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A B S T R A C T   

Recent developments in modern cyber-physical systems (CPSs) have allowed greater levels of intelligence and 
flexibility. The high levels of interactions and interdependencies in CPSs, however, also increase their vulner
abilities to external attacks and internal malfunctions. Disruptions in one cluster of a CPS can propagate to 
another cluster, eventually compromising the entire CPS if protective mechanisms and preparations are insuf
ficient. The economic impacts are immediately local, but will become global should response mechanisms prove 
insufficient. Ensuring CPS resilience against disruption propagation requires the appropriate strategic prepara
tion of response mechanisms, which is studied in this article. Recent work in CPS disruption response, notably the 
Collaborative Response to Disruption Propagation (CRPD) framework, has established the foundations for 
modeling and comprehension of the disruption response problem. Building upon the CRDP framework, this 
research introduces the Collaborative Response to Disruption Propagation/Strategic Lines of Collaboration 
(CRDP/SLOC) to investigate the effects of selecting different response agent teams to tackle disruptions. This 
selection is a strategic decision that cannot be altered once the disruptions begin, and thus needs to be guided by 
an appropriate collaborative control principle, called the SLOC principle. The SLOC principle analyzes the 
network structure, incorporates disruption propagation knowledge, and evaluates the strategic compatibility of 
the response agent teams to guide the selection and preparation process. The CRDP/SLOC model is validated 
using a set of experiments with different factors. These experiments indicate that the teams selected with the 
SLOC principle outperform the baseline teams in terms of response performance and resilience.   

1. Introduction 

1.1. Motivations for this work 

Unexpected disruptive events during recent decades have drawn 
increasing attention to the concept of resilience in cyber-physical sys
tems (CPSs) and complex networks: Networks of information, supply, 
computers, manufacturing, utility, transportation, and other infra
structure (Crucitti et al., 2004). The complex interactions and in
terdependencies of a CPS, while enabling greater economic growth and 
better quality of services, also allow the locally-occurring disruptions to 
propagate to other parts and subsystems of the CPS. For example, 
computer networks and sensor networks are vulnerable to propagating 
malware and informational errors, which can compromise the quality 
and/or functionality of the networks (Snediker et al., 2008; Kim et al., 
2015; Liu et al., 2016). Advanced supply networks and manufacturing 
networks are also vulnerable to disruptions and disruption propagation, 

where disruptions in one node can negatively affect preceding and 
succeeding nodes, due to unfulfilled demands and/or supplies (Reyes 
Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). External 
disruptions, such as natural disasters and cyber-attacks, can disrupt the 
production of certain raw materials and intermediate production steps; 
damage or destroy infrastructure, which can negatively impact 
manufacturing processes and product quality (Day, 2014; Gong et al., 
2014). Internal disruptions, such as demand/supply uncertainties, 
human errors, equipment and machinery breakdowns, can also affect 
the performance of advanced supply networks and manufacturing net
works (Sajadi et al., 2011). Disruptions within a CPS can also propagate 
between the physical layer (hardware, machinery, robots, tools, 
autonomous vehicles, drones, other physical connectors, etc.); and the 
cyber layer (software agents, automatic control and decision algorithms 
and protocols, communication protocols, etc.) of the CPS. This propa
gation of disruptions between the different CPS layers occur because of 
the high interdependency and interconnectedness between these layers. 
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For example, unforeseen errors and conflicts in the physical layer can 
cause software exceptions and crashes in the cyber layer, which can then 
propagate and affect other components of the physical layer. 

The challenge of ensuring resilience in CPSs requires the effective 
planning and preparation of response mechanisms to disruption prop
agation. Proper preparation of response mechanisms is particularly 
important because of the involvement of advanced, flexible 
manufacturing equipment and complex machinery. The economic im
pacts of disruptions, both short-term and long-term, can be devastating 
(Nguyen and Nof, 2019). Disruptions of supply in supply networks can 
lead to downstream raw materials and intermediate components 
shortage, which in turn lead to disruptions of demand affecting up
stream productions and revenues (Nguyen and Nof, 2018). 
Cyber-attacks on information networks and computer service networks 
can lead to short-term losses due to leaks and compromises of sensitive 
information as well as service denials, long-term equipment damage, 
loss of customer’s trust, and loss of strategic advantages (Zhong and Nof, 
2015, 2020). The planning of response to disruption propagation is also 
challenged by the size and complexity of the CPSs and complex networks 
involved, requiring cyber-augmented planning and management to 
effectively coordinate response activities (Snediker et al., 2008). 

To ensure the resilience of CPSs, appropriate preparation of disrup
tion response resources is necessary. The presence of response can not 
only remove the disruptions, but also prevent the potential propagation 
that would have occurred (Nguyen and Nof, 2019). For example, elim
inating a supply disruption at a supply network’s node (firm/company) 
not only benefits the concerned node, but also prevents the prop
agating/cascading effects of the shortage to its successor nodes (cus
tomers). Timely response to disruptions is critical to ensure CPS 
resilience, because late and/or insufficient responses can allow disrup
tions to propagate beyond the capability of the response resources. 
However, timely disruption response is often difficult to achieve because 
the exact time and location of the disruption occurrences are usually not 
known to the response resources ahead of time. Therefore, appropriate 
strategic preparation and deployment of response resources are neces
sary to ensure the resilience of CPSs, and this challenge is addressed in 
this work. 

