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Abstract— This paper addresses the problem of learning
to complete a scene’s depth from sparse depth points and
images of indoor scenes. Specifically, we study the case in
which the sparse depth is computed from a visual-inertial
simultaneous localization and mapping (VI-SLAM) system. The
resulting point cloud has low density, it is noisy, and has non-
uniform spatial distribution, as compared to the input from
active depth sensors, e.g., LiDAR or Kinect. Since the VI-
SLAM produces point clouds only over textured areas, we
compensate for the missing depth of the low-texture surfaces
by leveraging their planar structures and their surface normals
which is an important intermediate representation. The pre-
trained surface normal network, however, suffers from large
performance degradation when there is a significant difference
in the viewing direction (especially the roll angle) of the
test image as compared to the trained ones. To address this
limitation, we use the available gravity estimate from the VI-
SLAM to warp the input image to the orientation prevailing in
the training dataset. This results in a significant performance
gain for the surface normal estimate, and thus the dense
depth estimates. Finally, we show that our method outperforms
other state-of-the-art approaches both on training (ScanNet [1]
and NYUv2 [2]) and testing (collected with Azure Kinect [3])
datasets.

I. INTRODUCTION

Determining the dense depth of a scene has important

applications in augmented reality, motion planning, and 3D

mapping. This is often achieved by employing depth sensors

such as Kinect and LiDAR. Besides the high-cost, size, and

power requirements of depth sensors, their measurements are

either sparse (LiDAR) or unreliable at glossy, reflective, and

far-distance surfaces (Kinect). Recent research has shown

that some of the limitations of depth sensors can be overcome

by employing RGB images along with the strong contextual

priors learned from large-scale datasets (≃ 200K images), us-

ing a deep convolutional neural network (CNN). Specifically,

to produce dense depth estimates, recent approaches have

employed CNNs with three types of inputs: (a) a single RGB

image (e.g., [4], [5], [6], [7], [8]); (b) poses (position and

orientation) and optical flow from multiple images (e.g., [9],

[10], [11]); (c) a single RGB image and sparse depth [12],

[13], [14], [15], [16], [17], [18], [19], [20], [21].

In our work, which falls under (c) and is inspired by [16],

we seek to estimate dense depth by fusing RGB images,

learned surface normals, and sparse depth information. In

contrast to [16] that uses LiDAR, we obtain the sparse

points from a real-time visual-inertial SLAM (VI-SLAM)
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system [22]. There are thee key differences between the

point clouds directly measured by a Kinect or a LiDAR

and those estimated by VI-SLAM: Density, accuracy, and

spatial distribution. In particular, the VI-SLAM point cloud

comprises sparse points (≃ 0.5% of an image’s pixels) that

are extracted and tracked across images and triangulated

using the camera’s estimated poses. For this reason, the

accuracy of these points varies widely, depending on the

local geometry and the camera’s motion. Moreover, the

VI-SLAM points are not uniformly distributed across an

image. They are usually found on high-texture surfaces,

while textureless areas such as walls, floors, and ceilings that

are ubiquitous in man-made environments often contain few

points only. Due to this large domain gap, networks trained

using Kinect or LiDAR data suffer from a significant perfor-

mance degradation when given 3D points triangulated by VI-

SLAM as sparse depth information [18], [19]. Furthermore,

in large-scale indoor datasets (ScanNet [1], NYUv2 [2],

Matterport3D [23]), the images are usually aligned with

gravity [24]. During inference time, this bias results in

further performance degradation of the depth completion

networks [14], as well as optical-flow to depth networks

trained on these data [9].

