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Abstract

This paper explores hierarchical clustering in the case
where pairs of points have dissimilarity scores (e.g. dis-
tances) as a part of the input. The recently introduced
objective for points with dissimilarity scores results in
every tree being a 1

2
approximation if the distances form

a metric. This shows the objective does not make a sig-
nificant distinction between a good and poor hierarchical
clustering in metric spaces.
Motivated by this, the paper develops a new global ob-
jective for hierarchical clustering in Euclidean space.
The objective captures the criterion that has motivated
the use of divisive clustering algorithms: that when a
split happens, points in the same cluster should be more
similar than points in different clusters. Moreover, this
objective gives reasonable results on ground-truth inputs
for hierarchical clustering.
The paper builds a theoretical connection between this
objective and the bisecting k-means algorithm. This pa-
per proves that the optimal 2-means solution results in a
constant approximation for the objective. This is the first
paper to show the bisecting k-means algorithm optimizes
a natural global objective over the entire tree.

1 Introduction
In hierarchical clustering, the input is a set of points, with a
score that represents the pairwise similarity or dissimilarity
of the points. The goal is to output a tree, often binary, whose
leaves represent data points, and internal nodes represent
clusters. Each internal node is a cluster of the leaves in the
subtree rooted at it. When a node gets closer towards the
leaves, the cluster it represents should become more refined,
and the points in this cluster should become more similar.
The nodes of the same level in this tree represent a partition
of the given data set into clusters. Note that each data point
(leaf) belongs to many clusters, one for each ancestor.
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Figure 1 shows a sample hierarchical clustering tree for
biological species. All the nodes in the tree on the right are
painted in the same colors with the clusters they represent in
the picture on the left.

The mainstream algorithms used to do hierarchical cluster-
ing can be classified roughly into two categories: agglomera-
tive and divisive. Agglomerative algorithms initialize every
point to be in their own individual cluster. They iteratively
pick the two clusters that are the most similar to each other to
merge into a bigger cluster. Meanwhile, the algorithms create
a parent in the hierarchical tree produced that is connected to
the two nodes corresponding to the two clusters before merg-
ing. The merging terminates when only one cluster remains.

Figure 1: A hierarchical clustering tree. The green leaves are
the input data points. Internal nodes represent a cluster of the
leaves in their subtree.

It is necessary for an agglomerative algorithm to quan-
tify the similarity between clusters, which can be defined in
several ways. For example, average-linkage is a popular ag-
glomerative algorithm, which measures the similarity of two
clusters by calculating the average pairwise inter-cluster simi-
larity score. Steinbach et al. (2000), Murtagh (1983), Murtagh
and Contreras (2012) and Zhao, Karypis, and Fayyad (2005)
discussed about common agglomerative algorithms and com-
pared the performance of different agglomerative algorithms
in a variety of backgrounds. Ackerman and Ben-David (2016)
identified properties of trees produced by linkage-based ag-
glomerative algorithms.

Divisive algorithms initialize the whole point set as one
single cluster, and create a root node corresponding to this
cluster in the hierarchical tree. They iteratively split a clus-
ter into smaller clusters. Then the algorithms create nodes
representing the separated clusters in the tree and make them

ar
X

iv
:2

00
8.

13
23

5v
1 

 [
cs

.L
G

] 
 3

0 
A

ug
 2

02
0



the children of the parent node. During the split, we want the
points in different clusters to be less similar than the points
in the same cluster. Again, the notion of similarity is open
to different interpretations. A divisive algorithm terminates
when every point is in its own individual cluster. The divisive
algorithms that split a set into two subsets at each iteration
are called bisecting algorithms.

Data scientists regularly use the bisecting k-mean algo-
rithms at each level1. This is used when the distances between
the data points are used as dissimilarity scores. See Steinbach
et al. (2000) and Murtagh and Contreras (2012) for more in-
formation on divisive algorithms. Ackerman and Ben-David
(2016) proved that popular divisive algorithms can produce
clusterings different from linkage-based agglomerative al-
gorithms. Naturally, they may be optimizing fundamentally
different criteria.

Objective Functions: There has been a recent interest in
identifying a global objective for hierarchical clustering. Das-
gupta (2016) developed a cost function objective for data
sets with similarity scores between points. For a given data
set V with n points {1, 2, 3, ..., n}, let wij be the similar-
ity score between points i and j. In a tree T , let T [i ∨ j]
denote the subtree rooted at the least common ancestor of
i and j, and |leaves(T [i ∨ j])| denote the number of
leaves of T [i∨ j]. The cost objective function objective intro-
duced in Dasgupta (2016) is defined as: minT costT (V ) =∑

1≤i<j≤n wij |leaves(T [i ∨ j])|.
Since every wij is multiplied with the number of leaves of

the smallest tree containing both i and j, the points that are
more similar (bigger wij’s) are encouraged to have T [i ∨ j]
with fewer leaves. In other words, the objective function is
encouraging points which are more similar to each other to be
split at lower levels of the tree where there are fewer leaves
at the least common ancestor.

The work of Dasgupta (2016) has initiated an exciting line
of study (Roy and Pokutta 2017; Cohen-addad et al. 2019;
Charikar et al. 2019; Chatziafratis, Niazadeh, and Charikar
2018; Ghoshdastidar, Perrot, and von Luxburg 2018). Cohen-
addad et al. (2019) generalized the results in Dasgupta (2016)
into a class of cost functions that possess properties desirable
of a valid objective function. They showed that the average-
linkage algorithm is a 2

3 -approximation for an objective based
on the Dasgupta (2016) objective.2 This objective modi-
fies the Dasgupta objective to handle dissimilarity scores.
Let d(i, j) be the distance between i and j. The objective
is maxT

∑
1≤i<j≤n d(i, j)|leaves(T [i∨ j])|. The motiva-

tion is similar to the Dasgupta objective, except now the simi-
larity score wij is swapped to a dissimilarity score d(i, j) and
the problem is changed to a maximization problem. Contem-
poraneously, Moseley and Wang (2017) designed a revenue
objective function based on Dasgupta (2016) and showed the
average-linkage algorithm is a constant approximation for the
objective. Charikar et al. (2019) showed an improved analysis
of average-linkage for Euclidean data. Together Cohen-addad

1The word “bisecting” refers to the case when k = 2.
2Throughout this paper we use c > 1 for approximations on

minimization problems and c < 1 for maximization.

et al. (2019), Charikar et al. (2019) and Moseley and Wang
(2017) have established a relationship between a practically
popular algorithm and global objectives. This gives a founda-
tional understanding of the average-linkage algorithm.
Euclidean Data: This paper is interested in data embedded
in Euclidean space where the `2 distance between points
represents their dissimilarity. There is currently one global
objective that has been proposed for data with dissimilar-
ity scores. This is the objective of Cohen-addad et al. (2019)
described above, an extension of the Dasgupta objective (Das-
gupta 2016). Throughout this paper, we refer to the objective
in Cohen-addad et al. (2019) as CKMM objective. This paper
shows in Section 7 that every tree is a 1

2 -approximation for
the CKMM objective if the data in a metric space. Previously,
it was known that all trees gave a constant approximation
(Cohen-addad et al. 2019).

