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Abstract—Place recognition is a core component of Si-
multaneous Localization and Mapping (SLAM) algorithms.
Particularly in visual SLAM systems, previously-visited places
are recognized by measuring the appearance similarity between
images representing these locations. However, such approaches
are sensitive to visual appearance change and also can be com-
putationally expensive. In this paper, we propose an alternative
approach adapting LiDAR descriptors for 3D points obtained
from stereo-visual odometry for place recognition. 3D points are
potentially more reliable than 2D visual cues (e.g., 2D features)
against environmental changes (e.g., variable illumination) and
this may benefit visual SLAM systems in long-term deployment
scenarios. Stereo-visual odometry generates 3D points with an
absolute scale, which enables us to use LiDAR descriptors for
place recognition with high computational efficiency. Through
extensive evaluations on standard benchmark datasets, we
demonstrate the accuracy, efficiency, and robustness of using
3D points for place recognition over 2D methods.

I. INTRODUCTION

Visual SLAM (vSLAM) is an important capability for
field robots, especially where GPS signal reception is weak
or unavailable (e.g., in urban or underwater settings). In these
systems, visual odometry (VO) is used to build a local map
and estimate ego-motion to assist in robot navigation. How-
ever, significant error can accumulate throughout the process,
which causes odometry estimates to diverge from the correct
path. Some form of a “loop closure” approach (e.g., Bag-of-
Words [1] [2]) is required to recognize previously-visited
places and bring non-local constraints into the system to get
a globally consistent map and trajectory. Place recognition
thus enables loop closures and improves VO accuracy.

Classical place recognition methods for vision-based sys-
tems usually rely on 2D images. Each location is represented
by an image taken at that place. To determine the possibility
of two locations being the same place, the similarity of their
corresponding images is evaluated (see Sec. II). However,
visual odometry methods provide additional information us-
able for place recognition purposes. The depth of points (i.e.,
the distance of these points from the camera) on 2D images
can be partially or fully recovered by monocular or multi-
camera visual odometry, respectively. The 3D structure of
the scene can potentially provide important information for
place recognition; however, 2D place recognition methods
ignore this. The 3D structure is more robust than 2D images
in a dynamic environment (e.g., under varying illumination).
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(c) Holywell Street in spring.

(d) Holywell Street in winter.

Fig. 1: Images from the RobotCar dataset in different sea-
sons. Note the significant changes in appearance.

The motivation is also biological, as humans rely strongly
on 3D structures for place recognition [3].

On the other hand, a rich body of literature exists on
place recognition methods using 3D points from LiDAR
(Light Detection and Ranging) sensors. LiDAR sensors scan
the 3D structure of the environment rather than its visual
appearance, making LiDAR-based place recognition more
robust against environmental changes such as appearance and
brightness (see Fig. 1). Another benefit of LiDAR methods
is their high computational efficiency, and our evaluations
demonstrate this when comparing 2D image-based and 3D
LiDAR methods (see Sec. IV).

In this work, we adapt LiDAR place recognition methods,
in particular, LiDAR descriptors, into visual odometry sys-
tems for place recognition purposes. The goal is to enable
accurate and robust place recognition in a computationally
efficient way for a vision-based system in a dynamic environ-
ment. The proposed approach imitates a LiDAR range scan
from 3D points generated by stereo-visual odometry, which
enables us to adapt LiDAR descriptors.

Several challenges must be overcome for applying LiDAR-
based methods to vision-based systems. First, the 3D points
generated by visual odometry are distributed in a frustum due
to the much narrower field-of-view of cameras (excluding
omnidirectional cameras) compared to most LiDAR sensors.
The pose of the frustum changes with the camera, which is
not desirable for place recognition. The second challenge is
how to (and even if it is necessary to) adapt image intensity
information into LiDAR-based methods, as such information
is not available to LiDAR sensors. We address these chal-
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lenges in this work. To the best of our knowledge, this is the
first approach that uses global LiDAR descriptors for place
recognition in vSLAM systems. The main contributions of
this work, discussed in Sec. III, are as follows:

o Adapting global LiDAR descriptors to a vision-based
system for place recognition,

o Achieving high accuracy and robustness against visual
appearance changes,

o Achieving lower computational cost over existing ap-
proaches.