A straightforward approach to address the domain gap

and the lack of images from various vantage points is to

collect and process more data and re-train the network. This,

however, is both labor and time intensive. Alternatively, 3D

mesh reconstructions from RGB-D sequences (e.g., Bundle-

Fusion [25], BAD-SLAM [26], etc.) can be employed to

synthesize novel views of RGB images. The accuracy of

the 3D mesh, however, is usually not sufficient and the

quality of the resulting data depends on many factors, e.g.,

the overlap between frames, the sparse points tracking error,

etc. For this reason, in our work, we employ the VI-SLAM

point cloud when training the depth estimation network while

incorporating the VI-SLAM estimate of gravity direction to

reduce the effect of “unseen orientation.” Specifically, to

address the domain gap issue in the point cloud, we first

train a network using sparse depth input from the point

cloud generated by VI-SLAM, instead of randomly sampling

from the ground-truth depth (e.g., [14]). Furthermore, to

increase the density of the point cloud, we leverage the planar

structures commonly found indoors. Secondly, to solve the

domain gap in viewing directions, we align each input image

taken with “unseen orientation” to a rectified orientation

that the pre-trained network is more familiar with, using the

gravity direction estimated from VI-SLAM. We show that

this approach not only improves the performance on images

taken with familiar orientations, but also achieves satisfactory
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generalization on the unfamiliar ones. In summary, our main

contributions are:

• We introduce an efficient approach to improve the

generalization of the VI-SLAM depth completion that

leverages (i) the planar geometry of the scene and (ii)

the camera’s orientation with respect to gravity.

• We implement a full pipeline from VI-SLAM to dense

depth estimation for evaluation on Azure Kinect [3] and

perform extensive experiments that demonstrate the ad-

vantages of our method over state-of-the-art approaches

on dense-depth estimation [9], [14].

II. RELATED WORK

Single-view depth estimation. Depth estimation from a

single image has been studied by early works such as [27]

which is based on handcrafted features. More recently,

numerous deep learning-based approaches have appeared

(e.g., [5], [4], [6], [7]) for estimating dense depth. Note,

however, that given a single image, the pixels’ depths cannot

be determined only from local features; hence data-driven

approaches have to rely on the global context of the image,

which is learned from the training data. Therefore, despite

the surprisingly good performance when trained and tested

with images from the same dataset, they exhibit poor gener-

alization on cross-dataset experiments [8].

Multi-view depth estimation. One way to overcome the

single-view depth estimation challenges is to consider mul-

tiple camera poses and optical flow. Specifically, the scene

depth can be recovered up to scale, given information from

multiple views, or with metric scale if the poses are estimated

with the aid of other sensors (e.g., IMU). In particular, [10]

takes two images as input, estimates the optical flow as

an intermediate result, and refines the depths as well as

the poses iteratively. On the other hand, [11] computes the

photometric errors by warping adjacent images to the current

one, and inputs them along with the current image to neural

network. Lastly, [9] estimates a probability distribution for

the depth, instead of a single depth, and refines the initial

depth estimates from a neural network by warping the depth

distribution of adjacent images and fusing them in a Bayesian

fashion. These methods implicitly estimate depth from poses

and optical flow using exclusively neural networks, instead

of computing the depths of at least some points directly from

geometry. As shown in [20], employing these sparse or semi-

dense depths as the input of neural network results in higher

performance as compared to relying on the optical flow.

Depth completion from RGB and sparse depth. A key

difference between the methods described hereafter and the

previous two families of approaches is that the domains of

their inputs are significantly different. Specifically, the RGB

image has a well-defined range of values for all pixels,

while the sparse depth image has only few valid values

where the majority of the pixels’ depths are unknown. To

address this domain difference, many approaches such as

[28], [29] propose normalized convolution and upsampling

layers so that the missing pixels will not be processed in

the convolution kernels. On the other hand, methods such as

[30], [31], [15], [32], [33] do not treat the sparse normal input

differently, which indicates with proper training applying

standard convolution can achieve comparable results.

A different approach proposed by [16] showed that em-

ploying a network to compute the surface normals based on

the RGB image and using the normals as an additional input

to the later layers can improve the network’s performance.

Moreover, it was proposed to concatenate color/normal chan-

nels and sum the depth channels for the skip-connections be-

tween the encoder and decoder. Due to space considerations,

we have included the experiments on generalizability of this

network in [34].

In [14], Cheng et al. introduced the convolutional spatial

propagation network (CSPN), where the initial depth image

and an affinity matrix are first produced by a CNN and

then the depth is iteratively refined through a diffusion

process involving the affinity matrix and the current depth

estimate. Furthermore, for the case of depth completion,

CSPN employs validity masks to retain the depth of the

sparse input, and hence does not allow the network to correct

potentially noisy measurements. As we will show in our

experimental results, this policy will lead to loss in accuracy

when the input depth is noisy.