1.2. The CRDP/SLOC model 

In this work, the Collaborative Response to Disruption Propagation 
via the Strategic Lines of Collaboration (CRDP/SLOC) model, which is 
an original contribution, is introduced to illustrate the effects of strategic 
preparation of response resources against disruption propagation on a 
CPS. The CRDP/SLOC model expands upon the general framework 
CRDP of Nguyen and Nof (2019) by providing insights into the impacts 
of the strategic decisions of preparing response resources before dis
ruptions occur. The second original contribution is the development of 
the Strategic Lines of Collaboration (SLOC) principle that guides the 
strategic preparation and allocation of disruption response resources. 
The SLOC principle specifies the network structure analysis of the CPS 
concerned, the incorporation of disruption propagation understanding 
into the analysis, and the evaluation of strategic compatibility of the 
possible teams of response agents. This work is the continuation of the 
CRDP work, and is inspired by the SmaRTA, Smart Response-Task 
Allocation project as well as the Dynamic Lines of Collaboration 
(DLOC) model (Zhong et al., 2014; Zhong and Nof, 2015, 2020; Zhong, 
2016; Nguyen and Nof, 2018, 2019). The CRDP/SLOC model and its 
accompanying analytics and principles are designed to be general, and 
can be adapted for different specific applications and problems. 

In CRDP/SLOC, the CPS, referred to as the client network, is repre
sented as a network of directed and weighted edges, with the nodes 
representing the components and subsystems of the CPS and the edges 
representing the connections between the nodes and the potential 
disruption propagation directions. The nodes are subjected to initial 
disruptions. Any potential disruption propagation directions are 

modeled as directed and weighted edges between the nodes. This 
network modeling approach generalizes the disruptions and their 
propagation, allowing CRDP/SLOC to be applied to different CPS con
texts and applications. A centrally controlled team of response agents 
collaborate to remove/repair the disruptions and to prevent immediate 
propagation of disruptions. The main modeling difference from the 
original CRDP model is that this team of response agents is selected from 
a collection of multiple different teams, each with different response 
agents that have different response capabilities. 

The SLOC principle is then introduced to guide the team selection 
process, which is a strategic decision that cannot be altered once the 
disruptions occur. The structure of the client network is analyzed, and 
the knowledge of the disruption propagation mechanisms is incorpo
rated into the SLOC analysis. Then, the strategic value of each node is 
computed, which provides information for the strategic compatibility 
evaluation of all response teams. Then, the most appropriate team(s) is 
selected to stand by against potential disruptions. To validate the CRDP/ 
SLOC model and the SLOC principle, a set of experiments with three 
different random network models is performed. The experiments show 
that the application of the SLOC principle leads to better response per
formance of the selected agent team, which results in higher resilience of 
the CPS under disruption. 

The remainder of the article is organized as follows: Section 2. 
Background with the literature review of related work and previous 
work; Section 3. Methodology and Theory of the CRDP/SLOC model, the 
network analysis, the disruption propagation analytics, and the Strategic 
Lines of Collaboration principle; Section 4. Experiments, Results, and 
Discussions with the set of experiments and results; Section 5. Conclu
sion and Discussion. The abbreviations are listed in Table 1. 

2. Background 

In this section, the relevant previous work is discussed. This review is 
not exhaustive and is intended to provide an overview of recent research 
surrounding response to disruption propagation in CPSs; disruption 
response mechanisms; disruption response strategies, analytics, and 
protocols. 

Cyber-physical systems (CPSs) typically consist of multiple sub
systems and components, both physical and cyber. Due to the complex 
relationship and interconnection between the subsystems, CPSs can be 
modeled as complex networks, with the subsystems and components 
represented as nodes, and their connections/relationships represented 
as edges. In production networks or supply networks, nodes can repre
sent companies, factories, and facilities, and edges can represent de
mand/supply relationship. In information networks and computer 
networks, nodes can represent servers, computers, clients, and users, 
and edges can represent connections and information exchanges. In 
manufacturing networks, nodes can represent machines and de
partments, and edges can represent flows of raw materials, intermediate 
products, final products, and information. Within the context of CPSs 
and networks, Nguyen and Nof (2019) define disruptions as “Any un
expected, and often negative, changes to any entity in the network, 
including but not limited to: the nodes, the attributes of the nodes, the 
edges, and the attribute of the edges”. It is noted that the specific nature 

Table 1 
Abbreviations.  

CMN Cyber-augmented Manufacturing Networks 
CPS Cyber-physical system 
CRDP Collaborative Response of Disruption Propagation 
DLOC Dynamic Lines of Collaboration 
FCFS First-come-first-serve 
MATW Minimizing additional task workload 
MNDP Minimizing neighboring disruption propagation 
SLOC Strategic Lines of Collaboration 
SPT Shortest processing time  
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and mechanisms of the disruptions are highly dependent on the CPS of 
interest and the modeling decisions of the concerned researchers. 

One type of CPS disruption is the removal of nodes and/or edges 
from the network (Barabasi and Albert, 1999; Albert et al., 2000; Shen 
et al., 2012; Shen, 2013; Wang et al., 2017). The node/edge removal 
disruptions are highly related to graph theory and network theory and 
the concepts of node degree and degree distribution. A class of complex 
network, the scale-free network, is observed to be highly resistant 
against this type of disruption (Albert et al., 2000), yet less resistant to 
disruptions that propagate through the network due to the lower char
acteristic path length. Several algorithms and allocation protocols are 
developed to select node/edge removal disruptions to optimize certain 
objectives, such as maximizing the number of graph components and 
minimizing the largest component size (Shen et al., 2012; Shen, 2013). 