We evaluate the proposed method on the KITTI dataset
[4] and the Oxford RobotCar dataset [5]. We demonstrate the
robustness of our method against drastic visual appearance
changes across seasons as recorded in the RobotCar dataset,
and show that it achieves higher accuracy and computational
efficiency over existing methods. Further performance im-
provement is achieved by augmenting the LiDAR descriptor
with image intensity information.

II. RELATED WORK

In the field of vSLAM, ORB-SLAM?2 [6] is a recent devel-
opment that demonstrates high accuracy and computational
efficiency. In ORB-SLAM2, loop closure is detected by
Bag-of-Words (BoW) using ORB features [7]. A vocabulary
tree is used in BoW to speed up feature matching and
subsequent place queries. However, if the features are highly
repetitive (e.g., plants), BoW may fail; an example is given
in Fig. 6. Similarly, LSD-SLAM [8] adopts FAB-MAP [9]
for place recognition. Other than BoW, Fisher vectors [10]
and VLAD [11] also focus on 2D features. On the other
hand, global image descriptors are also used to decide the
similarity between images for place recognition. GIST [12] is
one example which encodes spatial layout properties (spatial
frequencies) of the scene. It exhibits high accuracy if the
viewing angle does not significantly change.

Recently, researchers adopted deep learning to place
recognition and achieved impressive performance (e.g.,
NetVLAD [13] and [14]). NetVLAD trained a convolutional
neural network to extract learned features and proposed a
generalized VLAD layer to describe the image automatically.
Their accuracy is promising but their computational cost is
usually high so that they are not widely used in real-time
vSLAM systems.

Neither BoW nor GIST is robust against visual appearance
change, which is not ideal for long term (e.g., from summer
to winter) vSLAM applications, in addition to being com-
putationally expensive. In ORB-SLAM?2, place recognition
runs in a separate execution thread to achieve real-time
performance. Direct vSLAM systems (e.g., [15], [16]) have
become popular in the past decade, which achieve higher
performance in certain scenarios. Adapting BoW into direct
vSLAM systems is challenging because features are not
selected with the goal of being matched across frames. In
LSD-SLAM mentioned above, an additional set of features
are detected and matched separately, which are used specif-
ically for place recognition, at a higher computational cost.
In LDSO [17], the point selection strategy of its direct

vSLAM system [15] is tuned to flavor features that can
be matched across frames to enable BoW. Our proposed
approach for place recognition, however, is more elegant for
direct vSLAM systems if stereo cameras are available.

A number of 3D place recognition methods have been
designed for RGB-D cameras or LiDAR sensors. RGB-D
Mapping [18] uses ICP [19] to detect loop closure and
RANSAC [20] to get an initial pose for ICP. For LiDAR,
place recognition methods can be categorized into local
descriptors and global descriptors. Local descriptors use a
subset of the points and describe them in a local neighbor-
hood. Examples are Spin Image [21] and SHOT [22]. Spin
Image describes a keypoint by a histogram of points lying
in each bin of a vertical cylinder centered at that keypoint.
SHOT creates a sphere around a keypoint and describes that
keypoint by the histogram of normal angles in each bin in
the sphere. Global methods describe the entire set of points.
These methods can be more computationally efficient. Recent
development includes NDT [23], M2DP [24], Scan Context
[25], and DELIGHT [26]. NDT classifies keypoints into line,
plane, and sphere classes according to their neighborhoods.
A histogram of these three classes is created to represent the
point cloud. M2DP projects points onto multiple planes, and
the histogram of point count in each bin on each projection
plane is concatenated to get a signature of the point cloud.
Scan Context aligns the point cloud to the vertical direction
and represents it by the histogram of the maximal height
of each bin on the horizontal plane. DELIGHT focuses
on LiDAR intensity; the scan sphere is divided into 16
parts and the histogram of LiDAR intensity in each part is
concatenated to represent the point cloud.

