For example, if a condi-
tion is very selective, so that it fails most of the time, then executing
the condition early is good because (a) it avoids unnecessary work
for most tuples, and (b) conditions that fail most of the time are
relatively well-predicted by modern processors. When several con-
ditions are present, the best ordering of those conditions depends
both on the selectivity of the condition and the cost of testing the
condition [23, 54]. These kinds of alternative rewritings are used
in the hand-generated templates of the Vectorwise system [55].
Our system automatically generates candidate plans at query-time
using each kind of rewriting (details in later sections).

Cache Misses. Accesses to the arrays time, ID and rain are
sequential, and prefetching is likely to be effective in minimizing
cache latency for those accesses. lat and zip are accessed non-
sequentially, and may generate cache misses whose latency may
be significant (tens of cycles for an L2 miss, about 100 cycles for
an L3 miss). These costs also influence the ordering of selections,
since a cache miss might make a condition like lat[ID[i]] > 30
expensive to test. Whether lat[ID[i]] > 30 generates a cache
miss on lat depends on: (a) How many IDs there are in total and
how compactly they are allocated in the lat array (e.g., are sensor
IDs re-used when a sensor is taken out of service?); (b) How many
IDs are likely to be registering rain at the same time (depends on
sensor placement and weather patterns); (c) How likely it is that a
sensor that registers rain at time 𝑡 also registers rain at time 𝑡 + 1
(affects temporal locality, and depends on weather patterns). Given
the complexity of predicting cache behavior, we circumvent the
problem by considering a very limited number of scenarios. For
example, we might just consider two extreme scenarios, one in
which we expect an L3 cache miss and one in which we expect an
L1 cache hit.

SIMD. SIMD instructions can be applied to both the conditions
and actions of the code above. Let𝑤 be the number of SIMD lanes.
The condition lat[ID[i]] > 30 might be evaluated on𝑤 consec-
utive i values by (a) loading a SIMD register with𝑤 consecutive ID
values; (b) using a SIMD gather instruction to look up𝑤 different
addresses within the lat array; and (c) comparing the results with

931

(a) Varying skew (b) Varying selectivity

Figure 1: Performance diversity

a SIMD register pre-loaded with𝑤 copies of the value 30. The re-
sulting booleans can then be ANDed with other boolean conditions,
or used as a mask for other actions.

The update of the accum array can similarly use SIMD gather
operations to load the current running sums, SIMD add instructions
to perform the updates, and SIMD scatter operations to write out
the results. Special SIMD instructions detect conflicts (e.g., updates
to a common memory address) across SIMD lanes and serialize
them in the same sequence as the input.

SIMD processing has the potential to speed up processing if the
workload is not memory-bound by using fewer instructions to do
the same work. It is not always clear that SIMD optimization is
desirable because (a) similarly to no-branch plans, it does the entire
work even if the first condition would have led to a quick rejection;
(b) under conditions of skew, the conflict resolution step of the
SIMD scatters may dominate the cost, making the SIMD option
slower than the scalar option. Rather than trying to estimate skew
and determine whether the exact cost of the SIMD option is optimal
for the current data, we simply generate SIMD plans as additional
candidates to be considered at run-time.

Performance Diversity. Figure 1 illustrates two cases of per-
formance diversity alluded to in the previous discussion. Figure 1(a)
shows the performance of a grouped aggregation, where the group-
ing column may be skewed according to a Zipf factor shown on the
x-axis. The SIMD code is faster than scalar code under low skew,
but slower under high skew due to the high cost of conflict reso-
lution as described above [67]. Scalar code is fastest at high skew
because the grouping cardinality is small and so the aggregates fit
in the L1 cache. Figure 1(b) shows three plans for a query having
two selection conditions, using plans of the kind described in [54].
Each of the three plans is best in some selectivity range. Because
the selectivity may not be known in advance, or may vary within
the dataset, our approach will be to include multiple plans and to
choose the best plan according to the recent performance history.

4 ADAPTIVE CODE GENERATION
So far we have suggested that we will be generating multiple plans,
running each for chunks of data during a testing phase, and then
selecting the fastest plan to run for an extended period. Unlike the
Vectorwise system, where an arbitrary number of plans might be
precompiled in advance, we aim to generate plans at query time.

This choice allows for more general plans, including in-lined user-
defined functions that are not known in advance. Nevertheless, this
choice is challenging because it makes query compilation itself
part of the observable response time. Our preliminary observations
using the Graal compiler (Section 5) suggest that a plan can be
compiled in tens of milliseconds. Thus, if we were performing a
large scan taking several seconds, say, we could probably not af-
ford to compile more than 10 plans. Beyond that, the overhead of
compilation may outweigh the benefits of adaptive query process-
ing/optimization.

4.1 On-Line Analysis
First, we optimize abstractions of the loop components. For example,
the cost estimate for a SIMD computation may depend on the
skew in the group-by values (Figure 1(a)). We may simply optimize
under two abstracted conditions: no-skew and high-skew. As a
second example, the cost estimate for a condition-testing plan may
depend on the selectivity (Figure 1(b)) and cache-behavior of the
data. Rather than estimating a selectivity for a condition, we impose
a selectivity on that condition as a way of making sure we cover an
appropriate subregion of the optimization space. A condition may
be given selectivities that are “small,” “medium,” or “large” (say 0.05,
0.5, 0.95 respectively).

4.2 Off-Line Analysis
There is an implicit bias in our on-line analysis, because our rela-
tively coarse abstractions of parameters may be far from either (a)
the true parameters, or (b) the critical values of the parameters for
which the choice of plans would change. We therefore supplement
our on-line analysis with an off-line analysis for common query pat-
terns. For example, we imagine that loops containing if-statements
that test any number of conditions may be common in practice. We
therefore perform a more detailed off-line analysis of 𝑐-condition
loops for all 𝑐 below some moderately large threshold (at least 10).
Although this off-line analysis is expensive, it would happen once
for a target hardware environment before the compiler is released,
or during a calibration step when the compiler is installed. After the
off-line analysis, the system stores the generated candidate plans as
a summary to use for adaptive code generation online (Section 5).