An important type of disruption focuses on a pre-defined set of at
tributes of the nodes and edges of the CPS. This set of attributes can be 
freely designed, which enables researchers to model the actual CPSs and 
their mechanisms accurately. In production networks and supply net
works, node attributes can reflect a node’s production capability and 
inventory level, while edge attributes can reflect the demand/supply 
statuses between nodes. One type of disruption reduces the production 
capability of the nodes, affecting succeeding nodes, and these disrup
tions are propagated through the network if not properly contained 
(Reyes Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). Such 
disruptions reduce the production capability of succeeding nodes, 
requiring these nodes to have contingent supply/inventory, affecting the 
nodes downstream (Seok et al., 2016). In road/traffic networks, dis
ruptions are concerned with the attribute traffic density (Zhang, Gier, & 
Garoni, 2014). An important type of disruption is concerned with the 
attribute failure status of the CPS’s nodes and edges (Zhong et al., 2014; 
Zhong & Nof, 2015, 2020; Zhong, 2016), which targets both nodes and 
edges, then propagates to neighboring nodes and edges, and this prop
agation cycle continues. 

Various research also investigates different disruption propagation 
mechanisms. For example, the load-based mechanism (Motter and Lai, 
2002) involves disruptions that reduce the load of the neighboring 
nodes, and nodes with insufficient load are removed from the network, 
the cycle repeats itself to the point of equilibrium (Yin et al., 2016). The 
load-based disruption can be generalized using pre-defined relationships 
and functions for individual nodes (Guariniello and DeLaurentis, 2017). 
Other research investigating disruption propagation includes the works 
of Crucitti et al. (2004); Buzna et al. (2007); Swift (2008); Buldyrev et al. 
(2010); Chaoqi et al. (2017a, 2017b); and Chaoqi et al. (2018). It is 
observed that the mechanisms of disruption propagation are specific to 
the applications and problems of concern to the researchers. In undi
rected networks, disruptions generally propagate through the neigh
boring connections of the nodes, whereas in directed networks, 
disruptions generally propagate downstream through the directions of 
the edges. 

To prevent, eliminate, and/or reduce disruptions, response mecha
nisms are often deployed. The response activities are often controlled 
and coordinated by response strategies and protocols. One response 
strategy is concerned with gradually increasing the response resource 
allocation in accordance with the disruption status of the nodes (Buzna 
et al., 2007). Against load-based disruption, a response strategy 
involving balancing energy loads of nodes is developed (Chaoqi et al. 
(2017a, 2017b; Chaoqi et al., 2018). Both centralized and decentralized 
algorithms have been investigated and compared in preventing errors 
and conflicts (Chen and Nof, 2012; Landry et al., 2013). In supply net
works, response mechanisms can include both agent-based and 
semi-centralized decision making to re-route supply/demand (Reyes 
Levalle and Nof, 2015b; 2015a, 2017; Reyes Levalle, 2018). One 
response mechanism involves agents traveling to the nodes to perform 
the repair operations (Zhong et al., 2014; Zhong and Nof, 2015; Zhong, 
2016), and the agents are supported by the centrality-based allocation 
strategy and advanced online scheduling protocols. 

The CRDP/SLOC model is an extension of the CRDP model developed 
by Nguyen and Nof (2019) and is related to the Cyber-augmented 
Manufacturing Networks (CMN) (Nguyen and Nof, 2018). Both CRDP 
and CRDP/SLOC are also related to the Dynamic Lines of Collaboration 
(DLOC) principle developed by Zhong and Nof (2015) and the Emergent 
Lines of Collaboration and Command (ELOCC) principle developed by 
Velasquez et al. (2010). Both CRDP and DLOC specifically address the 
challenge of coordinating response activities to tackle disruption prop
agation, whereas ELOCC addresses the coordination of collaboration 
during emergencies. In the DLOC research, the CPSs concerned are 
modeled as unweighted and undirected networks, with the response 
agents traveling to repair disrupted nodes. The DLOC response strategies 
include centrality-based depot allocation protocol, activity-based online 
scheduling protocol, and auxiliary lines edge rewiring protocol. In the 
CMN work (see Table 2) the CPSs concerned are modeled as weighted 
and directed manufacturing networks, and the response strategies 
include employing network analytics, disruption analytics, and flow 
analytics to support response decisions. In the CRDP work, the CPSs 
concerned are modeled as weighted and directed networks, with 
response agents having the capability to remove disruptions, as well as 
preventing immediate disruption propagation. The CRDP’s main 
contribution was the analysis of the response-disruption interaction, and 
the CRPD response strategy emphasizes this interaction to enhance the 
response activities. All the aforementioned work provides a concrete 
foundation and important research directions for the development of 
CRDP/SLOC. The summary and comparison of the related preceding 
work are provided in Table 2. 

From the literature survey, there is limited investigation on the 
interaction effect between the CPS and the response mechanisms. Based 
on the CRPD framework, this interaction effect belongs to the category 
of client-response interaction, which governs the important relation
ships between the CPS and the response mechanisms. It is observed that 
both CRDP and DLOC focus more on the dynamic aspect, i.e., the online 
scheduling protocol of the response activities, and do not discuss the 
strategic aspect of preparation and configuration of the response 
mechanisms to tackle disruption propagation. This knowledge gap is 
addressed by the CRDP/SLOC model and the accompanying SLOC 
principle, which are discussed in the next section. 