Closely related to our work are those of [18] and [35]. In

[18], a system to compute dense depth from either LiDAR

or SLAM point-cloud on-board MAVs is described using

the confidence propagation network similar to [28]. Since,

however, their focus is on real-time performance on devices

with limited resources, their accuracy is lower than the state

of the art. As in our work, [35] also employs a VI-SLAM

system to generate the sparse input. Moreover, it uses a

two-step process to first extend the depth data from the

sparse 3D point cloud and then combine them with the

RGB image as the input to a network that produces the final

dense-depth image. In particular, [35] first employs Delaunay

triangulation [36] to fit a triangular mesh on the sparse points

of the image and then computes the depth of all the pixels

falling within each triangle using its plane equation. Note

that the accuracy of this approach depends heavily on the

assumption that the triangles match with the planar surfaces

of the image’s scene, which, in general, is not true.1

III. TECHNICAL APPROACH

In this paper, we propose a method to accurately predict

dense depths using only sensors available on most mobile

devices, i.e., a camera and an IMU. Fig. 1 depicts an

overview of our system, where the depth completion network

(DCN) estimates the dense depth from the following inputs:

(i) the RGB image, (ii) a sparse depth image based on

the 3D points triangulated by the VI-SLAM, and (iii) the

surface normal map predicted by another CNN. As shown

1Another contribution of [35] is creating visual-inertial datasets for depth
estimation. However, it does not have ground-truth surface normal, which
our networks relies on. Therefore, we instead employ ScanNet [1], with
surface normal readily available from 3D mesh, to train our network. As
for evaluating generalization capability, we collected our own dataset with
sufficient roll and pitch variation (which is not the case for the dataset
of [35]) to highlight the effect of incorporating gravity.
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Fig. 1. Overview of the system. At each keyframe, the VI-SLAM (Sec. III-A) processes images and IMU measurements to compute (i) the gravity
direction which is provided to the surface-normal network (Sec. III-B), and (ii) the sparse depth image. The sparse depth enrichment module (Sec. III-D)
increases the density of the sparse-depth image using information about planes in the image. This is provided by the plane detection network (Sec. III-C)
that classifies image pixels as belonging to a particular plane and the surface normal network that estimates the normal of each pixel. The depth completion
network (DCN) (Sec. III-E) employs the RGB image, the pixel normals, and the enriched sparse-depth image to produce a dense depth image.

experimentally by [16] and evident in our ablation studies,

(iii) improves the accuracy of depth estimation.

Specifically, we employ VI-SLAM [22] (see Sec. III-A),

which takes as input images and IMU measurements, to

compute the sparse 3D point cloud observed by the camera.

Then, the sparse depth image is obtained by projecting

the point cloud to the camera frame. Additionally, a CNN

predicts the surface normal of every pixel in the RGB

image (see Sec. III-B) while leveraging the gravity direction

estimated by the VI-SLAM to improve its accuracy. Note

that although the sparse depth image from the VI-SLAM

can be used directly as input to the DCN, we seek to first

increase its density by performing a sparse-depth enrichment

step. To do so, we extract the planar patches of the image

using a CNN (see Sec. III-C), and use the estimated normals

along with any 3D points that fall inside a plane, to compute

a denser depth representation of the scene (see Sec. III-D).

Finally, the DCN (see Sec. III-E) computes the dense depth

estimate based on the RGB image, the enriched sparse depth

image, and the surface normals.

A. VI-SLAM: Sparse Depth Image Generation

In this work, we employ the inverse square-root sliding

window filter (SR-ISWF) [22] to estimate in real-time cam-

era poses and 3D feature positions. Specifically, at each time

step the SR-ISWF extracts FAST [37] corners in the current

image, and tracks them by matching their corresponding

ORB descriptors [38] to the previous images. The SR-ISWF

then fuses the IMU measurements and the 2D-to-2D feature

tracks across the sliding window to estimate the camera’s

motion along with the features’ positions.