For each 𝑐 , we use a more fine-grained approach to compute a
cost estimate of candidate plans for 𝑐 conditions based on the cost

932

Table 1: Candidate plans

plans (exhaustive) ratio plans (local) ratio
1 { C0 & C1 & C2 } 9.77 IF (C0) { C1 & C2 } 12.64

2 IF (C0) { C1 & C2 }
IF (C1 & C2) { C0 } 5.40 IF (C0) { C1 & C2 }

IF (C1) { C0 & C2 } 12.07

3
IF (C0) { C1 & C2 }
IF (C1) { C0 & C2 }
IF (C2) { C0 & C1 }

3.25
IF (C0) { C1 & C2 }
IF (C1) { C0 & C2 }
IF (C2) { C0 & C1 }

3.25

4

{ C0 & C1 & C2 }
IF (C0) { C1 & C2 }
IF (C1) { C0 & C2 }
IF (C2) { C0 & C1 }

1.97

{ C0 & C1 & C2 }
IF (C0) { C1 & C2 }
IF (C1) { C0 & C2 }
IF (C2) { C0 & C1 }

1.97

5

{ C0 & C1 & C2 }
IF (C0) { C1 & C2 }
IF (C1 && C0) { C2 }
IF (C1 & C2) { C0 }
IF (C2 && C0) { C1 }

1.79

{ C0 & C1 & C2 }
IF (C0) { C1 & C2 }
IF (C0 & C1) { C2 }
IF (C1) { C0 & C2 }
IF (C2) { C0 & C1 }

1.97

formulas of [54]. For example, for 3 conditions, we try all 6 orders
as well as all logical-and, bitwise-and, and no-branch plans. Since
we do not know the selectivity and cost of each condition (and
the cost of the body part) in advance before query execution, we
develop a large number of configurations in an offline analysis. For
every condition, we test 20 selectivities ranging multiplicatively
from 0.0001 to 0.9999. We test 10 cost values from 1 to 1024 cycles,
again multiplicatively. Then, for each of these 20x10 configurations,
we compute the cost of all different plans [54].

We then compute a summary of the best plans to use during
online exploration. Suppose we can afford to use 𝑘 plans for explo-
ration. Our metric for evaluating the quality of a set of 𝑘 plans is
based on the worst-case ratio of estimated performance across all
configurations:

max
{configurations}

(
the best cost among the 𝑘 plans
the best cost among all plans

)
Then we would like to choose the set of 𝑘 plans that minimizes

this ratio. An exhaustive search would be too costly (exponential
in 𝑘) and so we propose the following heuristic method.

(1) Every plan is considered as a valid candidate, and every
configuration is mapped to the plan that minimizes its cost
(whichwe record as the baseline cost for the configuration, to
be used in the denominator of the formula above). Any plan
that contains no configurations at this point is eliminated.

(2) While there are still too many plans, consider each plan 𝑃

in turn as follows: (a) Map each configuration previously
assigned to 𝑃 to the next-best plan, and compute the ratio
of the new estimated cost to the baseline cost. Record the
highest cost ratio as the score for 𝑃 . (b) Remove the plan
with the lowest score, and re-assign its configurations to
their next-best plans.

We eliminate plans with the lowest ratio because their elimination
makes the smallest incremental difference to the overall ratio we are
trying to minimize. In other words, the next-best plans are almost
as good as the elimination candidate.

Table 1 shows how this algorithm performs for 3 conditions
(𝑐 = 3) and up to 5 plans (1 ≤ 𝑘 ≤ 5). For comparison, we also show
the results of an exhaustive search. In general, the best set of 𝑘 − 1
plans may not be a subset of the best set of 𝑘 candidate plans, but
our heuristic algorithm does choose 𝑘 − 1 plans from among the
best 𝑘 plans. We observe that the heuristic performs reasonably
well when 𝑘 ≥ 3, which is likely in our application domain.

For small 𝑘 , an exhaustive search will be feasible, and it does not
miss the best plans that the above heuristic could prune. Therefore
we use a hybrid approach: Generate the best 10 plans using the
heuristic, and then search exhaustively among them for the best
pair of plans. This aproach is more accurate for small number of
candidate plans.

We used the maximum performance ratio as our heuristic func-
tion, but we could alternatively have used the average performance
ratio. We argue that the average can be biased depending on how
the selectivity and cost values are chosen. For example, they would
give extra weight to the regions of parameter space that were more
heavily sampled. In contrast, the max ratio is relatively stable, and
focuses the optimization on the part of the parameter space where
it matters most.

Table 1 shows that there is a diminishing return in reducing the
max ratio metric as we choose more candidate plans. During online
execution, the best plan among the candidate plans is chosen. As-
suming that there is enough data for exploitation (so the exploration
cost is negligible), then it is in theory better to choose from more
candidate plans, but the marginal benefit is decreasing (as is the
metric). As we demonstrate in the experiments, the performance
stabilizes as we increase the value of 𝑘 . In practice, a reasonable
heuristic for 𝑘 conditions is to use at least 𝑘 candidate plans so that
every condition can be the first condition in some plan.

4.3 Measuring Execution
We follow the Vectorwise approach by measuring actual times and
choosing plans based on their recent history of execution times.
The Graal/Truffle system already instruments interpreted code
with counters to observe events like a branch being taken. When
the interpreted code is identified as a hot-spot and compiled, that
information is used to inform the subsequent compilation phase.
The counter instrumentation is omitted from the compiled code to
minimize overhead.

For the execution of compiled code, we divide the entire execu-
tion into a series of alternative exploration and exploitation periods.
During an exploration period, a number of candidate plans is tested
over input chunks and compared with the execution times. In the
following exploitation period, the best plan is maximally employed
over a larger number of chunks. We keep a recent history of chunk
execution performance, so that the system can react to changes by
comparing the current execution with previous executions. Two
heuristics are used for dynamically setting parameters:

• Dynamic exploitation (DE). For consecutive exploration
periods, if the best plan does not change, then it suggests
that the data is behaving consistently, so we double the size
of the exploitation period; otherwise, the data distribution is
likely to have changed during the two explorations, so we
reduce the size to half of the original exploitation period.

933

(a) AND plan (b) Reorder (c) No-branch

Figure 2: Rewriting of a conditional AST

• Early exploration (EE). When we observe that the chunk
takes significantly longer to execute (more than double the
average of recent chunks), it is a strong indication that the
underlying data has changed, so we start exploration using
additional plans starting from the next chunk.

In practice, combining these two heuristics works well for our
experimental datasets (Section 6.2).

5 IMPLEMENTATION
We use the Truffle language implementation framework [64] to de-
velop the adaptive execution framework. Truffle is an open-source
library that simplifies the development of language execution en-
gines and data processing engines using self-optimizing abstract
syntax trees (ASTs) in the GraalVM ecosystem. Each node in the
AST represents an operation (e.g., a comparison, an evaluation of
an AND condition, an arithmetic computation, etc.) that is com-
piled to machine code by the Graal compiler. During the execution,
an AST node can make use of runtime information and change
its internals to specialized versions that have better performance.
Node rewriting and JIT compilation are automatically handled by
the Graal compiler.

In this paper, we focus on JavaScript programs with a for-loop
like the example in Section 1. Users can write a pragma directly
above the for-loop they wish to perform adaptive execution on:

var input0 = ... // initialize data arrays
var input1 = ...
var count = 0;

"adaptive execution "; // adaptive execution pragma
for (i=0; i <1000000000; ++i)

if (input0[i]<20 && input1[i]<50)
count ++;

By using the pragma, the user is (a) certifying that the predicates
in the if-statement can be reordered, and (b) hinting that adaptive
execution should be applied to the for-loop.

5.1 Preprocessing
Upon execution of the JavaScript program written by the user, a
custom script first rewrites the program source code to use the
Polyglot API. Polyglot allows different languages implemented
with Truffle to interoperate with each other. In our implementation,
we use Polyglot to access variables in JavaScript, and make the
following changes to the source code: (1) The for-loop itself is
transformed into a string; (2) Values of all variables that are used

in the for-loop, but defined outside of the for-loop, are stored in a
dictionary; (3) The variable dictionary and the for-loop string are
passed to the code generation framework via the Polyglot API.