In a common case where data is in Euclidean space, one
type of metric, the objective does not make a large differenti-
ation between different clusterings. In practice, it is clear that
some trees are more desirable than others. It is an interesting
question to find an objective that makes a stronger distinction
between different clusterings. This is the target question this
paper addresses.
Divisive Algorithms: While great strides have been made
on the foundations of hierarchical clustering, it remains an
open question to explain what popular divisive algorithms op-
timize. In particular, the popular bisecting k-means algorithm
has been proven to be at least a factor O(

√
n) far from opti-

mal for the objectives given in Moseley and Wang (2017) and
Dasgupta (2016). This can be viewed as these algorithms be-
ing extremely bad for these objectives in the worst case. This
contrasts with the performance of average-linkage for known
objectives. Perhaps, this highlights that bisecting k-means
and other divisive algorithms optimize something fundamen-
tally different than average-linkage and general linkage based
algorithms. It remains to discover a global objective that helps
characterize the optimization criteria of divisive algorithms,
another target of this paper.

Results: This paper introduces a new revenue maximization
objective for hierarchical clustering on a point set in Eu-
clidean space. The objective is designed to capture the main
criterion that motivates the use of divisive algorithms: when
data is split at a level of the tree, the data in each sub-cluster
should be closer to each other than data points in different
clusters.

Each node in the tree corresponds to a split that generates
revenue. The objective specifies that the global revenue of
the tree is the summation of the revenue at each node. The
split revenue captures the quality of the split.
• Guiding Principle: The new objective function enforces

that a split is good if the inter-cluster distances are big
compared to intra-cluster distances 3, as is indicated in
Figure 1. This is the main motivation behind a generic
divisive algorithm. Of course, the global tree structure
influences the possible revenue at an individual split.
3Here “inter-cluster distances” refers to that between points

in different clusters, while “intra-cluster distances” refers to that
between points in the same cluster.



intra-cluster pair
inter-cluster pair

Figure 2: Intra- and inter- cluster distance of two clusters.
The black pair is an example of intra-cluster pairs, and the
grey pair is an example of inter-cluster pairs.

We show several interesting properties of this new objec-
tive.

• For problem instances corresponding a ground-truth as
introduced in Cohen-addad et al. (2019), this objective
gives desirable optimal solutions. In particular, Cohen-
addad et al. (2019) introduced a large class of instances that
have a natural corresponding hierarchical clustering that
should be optimal. We prove that these trees are optimal for
the new objective function we propose on such instances.
We note that these instances generalize instances given in
Dasgupta (2016) that were used to motivate a hierarchical
clustering objective.

• The bisecting k-means algorithm is a constant approxima-
tion for the objective. This establishes that the objective
is closely related to the bisecting k-means algorithm and
aids in understanding the underlying structure of solutions
the algorithm produces. This is the first global objective
that this algorithm is known to provably optimize.

• The objective is trivially modular over the splits, like the
objectives of Cohen-addad et al. (2019), Moseley and
Wang (2017) and Dasgupta (2016).
• In the context of metric spaces, this objective has different

properties compared to some proposed objectives. It is
known that the Random algorithm4, which partitions data
uniformly at random at each node, is a constant approxi-
mation for the CKMM objective with dissimilarity scores
that need not form a metric. Further, it is a constant ap-
proximation for the Moseley and Wang (2017) objective
with similarity scores. For these two objectives, Random is
a 2

3 and 1
3 approximation, respectively. The Random algo-

rithm can produce undesirable hierarchical clusterings and
it is counterintuitive that it is a constant approximation for
these objectives. This paper shows that Random results in
an O( 1

nε )-approximation for the proposed objective for a
constant ε > 0. Therefore, the Random algorithm provably
performs poorly for the new objective. This can be seen as
a strength of the new objective over those proposed.

We further show the following about other objectives in met-
ric space. These show that some other objectives do not make
a large differentiation between trees in metric space, even if
the trees correspond to a poor clustering. Our objective does
and this can be seen as an advantage of the new objective.
• As mentioned, we show that every tree is a 1

2 -
approximation for CKMM objective when points have dis-
similarity scores that form a metric.
4See Section 6 for a formal description of the algorithm.

• We show that every tree is a 2-approximation for the Das-
gupta objective (Dasgupta 2016) for similarity scores that
satisfy the triangle inequality. We include this result to
provide insight into this objective. However we note that
this is less surprising than the similar result on the CKMM
objective since some natural similarity score instances do
not satisfy the triangle inequality.

We investigate empirically the performance of three pop-
ular algorithms used in practice and Random algorithm for
the new objective. As is suggested by theory, the proposed
objective moderately favors bisecting k-means over two ag-
glomerative algorithms, while magnifying the gap between
the performance of Random and the other three algorithms.
Other Related Work: Other work centers around when bi-
secting algorithms work well. The work of Dasgupta and
Long; Plaxton (2005; 2006) show the remarkable result that
hierarchical trees exists such that each level of the tree op-
timizes the corresponding k-clustering objective. These al-
gorithms are complex and are mostly of theoretical interest.
Balcan, Blum, and Vempala (2008) showed that partitioned
clusterings can be uncovered from using hierarchical cluster-
ing methods under stability conditions. The work of Awasthi,
Blum, and Sheffet; Balcan, Blum, and Gupta; Carlsson and
Mémoli (2012; 2013; 2010) and pointers therein study stabil-
ity conditions of clustering.

The work of Charikar and Chatziafratis (2017) and Roy
and Pokutta (2017) were the first to give improved bounds
on the objectives of Dasgupta. Currently, the best known ap-
proximations for both the objective of Dasgupta (2016) and
CKMM (Cohen-addad et al. 2019) were shown in Charikar,
Chatziafratis, and Niazadeh (2019). This work gave a 1

3 + ε

and 2
3 + δ approximations for some small constants ε and δ,

respectfully. Further, they shown that average-linkage is no
better than a 1

3 and 2
3 approximation for the objectives respec-

tively. Thus, new algorithms were required to improve the
approximation ratio. If there data is in Euclidean space, then
Charikar et al. (2019) gave improve approximation ratios.

2 Preliminaries
In this section, we give a formal mathematical definition
for the hierarchical clustering problem. Then the objective
function is given.
Problem Input: In the hierarchical clustering problem, the
input is a set V of data points. There is a distance between
each pair of points i and j denoting their dissimilarity. In this
paper, the data points are assumed to be located in Euclidean
spaces, one particular type of metric space. For each pair of
points (i, j), the `2 distance, denoted as d(i, j), is used as
their dissimilarity score. The `2 distance is known to satisfy
the following properties:
(1) Convexity. The distances satisfy Jensen’s inequality: for

any points i, j, k, d(λ · i + (1 − λ) · j, k) ≤ λd(i, k) +
(1− λ)d(j, k), where λ ∈ [0, 1].

(2) Triangle inequality. For any points i, j, k, d(i, k) ≤
d(i, j) + d(j, k).

k-means Objective: The definition of the k-means objec-
tive is the following. Given a point set S, a k-means clus-
tering partitions S into k sets S1, S2, . . . Sk. The k-means



objective calculates the summation over the squared norm
of the distance between a point to the centroid of the set
it belongs to:

∑k
j=1

∑
u∈Sj d

2(u, ρ(Sj)). Here ρ(Sj) de-
notes the centroid of Sj . In Euclidean space, ρ(Sj) satisfies:

ρ(Sj) =

∑
u∈Sj

u

|Sj | = arg minp
∑
u∈Sj d

2(u, p).
Let ∆k(S) denote the optimal k-means objective function

value for the point set S, where k is the number of clusters.
We will be particularly interested in ∆2(S), the 2-means
objective.