Table 2 
Summary and comparison of preceding work of CRDP/SLOC.  

Model CPS type Dynamic response 
strategy/protocol 

Strategic response 
strategy/protocol 

DLOCa Unweighted, 
undirected network 
Application: General 
complex network 

Online scheduling 
protocol: Nearest 
neighbor 

Limited: Centrality- 
based depot 
allocation 

DLOCb Online scheduling 
protocol: activity- 
based; 
Edge rewiring: 
Auxiliary links 

CMNc Weighted, directed 
network 
Applications: 
Manufacturing/ 
production/supply 
network 

Online scheduling 
protocol: Based on 
analytics 

Very limited: Offline 
analytics of network, 
disruption, flow 

CRDPd Weighted, directed 
network 
Application: General 
complex network 

Online scheduling 
protocol: minimizing 
neighboring 
disruption 
propagation, 
minimizing additional 
task workload 

None 
CRDP/ 

SLOC 
[this 
work] 

Significantly 
expanded: Network 
analysis, disruption 
propagation 
analytics, SLOC  

a (Zhong and Nof, 2015). 
b (Zhong, 2016). 
c (Nguyen and Nof, 2018). 
d (Nguyen and Nof, 2019). 
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3. Methodology and Theory 

3.1. The CRDP/SLOC model – framework and formulation 

In this section, the CRDP/SLOC model is presented (Fig. 1). The 3 
main components of CRDP/SLOC are defined based on the CRDP general 
framework: D1 – the client network; D2 – the response teams; and D3 – 
the disruption propagation. In addition, the SLOC principle is developed 
to guide the strategic selection and preparation of the response teams. 
Component D1, the client network, represents the CPS concerned. 
Within the scope of this work, the client network is a network of un
weighted nodes with directed and weighted edges. The nodes represent 
the subsystems of the CPS, which are subjected to disruptions repre
sented by 0 and 1 binary values. Any possible disruption propagation 
directions between nodes are modeled as directed edges. Component 
D2, the set of response teams, consists of response teams that can be 
deployed to tackle the disruptions and their propagations. For each 
disruption scenario, one response team can be selected and deployed to 
tackle the disruptions and their propagation. Component D3 consists of 
the disruptions, which occur initially, target the nodes, and propagate 
throughout the client network through the directions of edges. Within 
the scope of the CRDP/SLOC model, the disruptions are assumed to 
occur initially, only in nodes, and can propagate within the client 
network through the directions and weights of the edges. Should edge 
disruption modeling be required, the CRDP/SLOC model can be applied 
by converting the edges to new nodes that reflect the relevant attributes 
of the original edges, as necessary. Then new edges can be created to 
reflect the relationship between the original nodes and original edges 

(Nguyen and Nof, 2019). 
The edges of the triangle represent the interaction between the main 

components: E12 – the client-response interaction; E13 – the client- 
disruption interaction; and E23 – the response-disruption interaction. 
Based on the CRDP framework, this work defines the interaction as 
follows. Edge E12 represents the interaction between the client network 
and the response team, which specifies that each response team consists 
of a number of response agents, and each response agent can repair a 
disrupted node. Edge E13 represents the interaction between the client 
network and the disruption propagation: Disruptions propagate through 
the directions and the weights of the edges of the client network. Edge 
E23 represents the interaction between response teams and the disrup
tions, in that the effect of response removes the disruption and prevents 
ongoing disruption propagation; which limits the disruption 
propagation. 

The main difference between the CRDP/SLOC model and the original 
CRDP model is in addressing the problem of selecting and preparing a 
response team (out of a set of response teams) to tackle the given dis
ruptions. Each response team has a different capability, and its perfor
mance is not known unless the computationally expensive simulation is 
performed. Thus, the Strategic Lines of Collaboration (SLOC) principle, 
discussed in detail in the subsection below, is developed to guide this 
selection and preparation process. Following the SLOC principle, the 
structure of the client network is analyzed, and the knowledge of the 
disruption propagation mechanisms is incorporated into the analysis. 
This analysis is extended to compute the strategic value of each node is 
computed, and each team’s strategic compatibility is computed. Then, 
the most appropriate team(s) is selected to standby for response against 

Fig. 1. The CRDP/SLOC model.  
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potential disruptions. 
The summary of the CRDP/SLOC model, per the CRDP framework, is 

provided next in Table 3. 
The SLOC principle, which is one original contribution of this work, 

is developed to analyze the CRDP/SLOC model and to guide the response 
team selection and preparation process. The first step is to analyze the 
client network’s structure and calculate the distance matrix and the 
nodes’ out-degrees (the total number of outgoing edges of each node). 
Then, the understanding of disruption propagation, based on E13, is 
utilized to analyze the disruption propagation patterns and behavior. 
This information is used to estimate the strategic values of each node. 
Even though the client network contains unweighted nodes, the nodes 
with more outgoing nodes (both at the local-level and network-level), if 
disrupted, are more likely to propagate disruptions. Using the strategic 
values of the nodes, each response team’s strategic compatibility with 
the client network is calculated using their response requirement 
matrices as specified by E12. Finally, a response team is selected to 
respond to the disruptions. The details of the SLOC principle are 
explained in subsection 3.2. 