Every time the SR-ISWF processes an image, we project

all visible 3D features on the image and use their depth (i.e.,

their Z component) to create the sparse depth image. The SR-

ISWF also computes the gravity direction which is passed

to the surface normal network.

Fig. 2. Top row: Input image from Azure Kinect along with the gravity-
aligned image; the performance of FrameNet is satisfactory. Bottom row:
Input image with significant roll component, resulting in poor performance.
Warping the input based on the gravity direction before passing it through
the CNN improves the performance in both cases.

B. Surface Normal Network

As it will become evident from our experimental vali-

dation, the performance of the DCN depends on the ac-

curacy of the surface normals prediction. In particular,

training state-of-the-art surface-normal-estimation networks

such as the FrameNet [39] on large-scale indoor datasets

(e.g., ScanNet [1], NYUv2 [2], Matterport3D [23]) does

not yield satisfactory results. This is due to the fact that

the FrameNet’s surface-normal estimator’s performance de-

grades significantly when tested on images whose roll angles

deviate substantially from the vertically-aligned images used

during training (see Fig. 2).

To address this issue, we follow the approach of [40] to

warp the input image so that the gravity, which is estimated

from IMU, is aligned with the image’s vertical axis. Note

that, in this paper, we are interested in how the accuracy
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Normal (FrameNet)
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Fig. 3. We refine the imprecise plane annotation: (a) Given an imprecise plane instance, (b) we fit a plane using the depth from ScanNet with a strict
threshold, which produces a set of sparse, yet accurate, points. (c) Using the point set, we incrementally grow the planar region based on the surface
normal from FrameNet. (d-e) This refinement allows us to precisely label the plane instances.

of surface-normal prediction affects the depth-completion

performance, rather than solely focusing on the surface-

normal accuracy as in [40].

The idea of using gravity from VI-SLAM has been

proposed in [41] as a regularization for a depth-prediction

network during training time. In contrast, in our work we

employ the online estimated gravity to improve the gener-

alization during inference time. Recently, [24] proposed to

remove the roll angle from an image by using the orientation

estimated from monocular SLAM [42]. This method, though,

lacks global information hence it relies on the assumption

that the first camera’s view is aligned with gravity. In

contrast, and due to the observability of gravity in VI-SLAM

system [43], our method makes no assumptions about the

camera’s motion.

C. Plane Detection

A key idea behind our approach is to take advantage of

planar surfaces present in the scene to enrich the sparse depth

image (see Sec. III-D). To do so, we predict plane masks on

the image using a CNN. Specifically, we leverage the ground-

truth plane masks from Plane-RCNN [44] which employs the

3D mesh reconstruction created from ScanNet [1] for the

multi-plane instance proposals. Unfortunately, the resulting

plane annotations are mis-aligned as shown in Fig. 3. Hence,

to obtain reliable training data, Plane-RCNN proposed a

heuristic method to detect this misalignment based on the

discrepancies between the projected 3D mesh reconstruction

on each image and their corresponding depth, and then

drop any frames with large discrepancies during training.

While effective, this method discards a large set of planes

annotations during training, which can potentially degrade

the plane detector’s performance.

To address this problem, we employ RANSAC-based [45]

plane fitting and region growing to refine the plane anno-

tations. Specifically, for each annotated plane from Plane-

RCNN, we employ 3pt RANSAC, using the corresponding

depth from ScanNet and a strict inlier threshold (2 cm) to

fit a plane. This yields only a small set of inliers due to the

imprecise depth measurements. Given the initial inliers, we

grow the coplanar region through neighboring pixels based

on two criteria: (i) the distance of each 3D point to the

plane is less than 20 cm and (ii) the corresponding surface

normal from FrameNet [39] is close (less than 30◦) to the

plane’s normal. If the plane computed through this process

is substantially smaller than the annotation, we discard the

annotation. By applying this method to all the annotated

planes we are able to accurately compute the plane instances

(see Fig. 3) and ensure that the planes are well aligned

with the RGB images. Lastly, we employ the improved

annotations as ground-truth to train a Mask R-CNN [46]

network for plane detection.