Fix a hierarchical clustering tree T on a set V . Consider
a node of the tree and let S ⊆ V be the subset of input
data that is input to the current split. These will eventually
be the leaves of the subtree induced by this node. We use
S → (S1, S2) to denote a split in the tree where a set S
is separated into two non-empty subsets, S1 and S2. These
sets correspond to the input of the two child nodes. We let
S → (S1, S2) ∈ T denote that this split exists in T .

Any split S → (S1, S2) where S1 and S2 are a parti-
tion of S is a valid 2-means solution for the point set S.
Since ∆2(S) denotes the optimal objective function value,
∆2(S) ≤ ∆1(S1) + ∆1(S2) by definition of the 2-means ob-
jective. In particular, if S → (S1, S2) is the optimal 2-means
solution, we have ∆2(S) = ∆1(S1) + ∆1(S2).

3 Hierarchical-Revenue : Comparing Inter
vs. Intra Cluster Distance

This section defines the new objective function. We call
the problem of optimizing this objective the Hierarchical-
Revenue problem.
Defining the Revenue for a Pair: Consider a node in a hi-
erarchical clustering whose input is S and this set is split
into S1 and S2. A good tree ensures that the pairs of points
in i, i′ ∈ S1 (resp. S2) are more similar that pairs i ∈ S1

and j ∈ S2 (i.e. d(i, j) ≥ d(i, i′)). This ensures the points
corresponding to the cluster at a node in the tree become
more similar at lower levels of the tree. In the following, we
say i and j are split the first time they no longer belong to
the same cluster.

Every pair i and j will be eventually split in the tree and
a hierarchical clustering objective should ensure they are
split at the appropriate place in the tree. Further, an objective
should optimize over all pairs uniformly to determine the
splits.

Guided by these principles, we develop the objective as
follows. We begin by allowing every pair i and j to generate
one unit of revenue. This revenue can always be obtained for
a fixed pair, but not necessarily for all pairs simultaneously.
This unit of revenue is obtained when the pair is split at an
appropriate position in the tree. Less revenue (or even 0) will
be obtained when the pair is separated at a poor position. This
is the key to determine the quality of a split.

Say that S → (S1, S2) is the split at some node in the tree
and i ∈ S1 and j ∈ S2 are split. As discussed above, points
in S1 (respectively S2) should be more similar to each other
than i and j. To measure the similarity of i to other points
in S1 we use d(i, ρ(S1)), the distances of i to the centroid
of S1. Similarly, we use d(j, ρ(S2)) to measure the distance

of j to points in S2. The distance of a point to the centroid
of a set measures the distance to the average point in the set.
Thus, we would like d(i, j) to be larger than both d(i, ρ(S1))
and d(j, ρ(S2)) for it to make sense to split i and j. That is,
i and j should become more similar to their respective sets
after the split than they are to each other.

Formally, define the revenue for a pair of points as fol-
lows. Let δS1,S2

(i, j) = max{d(i, ρ(S1)), d(j, ρ(S2))} be
the maximum distance of i and j to their respective cen-
troids. We would like δS1,S2(i, j) to be smaller than d(i, j)
and therefore i and j generate a unit of revenue when this is
the case. When δS1,S2(i, j) ≤ d(i, j) we assume the revenue
decays linearly. That is, the revenue is d(i,j)

δS1,S2 (i,j)
.

Putting the above together, define the revenue for splitting
i and j as rev(i, j) = min{ d(i,j)

δS1,S2 (i,j)
, 1}5. This is the rev-

enue i and j generates. Notice that a revenue of a unit can
always be obtained since we can let j be the unique last point
split from i. However, a good hierarchical splitting structure
is needed to get good revenue for many pairs of points.

The Global Objective: The global objective is defined as
follows. We note that while the revenue is summed over each
split in the tree, obtaining a large amount of revenue at a split
hinges on a good global tree structure.
Definition 3.1 (Hierarchical-Revenue). For a data set
V and a given hierarchical clustering tree T , de-
fine the hierarchical tree revenue function as fol-
lows. Let rev(S1, S2) =

∑
i∈S1

∑
j∈S2

rev(i, j) =∑
i∈S1

∑
j∈S2

min{ d(i,j)
δS1,S2 (i,j)

, 1} be the revenue over all
pairs of points split across S1 and S2. The aggre-
gate revenue is revT (V ) =

∑
{i,j}⊆V rev(i, j) =∑

S→(S1,S2)∈T rev(S1, S2), and it should be maximized
over all trees.

As is shown in Definition 3.1, there are two ways of com-
puting revT (V ). One is to sum up the revenue over the pairs,
while the other is to sum up the revenue over the splits. Both
methods lead to the same value. The second form allows us
to judge whether a split at some internal node of the tree is
good or not compared to the number of pairs it separated.

4 Ground-truth Inputs
The work of Cohen-addad et al. (2019) gave a characteriza-
tion of desirable hierarchical clustering objectives. The idea
is to give a class of instances that naturally correspond to a
specific hierarchical clustering tree. These trees should be
optimal solutions for a good hierarchical clustering objective.

In particular, Cohen-addad et al. (2019) defined input in-
stances that correspond to ultrametrics. Such inputs will be
referred to as ground-truth inputs. For such an input, they
define generating trees, which should be optimal for the hi-
erarchical clustering objective to be valid. Intuitively, in an
ultrametric either it is clear what the split should be at each
point in the tree or all splits are equivalent.6 The resulting
tree is a generating tree.

5We assume dividing by 0 gives revenue 1.
6If there is a natural split then the points can be divided into



We prove a generating tree is an optimal solution for our
objective, if the input in Euclidean space is ground-truth.

4.1 Definition of Ground-Truth Inputs
We cite the following definitions from Cohen-addad et al.
(2019).
Definition 4.1. A metric space (X, d) is an ultrametric if for
every x, y, z ∈ X , d(x, y) ≤ max{d(x, z), d(y, z)}.

Intuitively, the definition of ultrametric implies that any
three points u, v, w form an isosceles triangle, whose equal
sides are at least as large as the other side. Cohen-addad et
al. (2019) then defined an instance generated from ultramet-
ric, which is treated as ground-truth input for hierarchical
clustering.
Definition 4.2. An input instance on a set of points V with
pairwise distance function d is generated from an ultrametric
if the distances function d corresponds to a ultrametric.

Following Cohen-addad et al. (2019), we define gener-
ating trees, which are considered the most well-behaving
hierarchical clustering trees for a ground-truth input.
Definition 4.3. If the instance V is generated by ultrametric,
a binary tree T is a generating tree for G if it satisfies the
following properties:
1. It has |V | leaves and |V | − 1 internal nodes. Let L denote

its leaves and each point in L corresponds to a unique point
in V . Let N denote its internal nodes, corresponding to
clusters of the leaves of the subtree rooted at the node.