To control the adaptive code generation, we implement a set of
AST nodes extending from Truffle Nodes, including value nodes
(e.g., constants), arithmetic nodes (e.g., Addition), and condition
nodes (e.g., LessThan). When the rewritten source code is executed
and the adaptive execution framework is invoked, control is handed
over to the root node, a special Truffle AST node that handles the
execution of the loop and measures the performance. We use a
custom parser built with ANTLR to parse the for-loop string into the
Truffle expression nodes we implemented, and generate multiple
ASTs representing the candidate plans according to the summary
obtained from offline analysis (Section 4.2). The variable values
stored in the dictionary are written to the procedure stack, so that
they can be accessed and modified during the adaptive execution.

Under the root node of the loop, a TopLevelCondition node rep-
resents the if-statement. For conjunctive conditions (AndCondition),
a candidate plan specifies the ordering of the conditions as well
as a mode indicating how the conditions are computed and com-
bined together (LogicalAnd, BitwiseAnd, or NoBranch). The order-
ing and the node properties are stored as internal variables of an
AndCondition. The body part of the if-statement (true branch) is
a generic AST node if all conditions have been evaluated. If there
are remaining conditions to be evaluated as no-branch conditions,
then the body part is rewritten to an AndCondition node with
NoBranch mode. The body also uses a mask to determine whether
the result is written to output. Multiple assignment statements are
permitted in the body.

Depending on the number of conditions (i.e., the structure of
the code), the root node chooses from a summary with matching
conditions a set of candidate plans. For each candidate plan, the root
node constructs an AST as shown in Figure 2. An AndCondition
node has conditions as its child nodes, which are basic conditions
like LessThan comparisons. Figure 2 shows three example plans
with the same semantics. By reordering the conditions (C0, C1 and
C2), the AST in Figure 2(a) is rewritten to Figure 2(b) and thus
executed differently. Either logical or bitwise AND can be used
depending on the mode set in the AndCondition. If a no-branch
plan is used then an AndCondition with the no-branch mode is
used to rewrite the plan into Figure 2(c), where only condition C0 is
executed with a branching if-condition. We then invoke the Graal
compiler backend to compile the AST into callable machine code.

When there are no if-conditions as in the example in Section 6.1,
then the body part is just an AST representing the assignment

934

Table 2: Time breakdown (s), 109 rows, median of 10 runs

Adaptive && & reverse &&
Preprocess 0.10 0.11 0.11 0.11
Execute (interpreted) 0.22 0.07 0.07 0.07
Compile 0.81 0.55 0.55 0.55
Execute (compiled) 6.28 11.49 5.94 11.47
Total 7.44 12.22 6.67 12.19

and arithmetic computations. Additionally, we support SIMD code
generation for basic arithmetic computations. The implementa-
tion extends the Graal compiler to add intrinsics using AVX-512
instructions. For the example in Section 6.1, we implement the com-
putation and conflict resolution in SIMD as a compiler directive.
Based on a template, the root node recognizes the code structure
written in scalar code, and generates the corresponding body node
using the specific compiler directive. The candidate plans are then
the scalar and SIMD versions of the body node.

After the above preprocessing, the root node triggers the compi-
lation of the candidate ASTs. Note that the program has to run in
the interpreted mode for a very short time before the compilation
is triggered. Then during an exploration period, the root node tries
the compiled candidate plans and measures the actual execution
times of a chunk. For each plan, we run over 2 chunks, and measure
the time of the second chunk, to overcome instabilities of the first
chunk measurement. The chunk size is set to 1000 tuples so that we
can amortize the overhead of time measurement and still get a rank
of the plans. The best plan is then used for the longer exploitation
period. When dynamic exploitation (Section 4.3) is used, we also
track 10 recent chunk execution times to enable the heuristic.

5.2 Compiler Overheads
To measure the overheads of compilation itself, we measured the
time taken for an end-to-end compilation of three plans followed by
an execution of a loop over 109 tuples. We compare with the time
taken by the unmodified Truffle/Graal compiler on each plan indi-
vidually. We used the G1 garbage collector for Truffle/Graal with
default settings, and performed the experiments on a Xeon E5620
machine. For this experiment, one of the three plans (the & plan) is
optimal for the whole dataset and so compiling this plan directly
represents a baseline for the adaptive technique. The results in
Table 2 show that the compilation overhead for adaptive execution
is small relative to the cost for compiling the optimal plan without
adaptive execution. The performance of the non-optimal plans is
significantly worse than adaptive execution. Adaptive execution is
thus robust with respect to how a programmer might have initially
coded the conditional expression test.

Compilation performance improves as we compile more plans as
shown in Figure 3, primarily because the compiler itself is just-in-
time compiled dynamically during execution. Based on the results in
Figure 3 one could expect to reduce the compilation overhead from
0.81 seconds to 0.23 seconds if one were to precompile the compiler
itself, as in libgraal [59]. The small spike in performance for the
seventh plan is caused by the compiler’s invocation of garbage
collection.

Figure 3: Compiling a sequence of plans

6 EXPERIMENTAL EVALUATION
In Sections 6.1–3, we conducted experiments on a Linux server
with a 2.5 GHz Xeon Platinum 8175M processor. In Section 6.4,
we demonstrate support for a visualization application using the
adaptive execution approach, running on a laptop with an Intel
Core i7-1065G7 processor. The execution of the query program uses
a single thread, processing in-memory datasets stored as arrays
of data. Given the relatively low, fixed overhead of compilation,
we focus in this section on the main loop execution time using
compiled plans.

6.1 Microbenchmark on Skewed Data using
SIMD

We present one set of experiments to show how our system can
adapt to data distributions, and to illustrate how parameters such
as the exploration window size might be worth tuning for optimal
performance. Our baseline query has the form:
for(i=0;i<n;i++)

output[data[i]] += compute(i,data[i]);

The compute function involves 3 logical shifts, 3 exclusive-ors, and
two integer multiplications, all of which can be performed in a
data-parallel fashion using SIMD instructions. compute is in-lined
to avoid the function call overhead. An important aspect of this loop
is the distribution of the data[i] values. A narrow distribution
will lead to better cache locality in the output array, but potential
conflicts to resolve common outputs from different SIMD lanes.
A broad distribution will have worse cache locality, but will be
mostly conflict-free, as discussed in Section 3. We model skew in
the data[i] values by using a suitable Zipf distribution with a 𝑧
parameter between 0 (uniform) and 1.8 (highly skewed). 𝑧 ≈ 1 is a
common value for real-world skewed data. The data is divided into
1.9 million chunks of size 1, 000 (1.9 billion records).