D. Sparse Depth Enrichment

In this module, we enrich the sparse depth image by

increasing the number of points it contains. We focus on

the parts of the scene where 3D point features project on a

detected plane (see Sect. III-C). This process comprises the

following two steps for estimating each plane’s parameters:

1) Plane Normal estimation: We randomly select a few

pixels as plane-normal hypotheses and compare their

directions to the rest of the plane’s pixels to find the

largest set of normal directions aligned within 10 de-

grees. We then assign as the plane’s normal the average

of the normal vectors of the largest set [47].

2) Plane Distance estimation: Given the plane’s normal n,

each 3D point pi expressed in the camera’s coordinate

frame is a candidate for computing the plane’s distance

hypothesis di = −nT pi. As before, the one with the

largest set of inliers is accepted, and the plane’s distance

d is set to be the average distance of inliers.

Next, we employ n and d to compute the depth zi =− d
nT bi

of each pixel, where bi is its normalized homogeneous

coordinate. Hereafter, we refer to the depth image resulting

from this as the “incomplete depth image” (see Fig. 1).

Once the incomplete depth image is generated, we select

only a subset of the points from it to form the enriched

depth image provided to the DCN (see Fig. 1). The reason

behind this choice is that often the 3D points triangulated by

VI-SLAM may contain errors. In this case, using the entire

incomplete depth image as the input to the DCN will bias

its output by implicitly forcing it to trust the depth values of

many densely distributed pixels with erroneous estimates. On

the other hand, our experiments (see Sect. IV-B) and those

of [18] show that the DCN performs significantly better when

the sparse depth image is uniformly distributed over the RGB

image. This requirement, however, is not typically satisfied

by indoor areas containing large textureless surfaces. Instead,

3D points often cluster in few parts of an image where high

texture is observed. By employing the proposed enrichment

procedure, we are able to reduce the gap between the initial
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Fig. 4. Decoder structure. Features at different scales of the RGB, normal,
and depth images are concatenated together, passed through convolution
and upsampling, and then summed. A final convolution and upsampling is
applied to compute the dense depth image.

distribution of sparse depth and a uniform distribution. As

shown in Sect. IV, sampling about 100 points from the

incomplete depth image produces the best results.

E. Depth Completion Network

Our DCN is inspired by the Panoptic FPN [48]. Specifi-

cally, each of the RGB, normal, and the sparse depth images

are processed through separate encoders, which compute four

feature tensors per input corresponding to different layers

of the ResNet. Before being processed by the decoder, we

concatenate the features of the RGB, normal, and sparse

depth images at each scale and apply convolution and upsam-

pling, resulting in four feature tensors of size 128×60×80.

These are then summed together and passed through a final

convolution and upsampling layer resulting in the dense-

depth image (see Fig. 4).

IV. EXPERIMENTAL RESULTS

In what follows, we experimentally verify the performance

of our method, and compare it to state-of-the-art approaches.

Although our target application is for VI-SLAM systems,

the lack of visual-inertial training data has led us to employ

RGB-D datasets (i.e., ScanNet [1] and NYUv2 [2]) to train

our networks. To assess the performance on visual-inertial

data and verify the generalization capability of our approach,

we have also collected data using Azure Kinect [3]. In

terms of depth error metrics, we report root mean square

error (RMSE) in meters, and E(D̂,δ ), which specifies the

percentage of the estimated depths D̂ for which max( D̂
D
,

D

D̂
)<

δ , where D is the ground-truth depth. For surface-normal

error metrics, we report mean absolute of the error (MAD),

median of absolute error (Median), and the percentage of

pixels with angular error below a threshold ξ with ξ =
11.25◦, 22.5◦, 30.0◦.

Experiment Setup: All the networks in this paper have

been implemented in PyTorch [49], and the original authors’

code and provided network weights have been used for

comparisons against other methods. To train the DCN, we

employ L1 loss and the Adam optimizer [50] with a learning

rate of 10−4. We train the model for 20 epochs and report

the best epoch on the corresponding dataset’s validation set.