2. There exists a weight function W : N 7→ R+. For
N1, N2 ∈ N , if N1 is on the path from N2 to the root,
W (N1) ≥ W (N2). For every x, y ∈ V , d(x, y) =
W (LCAT (x, y)), where LCAT (x, y) denotes the Least
Common Ancestor of leaves corresponding to x and y in
T .
Cohen-addad et al. (2019) proposed that for a ground-truth

input graph as defined in Definition 4.2, if there exists any
corresponding generating tree T , it is considered one of the
best solutions among all the solutions, and thus should be
one of the optimal solutions for the hierarchical clustering
objective function used.

We give some intuition for why a generating tree is consid-
ered the best tree on such inputs. The value W (LCAT (x, y))
can be interpreted as the distances of edges cut in split at the
LCA of x and y. All points separated in a split have equal
pairwise distance, the maximum pairwise distances in the
current point set. Naturally, the higher up this LCA is, the
larger the distance should be. For each ground-truth input
graph, there is always a generating tree T , which separates
the farthest pairwise points in every split.

4.2 Optimality of Generating Trees
Now we prove that given an input that is generated from an
ultrametric, every generating tree is optimal for Hierarchical-
Revenue function introduced in this paper. In particular, every
pair of points will get full revenue.

two groups A and B such that inter-group distances are larger than
intra-group distances. If all splits are equivalent then pairwise the
points are all the same distance.

Lemma 4.1. A binary tree T , with |V | leaves corresponding
to the points in V and |V | − 1 internal nodes, is a generating
tree for an instance V generated from a ultrametric if and
only if it satisfies the following property:
• For every split A ∪ B → (A,B) from top to bottom,
∀i ∈ A, j ∈ B, d(i, j) = maxx∈A,y∈B d(x, y).
Every ground-truth input has at least one generating tree,

as stated in the following theorem.
Theorem 4.2. For every instance generated from some ul-
trametric, there is always a generating tree T as defined in
Definition 4.3.

Using Lemma 4.1, the optimality of T is proved by arguing
every split gives a revenue of 1 for every pair of points it
separates.
Theorem 4.3. A generating tree T for an instance gener-
ated V from an ultrametric is optimal for the Hierarchical-
Revenue objective.

5 Bisecting k-means Approximates the
Revenue Objective

This section shows that the bisecting k-means algorithm is
a constant approximation for the proposed objective. This
establishes a foundational connection between a natural ob-
jective function and the bisecting k-means algorithm. This is
the first analysis showing that bisecting k-means optimizes a
global objective function. This helps explain the structure of
the solutions produced by the algorithm.

The goal of this section is to show the following theorem.
Theorem 5.1. Fix any input set V and let T be the tree cre-
ated by the bisecting k-means algorithm. The tree T is a
constant approximation for the Hierarchical-Revenue objec-
tive.

The analysis is based on analyzing each split performed
by bisecting k-means individually. The following lemma
shows that if every split in a hierarchical clustering tree is
good for the objective function proposed, then the whole
tree is also good. By “good” we mean that the split gains
a revenue which is at least some constant factor times the
number of pairs separated. This lemma follows immediately
by definition of the objective.
Lemma 5.2. A hierarchical clustering tree T is a γ-
approximation for the Hierarchical-Revenue problem if it
satisfies the following condition: ∀S → (S1, S2) ∈ T ,
rev(S1, S2) ≥ γ|S1||S2| holds for some constant γ > 0.

The above lemma allows us to focus on a single iteration
of the bisecting k-means algorithm. Suppose at some iter-
ation, a cluster A ∪ B is split into A and B. We give the
following definition of a high-revenue point. A point u in A
is a high-revenue point if for most of the points in B, it gains
acceptable amount of revenue.
Definition 5.1. Given a split A ∪B and a point u ∈ A, the
high-revenue set for u for set B is: HRB(u) = {v ∈ B :
rev(u, v) ≥ 1

10}. Define the low-revenue set for u ∈ A to
be defined as: LRB(u) = {v ∈ B : rev(u, v) < 1

10} =
B \HRB(u).



Definition 5.2. Given a split A∪B, a point u ∈ A is a high-
revenue point if |HRB(u)| ≥ 1

2 |B|. Otherwise, it is called
a low-revenue point.

With the definition of high-revenue points in place, the next
lemma claims that given split A ∪ B → (A,B) created by
the optimal 2-means algorithm, if |A| ≥ |B|, at least half of
A are high-revenue points. This is the main technical lemma.
This combined with Lemma 5.2 implies Theorem 5.1.
Lemma 5.3. Let A and B be the optimal 2-means solution
for the point set A ∪B. Without loss of generality, suppose
|A| ≥ |B|. Then, at least 4

7 |A| points in A are high-revenue.
This gives a lower bound of at least 1

35 |A||B| revenue in total
for splitting A and B.

The rest of the section is devoted to proving Lemma 5.3
by contradiction, with proofs partially omitted due to space
limits. For the rest of the section fix a set A ∪B and let the
partition A,B correspond to the optimal solution to the 2-
means problem on A ∪B. For sake of contradiction suppose
more than 3

7 |A| points in A are low-revenue points. We will
show that such a split A∪B → (A,B) cannot be optimal for
the 2-means objective. Indeed, we will show that another split
has a smaller 2-means objective value, proving the lemma.

Say we have i ∈ A and j ∈ B, such that rev(i, j) < 1
10 .

Let H be the hyperplane such that H = {y : d(y, ρ(A)) =
d(y, ρ(B))}. Then, H separates the Euclidean space into
two half-spaces: H+ = {y : d(y, ρ(A)) ≥ d(y, ρ(B))} and
H− = {y : d(y, ρ(A)) ≤ d(y, ρ(B))}. By the assumption
that the split A ∪B → (A,B) is the optimal 2-means solu-
tion, we have A ⊆ H+, and B ⊆ H−. Next we show the
following structural lemma. This lemma says that if rev(i, j)
is small then d(i, ρ(A)) and d(j, ρ(B)) are within a constant
factor of each other, which is close to 1. Geometrically, this
implies that both i and j are located close to the hyperplane
H . See Figure 5 for an illustration. The following lemma’s
proof is in the appendix.

Figure 3: Proof by constructing a better 2-means solution.
The bold dashed line in the middle is the hyperplane H . The
two bold ellipses are clusters A and B , respectively. The
dashed ellipse in A is the set S, and the dashed ellipse in
B is the low-revenue set LRB(u) for point u ∈ A in B. S
and LRB(u) are both close to the separating hyperplane H .
A new partition A ∪ B → (A \ S,B ∪ S) is constructed,
represented by the two grey areas.

Lemma 5.4. Consider any i ∈ A and j ∈ B. If rev(i, j) <
1
10 , we have 9

10d(i, ρ(A)) < d(j, ρ(B)) < 10
9 d(i, ρ(A)),

and 9
10d(j, ρ(B)) < d(i, ρ(A)) < 10

9 d(j, ρ(B)), and
d(i, j) < 1

9 min{d(i, ρ(A)), d(j, ρ(B))}.

Let S be the subset of low-revenue points in A. By as-
sumption, |S| > 3

7 |A|. The next lemma establishes that any
two points in S are very close to each other as compared to
their distance to the centroid ρ(A). The following lemma’s
proof is in the appendix.