Cieslewski et. al. [27] looked into the possibility of using
the 3D points triangulated from Structure-from-Motion or
vSLAM for place recognition. They proposed the NBLD
descriptor [27] for the 3D points from a vision-based system.
A keypoint is described by its neighborhood points in a
vertical cylinder. The point density of each bin in the cylinder
is calculated and compared with neighborhoods to create a
binary descriptor of that keypoint. Ye et. al. [28] extended
NBLD with a neural network. The vertical cylinder of NBLD
is created in the same way; however, a neural network
is trained to describe the cylinders, instead of calculating
the point density. These are novel approaches in adopting
point cloud descriptors into vision-based systems for place
recognition.

In this work, we adapt global LiDAR descriptors into
stereo-visual odometry for robust and efficient place recogni-
tion under visual appearance change. Direct vSLAM systems
can easily adopt the proposed approach for place recognition
without modifying their point selection strategy.

III. METHODOLOGY

Similar to the idea of [27], our method recognizes places
based on the 3D points generated by visual odometry. The
main difference is that the visual odometry in this work is
running on stereo cameras. Specifically, we use SO-DSO [29]
as our stereo-visual odometry for its high accuracy and
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Fig. 3: An overview of the proposed approach. The basis lies
in the “Point Cloud Preprocessing” block, where 3D points

obtained by stereo VO are used to imitate a LIDAR scan, so
that efficient place recognition can be performed.

computational efficiency. To the best of our knowledge,
SO-DSO is the only direct stereo-visual odometry that is
robust to repetitive textures (Fig. 6). We choose SO-DSO to
demonstrate that the proposed method works for direct vS-
LAM systems. However, any multi-camera visual odometry
is applicable here. Since the 3D points generated by stereo-
visual odometry have an absolute scale, we can describe
them efficiently using global LiDAR descriptors. The goal is
high accuracy and computational efficiency, and robustness
to environmental change.

A. Point Cloud Preprocessing

Due to the narrow field-of-view of the cameras, the 3D
points generated by stereo-visual odometry are located in a
frustum determined by the camera pose. If we apply a global
descriptor directly inside the frustum, place recognition will
be very sensitive to the viewing angle.

To solve this issue, we propose a simple but effective
method that transforms 3D points from stereo-visual odom-
etry in the frustum to an omnidirectional LiDAR-shaped
(spherical) 3D point cloud. The proposed method is illus-
trated in Fig. 3. Stereo-visual odometry generates keyframes
with camera poses and associated 3D points. We maintain
what we refer to as a local points list. For each incom-
ing keyframe, we store all its 3D points into the list. To
imitate a LiDAR scan for the current keyframe, we iterate
through the local points list: if the distance of the point
is within the desired LiDAR range, we transform it to the
current keyframe coordinate by current pose, then put it
into the spherical points list. Here we assume the camera
motion is predominantly in the forward direction so that we
continuously have points coming into the desired range to
compensate for points leaving the range, as illustrated in

Fig. 4: Snapshots of an imitated LiDAR scan at the end of
KITTI seq. 06.

Fig. 2. The spherical points may contain duplicate points;
for robustness and computational efficiency, we filter them
to get the final filtered points. An example of an imitated
LiDAR scan is given in Fig. 4.

Caching local points enables us to imitate LiDAR scans
with denser omnidirectional points. Since visual odometry
generates locally accurate camera poses and 3D points,
concatenating 3D points transformed from multiple nearby
keyframes to imitate a LiDAR scan is feasible.