The training was done on an NVIDIA Tesla V100 GPU with

32GB of memory with a batch size of 16. Since the aspect

ratio of the Azure Kinect dataset images is significantly

different than those of ScanNet and NYUv2, we first crop

them and then resize to 320 × 240. For the ScanNet and

NYUv2 we only apply resizing. Our neural network code

is available at https://github.com/MARSLab-UMN/

vi_depth_completion along with our datasets. Fur-

thermore, due to limited space, we have provided our full

experimental results in [34].

A. Comparison on ScanNet Datasets

We train and evaluate different configurations of our

approach on the ScanNet indoor datasets and compare our

performance with NeuralRGBD [9]. Although ScanNet does

not contain inertial data, we leverage other available annota-

tions to estimate (i) the gravity direction, and (ii) a 3D point

cloud, required for our training and testing. Specifically, we

obtain the gravity direction from the normal direction of

pixels labeled as the ground (by FrameNet [39]). To compute

the 3D point cloud, we first extract FAST corners [37], track

them via KLT [51], and remove outliers by employing the

5pt-RANSAC [52]. The inlier tracks are then triangulated

using the provided camera poses to generate the sparse 3D

point cloud (on average, for each image we compute 58

sparse depth values from the point cloud which corresponds

to 0.07% of pixels). Lastly, we generate plane masks for

the entire dataset and compute the incomplete depth images

through the process described in Sect. III-D.

In Table I, we evaluate the accuracy of the reconstructed

sparse and incomplete depth inputs as well as the final depth

output using the following configurations:

• Triangulation: The sparse depth resulting from project-

ing the 3D point cloud on the image.

• Incomplete Depth: The incomplete depth images gener-

ated through the process described in Sect. III-D.

• NeuralRGBD [9]: State-of-the-art depth estimation from

a sequence of images.

• Ours-SD: DCN results trained and tested using the

sparse depth as input.

• Ours-ID: DCN results trained and tested using the

incomplete depth as input.

• Ours-Enriched 100, 200: Using Ours-SD trained net-

work with selecting 100 or 200 additional points from

the incomplete depth to generate the enriched depth (see

Sect. III-D and Fig. 1).

As evident from Table I, the errors E(D̂,δ ) of the triangu-

lated points and incomplete depths show that the inputs are

relatively accurate. Furthermore, using the enriched depth

with 100 points as input has slightly higher accuracy in the

stricter metrics (δ = 1.05,1.10). On the other hand, a denser

enriched depth image comprising 200 points decreases the
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TABLE I

PERFORMANCE OF DEPTH COMPLETION ON SCANNET TEST SET

E(D̂,δ )
RMSE ↓ 1.05 ↑ 1.10↑ 1.25↑ 1.252 ↑ 1.253 ↑

Triangulation 0.153 75.89 92.19 98.51 99.64 99.89
Incomplete Depth 0.201 66.39 85.30 96.64 99.05 99.60

NeuralRGBD [9] 0.294 46.35 72.99 93.00 98.30 99.43
Ours-SD 0.266 54.09 78.41 94.68 98.91 99.71

Ours-ID 0.265 54.65 78.71 94.72 98.85 99.67
Ours-Enriched 100 0.271 54.85 78.54 94.55 98.76 99.66
Ours-Enriched 200 0.271 54.37 78.11 94.46 98.73 99.63

accuracy for the reasons explained in Sect. III-D. Although

the network trained and tested using incomplete depth per-

forms slightly better than both sparse and enriched depths

for the ScanNet dataset, its performance degrades drastically

on cross-dataset (see Sect. IV-C). Finally, these results show

that our approach outperforms [9] on all metrics, especially

the stricter ones.

B. Comparison on NYUv2 Depth Dataset

To compare against the CSPN [14], we also test our

approach on the NYUv2 datasets. In our evaluation, we

used the official 249 training scenes and sub-sampled 25,000

color-depth image pairs for the network to train, while tested

on the standard 654-image test set. Since NYUv2 does not

provide camera poses, to generate the sparse depth, we first

extract 2D-to-2D correspondences (see Sect. IV-A), and then

sample from the ground-truth depth instead of projecting a

3D point-cloud as input to the DCN.