The CRDP/SLOC model is simulated through the use of C# and a 
discrete-event simulation programming, which culminates in the 

Teamwork Integration Evaluator/Collaborative Response to Disruption 
Propagation/Strategic Lines of Collaboration (TIE/CRDP/SLOC) soft
ware. The terms and their attributes are defined in Table 4. 

The entities and attributes provided in Table 4 are necessary to 
satisfy the CRDP/SLOC model requirements as introduced in Table 3. 
The entities of interest in the system include the nodes, edges, response 
teams, response agents, and disruptions. The attributes are character
istics of the entities. The entities and attributes are either input entities, 
input attributes, dynamic attributes, or derived attributes. The input 
entities and input attributes are given by the user or the case study and 
remain unchanged throughout the simulation. The derived attributes are 
derived from the input entities and input attributes, and also remain 
unchanged throughout the simulation. The main difference between the 
CRDP/SLOC modeling and the CRDP modeling is the addition of the set 
of response teams TL, and the adjustment of the dynamic variables 
NOSðn;tÞ, NAAðn;tÞ, NFCFSðn;tÞ, EDPSðe;tÞ, and ABSða;tÞ. The addition of 
TL allows CRDP/SLOC to model the impact of choosing different 
response teams on the resilience of the CPS. The adjustment of the dy
namic variables also enables the analysis of the SLOC principle. The 
other items of the CRPD/SLOC modeling, including the discrete events, 
simulation logic, and performance metrics, follow the original CRDP 
modeling (Nguyen and Nof, 2019), with the adjustment of the dynamic 
variables taken into account. Readers are referred to Nguyen and Nof 
(2019) for further elaboration and details. The important performance 
metrics of CRDP/SLOC are listed in Table 5 for reference. 

The next subsection discusses the SLOC principle, which analyzes the 
CRDP/SLOC model and guides the selection of the response team. 

3.2. The Strategic Lines of Collaboration (SLOC) principle 

The SLOC principle is a collaborative control principle that addresses 
the strategic selection and preparation of a team of agents for the CRDP 
model. The SLOC principle consists of five steps. The first step involves 
the structure analysis of the client network. The second step in
corporates the knowledge regarding the disruption propagation mech
anisms into the network structure analysis. The third step utilizes the 
analytics created from the second step to evaluate the strategic value of 
each node. The fourth step then extends the analysis to evaluate the 
strategic compatibility of each response team. The fifth step then selects 
the most appropriate response team to be on standby to respond against 
disruptions. 

The first step of the SLOC principle involves the analysis of the client 
network, which is presented as follows. 

A node n’s set of incoming/preceding neighboring nodes NINLðnÞ⊂ 
NL is formally defined as 

NINLðnÞ¼ fni 6¼ n2NL : 9e¼ðni; nÞ 2ELg (1) 

A node n’s set of outgoing/preceding neighboring nodes NONLðnÞ⊂ 
NL is formally defined as 

NONLðnÞ¼
�

nj 6¼ n2NL : 9e¼
 
n; nj

�
2EL

�
(2) 

A node n’s set of incoming/preceding edges NIELðnÞ⊂EL is formally 
defined as 

NIELðnÞ¼
�

e¼
 
ni; nj

�
2EL : nj � n

�
(3) 

A node n’s set of outgoing/succeeding edges NOELðnÞ⊂EL is formally 
defined as 

NOELðnÞ¼
�

e¼
 
ni; nj

�
2EL : ni � n

�
(4) 

Suppose a CN ¼ ðNL; ELÞ is given with all determined values for all 
EDPTðeÞ, and a node nd is selected as the only node disrupted initially, 
meaning at t ¼ 0; NOSðnd; 0Þ ¼ 0 and NOSðn; 0Þ ¼ 1; 8n 2 NL fndg, 
with no response agents available, meaning AL ¼ ∅. It is observed that 

NOS
 
nj; EDPTðeÞ

�
¼ 0;8e¼

 
ni; nj

�
2NOELðndÞ (5) 

Table 3 
Summary of the CRDP/SLOC model.  

Aspect Features Details 

CRDP/SLOC 
components 

D1 – Client network The CPS represented as a 
network of unweighted nodes 
with directed and weighted 
edges. 

D2 – Response teams The set of response teams, in 
which one team is selected to 
respond to the disruptions. Each 
response team consists of 
response agents that can be 
assigned to repair disrupted 
nodes. 

D3 – Disruption 
propagation 

Initial disruptions that target 
nodes and propagate through the 
edges. 

CRDP/SLOC 
interactions 

E12 – Client-response 
interaction 

Each response agent can have a 
different response time for 
different nodes of the client 
network. This information is 
presented by a response 
requirement matrix. 

E13 – Client-disruption 
interaction 

Disruptions can propagate 
through the directions and 
weights of the edges of the client 
network. 

E23 – Response- 
disruption interaction 

The existence of response 
activities removes and prevents 
the effects of disruptions and 
disruption propagation. 

Comparison to the 
original CRDP 
model 

The response team 
selection problem 

For a simulation instance, a 
single response team is selected 
(from the set of response teams) 
to respond to the disruptions. 

SLOC – client network 
analysis 

The network structure of the 
client network is analyzed and 
node-level analytics are 
computed. 

SLOC – disruption 
propagation analysis 

The disruption propagation 
analysis is performed to provide 
information on the disruption 
propagation pattern. 