Lemma 5.5. Let S be the low-revenue points in
A. For any two points u, v ∈ S, d(u, v) ≤
2
9 max{d(u, ρ(A)), d(v, ρ(A))}.

Let x be the point in S such that x ∈
arg maxu∈S d(u, ρ(A)), the farthest points from ρ(A)
in S. Notice that, d(x, ρ(A)) > 0, otherwise it implies S
is overlapping with ρ(A), for any u ∈ S and v ∈ LRB(u),
by Lemma 5.4, we have d(v, ρ(B)) = 0, but this implies
rev(u, v) = 1. Therefore, d(x, ρ(A)) > 0.

Lemma 5.5 implies that ∀u ∈ S, d(u, x) ≤ 2
9d(x, ρ(A)).

This result tells us the set S is contained in a ball centered
at x, with radius 2

9d(x, ρ(A)). So we can bound the distance
between centroid of S, ρ(S) and ρ(A) using convexity of
the `2 norm. The following lemma’s proof is omitted due to
space.

Lemma 5.6. Let S be the low-revenue points in A and x ∈
arg maxu∈S d(u, ρ(A)). It is the case that d(ρ(S), ρ(A)) ≥
7
9d(x, ρ(A)).

This is proved by combining Lemma 5.5 with the convexity
of l2 norm. Notice that ρ(A) is a convex combination of
all points in A, Jensen’s inequality gives us the conclusion.
Since we proved ρ(S) is far from ρ(A). Next, we upper-
bound d(ρ(S), ρ(B)). Recall that points in the set S are far
away from ρ(A), but close to the hyperplane H = {y :
d(y, ρ(A)) = d(y, ρ(B))}. The following lemma’s proof is
in the appendix.

Lemma 5.7. Let S be the low-revenue points in A. For any
u ∈ S, d(u, ρ(B)) ≤ 11

9 d(x, ρ(A)).

Therefore, we can upper bound d(ρ(S), ρ(B)):
d(ρ(S), ρ(B)) ≤

∑
u∈S d(u,ρ(B))

|S| ≤ 11
9 d(x, ρ(A)).

The first inequality follows by definition of a centroid.
The second from Lemma 5.7. This, combined with
d(ρ(S), ρ(A)) ≥ 7

9d(x, ρ(A)) from Lemma 5.6, gives us

the following: d2(ρ(S),ρ(A))
d2(ρ(S),ρ(B)) ≥ ( 7

9 )2/( 11
9 )2 = 49

121 . Recall
that ∆k(U) denotes the optimal k-means value for a set U .
Let S1 and S2 be two sets. We quote the following lemma
from Ostrovsky et al. (2012).

Lemma 5.8 ((Ostrovsky et al. 2012)). For any two sets of
points S1 and S2 it is the case that ∆1(S1∪S2) = ∆1(S1)+

∆1(S2) + |S1||S2|
|S1|+|S2|d

2(ρ(S1), ρ(S2)).

With this in place Lemma 5.3 can be shown. In general,
we show this by take the set S away from A and assign it
into cluster B instead, and prove that this is a better 2-means
solution than the previous one. Due to space, the proof of
Lemma 5.3 is omitted.



6 Randomly Partitioning Poorly
Approximates the Revenue Objective

Consider the following algorithm which can create undesir-
able trees. The Random algorithm splits a set S into (S1, S2)
by flipping an independent, fair coin for each point in S. If
the coin comes up heads then the point gets added to S1,
and otherwise gets added to S2. The algorithm is intuitively
undesirable because it does not take the structure of the input
into the construction of the solution. Further, the solutions
produced do not give much insight into the data.

While intuitively bad, this algorithm is known to be a 1
3 -

approximation for the objective of Moseley and Wang (2017)
with similarity scores and it is a 2

3 -approximation for CKMM
objective for dissimilarity scores. These results hold for any
set of similarity or dissimilarity scores, regardless of if they
form a metric.

We show that the our objective does not have this short-
coming. The approximation ratio of the Random algorithm
is at most O( 1

nε ) for a constant ε > 0, indicating that it
performs very poorly, as is stated by Theorem 6.1. Proof is
omitted.
Theorem 6.1. Let OPT (V ) be the optimal solution for V .
Let the expected revenue be ET [revT (V )] for set V . Then,
there exists a construction of V , such that for a constant
ε ∈ (0, 1), ET [revT (V )] = O( 1

nε ) ·OPT (V ).

7 Objectives for Data in Metric Space
This section studies data with similarity/dissimilarity scores
in a metric space. First we investigate the CKMM objective for
hierarchical clustering on point sets using dissimilarity scores.
Recall that this objective is the same as the Dasgupta (Das-
gupta 2016) objective except the minimization is swapped
for a maximization and the similarity scores are swapped for
dissimilarity scores. We also study the Dasgupta objective
(Dasgupta 2016) for similarity scores. We show for each case
that if the pairwise similarity/dissimilarity scores form any
metric, then every tree is a at most a factor 2 from optimal.

For a tree T let T [i∨j] denote the subtree rooted at the least
common ancestor of i and j, and |leaves(T [i∨ j])| denote
the number of leaves of T [i∨ j]. Recall that the CKMM objec-
tive is the following: maxT

∑
i,j∈V d(i, j)|leavesT [i∨j]|.

In Cohen-addad et al. (2019), it has been proved that any
solution is a constant approximation of the optimal solution
for CKMM objective, given that the distance is a metric. Here
we prove a stronger conclusion:
Theorem 7.1. Any solution is a 1

2 -approximation for CKMM
objective if the distance d(i, j) is a metric, i.e., it satisfies
triangle inequality.

Next consider the objective in Dasgupta (Dasgupta 2016).
Here each pair of points i and j have a similarity score
wij where higher weights mean points are more similar.
Recall from the introduction that Dasgupta’s objective is
minT

∑
i,j∈V wij |leavesT [i ∨ j]|.

We show the following corollary that follows from the
proof of the prior theroem.
Corollary 7.1.1. If the similarity score in the setting of Das-
gupta (2016) is a metric, any hierarchical clustering tree

is a 2-approximation for the objective in Dasgupta (2016):
minT costT (V ) =

∑
1≤i<j≤n wij |leaves(T [i ∨ j])|.

We note that for similarity scores, it is not a standard as-
sumption that data lies in a metric space. Thus, this corollary
is perhaps interesting to understand the structure of the ob-
jective. However, it does not suggest that any tree will be
2-approximate for most data sets with similarity scores.

8 Empirical Results
The goal of this section is to study the performance of differ-
ent algorithms for the new objective empirically. The experi-
mental results support the following claims:

• Algorithms that are popular in practice give high revenue
for the new objective, with bisecting k-means perform-
ing the best. This demonstrates that the objective value is
correlated with algorithms that perform well and highly
connected to the bisecting k-means algorithm, as the theory
suggests.

• Random algorithm, as mentioned in previous section, per-
forms poorly for the new objective.

Data sets: We use two data sets from the UCI data repository:
Census7 and Bank8. Only the numerical features are used.

Algorithms studied: We study four algorithms9: bisecting
k-means, average-linkage, single-linkage, and Random. In
each experiment, we subsample 2000 data points from the
given data set and run the algorithms with subsampled data.
We conduct five experiments with each data set and report
the mean and variance. Since optimal 2-means solution is
intractible, in practice we import the k-means implementation
from package Scikit-learn10, which uses Lloyd’s algorithm
seeded with k-means++ for each split.