Table II shows the performance of the proposed approach

compared to CSPN using their pre-trained model. Note that

the CSPN model has been trained on sparse depth generated

by randomly sampling from the ground-truth depth. In our

tests, we compare the computed depth when the sparse depth

is from 2D-to-2D tracks (denoted as “Feature” in Table II),

and by randomly sampling 200 points from the ground-

truth (“Uniform”). These results show that our approach

outperforms CSPN in all metrics. Additionally, the gap in

performance when employing features is much larger than

using random samples. This is due to the distribution of

FAST corners on the images, where more points are located

on the textured areas as compared to the textureless ones.

TABLE II

PERFORMANCE OF DEPTH COMPLETION ON NYUV2 TEST SET

E(D̂,δ )
RMSE ↓ 1.05 ↑ 1.10↑ 1.25↑ 1.252 ↑ 1.253 ↑

CSPN[14] (Feature) 0.46 69.31 78.39 86.47 91.65 94.57
Ours-SD (Feature) 0.20 80.38 91.27 97.53 99.50 99.89

CSPN[14] (Uniform) 0.18 87.56 94.17 98.24 99.59 99.88
Ours-SD (Uniform) 0.18 88.86 94.82 98.46 99.66 99.91

C. Generalization Capability on Azure Kinect Datasets

In order to evaluate our DCN on datasets with visual-

inertial data, and to better compare the generalization capa-

bility of our approach against the alternative ones, we col-

lected 24 datasets in indoor areas using the Azure Kinect [3].

Each dataset comprises color and depth images at 30 Hz, as

well as IMU data at 1.6 KHz. The depth images are employed

as the ground-truth, while the color images and the IMU

measurements are processed by the VI-SLAM to compute

the camera’s poses and the triangulated 3D feature positions.

These datasets consist of ∼8K keyframes used for evaluation.

Unless otherwise specified, all networks considered in this

section are trained only on ScanNet.

TABLE III

PERFORMANCE OF SURFACE NORMAL ESTIMATION ON AZURE KINECT

Gravity-aligned frames MAD↓ Median↓ RMSE↓ 11.25◦↑ 22.5◦↑ 30.0◦↑

Vanilla 9.15 4.89 15.91 80.83 90.83 93.41
Warping Augmentation 9.31 4.61 17.23 81.88 90.59 92.95

Gravity Alignment 8.62 4.26 15.57 82.03 91.17 93.68

Gravity-non-aligned frames MAD↓ Median↓ RMSE↓ 11.25◦↑ 22.5◦↑ 30.0◦↑

Vanilla 14.40 6.86 23.32 65.55 81.56 85.77
Warping Augmentation 11.87 5.63 20.87 74.91 86.48 89.67

Gravity Alignment 11.46 5.22 19.88 74.24 86.29 89.75

All frames MAD↓ Median↓ RMSE↓ 11.25◦↑ 22.5◦↑ 30.0◦↑

Vanilla 11.37 5.41 19.31 74.35 86.48 89.95
Warping Augmentation 10.62 5.09 19.19 78.31 88.48 91.27

Gravity Alignment 10.03 4.65 17.84 78.33 88.73 91.74

First, we present the performance and the effectiveness of

our gravity alignment for surface-normal estimation (Sec. III-

B) on Azure Kinect datasets. Table III compares the proposed

gravity alignment (see Sect. III-B) against the following

alternatives: (i) Vanilla - training with standard ground-truth

surface normal and (ii) Warping augmentation - improving

generalization by warping the input image with random rota-

tion during training; on two categories of images (1) gravity

aligned and (2) gravity non-aligned. The network used in all

cases is DORN [5] and is trained with the truncated angular

loss [40]. In these tests, we achieve satisfactory performance

when evaluating DORN on the scenes with gravity-aligned

images (Table III, Gravity-aligned frames). Its performance,

however, reduces drastically when the images have large

pitch/roll rotations (Table III, Gravity-non-aligned frames).