B. Point Cloud Description

The next step in the proposed method is to describe the
filtered points and get a place signature for the keyframe,
for which we rely on global LiDAR descriptors. This is
preferable for two reasons: the first is for its computational
efficiency when describing and matching the point clouds;
the second reason is due to the fact that the point clouds
we have are generated by visual odometry, they are not as
consistent and dense as the ones from a LiDAR. Many local
descriptors, such as Spin Image, depend on the surface nor-
mal, for which dense point clouds are required, which would
be problematic in this case. We choose DELIGHT [26],
M2DP [24], and Scan Context [25] as our global descriptors
since they are state-of-the-art LiDAR descriptors for place
recognition that are robust to sparse and inconsistent point
clouds. The high-level ideas of them are illustrated in Fig.
5.

DELIGHT: DELIGHT operates on LiDAR intensities.
The LiDAR scan sphere is divided into 16 bins by radius,
azimuth, and elevation. Each bin is described by the his-
togram of LiDAR intensities inside, which are concatenated
to form the signature representing the entire LiDAR scan. To
make the descriptor less sensitive to rotation and translation,
the raw LiDAR scan is aligned to a reference frame obtained
by Principal Components Analysis (PCA) [30]. As discussed
in [26], there are four versions of the signatures due to the
ambiguity of PCA.
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Fig. 5: Demonstration of LiDAR descriptors used in this
work: DELIGHT, M2DP, and Scan Context.

Analogous to LiDAR scan intensities, the 3D points from
the visual odometry have grayscale intensities from the im-
ages. We simply replace LiDAR intensities with grayscale in-
tensities and adapt the DELIGHT descriptor into our system.
Each histogram is composed of 256 bins since the grayscale
intensity ranges from 0 to 255. Although DELIGHT does
not use 3D structural information, we include it in this work
to contrast it against M2DP and Scan Context as both these
methods use this information. This is done to highlight the
value of 3D structures for robust place recognition against
visual appearance change.

M2DP: M2DP is a global descriptor that demonstrates
high accuracy and efficiency. The point cloud is projected
onto multiple planes, and each plane is separated into indi-
vidual bins by radius and azimuth. The distributions of the
projection onto bins are concatenated to form a signature for
the point cloud. For computational and memory efficiency,
singular-value decomposition (SVD) is used to compress the
signature. As in DELIGHT, PCA is used to align the point
cloud.

In this work, we augment the M2DP descriptor using
grayscale intensity from the visual odometry. Specifically,
when projecting the point cloud onto each plane, we not
only count the number of points projected onto each bin,
but also calculate the average grayscale intensity. Therefore,
we have two types of signatures (namely the point count
signature and the intensity signature) for each place. To
make the intensity signature less sensitive to illumination, we
binarize the intensity by comparing it to the global average
intensity. The intuition is to highlight the bright bins. To
improve accuracy, we adopt the four versions of signature
from DELIGHT. We include M2DP in our method as it
utilizes 3D structure for place recognition and is not limited
to urban scenarios like Scan Context.

Scan Context: Scan Context is a straightforward yet
effective descriptor designed for LiDAR scans obtained in
urban areas. The LiDAR scan is aligned with respect to
the gravitational axis which is measured externally (e.g.,
with an IMU). Then the horizontal circle plane is separated
into multiple bins by radius and azimuth. In each bin,
the maximum height is found and concatenated to form a
signature for the current place.

To fit Scan Context into our system, we make the follow-
ing modifications. First, since we want to avoid using addi-
tional sensors, we adopt the PCA method used in DELIGHT
and M2DP to align the point cloud. Second, due to the PCA

ambiguity, we replace maximum height with height range
(maximum height - minimum height). Lastly, we generate the
intensity signature as in the modified M2DP. Scan Context is
the most efficient and accurate among the three descriptors,
as shown in experimental evaluations (Sec. IV).