Results: Table 1 shows the comparison between performance
for our objective and the CKMM objective. For each algo-
rithm, the columns (µ̂1, σ̂1) and (µ̂2, σ̂2) denote the mean
and standard deviation for our objective and CKMM objective
respectively, calculated over results of the five experiments.

Regarding the new objective, the results show bisecting k-
means performs the best of the four algorithms for it. Further,
bisecting k-means is within 1% of the upper bound on the
optimal solution for the objective, which is the total number
of pairs of data points. This suggests that the objective is
closely related to bisecting k-means, as the theory suggests.
It also shows that experimentally bisecting k-means performs
much better than the approximation ratio established.

All the three algorithms which are popular in practice per-
form well for our objective, with bisecting k-means perform-
ing marginally better than average-linkage and single-linkage
on average. Moreover, bisecting k-means also has the small-
est standard deviation across different subsamples. Random

7https://archive.ics.uci.edu/ml/datasets/census+income
8https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
9https://github.com/wangyuyan2333/hier clustering split rev

obj test.git
10https://scikit-learn.org/stable/modules/generated/sklearn

.cluster.KMeans.html



Algorithm (µ̂1, σ̂1)-Census (µ̂2, σ̂2)-Census (µ̂1, σ̂1)-Bank (µ̂2, σ̂2)-Bank
bisecting k-means (4.931e5, 304.980) (1.094e12, 1.714e11) (4.912e5, 474.451) (1.049e12, 1.158e11)
average-linkage (4.900e5, 1.151e3) (1.093e12, 1.710e11) (4.907e5, 802.665) (1.052e12, 1.163e11)
single-linkage (4.869e5, 1.392e3) (1.094e12, 1.712e11) (4.818e5, 1.365e3) (1.035e12, 1.168e11)
Random (1.311e5, 1.072e4) (7.463e11, 1.152e11) (3.339e5, 8.825e3) (7.789e11, 7.993e10)
upper bound (499500, 0) (1.119e12, 1.725e11) (499500, 0) (1.167e12, 1.199e11)

Table 1: Summary of stats for all algorithms, on Census and Bank

is significantly worse, with potentially over 30 times more
loss compared to optimal than the other algorithms. This per-
haps suggests that trees created by good algorithms perform
well for the objective and poorly constructed trees do not
perform well.

Compared with the CKMM objective from prior work, the
results further show that average-linkage performs slightly
better than bisecting k-means for the CKMM objective. This
result matches the theory, which suggests this objective is
closer to average-linkage than bisecting k-means. Again, all
three algorithms used in practice perform well for CKMM .
However, Random also gives about 2/3 of the upper-bound,
as the theoretical bound suggests. This perhaps shows the
CKMM objective gives similar judgements on algorithm per-
formance with our objective, the latter showing a more sig-
nificant gap between Random and the other three algorithms.

9 Conclusion
This paper gives a new objective function for hierarchical
clustering designed to mathematically capture the principle
used to motivate most divisive algorithms. That is, comparing
inter vs. intra cluster distances at splits in the tree.

The paper proved a close relationship between the objec-
tive and the bisecting k-means algorithm. This was done by
showing the bisecting k-means provably optimizes the objec-
tive. This helps to understand the structures of trees produced
using bisecting k-means.

The results in this paper leave directions for future work.
How tight can the approximation ratio be for the k-means
algorithm? How do other hierarchical clustering algorithms
perform for this objective? Can we improve on the bisecting
k-means algorithm to better optimize the objective?
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Appendix
A Ground-truth Inputs

This section proves the Hierarchical-Revenue function works
for ground-truth inputs proposed in Cohen-addad et al.
(2019).

Proof of [Lemma 4.1] The if direction is true, since from
top to bottom, at each split the tree T cuts only the longest
distances in the current set of points, both properties in Defi-
nition 4.3 trivially hold. We prove the only if direction. For
every i ∈ A and j ∈ B, LCAT (i, j) is always the node
representing A ∪B, so d(i, j) = W (LCAT (i, j)) is always
the same value. To show it is the maximum distance in all the
pairwise distances inA∪B, assume that is not the case. Then
some pair of vertices of maximum distance is contained in
the subgraph induced by A or B, which means it will be cut
in the subtree rooted at A or B, say it is cut at root N2, and
let N1 = LCAT (i, j). N1 is on the way from N2 to the path,
but W (N1) < W (N2), contradicting property (1).

Proof of [Theorem 4.2] We prove the theorem by construct-
ing one such tree in the following way. Say given a set S, we
separate it into two sets L and R.

1. Pick a pair of points (i, j) with longest distance. Put i into
L and j into R.

2. For any point x ∈ S, either d(i, x) < d(i, j) or d(i, x) =
d(i, j) since d(i, j) is chosen to be the maximum. If
d(i, x) = d(i, j) put x into R, otherwise put it into L.

To argue that all points in L and R are of distance d(i, j)
from each other, notice that if L only contains x the theo-
rem trivially holds. Otherwise, apparently by construction
we also have ∀y ∈ R, d(i, y) = d(i, j). Now take any two
points x ∈ L, y ∈ R, we further prove d(x, y) = d(i, j).
Observe that d(i, x) < d(i, j) but d(i, y) = d(i, j). Again
by definition of ultrametric, in the triangle formed by i, x, y,
we have d(x, y) = d(i, y) > d(i, x). By Lemma 4.1, this is
a generating tree for G.

Proof of [Theorem 4.3]
Given any split in the tree A ∪ B → (A,B), for

any i ∈ A and j ∈ B, we prove that d(i, ρ(A)) ≤
d(i, j) and d(j, ρ(B)) ≤ d(i, j). As a result, rev(i, j) =

d(i,j)
max{d(i,ρ(A)),d(j,ρ(B)),d(i,j)} = 1.

Let’s focus on A for the time being. By Lemma 4.1,
∀x ∈ A, d(i, x) ≤ d(i, j). By convexity of norms,
d(i, ρ(A)) = d(i,

∑
x∈A x

|A| ) ≤
∑
x∈A d(x,i)

|A| ≤ d(i, j). The
other inequality, d(j, ρ(A)) ≤ d(i, j), can be proved in the
same way.

B Proving Bisecting k-means Optimizes the
Revenue Objective

This section covers the omitted proofs in Section 5.