SLOC – client network 
strategic analysis 

Using the information from the 
client network analysis and 
disruption propagation analysis, 
each node’s strategic value is 
computed. 

SLOC – response team 
strategic compatibility 
analysis 

Then, each response team’s 
strategic compatibility is 
evaluated.  
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This property is true because the disrupted node nd is the only cause 
of disruption. It is noted that, however, certain nodes nj 2 NONLðndÞ

may be disrupted earlier than the expected value of EDPTðeÞ if a shorter 
disruption propagation path exists from nd to that node nj. 

The second step of the SLOC principle incorporates the knowledge 
regarding the disruption propagation mechanisms to the network 
structure analysis. Based on this step, the neighboring disruption ana
lytic NNDAðnÞ 2 R is defined as 

NNDAðnÞ¼
XNONLðnÞ

nj

1

,

min
e¼ðn;njÞ

fEDPTðeÞg (6) 

The NNDAðnÞ analytic provides information regarding the local-level 
impact of a disruption affecting node n. The value of NNDAðnÞ increases 
with a higher number of outgoing edges, or jNOELj, and with lower 
weight for each edge e 2 NOELðeÞ. The formula also addresses the case 
where multiple edges exist from n to nj, and NNDAðnÞ only considers the 
shortest edge. Compared to network-level analytics, NNDAðnÞ is more 
limited in terms of information provided, but requires less computa
tional power to calculate, which is complexity OðjELjÞ. 

An analytic more advanced than NNDAðnÞ would consider the 
network-level aspect of disruption propagation. Based on the observa
tion that disruptions propagate from one node ni(if ni is the only dis
rupted node initially) to another node nj through the shortest path from 
ni to nj; the shortest-path matrix SPM ¼ ðdi;jÞ 2 R

jNLj�jNLj
�0 can be 

computed to assist with the calculation of network-level analytics. The 
matrix SPM can be computed efficiently using the Floyd-Warshall al
gorithm (Floyd, 1962) with complexity OðjNLj3Þ. Each entry is defined 
as SPDðni; njÞ � di;j 2 R�0 representing the shortest-path distance from 
node ni to node nj, with the edge directions applied and edge weights 
represented by EDPTðeÞ. If no such path exists, SPDðni;njÞ ¼ null, and 1=

SPDðni; njÞ ¼ 0. Using the shortest-path distance matrix, the harmonic 
centrality analytic NHCAðnÞ 2 R is defined as 

NHCAðnÞ¼
XNL

nj 6¼n

1

,

SPD
 
n; nj

�
(7) 

The NHCAðnÞ analytic provides information regarding the network- 
level impact of a disruption affecting node n. The value of NHCAðnÞ
increases if node n is closer to more nodes. The formula of NHCAðnÞ also 
addresses the case where multiple edges exist between one pair of nodes, 

Table 4 
Entities and basic attributes of the CRDP/SLOC model.  

Type Entity/Attribute and Explanation Corresponds 
to 

The following entities are defined for the CRDP/SLOC model 
Input CRDP=SLOC ¼ ðCN; TL;DNLÞ CRDP model 
Input CN ¼ ðNL; ELÞ The client network, subjected to 

disruptions.  
D1 

Input NL ¼ fn0; n1; n2…g The set of nodes in the client 
network.  

D1 

Input EL ¼ fe0; e1; e2…g The set of weighted and directed 
edges, which represent the directions and time taken 
for disruptions to propagate from one node to other 
nodes connected to it.  

D1 

Input TL ¼ fðAL0; RRM0Þ; ðAL1; RRM1Þ; …g The set of 
response agent teams with the corresponding response 
requirement matrices. For each experiment 
replication, only one team to standby for response. 
Each team has a response requirement matrix towards 
the client network. For example, AL0 follows RRM0, 
and AL1 follows RRM1:

D2 

Input AL ¼ fa0; a1; a2…g The team of weighted response 
agents, which is responsible for responding to 
disruptions. For a simulation instance, a team ALis 
selected from the set TL to respond to the disruptions, 
and its agents are deployed to tackle the disruptions 
and their propagation.  

D2 

Input RRM ¼ ðri;jÞ 2 R
jALj�jNLj
>0 The response requirement 

matrix, whose rows correspond to the agents in AL, and 
columns correspond to the nodes in NL. ri;j indicates 
the time taken for agent ito respond to a disruption 
affecting node j.  

E12 

Input DNL⊂NL The set of nodes subjected to initial 
disruptions.  

D3 

The following attributes are defined for each node n 2 NL  
Dynamic NOSðn; tÞ 2 f0; 1g The operational status of node n at 

time t. NOSðn; tÞ ¼ 1 means the node is not disrupted at 
time t. NOSðn; tÞ ¼ 0 means the node is disrupted at 
time t and can propagate disruptions to its successor 
nodes.  

E13 

Dynamic NAAðn; tÞ 2 AL Node n’s currently assigned response 
agent for responding to its disruption at time t.  

E23 

Dynamic NFCFSðn; tÞ 2 R�0 Node n’s last disrupted time, at time 
t, which is used in the first-come-first-serve scheduling 
protocol.  

E13 

The following attributes are defined for each edge e ¼ ðni ; njÞ 2 EL  
Input EDPTðeÞ 2 R>0 Edge e’s disruption propagation time, 

which is equivalent to edge e’s weight. Suppose node ni 

is disrupted at time t, then at time tþ EDPTðeÞ, node nj 

will become disrupted if both node ni and node nj have 
not been responded to by an agent. If EDPTðeÞ ¼ 0, 
both ni and nj can be treated as the same node, and 
their response requirement in RRMshould be updated 
accordingly.  