C. Place Recognition

Based on the place signatures, we are able to determine the
similarity between places. We generate a difference matrix
by calculating the signature distance from each query place
to every place in the reference database. For DELIGHT and
M2DP, we take the shortest distance from the query signature
to all four possible signatures of the reference place. For Scan
Context, even though we can use the same approach as for
DELIGHT and M2DP, we compare against all possible yaw
angles (as the original Scan Context) for maximal accuracy.
The distance of DELIGHT is based on the chi-squared test as
described in [26]. For M2DP and Scan Context, the distance
is simply the Euclidean distance between normalized (L2-
norm=1) signatures. As we have two types of signatures
(structure signature and intensity signature), we get two
individual difference matrices Dg and D;. We fuse them in
Eq. 1 by normalizing (mean=0, std=1) each row (representing
each query) and adding them with a relative weight wj:

Dfused = Wg - Nrow(Ds) + Nrow(Di) (l)

With the difference matrix, each query place (row) is
matched to a reference place with the smallest difference
value among all candidates (along the row).

1V. EXPERIMENTAL EVALUATION

To evaluate the proposed method, we compare the results
internally among DELIGHT, M2DP, and Scan Context, as
well as externally to BoW, GIST, and [28], as real-time
performance at a low computational cost is a key aspect of
our work.

Implementation

We use the fast (but less accurate) setting (< 800 active
points, < 6 frames in optimization) of SO-DSO to estimate
camera poses and generate 3D points. We found that the fast
setting is good enough for our purpose and introducing more
points decreases the computational efficiency. The outputs
of SO-DSO (poses and points) are used by the proposed
methods for place recognition.

The authors of M2DP have published their Matlab
code, which we re-implement using C++. We similarly re-
implement DELIGHT and Scan Context. When preprocess-
ing the point cloud as discussed in Sec. III-A, we set
the LiDAR range r = 45.0m. For DELIGHT and M2DP,
spherical points are filtered in polar coordinate with 1-degree
angular resolution. We keep the closest point along each
ray originating from the polar center. For Scan Context,
however, we filter points in the Cartesian coordinate with
1.5m x 0.75m x 1.5m resolution. We switch to the Cartesian
coordinate and assign a higher resolution along the vertical
axis because Scan Context focuses on height. For the KITTI
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Method | DELIL M2DP S.C. BoW GIST

Seq. 00]0.754 0.616(0.639 0.1910.733 0.599 ((0.893 0.788(0.841 0.774
Seq. 02]0.463 0.253(0.488 0.053|0.555 0.440((0.011 0.012{0.613 0.597
Seq. 05]0.622 0.483{0.522 0.062{0.653 0.566((0.867 0.809|0.756 0.659
Seq. 06]/0.916 0.531{0.946 0.671{0.897 0.679(0.968 0.963|0.925 0.729
Seq. 07]0.000 0.000{0.000 0.000{0.000 0.000((0.713 0.627|0.350 0.149

TABLE I: AUC (first number) and maximal recall at 100%
precision (second number) on KITTI dataset.
_ i o

Fig. 6: Snapshot of KITTI seq. 02 at a revisited place.

dataset [4], there are 2706.2 (1610.6) points on average
in each filtered points using polar (Cartesian) filtering. For
DELIGHT, the radius of the inner/outer sphere is set to
10/45 meters, respectively. The parameters of M2DP and
Scan Context are set to default values. For more details,
our implementations are available online'. When fusing
difference matrices in Eq. 1, we set a higher weight wg = 2
to structure because structure is more reliable than grayscale
intensity.

The implementation of BoW comes from ORB-SLAM?2;
the implementation of GIST is available online?.

Evaluation

For place recognition accuracy, we focus on the area under
the precision-recall curve (AUC) and the maximal recall at
100% precision (no false positives, i.e., no errors) as two
indices. Larger AUC means more places are recognized with
fewer errors. To some extent, AUC reflects the discrimination
power of a place recognition algorithm. Larger maximal
recall at 100% precision indicates that more places are
recognized before making any mistakes, it is important
because a single false positive might significantly affect
the accuracy of the entire SLAM algorithm. In the ideal
case, both AUC and maximal recall should be 1. Other
than accuracy, computational efficiency is also evaluated.
We take apart each algorithm and compare the components
individually. The accuracy and efficiency are evaluated on
KITTI dataset [4] and Oxford RobotCar Dataset [5].