Proof of [Lemma 5.4] Say that rev(i, j) < 1
10 . Without loss

of generality assume that d(i, ρ(A)) ≥ d(j, ρ(B)). This and
the definition of revenue give d(i, j) < 1

10d(i, ρ(A)). Since
A and B is the optimal 2-means partition, d(i, ρ(A)) ≤

d(i, ρ(B)) and d(j, ρ(B)) ≤ d(j, ρ(A)). The triangle in-
equality gives,

d(j, ρ(B)) ≥ d(i, ρ(B))− d(i, j) ≥ d(i, ρ(A))− d(i, j)

> d(i, ρ(A))− 1

10
d(i, ρ(A)) =

9

10
d(i, ρ(A))

An analogous proofs shows d(i, ρ(A)) > 9
10d(j, ρ(B)). The

last inequality in the lemma follows immediately from these
two inequalities.
Proof of [Lemma 5.5] Recall that LRB(u) is the set
of points in w ∈ B such that rev(u,w) < 1

10 . Simi-
larly for LRB(v). Knowing that |LRB(u)| > 1

2 |B| and
|LRB(v)| > 1

2 |B|, there exists some point w ∈ B, such
that rev(u,w) < 1

10 and rev(v, w) < 1
10 . Without loss

of generality suppose d(u, ρ(A)) ≥ d(v, ρ(A)). We want
to show d(u, v) ≤ 2

9d(u, ρ(A)), notice that d(u, v) ≤
d(u,w) + d(v, w), and we have d(u,w) ≤ 1

9d(u, ρ(A)) and
d(v, w) ≤ 1

9d(v, ρ(A)), respectively, by Lemma 5.4. Note
that d(v, ρ(A)) ≤ d(u, ρ(A)), so d(v, w) ≤ 1

9d(u, ρ(A)),
and we conclude that d(u, v) ≤ 2

9d(u, ρ(A)).
Proof of [Lemma 5.6]

d(ρ(S), x) = d(

∑
u∈S u

|S|
, x) ≤

∑
u∈S d(u, x)

|S|

≤ 2

9
d(x, ρ(A))

As a result the triangle inequality gives, d(ρ(S), ρ(A)) ≥
d(x, ρ(A))− d(x, ρ(S)) ≥ 7

9d(x, ρ(A)).
Proof of [Lemma 5.7] Since u ∈ S, there exists w ∈ B,
s.t. d(u,w) < 1

10 max{d(u, ρ(A)), d(w, ρ(B))}. By trian-
gle inequality, we have d(u, ρ(B)) ≤ d(w, ρ(B)) + d(u,w).
Since rev(u,w) < 1

10 , by Lemma 5.4, d(w, ρ(B)) ≤
10
9 d(u, ρ(A)) and d(u,w) ≤ 1

9d(u, ρ(A)). Therefore,
d(u, ρ(B)) ≤ 11

9 d(u, ρ(A)) ≤ 11
9 d(x, ρ(A)).

C Proving Random is Bad
This section is devoted to proving Theorem 6.1.

Constructing the input Point Set: The input consists of
two unbalanced sets of points A and B where |A| = n2,
|B| = n. We assume that the points in A and B are very far
away but the intra-cluster distance is small. We will set this
parameter later. For simplicity A consists of points all in the
same location and the same for B. Let V = A ∪ B be the
entire point set.

C.1 An Upper Bound on the Performance of
Random

Before we argue Random is bad, we give the definition of
“clean split”. Intuitively, a split should be considered clean if
it doesn’t separate points close to each other when there are
far away pairs.
Definition C.1. We define a split S → (S1, S2) to be clean
if it satisfies one of the following conditions:
1. If S ⊆ A or S ⊆ B.



2. If S1 ⊆ A,S2 ⊆ B, or S1 ⊆ B,S2 ⊆ A.
Based on the result that every tree is gaining full revenue

for an ultrametric from Section A, it is easy to see that optimal
tree can get a revenue of OPT (V ) := (n2+n)(n2+n−1)

2 =

Θ(n4) for the whole point set. The optimal tree splits A from
B in the root split, and then can do anything on the remaining
portion of the tree.

Before formally prove this theorem we make some quick
observations. First, we don’t need to care about the pairs (i, j)
where i ∈ A and j ∈ B because the number of such pairs
is Θ(n3), even if we gain full revenue for them, it doesn’t
affect the approximation ratio. For the same reason we don’t
care about points (i, j) such that i, j ∈ B. So, we only need
to discuss how much revenue we can get from separating all
the pairs inside A in expectation for Random.

With this in mind, we will use Chernoff bounds to argue
that for Θ(log n) rounds, Random splits each node in half
with high probability, which causes us to lose a lot of revenue.
Lemma C.1. Suppose we have a set S with m points, and
use Random to split it into S1 and S2. Then, for i = 1, 2

P(||Si| −
m

2
| ≤

√
m logm) ≥ 1− 2

m2

Proof of [Lemma C.1] Consider m i.i.d. Rademacher vari-
ables Xj . Then from Chernoff’s bound, we know that

P(|
m∑
j=1

Xj | ≥ t) ≤ 2 exp(− t2

2m
)

Random is treating each point j as a Rademacher variable by
assigning

Xj =

{
+1 if j is assigned to S1

−1 if j is assigned to S2

Then, for i = 1, 2,

P(||Si| −
m

2
| ≥

√
m log(m)) = P(|

m∑
i=1

Xi| ≥ 2
√
m log(m))

≤ 2 exp(2 log(m)) =
2

m2

Next, we define “almost-equal” splits, which refers splits
such that the points fromA andB in the parent node is almost
split equally in its two children.
Definition C.2. Given a set S, let SA and SB denote the
points from A and B in S, respectively. If a split S →
(S1, S2) satisfies the property in Lemma C.1, i.e., for i = 1, 2,
let SAi and SBi denote the set of points fromA andB in set Si
respectively, we say this split is almost equal if for i = 1, 2:

1. P(||SAi | − 1
2 |S

A|| ≤
√
SA logSA)

2. P(||SBi | − 1
2 |S

B || ≤
√
SB logSB)

Also, for a hierarchical clustering tree, if all the nodes in the
first i layers are almost equally split, we call this tree i-almost
equally split.

The next lemma bounds the number of points in both A
and B in an internal node in ith layer if every split is almost
equal for both in the first i layers in the tree, where i ≤ log(n)

2 .

Lemma C.2. Let Si be a node in the ith layer of the tree
(i ≤ log n/2). If all the ancestors of Si is almost-equally
split, let SAi be the points in Si in A, and SBi be the points in
Si in B. Then we have |SAi | = Θ(n2/2i), |SBi | = Θ(n/2i).

Proof of [Lemma C.2] By induction, we prove a stronger
conclusion:

n2

2i
− 8

√
n2

2i
log(

n2

2i
) ≤ |SAi | ≤

n2

2i
+ 8

√
n2

2i
log(

n2

2i
)

and

n

2i
− 8

√
n

2i
log(

n

2i
) ≤ |SBi | ≤

n

2i
+ 8

√
n

2i
log(

n

2i
)

We just prove the first claim and the other can be proved in
the same way. By induction,

|SAi | ≥
|SAi−1|

2
−
√
|SAi−1| log(|SAi−1|)

≥ 1

2
· ( n2

2i−1
− 8

√
n2

2i−1
log(

n2

2i−1
))

−
√

n2

2i−1
log(

n2

2i−1
)

=
n2

2i
− 5
√

2 ·
√
n2

2i
(log(

n2

2i
) + log(2))

≥ n2

2i
− 8

√
n2

2i
log(

n2

2i
)

And the other side of the inequality can be bounded in the
same way.

