


lenges in this work. To the best of our knowledge, this is the

first approach that uses global LiDAR descriptors for place

recognition in vSLAM systems. The main contributions of

this work, discussed in Sec. III, are as follows:

• Adapting global LiDAR descriptors to a vision-based

system for place recognition,

• Achieving high accuracy and robustness against visual

appearance changes,

• Achieving lower computational cost over existing ap-

proaches.

We evaluate the proposed method on the KITTI dataset

[4] and the Oxford RobotCar dataset [5]. We demonstrate the

robustness of our method against drastic visual appearance

changes across seasons as recorded in the RobotCar dataset,

and show that it achieves higher accuracy and computational

efficiency over existing methods. Further performance im-

provement is achieved by augmenting the LiDAR descriptor

with image intensity information.

II. RELATED WORK

In the field of vSLAM, ORB-SLAM2 [6] is a recent devel-

opment that demonstrates high accuracy and computational

efficiency. In ORB-SLAM2, loop closure is detected by

Bag-of-Words (BoW) using ORB features [7]. A vocabulary

tree is used in BoW to speed up feature matching and

subsequent place queries. However, if the features are highly

repetitive (e.g., plants), BoW may fail; an example is given

in Fig. 6. Similarly, LSD-SLAM [8] adopts FAB-MAP [9]

for place recognition. Other than BoW, Fisher vectors [10]

and VLAD [11] also focus on 2D features. On the other

hand, global image descriptors are also used to decide the

similarity between images for place recognition. GIST [12] is

one example which encodes spatial layout properties (spatial

frequencies) of the scene. It exhibits high accuracy if the

viewing angle does not significantly change.

Recently, researchers adopted deep learning to place

recognition and achieved impressive performance (e.g.,

NetVLAD [13] and [14]). NetVLAD trained a convolutional

neural network to extract learned features and proposed a

generalized VLAD layer to describe the image automatically.

Their accuracy is promising but their computational cost is

usually high so that they are not widely used in real-time

vSLAM systems.

Neither BoW nor GIST is robust against visual appearance

change, which is not ideal for long term (e.g., from summer

to winter) vSLAM applications, in addition to being com-

putationally expensive. In ORB-SLAM2, place recognition

runs in a separate execution thread to achieve real-time

performance. Direct vSLAM systems (e.g., [15], [16]) have

become popular in the past decade, which achieve higher

performance in certain scenarios. Adapting BoW into direct

vSLAM systems is challenging because features are not

selected with the goal of being matched across frames. In

LSD-SLAM mentioned above, an additional set of features

are detected and matched separately, which are used specif-

ically for place recognition, at a higher computational cost.

In LDSO [17], the point selection strategy of its direct

vSLAM system [15] is tuned to flavor features that can

be matched across frames to enable BoW. Our proposed

approach for place recognition, however, is more elegant for

direct vSLAM systems if stereo cameras are available.

A number of 3D place recognition methods have been

designed for RGB-D cameras or LiDAR sensors. RGB-D

Mapping [18] uses ICP [19] to detect loop closure and

RANSAC [20] to get an initial pose for ICP. For LiDAR,

place recognition methods can be categorized into local

descriptors and global descriptors. Local descriptors use a

subset of the points and describe them in a local neighbor-

hood. Examples are Spin Image [21] and SHOT [22]. Spin

Image describes a keypoint by a histogram of points lying

in each bin of a vertical cylinder centered at that keypoint.

SHOT creates a sphere around a keypoint and describes that

keypoint by the histogram of normal angles in each bin in

the sphere. Global methods describe the entire set of points.

These methods can be more computationally efficient. Recent

development includes NDT [23], M2DP [24], Scan Context

[25], and DELIGHT [26]. NDT classifies keypoints into line,

plane, and sphere classes according to their neighborhoods.

A histogram of these three classes is created to represent the

point cloud. M2DP projects points onto multiple planes, and

the histogram of point count in each bin on each projection

plane is concatenated to get a signature of the point cloud.

Scan Context aligns the point cloud to the vertical direction

and represents it by the histogram of the maximal height

of each bin on the horizontal plane. DELIGHT focuses

on LiDAR intensity; the scan sphere is divided into 16

parts and the histogram of LiDAR intensity in each part is

concatenated to represent the point cloud.

Cieslewski et. al. [27] looked into the possibility of using

the 3D points triangulated from Structure-from-Motion or

vSLAM for place recognition. They proposed the NBLD

descriptor [27] for the 3D points from a vision-based system.

A keypoint is described by its neighborhood points in a

vertical cylinder. The point density of each bin in the cylinder

is calculated and compared with neighborhoods to create a

binary descriptor of that keypoint. Ye et. al. [28] extended

NBLD with a neural network. The vertical cylinder of NBLD

is created in the same way; however, a neural network

is trained to describe the cylinders, instead of calculating

the point density. These are novel approaches in adopting

point cloud descriptors into vision-based systems for place

recognition.

In this work, we adapt global LiDAR descriptors into

stereo-visual odometry for robust and efficient place recogni-

tion under visual appearance change. Direct vSLAM systems

can easily adopt the proposed approach for place recognition

without modifying their point selection strategy.

III. METHODOLOGY

Similar to the idea of [27], our method recognizes places

based on the 3D points generated by visual odometry. The

main difference is that the visual odometry in this work is

running on stereo cameras. Specifically, we use SO-DSO [29]

as our stereo-visual odometry for its high accuracy and
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