KITTI Dataset

The KITTI dataset is one of the most influential datasets
for benchmarking autonomous driving research. The odom-
etry dataset comes with 22 stereo sequences. However, only
the first 11 sequences have ground-truth publicly available.
Among them, sequences {00, 02, 05, 06, 07} have loop
closure segments, which are used in this section.

Accuracy: When computing precision and recall, two
places are considered to be revisited places if their distance

Thttps://github.com/IRVLab/so_dso_place_recognition
2http://lear.inrialpes.fr/software

Bow
N
|

Scan Context

00 ©otoe 05 06 07

Fig. 7: Places recognized (marked as red) by BoW and by
Scan Context on KITTI dataset at 100% precision.

Method DELI [M2DP|S.C. [|[BoW |GIST
Imitate LIDAR Scan (c++)[1.151 [1.204 [0.692||- -
Desc. extraction (c++) 0.082 [46.10 [0.123[|37.41|160.0
Query descriptor (Matlab) [103.2 [3.418 [7.334((115.0|1.106
Total 104.4 [50.72 [8.149(|152.4|161.1

TABLE II: Run time analysis in milliseconds.

is smaller than 10 meters, which is relatively small as the
distance between trajectories can be small (e.g., sequence 06
in Fig. 7).

Table I reports the accuracy of each algorithm. BoW
achieves the best accuracy in all sequences other than se-
quence 02. Each sequence in the KITTI dataset is recorded
continuously in a short period of time, there is not much
visual appearance change. Hence, feature matching is robust
and BoW works perfectly. For sequence 02, the BoW ap-
proach fails to recognize places because the revisited places
are occupied with repetitive textures (i.e., plants in Fig. 6),
for which feature matching is unreliable. The accuracy of
the adapted LiDAR approaches is not as good as BoW
or GIST but their AUCs are still fairly high on sequences
{00, 02, 05, 06}. Scan Context achieves the best overall
accuracy among the adapted LiDAR approaches. Sequence
07 is special because there is only a small segment of loop
closure when the vehicle comes back to the starting place.
Thus, the accuracy of BoW and GIST is not very reliable.
None of the proposed 3D methods detects any loop because
there is not enough overlapped trajectory to accumulate 3D
points.

Fig. 7 plots the loops detected by BoW and Scan Context.
Scan Context fails to recognize places in short segments. This
is because the proposed method needs enough overlapped
trajectory to accumulate 3D points. This is a limitation of
the proposed method. However, it recognized places with
repetitive textures in sequence 2. Nevertheless, we showed
that our implementation of each algorithm works on the
KITTI dataset (at least for BoW and GIST; we will further
validate the proposed 3D approaches using the RobotCar
dataset).

Efficiency: Table II reports the run-time required to
query a place in the database. The test platform is based
on an Intel i7-6700 with 16GB of RAM. The run-time is
calculated in sequence 06.

Point filtering in Scan Context is slightly faster because
of the simple Cartesian coordinate filtering. For descriptor
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Spr. | Spr. | Spr. | Spr. | Sum. | Sum. | Sum. | Fall | Fall | Win.

Tests Spr. | Sum. | Fall | Win. | Sum. | Fall | Win. | Fall | Win. | Win.

Spr. | Spr. | Spr. | Spr. | Sum. | Sum. | Sum. | Fall | Fall | Win.

Tests Spr. | Sum. | Fall | Win. | Sum. | Fall | Win. | Fall | Win. | Win.