We attribute this degradation to the lack of training images

with large pitch/roll angles. To assess the accuracy of our

approach, we also compare against a naive data augmentation

scheme that randomly warps each input image to provide

the network with more diverse viewing directions. Finally,

Table III shows that by warping in a direction aligned with

the gravity estimated by VI-SLAM, our method outperforms

both the baseline DORN and training with data augmentation

(i.e., randomly warping images) in terms of generaliza-

tion performance without requiring data augmentation, thus

resulting in shorter training. Table IV presents the depth

completion performance of our method, as compared to the

NeuralRGBD and CSPN, on the Azure Kinect dataset.

TABLE IV

PERFORMANCE OF DEPTH COMPLETION ON AZURE KINECT DATASET

E(D̂,δ )
RMSE ↓ 1.05 ↑ 1.10↑ 1.25↑ 1.252 ↑ 1.253 ↑

CSPN-NOISY 1.461 5.10 9.03 17.02 29.52 43.25
CSPN-GT 1.465 8.10 11.20 17.93 29.49 42.69

Ours-SD† 0.913 11.70 22.55 47.96 74.85 88.03

Ours-Enriched 100† 0.814 15.09 28.74 57.93 82.23 91.48

NeuralRGBD 0.717 20.03 36.25 65.25 86.28 94.59
Ours-ID 0.534 18.64 35.54 71.00 93.84 98.20
Ours-SD 0.524 19.96 37.55 73.78 94.24 98.52

Ours-Enriched 100 0.496 24.21 44.34 79.07 95.32 98.71
Ours-Enriched 100+g 0.490 24.26 44.31 79.23 95.65 98.95

To properly compare with the pretrained NeuralRGBD and

CSPN, we separately train our DCN network on ScanNet and

NYUv2 (denoted with †). Since CSPN is trained using points

sampled from the ground-truth depth, besides evaluating

its performance on the triangulated point cloud (CSPN-

NOISY), we also assess its performance when the sparse
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Fig. 5. Qualitative results on gravity-non-aligned scenes.

depth of the same locations is extracted from the ground-truth

depth (CSPN-GT). In addition to the previous results, we

also include our depth-enrichment method with the surface

normal computed using our proposed gravity-aware network

(Ours-Enriched 100+g). Table IV shows that our algorithms

significantly outperform the alternative methods in all metrics

for cross-dataset evaluation, thus confirming the general-

ization capability of the depth-enrichment approach for the

network trained on either NYUv2 or ScanNet. In addition,

it shows that the depth-enrichment method has a stronger

impact than the accuracy of the surface-normal prediction.

Fig. 5 qualitatively illustrates our method for gravity-non-

aligned images.

Higher accuracy normals result in more precise depth.

We examine the performance of our DCN network using

surface-normal input with and without the gravity alignment,

denoted as Ours-SD+g and Ours-SD in Table V, respectively.

In order to highlight the impact of the surface-normal ac-

curacy, we evaluate the networks on the gravity-non-aligned

subset of the Azure Kinect dataset, which is shown to have a

significant improvement on surface-normal accuracy with the

gravity alignment (see Sect. IV-C). Table V illustrates that

with gravity alignment, the depth accuracy increases more

as compared to ones evaluated on the entire Azure Kinect

dataset (see Sect. IV-C).
TABLE V

BETTER NORMAL RESULTS IN BETTER DEPTH

E(D̂,δ )
RMSE ↓ 1.05 ↑ 1.10↑ 1.25↑ 1.252 ↑ 1.253 ↑

Ours-SD 0.540 15.58 31.33 70.81 93.86 98.11
Ours-SD+g 0.514 15.94 32.55 71.94 95.06 98.66

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced two efficient methods for

improving the generalization performance of sparse-to-dense

depth completion: (i) Transform the data to a form that the

network is familiar with to produce better surface normal

estimates, and (ii) Generate an enriched sparse-depth image

that significantly improves the performance both on similar

scenes to the training ones and the generalization datasets

collected using different devices. We thoroughly evaluate

multiple configurations of our approach and show its su-

perior performance and generalization ability comparing to

other state-of-the-art depth-completion methods. As part of

our future work, we plan to incorporate the uncertainty of

depth inputs to the network. Specifically, we will investigate

alternative methods for enriching the sparse depth based on

uncertainty instead of random sampling.
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