Figure 4(a) shows the performance of the compiled code when
the data distribution becomes more skewed as the index increases:
the first 100,000 chunks have 𝑧 = 0, the next 100,000 chunks have
𝑧 = 0.1 and 𝑧 is subsequently incremented by 0.1 each 100,000
chunks. There are two implementations for the loop: (i) a standard
scalar implementation whose performance as a function of 𝑧 is
shown in blue; and (ii) a SIMD implementation with conflict detec-
tion/resolution, whose performance is shown in red. From these
curves alone it is apparent that SIMD beats scalar for small 𝑧, be-
cause it can parallelize the work of the compute function. However,
for large 𝑧, the SIMD algorithm becomes an order of magnitude
worse than the scalar code due to the need for conflict resolution.

935

(a) 𝑧 increasing

(b) 𝑧 varying

(c) Effect of exploitation period

Figure 4: Performance on skewed data with SIMD

The purple dots in Figure 4(a) show the performance of the
chosen algorithm for each chunk. There is high density in some
regions leading to what appears to be solid coloring. The more
diffuse dots are where alternative plans are run to obtain estimates
of their performance, to see if it is worth switching plans. Figure 4(a)
demonstrates that the active plan chosen tracks the better of the
two plans. Figure 4(b) shows a variant in which the same loop is run
over data whose Zipf parameter alternates between uniform and
a randomly chosen 𝑧 value at unpredictable points in the data set.
This kind of data is what we might expect in our rainfall example:
steady rain over a wide region might generate uniform-looking

data, whereas a sequence of local storms might generate regions
of data skew. A close examination of Figure 4(b) shows that at the
beginning of each skewed region, there is a small period during
which the inferior plan is being run. The system has not yet reached
the next window where it re-evaluates plans; it continues executing
the same plan until that happens.

To understand the impact of the length of the exploitation peri-
ods, we ran several experiments with different exploitation period
sizes. Figure 4(c) shows the elapsed time spent in exploration and
exploitation mode separately. When the exploitation period is too
small, we waste time running suboptimal plans too often: a subop-
timal plan that is 5X worse than optimal and run 3% of the time
will constitute a 12% overhead. When the period is too large, we
do not notice a change in the data distribution until we have been
running a suboptimal plan for a while. For this example, the best
intermediate value for the exploitation period is around 200 chunks,
and the exploration mode takes 4.3% of the time.

6.2 Microbenchmark with Different
Selectivities

The previous subsection demonstrates how to choose between two
code generation options (scalar and SIMD) adaptively. In this subsec-
tion, we study how to choose among various plans of conjunctive
conditions. The query used in this set of experiments has the form:
for (i=0; i<n; ++i)

if (a[i]<A && b[i]<B && c[i]<C)
sum += compute(input[i]);

In this program, we have three range predicates over the input data
arrays a, b, and c. For the microbenchmark, we generate random
numbers in the a, b, c arrays and control the selectivity of three
tests by setting the corresponding A, B, C constants. As described
in Section 4, there are many different orderings and plans including
the non-branching plans to be considered.

Figure 5(a) shows the average running time per chunk (in mi-
croseconds) on three different datasets, using a varying number of
plans. Two of the datasets have a fixed selectivity: 0.5 and 0.001 for
all three conditions. The third dataset sets random selectivities for
each condition every 1M tuples.

For the dataset with 0.5 selectivity, the first plan from the sum-
mary generated by offline analysis is the no-branch plan, and it is
always chosen as the best plan for this dataset. Adding more plans
does not improve the performance. For the dataset with selectivity
0.001, the no-branch plan is not the best. If we use more than one
candidate plan during the exploration period, then the candidate
plans include the plan if (a[i] < A){...} (or other symmetrical
plans), so it uses this plan as the best plan and reduces the average
running time. For the changing data, we find that after 5–7 plans,
the running time becomes stable, suggesting a suitable number of
plans to use during online exploitation.

By default we use 200 chunks as the exploitation period. How-
ever, the underlying data distribution may change more or less
rapidly than what we can detect. To study the effect of exploita-
tion period, we generate datasets that change the selectivity (and
thus the best plan) randomly. Using 5 plans, Figure 5(b) shows the
average running time per chunk on the 7 different datasets, using
a varying exploitation period (x-axis: the unit is the number of

936

(a) Varying plans

(b) Varying exploitation periods

(c) Dynamic parameters

Figure 5: Performance with different selectivities

chunks, chunk size is 1000 tuples). The selectivity of a dataset is
changing randomly every 1K (10K, 100K, . . .) tuples, and the best
exploitation period also changes correspondingly.

Figure 5(c) shows that the dynamic heuristics of Section 4.3 are
able to achieve the performance of the best exploitation period
(on the 1M dataset). Using one heuristic alone can avoid the worst
case exploitation period, in Figure 5(b), and using both heuristics
togetherwe can achieve similar performance of the best exploitation
period found.

6.3 TPC-H Queries
We now show results using code that implements TPC-H queries Q6
and Q19 [1]. We chose those queries because they have interesting
condition structures that might benefit from our approach.

6.3.1 Query 6. Query 6 quantifies the amount of revenue increase
that would have resulted from eliminating certain companywide
discounts in a given percentage range in a given year. The query is

(a) Different plans on unsorted data

(b) Profiling on sorted data

(c) Performance on sorted data

Figure 6: Performance on TPC-H Q6

written in a javascript program as an if-statement with five different
conditions (range predicates).

for (i=0; i<N; ++i)

if (shipdate[i] >= DATE_MIN &&

shipdate[i] < DATE_MAX &&

discount[i] >= DISCOUNT_MIN &&

discount[i] <= DISCOUNT_MAX &&

quantity[i] < QUANTITY)

sum += price[i]* discount[i];

Figure 6 shows the performance of TPC-H query Q6. Figure 6(a)
shows the results on unsorted data, as generated by the benchmark
data generator. The running times are clustered by the first condi-
tion used during evaluation. The two best clusters correspond to
the two range predicates on the shipdate column. From left to right,
the clusters are:

• 6 points: DateMin, DateMax as the first two conditions
• 18 points: DateMin first, other conditions second

937

• 6 points: DateMax, DateMin as the first two conditions
• 18 points: DateMax first, other conditions second
• remainder: neither DateMin nor DateMax first

Since the first condition has the most impact on performance,
the compiler uses the following ordering of predicates in the six
candidate plans for adaptive execution:

(1) DateMin, DateMax, DiscountMin, DiscountMax, Quantity
(2) DateMax, DateMin, DiscountMin, DiscountMax, Quantity
(3) DiscountMin, DateMin, DateMax, DiscountMax, Quantity
(4) DiscountMax, DateMin, DateMax, DiscountMin, Quantity
(5) Quantity, DateMin, DateMax, DiscountMin, DiscountMax
(6) no-branch plan (order unimportant)

Each of the first five plans has a different first condition to be
evaluated. Under the adaptive execution, the compiler automatically
chooses the best plan to process most of the data, no matter how
the program is written.