05-19(05-19]05-19|05-19{08-13 [08-13|08-13[10-30|10-30|02-10

Dates| )5 55108-13]10-30{02-10[07-14 | 10-30|02-10{ 11-28 [02-10 | 12-12

[28] ]0.774]0.736|0.589{0.419|0.764|0.557[0.489]0.599(0.443|0.597

NBLD|0.651{0.700]|0.611{0.351|0.672{0.496 (0.379]0.4540.351]0.491

TABLE III: Test sequences on RobotCar dataset.

generation, DELIGHT is the fastest due to its straightfor-
ward mechanism. Scan Context is the second-fastest because
calculating the height range is also efficient. M2DP is the
slowest one among all the adapted 3D methods. The entire
set of points is projected onto multiple planes, followed by
SVD compression, which is computationally expensive. For
BoW and GIST, their high accuracy on the KITTI dataset
is achieved at a high computational cost. For place query,
GIST is the quickest since it simply calculates the Euclidean
distance between two descriptors. This is followed by M2DP,
for which we have calculated all four descriptors of each
place, the distance between two places is simply the smallest
Euclidean distance. Scan Contest is slightly slower because
the query descriptor is matched against all possible yaws.
DELIGHT and BoW are much slower. The chi-squared test
in DELIGHT is computationally expensive. For Bow, we ex-
tract 4000 features for each image and use a vocabulary tree
with about 1 million nodes. Hence, both descriptor extraction
and matching of BoW are computationally expensive.

Scan Context achieves the highest overall efficiency that
can run in real-time in most vSLAM systems. Although BoW
and GIST achieve higher accuracy, they are much slower than
Scan Context.

RobotCar Dataset

The RobotCar dataset is challenging for place recognition
since visual appearance and brightness changes drastically.
Snapshots of RobotCar are shown in Fig. 1. The testing pairs
are given in Table III, covering all combinations of seasons.

Accuracy: Since the authors of [28] have not published
their code, we evaluate our algorithms using the same
settings for fair comparisons. Specifically, we use the same
segment as illustrated in Fig. 5(a) of [28] for testing. When
computing precision and recall, we also use 25 meters as the
GPS distance threshold.

Table IVa shows the AUC of each algorithm running
the tests in Table IIl. Since we cannot re-run the tests
in [28], data of [28] and NBLD are taken directly from
[28], which are just for reference; whereas the rows marked
“DELI.”, “M2DP”, and “S.C.” represent our approaches
adapting these three global descriptors. Table IVb illustrates
the maximal recall with 100% precision. Scan Context
(“s.c.”) achieves both the highest AUC and the highest
recall in most tests. Scan Context depends on the height
range for place recognition. In the RobotCar dataset, the
maximum/minimum height is usually from buildings/ground.
Therefore, the height range is not very sensitive to seasonal
change. GIST behaves best in the rest of the tests. It works
well because the viewing angle is mostly unchanged in
the RobotCar dataset. M2DP is the next-best performing
approach, which has a relatively high accuracy when there is

DELLI |0.869(0.677]0.445{0.040(0.836{0.612{0.0080.498[0.003 [0.014

M2DP |0.900{0.851]0.498{0.322|0.853|0.519(0.276]0.540[0.349|0.541

S.C. [0.956/0.944|0.782(0.729]0.9280.779|0.618|0.644 | 0.491 | 0.814

BoW [0.558{0.342]0.208{0.3000.305{0.418 {0.371]0.002{0.2930.001

GIST [0.932{0.918{0.679(0.778|0.914]0.694]0.7380.003 | 0.606 | 0.000

(a) AUC.

Spr. | Spr. | Spr. | Spr. | Sum. [ Sum. | Sum. | Fall | Fall | Win.

Tests | Spr. | Sum. | Fall | Win. | Sum. | Fall | Win. | Fall | Win. | Win.

DELL [0.334]0.070{0.026|0.000|0.434 0.187{0.000 [ 0.055]0.000 | 0.008

M2DP (0.302]0.232{0.001]0.010{0.032|0.011{0.058{0.117]0.039{0.013

S.C. ]0.758]0.558{0.408{0.322{0.685|0.415|0.325|0.346 | 0.247 | 0.519

BoW [0.032]0.021{0.0230.031]0.005[0.034|0.100{0.000|0.043|0.000

GIST [0.7940.377]0.242]0.176{0.503|0.242{0.156 | 0.000 [ 0.109 [ 0.000

(b) Maximal recall at 100% precision.
TABLE IV: Place recognition accuracy on RobotCar dataset.