If the condition in Lemma C.2 holds, this result tells us
that every node in the first log(n)

2 layers is not clean. In other
words, for all the pairs of points in A which are separated
during the first log(n)

2 layers of the tree, we don’t get any
revenue. Thus we can upper bound the revenue for points in
A:
Lemma C.3. If the tree T is log(n)

2 -almost-equally-split tree,
for all the pairs in A the revenue is O(n4−ε) for ε = log(2)

2 .
We have already proved that if many of the top layers have

almost equally split internal nodes, the HC tree has small
total revenue. To formally prove Theorem 6.1, we only need
to show that this happens with high probability. Notice that
the probability of the tree being not log(n)

2 -almost equally
split can be bounded by union bounds on the probability of
an almost equal split does not happen in any of the first log(n)

2

layers, which is O( 1
nε′

), where ε′ = 2− 3 log 2
2 . This is very

low probability, putting everything together, we have Lemma
C.3.
Proof of [Lemma C.3] For each internal node in the
( log(n)

2 )th layer here, the number of points in A is
Θ( n2

2log(n)/2 ) = Θ(n2−ε), where ε = log 2
2 , and there are



Θ(nε) such nodes. So, the revenue is bounded by O(n4−ε).

Proof of [Theorem 6.1] By Lemma C.3,

ET (revT (V )|T is
log(n)

2
-almost equally split) = O(n4−ε)

Then, we only need to lower bound the probability that the
tree T is log(m)

2 -almost equally split. We show next that this
happens with very high probability. Again let Si denote some
node in the ith layer of T .

P(Si isn’t almost equal split|T is (i− 1)-almost equally split)

≤ 2

|SBi |
+

2

|SAi |
≤ Θ(

2i

n
)

In the ith layer, we have 2i nodes. So we bound the probabil-
ity of having a tree that’s almost equal split in the first log(n)

2
layers as follows:

P(T is i-almost equally split)

= Π
log(n)

2
i=1 ΠSi in the ith layerP(Si is almost equally split|
T is (i− 1)-almost equally split)

> Π
log(n)

2
i=1 ΠSi in the ith layer(1−Θ(

2i

n
))

> 1−Θ(

log(n)
2∑
i=1

∑
Si in the ith layer

(
2i

n
)2)

= 1−Θ(

log(n)
2∑
i=1

2i · 4i

n2
)

= 1−Θ(
(1 + 8 + 82 + ...+ 8

log(n)
2 )

n2
)

= 1−Θ(2
3 log(n)

2 /n2) = 1−Θ(
1

nε′
)

Where ε′ = 2− 3 log 2
2 > ε. So we have O( 1

nε′
) probability

that T is not i-almost equally split, in which case the revenue
is bounded by Θ(n4).

Therefore, the expectation is bounded by:

ET [revT (V )]

≤ P(T is
log(n)

2
-almost equally split)Θ(n4−ε)

+ P(T is not
log(n)

2
-almost equally split)Θ(n4)

≤ Θ(n4−ε) + Θ(n4−ε
′
)

≤ Θ(n4−ε)

where ε = log(2)
2 .

D Proofs for Cohen-Addad et al. and
Dasgupta objectives

Fix a tree T . Let LCA(i, j) be the least common ancestor of
i and j in T . Let 1{i, j|k} be an indicator variable indicat-
ing whether in the tree T the LCA(i, j) is a descendant of

LCA(i, j, k): 1{i, j|k} = 1 if such a relationship holds, and
1{i, j|k} = 0 if otherwise. Equivalently, if 1{i, j|k} = 1, it
means during the tree construction, tracing down from the
root, k is separated from i and j first, and i, j are separated
in a split closer to the bottom of the tree. If the tree is binary,
we have the following equality:

1{i, j|k}+ 1{i, k|j}+ 1{j, k|i} = 1

That is, one and only one of the relationships represented by
the three indicator variables can hold.

Prior to proving Theorem 7.1, we cite this result from
Wang and Wang (2018), which shows the revenue in Cohen-
Addad et al. objective can be decomposed onto every triangle:
Lemma D.1 ((Wang and Wang 2018)). When |V | ≥ 3,

RT (V ) =
∑
i,j∈V

d(i, j)|leavesT [i ∨ j]|

=
∑

{i,j,k}⊆V

triRT (i, j, k) + 2
∑

{p,q}⊆V

d(p, q)

where triRT (i, j, k) denotes the revenue on triangle i, j, k,
defined as follows:

triRT (i, j, k) =


d(i, k) + d(j, k) if 1{i, j|k} = 1

d(i, j) + d(j, k) if 1{i, k|j} = 1

d(i, j) + d(i, k) if 1{j, k|i} = 1

By triangle inequality, for each triangle i, j, k, we always
have triRT (i, j, k) ≥ 1

2 (d(i, k) + d(j, k) + d(i, j)), which
will give us Theorem 7.1.
Proof of [Theorem 7.1] Let OPT (V ) denote the optimal
value of Cohen-Addad et al. objective for V . We have
OPT (V ) ≤

∑
{p,q}⊆V |V | · d(p, q).

By triangle inequality, it is easy to see that regardless
of which of the three relationship holds, we always have
triRT (i, j, k) ≥ 1

2 (d(i, j) +d(i, k) +d(j, k)) for any triplet
{i, j, k}. Then, for any T ,

RT (V ) =
∑

{i,j,k}⊆V

triRT (i, j, k) + 2
∑

{p,q}⊆V

d(p, q)

≥
∑

{i,j,k}⊆V

1

2
(d(i, j) + d(i, k) + d(j, k))

+ 2
∑

{p,q}⊆V

d(p, q)

=
1

2

∑
{p,q}⊆V

d(p, q)(|V | − 2) + 2
∑

{p,q}⊆V

d(p, q)

>
1

2

∑
{p,q}⊆V

|V | · d(p, q) ≥ 1

2
OPT (V )

The proof easily gives Corollary 7.1.1.
Proof of [Corollary 7.1.1] Similar to Lemma D.1, we can
decompose costT (V ) in the following way:

costT (V ) =
∑
i,j∈V

wij |leavesT [i ∨ j]|

=
∑

{i,j,k}⊆V

triCT (i, j, k) + 2
∑

{p,q}⊆V

wpq



where triCT (i, j, k) is defined as:

triCT (i, j, k) =


wik + wjk if 1{i, j|k} = 1

wij + wjk if 1{i, k|j} = 1

wij + wik if 1{j, k|i} = 1

Then, by triangle inequality, triCT (i, j, k) ≥ 1
2 (wij +wik +

wjk), so for any given tree T ,

min
T ′

costT ′(V ) ≥ (
∑

{i,j,k}⊆V

1

2
(wij + wik + wjk))

+ 2
∑

{p,q}⊆V

wpq

>
1

2

∑
{p,q}⊆V

wpq(|V |)

≥ 1

2
costT (V )


	1 Introduction
	2 Preliminaries
	3 Hierarchical-Revenue : Comparing Inter vs. Intra Cluster Distance 
	4 Ground-truth Inputs
	4.1 Definition of Ground-Truth Inputs
	4.2 Optimality of Generating Trees

	5 Bisecting k-means Approximates the Revenue Objective
	6 Randomly Partitioning Poorly Approximates the Revenue Objective
	7 Objectives for Data in Metric Space
	8 Empirical Results
	9 Conclusion
	A Ground-truth Inputs
	B Proving Bisecting k-means Optimizes the Revenue Objective
	C Proving Random is Bad
	C.1 An Upper Bound on the Performance of Random

	D Proofs for Cohen-Addad et al. and Dasgupta objectives