Figure 6(b) shows the results on data sorted by shipdate, which is
likely to be the typical case in real world. We show the performance
of each of the six plans, as well as the adaptive execution results. In
this figure, we plot the average running time per chunk for every
200 chunks of input data in the exploitation period. Because the
data is sorted by the shipdate column, there is a discontinuity at
around 20,000 input chunks, corresponding to the lower bound
DATE_MIN specified in the query. Before the discontinuity, the adap-
tive execution chooses Plan 1; during the immediately following
period, it chooses the no-branch plan, because evaluating the Date
conditions is extra work (they always succeed) and Plans 1 and 2
become the most expensive; after the data crosses the DATE_MAX
threshold, the system chooses Plan 2.

Figure 6(c) shows the total running time on the sorted data for
different plans. The compiled code automatically chooses the best
variant among the six candidate plans, and the total execution time
of the adaptive method is reduced compared with any single fixed
plan.

6.3.2 Query 19. Query 19 reports the gross discounted revenue at-
tributed to the sale of selected parts handled in a particular manner.
The query’s where clause is a disjunction of three conjunctions.
Each of the three conjunctions has the same structure of predi-
cates but the predicates have different parameter values. For this
experiment, we preprocessed the text data so that the parameters
are numetic values supported by our current implementation. We
manually implemented adaptive execution for this query because
our current full compilation pipeline currently handles only con-
junctive expressions. Written as a JavaScript program, the foreign
key join is executed as an index lookup into the referencing array.

for (i=0; i<N; ++i)

if ((brand[partkey[i]] == BRAND1 &&

container[partkey[i]] == CONTAINER1 &&

quantity[i] >= QUANTITY1 &&

quantity[i] <= QUANTITY1 + 10 &&

psize[partkey[i]] <= SIZE1 &&

shipmode[i] == SHIPMODE1 &&

shipinstruct[i] == SHIPINSTRUCT1) || // Conj1

(...) || // Conj2

(...)) // Conj3

sum += price[i] * (1-discount[i]);

Table 3: TPC-H Q19 time (us) on unsorted data

Plan (first condition) Conj1 Conj2 Conj3
BRAND 2767167 2721858 2513244
CONTAINER 2820004 3051187 2902889
QUANTITY MIN 2968445 3611849 2503752
QUANTITY MAX 3498422 4088774 3975201
SIZE 3549345 4767787 3360388
SHIPMODE 3125625 2654871 2409472
SHIPINSTRUCT 3826366 2665140 2425727

For each of the seven predicates in Conj1, we could include at
least one plan that checks the predicate first, for a total of seven
plans. The same observation holds for Conj2 and Conj3. Since the
conjunctions are quite selective, no-branch plans for evaluating the
conjunction are excluded because they are likely to perform badly.
A naive application of our approach would then need to generate
73 combined plans in order to cover all of the important cases.

Instead, we observe that because the conjunctions are relatively
selective, and combined by disjunction, all of the conjunctions are
likely to be executed for most rows. In other words, it is unlikely
that a positive result from testing one of the conditions would
be effective at short-circuiting the evaluation to avoid the other
conditions. (We also verified that the running time of all 6 orders
of the three conjunctions perform roughly the same.) If all three
conjunctions are going to be executed almost all of the time anyway,
we should optimize them independently. As a result we get 7 ∗
3 = 21 plans rather than 73 plans. For this particular query, the
three conjunctions have the same structure, and so 7 plans (with
three instances of each) would suffice. However, the compiler does
not know that the conjunctions have similar structure, and so it
cannot share plans in this way. Instead of one exploration period,
we now use three exploration periods separately for each of the
conjunctions. In each exploration period, we select the best plan
for one of the conjunctions.

Table 3 shows the running time on unsorted data. The table
shows the first predicate of the plan for each of the three conjunc-
tions, when the other two conjunctions each uses BRAND as the
first predicate. In adaptive execution, Conj1 chooses the BRAND
plan, while Conj2 and Conj3 each choose the SHIPMODE plan. As
a result the adaptive execution takes about 2.4 seconds to compute
the revenue loss no matter how the program is written (i.e., the
ordering of the conditions by the programmer does not matter due
to adaptive execution). This performance is about twice as good
as the worst plan in Table 3, which is probably not the worst plan
overall. This experiment shows that the advantage of our approach
includes robust performance even for complex conditions involving
conjunctions and disjunctions.

When the data is sorted by SHIPMODE, there is a region of data
where the equality predicate on SHIPMODE is always satisfied.
We find that each conjunction either uses the SHIPMODE plan to
quickly filter out the unqualified data, or when the SHIPMODE
equality predicate is satisfied, uses the BRAND plan since it is
the most selective and thus has the best performance. Figure 7
shows the runtime profiling of the BRAND plan, SHIPMODE plan,
and the adaptive execution. The other plans behave similarly to

938

Figure 7: Performance on Q19 (sorted)

the BRAND plan, but they are slower; for clarity, their profiles
are omitted in the figure. The profile of the adaptive execution
overlaps with the BRAND plan when the SHIPMODE test is true,
demonstrating that the execution switches to a different plan when
the underlying data is changed. As a result, the adaptive plan takes
2.25 seconds to complete the computation, compared with a fixed
BRAND plan taking 2.81 seconds and a fixed SHIPMODE plan
taking 2.46 seconds.

6.4 Visualization Application
As motivated earlier, we imagine a hypothetical tool written in
a JavaScript-like language for visualizing weather data. The tool
allows users to choose a range of dates and times, and to select a
bounding box on a map based on a range of latitudes and longitudes.
The tool also computes some aggregation results using the data
points that fit into these ranges. As the user adjusts a slider to
change the parameter values, the program dynamically recomputes
the query results, and the user interface interactively refreshes the
screen to display new results. If the computation is slow for some
parameter values, the display frame rate drops and there could be
perceptible jitter as the user operates the slider in the graphical
user interface.

We downloaded a real climate dataset containing historical 15-
minute precipitation observations for selected U.S. stations1. The
dataset has 18.2 million data points for the precipitation amount
at 34354 stations across the U.S, for the period from 1971 to 1998.
The precipitation data (date, time, amount) and the station data
(latitude, longitude) are stored separately, and we load them into
memory as separate arrays of data, keyed by the station id. Some
of the data points are marked as invalid in the dataset. The entire
dataset is about 3GB, so one is able to process them on a laptop
computer instead of a server as in previous experiments. As an
example, we compute the total amount of precipitation using the
following program. It has nine conditions and computes a sum of
the precipitation for measurements that satisfy all the conditions.
Since station locations are stored separately, an indirect lookup is
used to check the latitude and longitude of station locations.

For each of the nine predicates, one of the candidate plans is
included to check that predicate first. Since the dataset is ordered by
station, data points satisfying the latitude and longitude conditions
are clustered in multiple regions. For different selectivities of the
predicates, the best plan changes during an adaptive execution.