Spring-Spring

Spring-Winter

Fig. 8: Places recognized (marked as red) by Scan Context
at 100% precision.

less visual appearance change (e.g., Test a: Spring-Spring).
However, in different seasons, the trees along the streets
have vastly different appearances (e.g., for losing leaves) as
illustrated in Fig. 1. M2DP projects all 3D points to get
a signature, so its accuracy drops. DELIGHT suffers more
from visual appearance change between seasons because it
purely depends on grayscale intensity, which indicates the
importance of 3D structure for place recognition. BoW has
the worst performance; a potential reason is that feature
matching is sensitive to changing scene factors such as trees
and traffic (vehicular and pedestrian).

Fig. 8 shows the places recognized by Scan Context at
100% precision. For the easy case (Spring-Spring), Scan
Context recognizes most of the places. For the challenging
case (Spring-Winter), with the reference of Fig. 1, most
places along Holywell street are correctly recognized since
it is occupied mostly with buildings; but most places along
Parks road are not recognized because there are many trees
(maximum height) on both sides of the road.

Fig. 9 shows the decrease in accuracy of each algorithm
against seasonal visual appearance change. For AUC, Scan
Context and GIST outperform the rest in terms of robustness;
for maximal recall, BoW has an abnormal curve because all
of its maximal recall values are very low (Table IVb). Other
than that, Scan Context is the most robust one. Therefore,
we conclude that Scan Context is robust against visual
appearance change.
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Fig. 10: Precision-recall curves of Scan Context compared
with that of [28].

Fig. 10 shows the comparison of the precision-recall curve
between the adapted Scan Context and the methods in [28]. It
validates that Scan Context adapted in this work outperforms
[28] in accuracy.

Intensity Contribution: Table V shows the AUC and
maximal recall of Scan Context using structure only, intensity
only, and both structure and intensity. Scan Context with
intensity only performs poorly on the RobotCar dataset, since
grayscale intensity changes drastically throughout different
seasons. However, augmenting the structure descriptor with
intensity information clearly improves the maximal recall,
even though it does not obviously improve the AUC.

We do not include the efficiency comparison on the
RobotCar dataset since we use the identical setup with the
KITTI dataset and the results are similar.

Use Case Analysis

After the experiments, we claim that the use case of the
proposed method is for forward-moving vehicles (for accu-
mulating points) equipped with stereo cameras in visually

changing environments (e.g., RobotCar dataset), where the
proposed approach recognizes place with high accuracy, ef-
ficiency, and robustness. It also works with repetitive texture
(e.g., Sequence 02 of KITTI dataset). Additionally, adopting
the proposed approach is easier than adopting BoW for direct
vSLAM.

The conventional BoW works on individual images, and
there is no forward-moving constraint. It achieves higher
accuracy, especially for small loop segments (e.g., Fig. 7)
when there is not much visual appearance change.

V. CONCLUSIONS

In this paper, we propose a novel place recognition
approach for stereo-visual odometry. Instead of 2D image
similarity, we depend on the 3D points generated by the
visual odometry to determine the correlation between places.
The 3D points from stereo systems with an absolute scale
are used to imitate LiDAR scans which are fed into three
global LiDAR descriptors, which are DELIGHT, M2DP, and
Scan Context. We augment the descriptors with grayscale
intensity information. Experiments on the KITTI dataset
and RobotCar dataset show the accuracy, efficiency, and
robustness of the proposed method.

For the next step, we will integrate the proposed method
into state-of-the-art stereo-visual odometry algorithms for
loop closure detection, and quantify the performance im-
provement in visually challenging environments. Further-
more, we intend to extend the proposed approach with deep
learning and compare to learning-based place recognition
approaches.
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