E13 

Dynamic EDPSðe; tÞ 2 f0; 1g Edge e’s disruption propagation 
status at time t, mainly used for simulation of 
disruption propagation. EDPSðe; tÞ ¼ 1 means the 
disruption propagation along edge e will occur as 
planned. EDPSðe; tÞ ¼ 0 means the disruption 
propagation is halted, due to the intervention of an 
agent.  

E13 

The following attributes are defined for each agent a 2 AL:  
Dynamic ABSða; tÞ 2 f0; 1g Agent’s busy status at time t. 

ABSða; tÞ ¼ 0 means the agent is idle, and ABSða; tÞ ¼ 1 
means the agent is busy (currently responding to a 
disruption).  

D2 

Simulation-specific parameters are defined for the CRDP model: 
Dynamic tThe current time of the simulation.  Simulation 
Dynamic tlastA variable mainly used for recording performance 

metrics.  
Simulation 

Input simLenSimulation length. Once t ¼ simLen or 
PNL

n NOSðnÞ ¼ jNLj, the simulation ends.  
Simulation 

Input selProSelected protocol for the replication.  E23  

Table 5 
The CRDP/SLOC performance metrics.  

System performance 
metric 

Explanation 

rF  For each experiment, rF, the recovery fraction, is defined as 
the fraction of the replications where the system fully 
recovers from the disruption propagation. Higher values of 
rFare preferred.  

rT  For each replication, rT, the recovery time, is defined as the 
time taken for the agent network to fully recover the client 
network. When all nodes are at full operational status, 
disruptions are non-existent and no longer occur, and the 
simulation ends. Lower values of rTare preferred. 
ifðNOSðn; tÞ ¼ 18n2 NLÞ rT←t; else rT←simLen  

tPL  For each replication, tPL, the total performance loss, is 
defined as the over-time average fraction of nodes that are 
disrupted. Lower values of tPL are preferred. 

tPL ¼
R simLen

t¼0 pLðtÞdt
simLen 

pLðtÞ ¼
PNL

n
1 NOSðn; tÞ

jNLj
at t  

mDPF  For each replication, mDPF, the maximum disruption 
propagation fraction, is defined as the largest fraction of the 
client network that was ever disrupted. Lower values of 
mDPFare preferred. 
mDPF ¼ max

t
pLðtÞ
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in that only the shortest path is considered in the calculation. Compared 
to the local-level analytic NNDAðnÞ, NHCAðnÞ provides more informa
tion regarding disruption propagation risk, but requires more compu
tational power to calculate. 

The main limitation of both NNDAðnÞ and NHCAðnÞ is that their 
disruption propagation analyses do not consider the performance met
rics used to evaluate a problem instance. While NHCAðnÞ can provide a 
relative ranking between nodes, the proportional differences in values of 
NHCAðnÞ between nodes may not reflect the actual differences with 
respect to the performance metrics tPL and mDPF. To address these 
limitations, the second step of the SLOC principle is to incorporate the 
network-level understanding of disruption propagation. 

To address the total performance loss metric tPL, the rate of 
disruption propagation analytic NRDPAðnÞ 2 R is defined as 

NRDPAðnÞ¼
R t¼ max

ni ;nj2NL
SPDðni ;njÞ

t¼0

�
�
�

nj 2 NL : SPD
 
n; nj

�
� t

��
�dt

max
ni ;nj2NL

SPD
 
ni; nj

� (8) 

The analytic NRDPAðnÞ aggregates the rate of increasing total per
formance loss of the CPS if node n is the sole initially disrupted node 
with no response agents present. To address the maximum disruption 
propagation fraction metric mDPF, the maximum disruption propaga
tion analytic NMDPAðnÞ 2 R is defined as 

NMDPAðnÞ¼
�
�
�

nj 2 NL : SPD
 
n; nj

�
6¼ null

��
�

max
ni ;nj2NL

SPD
 
ni; nj

� (9) 

The analytic NMDPAðnÞ considers the maximum damage a disrup
tion affecting node n can cause. Both NRDPAðnÞ and NMDPAðnÞ over
come the limitation of NHCAðnÞ that tends to give a higher weight to 
nearby nodes nj with extremely close proximity to n due to 1= SPDðn; njÞ

formula. A simple 3-node example is provided in Fig. 2. 
The third step of the SLOC principle computes the strategic values for 

each node. A node n’s strategic value NSVðnÞ 2 R is selected from 
NNDAðnÞ; NHCAðnÞ; NRDPAðnÞ; NMDPAðnÞ or a function combining 
these four indices. This decision is left open to individual cases and 
scenarios, depending on the available information and computational 
resources. 

The fourth step of the SLOC principle evaluates the strategic 
compatibility of each agent team. A team of agents is defined as AL ¼

fa0; a1; …g with each agent ai capable of responding to a disruption 
affecting node nj after a period of time RRMði; jÞ, which considers two 
integer arguments. An alternative notation for RRMði; jÞ is RRMðai;njÞ. 