1https://www.ncdc.noaa.gov/cdo-web/datasets

Figure 8: Performance of varying TIME_MIN

Figure 9: Performance of varying DATE_MIN

for (i=0; i<N; ++i)

if (data[i] != INVALID_DATA &&

time[i] >= TIME_MIN &&

time[i] < TIME_MAX &&

date[i] >= DATE_MIN &&

date[i] < DATE_MAX &&

latitude[station[i]] >= LAT_MIN &&

latitude[station[i]] < LAT_MAX &&

longitude[station[i]] >= LON_MIN &&

longitude[station[i]] < LON_MAX)

sum += data[i];

Figure 8 shows the execution time of the program (left y-axis)
and the derived frames per second (FPS, right y-axis) as the user
controls a slider to vary the TIME_MIN value from 00:00 to 24:00.
We compare the baseline method using the example program shown
above with the adaptive execution approach. As the TIME_MIN
varies to around 12:00, the selectivity of condition time[i] >=
TIME_MIN becomes closer to 0.5, incurring an expensive branch
misprediction overhead. Therefore, the baseline method has an
execution time of 45 milliseconds and the framerate drops to be-
low 25 FPS. The adaptive execution method, however, is able to
switch to a different plan that checks TIME_MIN conditions later
after checking other conditions, so its execution time is at most 27
milliseconds and the frame rate stays above 36 FPS. The difference
in FPS is over 1.5x, and is well within the limits of human visual
perception [30].

Figure 9 shows the running time and visualization frame rates as
the user slides the DATE_MIN value from 1970-01-01 to 2000-01-01.
The results are similar to the former case, and the difference in

939

FPS is up to 1.4x. Changing TIME_MAX or DATE_MAX conditions
result in similar observations.

Since the dataset is not globally ordered by any single dimension
of the nine conditions, during the adaptive execution of the program
in the experiments of Figures 8 and 9, seven out of the nine candidate
plans were exploited at least once. This observation emphasizes the
need for a diversity of plans to handle runtime configurations that
are difficult to predict, and the ability of our system to dynamically
choose an appropriate plan.

7 RELATEDWORK
Column-oriented execution [42] and cache-conscious operators
[43] were proposed before the advent of multi-core CPUs. Block-
at-a-time execution [8] and query-dependent code generation [21,
38, 44] are both state-of-the-art designs for analytical query en-
gines [33]. The present work has features from both block-at-a-time
execution and query-dependent code generation.

SIMD optimizations have been applied to a variety of database
operators including joins [3, 4, 6, 27, 34, 58], sorting [10, 26, 50, 56],
scans [69] and compression [40, 52, 63]. Advanced SIMD optimiza-
tions [49, 51] include non-linear-access operators. SIMD optimiza-
tions work best when data is cache-resident [68], the there are
trade-offs between scalar and SIMD code as we demonstrated in
Section 3.

Adaptive query processing aims to refine a query plan at run-
time on the basis of statistics gathered at intermediate stages of the
query computation [2, 14]. Multiple sub-plans could be compiled
into a query, with a choice to be determined based on partial compu-
tations such as the size of an intermediate table. Alternatively, when
a departure from the predicted behavior occurs, another round of
query optimization could be performed at run-time. Early work
on this topic instrumented query code with counters to gather
statistics that inform such choices [13, 28]. More recent work us-
ing in-memory databases uses hardware performance counters to
gather such statistics without any performance overhead [66].

We use a limited number of query plans based on an analysis of
regions of parameter space. The Picasso database query optimizer
visualizer allows one to visually inspect optimal plan choices for
different regions of the parameter space [15, 22]. Our choice of a
small number of plans is analogous to how Picasso would create a
“reduced diagram”with a bounded reduction in overall performance.
Empirically, the authors find that ten plans is almost always suffi-
cient to cover the parameter space with at most a 20% degradation
in the plan cost at any point in the space [15]. PlanBouquets [17]
incrementally discovers actual selectivity at runtime in order to
identify appropriate plan to execute, and recent work [31] has im-
proved its significant compile-time overheads. Our plans are likely
to be simpler than the ones considered by Picasso, so fewer then
ten plans may typically be sufficient.

To deal with arbitrary user defined functions, [12] compiles a
high-level query workflow into a distributed program. UDFs are
compiled with LLVM into intermediate representations and then
linked with the workflow program into binary executables. A dif-
ferent approach proposed recently is to compile UDFs into plain
SQL queries [16, 24], where arbitrary control flows are translated
into recursive expressions.

Database and programming language compilers have a common
goal, namely to generate efficient machine code for queries/pro-
grams written in a high-level language. Recent query compilers
resemble programming-language compilers, sharing some of the
low-level infrastructure such as LLVM [12, 44]. The programming
language community has built hot-spot compilers [46] that ini-
tially interpret (and profile) code sections. When the interpreter
determines that the code section is a hot-spot, it pauses, compiles
the code section in real time, and executes the remainder of the
code section using the compiled code. This choice balances compi-
lation and execution time, and similar innovations have recently
been described for database query compilation [36]. While data-
base compilers have adopted programming-language innovations
such as LLVM and hot-spot compilation, our method shows that
there is also an opportunity for technology transfer in the opposite
direction.

Our system extends the Truffle framework [64] and the Graal
compiler [65]. Using Graal as the host compiler, Truffle is particu-
larly well-suited for languages with very dynamic semantics and
whose execution depends heavily on the size, layout and contents
of the input data. Truffle offers numerous primitives for collecting
information about the observed data types and program behavior.
Additionally, so-called assumptions allow for non-local optimiza-
tions where the point that uses optimized code based on a specific
assumption is only loosely connected to the points that potentially
invalidate this assumption. Leveraging this speculative just-in-time
compilation based on implicit schemas that are discovered at run-
time, Truffle has also been used to develop efficient parsers for JSON
and CSV data [9], and to accelerate data de-serialization [57]. The
existing profiling and assumption mechanism in Truffle are based
on heuristics; they are local, behavior-centric, and strictly stabiliz-
ing (always moving towards the most generic version). This paper
extends them with a dynamic mechanism, directly observing the
actual performance of different but semantically equal algorithms.

8 CONCLUSIONS
We studied optimization techniques for data-analysis style queries
expressed as tight loops in a conventional imperative program-
ming language. Since the data distribution often strongly affects
query performance, it is important to make the code generation
and execution adaptive to the underlying data. To adapt to this
performance diversity, we built upon an open-source compiler to
generate code that efficiently processes large data sets with varying
data distributions and predicate selectivities. By using a learning
framework with alternative exploration and exploitation periods,
we enabled code generation using different plans and SIMD op-
tions. We showed that the system could tune run-time execution
parameters automatically, with minimal guidance from the pro-
grammer. As a result, we achieved robust query performance in
both microbenchmark and TPC-H queries. When the underlying
data changes, the adaptive code generation and execution can in
fact achieve better performance.

ACKNOWLEDGMENTS
This research was supported in part by a gift to Columbia University
from Oracle Corp, and by NSF grant IIS-2008295.

940

REFERENCES
[1] [n.d.]. The TPC-H Benchmark. http://www.tpc.org/tpch.
[2] Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive query

processing. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data. 261–272.

[3] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Ozsu. 2013. Mul-
tiCore, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB 7, 1 (Sept. 2013),
85–96.

[4] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Ozsu. 2013. Main-
memory Hash Joins on Multi-core CPUs: Tuning to the Underlying Hardware.
In ICDE. 362–373.

[5] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick Ho, Namik
Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil Lee, Tianchao Tim
Li, Guy M. Lohman, Konstantinos Morfonios, René Müller, Keshava Murthy,
Ippokratis Pandis, Lin Qiao, Vijayshankar Raman, Richard Sidle, Knut Stolze, and
Sandor Szabo. 2012. Business Analytics in (a) Blink. IEEE Data Eng. Bull. 35, 1
(2012), 9–14.

[6] Spyros Blanas, Yinan Li, and Jignesh Patel. 2011. Design and Evaluation of Main
Memory Hash Join Algorithms for Multi-core CPUs. In SIGMOD. 37–48.

[7] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the
Memory Wall in MonetDB. Commun. ACM 51, 12 (Dec. 2008), 77–85. https:
//doi.org/10.1145/1409360.1409380

[8] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
pipelining query execution. In CIDR.

[9] Daniele Bonetta and Matthias Brantner. 2017. FAD.js: fast JSON data access using
JIT-based speculative optimizations. Proceedings of the VLDB Endowment 10, 12
(2017), 1778–1789.

[10] Jatin Chhugani et al. 2008. Efficient implementation of sorting on multi-core
SIMD CPU architecture. In VLDB. 1313–1324.

[11] Confluent Inc. 2019. Streaming SQL for Apache Kafka. https://www.confluent.
io/product/ksql.

[12] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Çetintemel, and Stan Zdonik. 2015. An Architecture for Compiling UDF-
centric Workflows. PVLDB 8, 12 (2015), 1466–1477.

[13] Amol Deshpande and Joseph M. Hellerstein. 2004. Lifting the Burden of History
from Adaptive Query Processing. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (Toronto, Canada) (VLDB ’04).
VLDB Endowment, 948–959. http://dl.acm.org/citation.cfm?id=1316689.1316771

[14] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive query
processing. Now Publishers Inc.

[15] Harish Doraiswamy, Pooja N. Darera, and Jayant R. Haritsa. 2007. On the Produc-
tion of Anorexic Plan Diagrams. In Proceedings of the 33rd International Conference
on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007.
1081–1092. http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf

[16] Christian Duta, Denis Hirn, and Torsten Grust. 2019. Compiling PL/SQL Away.
arXiv preprint arXiv:1909.03291 (2019).

[17] Anshuman Dutt and Jayant R Haritsa. 2014. Plan bouquets: query processing
without selectivity estimation. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. 1039–1050.

[18] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas
Neumann, andAndrew Pavlo. 2017. MainMemoryDatabase Systems. Foundations
and Trends in Databases 8, 1-2 (2017), 1–130. https://doi.org/10.1561/1900000058

[19] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
andWolfgang Lehner. 2012. SAP HANA Database: Data Management for Modern
Business Applications. SIGMOD Rec. 40, 4 (Jan. 2012), 45–51. https://doi.org/10.
1145/2094114.2094126

[20] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-
Mauroux, and Samuel Madden. 2010. HYRISE: A Main Memory Hybrid Storage
Engine. Proc. VLDB Endow. 4, 2 (Nov. 2010), 105–116. http://dl.acm.org/citation.
cfm?id=1921071.1921077

[21] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. 1917–1923. https://doi.org/10.1145/2723372.2742795

[22] Jayant R. Haritsa. 2010. The Picasso Database Query Optimizer Visualizer. Proc.
VLDB Endow. 3, 1-2 (Sept. 2010), 1517–1520. https://doi.org/10.14778/1920841.
1921027

[23] Joseph M. Hellerstein. 1998. Optimization techniques for queries with expensive
methods. ACM Transactions on Database Systems 23, 2 (June 1998), 113–157.

[24] Denis Hirn and Torsten Grust. 2020. PL/SQLWithout the PL. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 2677–2680.

[25] InfluxData Inc. 2019. Time series database (TSDB) explained. https://www.
influxdata.com/time-series-database.

[26] Hiroshi Inoue, Takao Moriyama, Hideaki Komatsu, and Toshio Nakatani. 2007.
AA-Sort: A New Parallel Sorting Algorithm for Multi-Core SIMD Processors. In
PACT. 189–198.

[27] Saurabh Jha, Bingsheng He, Mian Lu, Xuntao Cheng, and Huynh Phung Huynh.
2015. Improving Main Memory Hash Joins on Intel Xeon Phi Processors: An
Experimental Approach. PVLDB 8, 6 (Feb. 2015), 642–653.

[28] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-query Re-optimization of
Sub-optimal Query Execution Plans. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data (Seattle, Washington, USA)
(SIGMOD ’98). ACM, New York, NY, USA, 106–117. https://doi.org/10.1145/
276304.276315

[29] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: a High-Performance,
Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (2008), 1496–1499. https://doi.org/10.1145/1454159.1454211

[30] Michael Kalloniatis and Charles Luu. [n.d.]. Temporal Resolu-
tion. https://webvision.med.utah.edu/book/part-viii-psychophysics-of-
vision/temporal-resolution/.

[31] Srinivas Karthik, Jayant R Haritsa, Sreyash Kenkre, and Vinayaka Pandit. 2018. A
concave path to low-overhead robust query processing. Proceedings of the VLDB
Endowment 11, 13 (2018), 2183–2195.

[32] Alfons Kemper and Thomas Neumann. 2011. HyPer: AHybrid OLTP&OLAPMain
Memory Database System Based on Virtual Memory Snapshots. In Proceedings
of the 2011 IEEE 27th International Conference on Data Engineering (ICDE ’11).
IEEE Computer Society, Washington, DC, USA, 195–206. https://doi.org/10.1109/
ICDE.2011.5767867

[33] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything You Always Wanted to Know About Compiled
and Vectorized Queries but Were Afraid to Ask. Proc. VLDB Endow. 11, 13 (Sept.
2018), 2209–2222. https://doi.org/10.14778/3275366.3275370

[34] Changkyu Kim et al. 2009. Sort vs. Hash revisited: fast join implementation on
modern multi-core CPUs. PVLDB 2, 2 (Aug. 2009), 1378–1389.

[35] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. 2014. Building
Efficient Query Engines in a High-level Language. Proc. VLDB Endow. 7, 10 (June
2014), 853–864. https://doi.org/10.14778/2732951.2732959

[36] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. 197–208.

[37] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code
for holistic query evaluation. In Proceedings of the 26th International Conference
on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA.
613–624. https://doi.org/10.1109/ICDE.2010.5447892

[38] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code
for holistic query evaluation. In ICDE. 613–624.

[39] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. 2013. Oracle
TimesTen: An In-Memory Database for Enterprise Applications. IEEE Data
Eng. Bull. 36, 2 (2013), 6–13.

[40] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann,
and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. 311–326. https://doi.org/10.1145/
2882903.2882925

[41] Per-Åke Larson, Mike Zwilling, and Kevin Farlee. 2013. The Hekaton Memory-
Optimized OLTP Engine. IEEE Data Eng. Bull. 36, 2 (2013), 34–40. http://sites.
computer.org/debull/A13june/Hekaton1.pdf

[42] Stefan Manegold, Peter Boncz, and Martin Kersten. 2000. Optimizing database
architecture for the new bottleneck: memory access. J. VLDB 9, 3 (2000), 231–246.

[43] Stefan Manegold, Peter Boncz, and Martin Kersten. 2002. Optimizing Main-
Memory Join on Modern Hardware. TKDE 14, 4 (July 2002), 709–730.

[44] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (June 2011), 539–550.

[45] Oracle Corp. 2019. GraalVM. https://www.graalvm.org/.
[46] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java hotspotTM

Server Compiler. In Proceedings of the 2001 Symposium on JavaTM Virtual Machine
Research and Technology Symposium - Volume 1 (Monterey, California) (JVM’01).
USENIX Association, Berkeley, CA, USA, 1–1. http://dl.acm.org/citation.cfm?
id=1267847.1267848

[47] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-Up Approach. PVLDB 11, 6 (2018), 663–676.

[48] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Manage-
ment Systems. In CIDR 2017, Conference on Innovative Data Systems Research.
http://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[49] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In SIGMOD. 1493–1508.

941

http://www.tpc.org/tpch
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/1409360.1409380
https://www.confluent.io/product/ksql
https://www.confluent.io/product/ksql
http://dl.acm.org/citation.cfm?id=1316689.1316771
http://www.vldb.org/conf/2007/papers/research/p1081-d.pdf
https://doi.org/10.1561/1900000058
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
http://dl.acm.org/citation.cfm?id=1921071.1921077
http://dl.acm.org/citation.cfm?id=1921071.1921077
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.14778/1920841.1921027
https://doi.org/10.14778/1920841.1921027
https://www.influxdata.com/time-series-database
https://www.influxdata.com/time-series-database
https://doi.org/10.1145/276304.276315
https://doi.org/10.1145/276304.276315
https://doi.org/10.1145/1454159.1454211
https://webvision.med.utah.edu/book/part-viii-psychophysics-of-vision/temporal-resolution/
https://webvision.med.utah.edu/book/part-viii-psychophysics-of-vision/temporal-resolution/
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.14778/3275366.3275370
https://doi.org/10.14778/2732951.2732959
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/2882903.2882925
http://sites.computer.org/debull/A13june/Hekaton1.pdf
http://sites.computer.org/debull/A13june/Hekaton1.pdf
https://www.graalvm.org/
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://dl.acm.org/citation.cfm?id=1267847.1267848
http://db.cs.cmu.edu/papers/2017/p42-pavlo-cidr17.pdf

[50] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of
Main-Memory Partitioning and Its Application to Large-scale Comparison- and
Radix-sort. In SIGMOD. 755–766.

[51] Orestis Polychroniou and Kenneth A. Ross. 2014. Vectorized Bloom Filters for
Advanced SIMD Processors. In DaMoN. Article 6.

[52] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Lightweight Compres-
sion Alongside Fast Scans. In DaMoN. Article 9.

[53] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David
Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu,
Guy M. Lohman, Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer,
David Sharpe, Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More Than Just a Column Store. Proc. VLDB Endow.
6, 11 (Aug. 2013), 1080–1091. https://doi.org/10.14778/2536222.2536233

[54] Kenneth A. Ross. 2004. Selection Conditions in Main Memory. ACM Transactions
on Database Systems 29, 1 (2004), 132–161.

[55] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. 2013. Micro Adaptivity
in Vectorwise. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13). ACM, New
York, NY, USA, 1231–1242. https://doi.org/10.1145/2463676.2465292

[56] Nadathur Satish et al. 2010. Fast sort on CPUs and GPUs: a case for bandwidth
oblivious SIMD sort. In SIGMOD. 351–362.

[57] Filippo Schiavio, Daniele Bonetta, and Walter Binder. 2020. Dynamic speculative
optimizations for SQL compilation in Apache Spark. Proceedings of the VLDB
Endowment 13, 5 (2020), 754–767.

[58] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD. 1961–1976.

[59] Doug Simon. [n.d.]. libgraal: GraalVM compiler as a precompiled GraalVM
native image. https://medium.com/graalvm/libgraal-graalvm-compiler-as-a-
precompiled-graalvm-native-image-26e354bee5c.

[60] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The Ar-
chitecture of SciDB. In Proceedings of the 23rd International Conference on Scientific
and Statistical Database Management (Portland, OR) (SSDBM’11). Springer-Verlag,
Berlin, Heidelberg, 1–16. http://dl.acm.org/citation.cfm?id=2032397.2032399

[61] Tableau Inc. 2019. Tableau. https://www.tableau.com.
[62] Sandeep Tata. 2007. Declarative Querying for Biological Sequences. Ph.D. Disser-

tation. Ann Arbor, MI, USA. Advisor(s) Patel, Jignesh M. AAI3276308.
[63] Thomas Willhalm et al. 2009. SIMD-scan: ultra fast in-memory table scan using

on-chip vector processing units. PVLDB 2, 1 (Aug. 2009), 385–394.
[64] Christian Wimmer and Thomas Würthinger. 2012. Truffle: a self-optimizing run-

time system. In Proceedings of the 3rd annual conference on Systems, programming,
and applications: software for humanity. 13–14.

[65] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to rule them all. In Proceedings of the 2013 ACM international
symposium on New ideas, new paradigms, and reflections on programming &
software. 187–204.

[66] Steffen Zeuch, Holger Pirk, and Johann-Christoph Freytag. 2016. Non-invasive
Progressive Optimization for In-memory Databases. Proc. VLDB Endow. 9, 14
(Oct. 2016), 1659–1670. https://doi.org/10.14778/3007328.3007332

[67] Wangda Zhang and Kenneth A Ross. 2020. Exploiting data skew for improved
query performance. IEEE Transactions on Knowledge and Data Engineering (2020).

[68] Wangda Zhang and Kenneth A Ross. 2020. Permutation Index: Exploiting Data
Skew for Improved Query Performance. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 1982–1985.

[69] Jingren Zhou and Kenneth A. Ross. 2002. Implementing Database Operations
Using SIMD Instructions. In Proceedings of SIGMOD Conference.

[70] M. Zukowski, M. van de Wiel, and P. Boncz. 2012. Vectorwise: A Vectorized Ana-
lytical DBMS. In Data Engineering (ICDE), 2012 IEEE 28th International Conference
on. 1349–1350. https://doi.org/10.1109/ICDE.2012.148

942

https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1145/2463676.2465292
https://medium.com/graalvm/libgraal-graalvm-compiler-as-a-precompiled-graalvm-native-image-26e354bee5c
https://medium.com/graalvm/libgraal-graalvm-compiler-as-a-precompiled-graalvm-native-image-26e354bee5c
http://dl.acm.org/citation.cfm?id=2032397.2032399
https://www.tableau.com
https://doi.org/10.14778/3007328.3007332
https://doi.org/10.1109/ICDE.2012.148