An agent a’s estimated effectiveness index AEIðaÞ towards the client 
network is defined as 

AEIðaÞ¼
XNL

n

NSVðnÞ
RRMða; nÞ*

PNL
no

NSVðnoÞ
(10) 

Aggregating all agents of a team, the team AL’s strategic compati
bility index TSCIðALÞ 2 R is defined as 

TSCIðALÞ¼
XAL

a

AEIðaÞ
jALj

¼
XAL

a

XNL

n

NSVðnÞ
jALj*RRMða; nÞ*

PNL
no

NSVðnoÞ
(11) 

The index TSCIðALÞ estimates the total effectiveness of a particular 
team of response agents, given a certain selected method of deciding 
NIIðnÞ, the team’s RRM, and the client network NL. 

The final step of the SLOC principle is to select the appropriate 
response team AL or a limited set of AL, based on the evaluation of 
TSCIðALÞ. Higher values of TSCIðALÞ would indicate higher strategic 
compatibility. 

4. Experiments, results, and discussions 

In this section, experiments are conducted to illustrate the different 
network analytics and response team preparation protocols with respect 
to three types of random network models: Barabasi-Albert (Albert and 
Barabasi, 2002), Erdos-Renyi (Erd€os and R�enyi, 1959), and 
Watts-Strogatz (Watts, 2002). The details of the experiments are as 
follows (Table 6). 

The three random network models above are used for the client 
network, with 100 replications each, each created with 100 nodes and 
200 edges. A detailed comparison of the three random network models 
can be found in the work of Albert and Barabasi (2002). These three 
random network models can approximate current and emerging CPSs 
and complex systems with certain accuracies (Chen and Nof, 2012; 
Zhong and Nof, 2015), and are therefore appropriate network models for 
these numerical experiments. The Barabasi-Albert networks are created 
with 2 initial nodes, and the growth rate of 2 edges per new node, until 
200 edges are reached. The Erdos-Renyi networks are created with the 
same number of nodes and number of edges, and only fully connected 

Fig. 2. Example of NRDPA(n) and NMDPA(n).  
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networks are selected. The Watts-Strogatz networks are created with 
mean degree 4, and rewiring probability of 0.5. Because the three 
random network models used are undirected and unweighted networks, 
adjustments are required to match the requirements of the CRDP model. 
For each undirected and unweighted edge, there is a 2/3 probability for 
an edge to be unidirectional, and 1/3 probability for an edge to be 
converted to two directed edges of opposite directions. Each directed 
edge e receives a weight EDPTðeÞ ranging from 0.5 to 1.5, uniformly 
distributed. With respect to disruption propagation, 25 initial disrup
tions are selected randomly based on a uniform distribution. The pa
rameters of 10 agents and 25 initial disruptions for the 100-node 
networks are selected based on previous work (Nguyen and Nof, 2019). 

Four online response protocols for the agents are applied, based on 
(Nguyen and Nof, 2019): First-come-first-serve protocol, FCFS, priori
tizing disruptions that occur earlier; Shortest processing time protocol, 
SPT, prioritizing disruptions that can be addressed quickly with a 
selected idle agent; Minimizing neighboring disruption propagation 
protocol, MNDP, prioritizing disruptions that can spread quickly to 
undisrupted nodes; Minimizing additional task workload, MATW, a 
generalization of the MNDP protocol in considering the propagation of 
the task workload. 

With respect to the response teams, a pool of 1000 teams are created, 
each of 10 response agents. Each team receives an across-agent- 
variation index AAVIðALÞwith random distribution UNIFð0; 1Þ, which 
determines the degree of variation between agents. Additionally, each 
agent receives an across-node-variation index ANVIðaÞ with random 
distribution UNIFð0; 1Þ*AAVIðALÞ, which determines the degree of 
variation in terms of response time for that agent to the different nodes. 
Then, for each agent, the unnormalized response time URTða; nÞ for each 
node (out of 100) is generated with random distribution UNIFð1; 1 þ
ANVIðaÞÞ. Then, the unnormalized response time is normalized so that 
the average response time across all nodes for each agent is equal to 1. 
This procedure results in the creation of diverse teams and uniform 
teams. The diverse teams have higher values of AAVIðALÞ and have more 
diverse agents, whereas the uniform teams have lower values of 
AAVIðALÞ and have more uniform agents. The more diverse agents have 
higher values of ANVIðaÞ and tend to have a wider range of response 
times across all nodes, whereas the uniform agents have lower values of 
ANVIðaÞ and tend to have similar values of response times. The vari
ability resulting from AAVIðALÞ and ANVIðaÞ affects the response 
requirement matrix RRM, which affects AEIðaÞ, and ultimately affects 
TSCIðALÞ. All agents, however, are assumed to have an average response 
time of 1 across all nodes, thus, all teams are economically balanced, but 
are not necessarily equal in terms of strategic compatibility. Simulating 
the full CRDP model with 1000 provided teams would be computa
tionally expensive. Therefore, the SLOC principle is applied to guide the 
team selection decision. The first four steps of the SLOC principle are 
applied, resulting in the TSCIðALÞ for the 1000 provided teams. For this 
set of experiments, four groups of TSCIðALÞ are selected: A high- 
compatibility group, which consists of the top 10 teams based on 
TSCIðALÞ ranking; a medium-compatibility group, which consists of the 

middle 10 teams; a low-compatibility group, which consists of the 
lowest 10 teams; and a random group of 10 teams (selected randomly, 
uniformly from the set of 1000 provided teams). 

Four performance measures listed in Table 5 are used. The recovery 
fraction, rF, is the fraction of the experiment replication where the client 
network is fully recovered from the disruptions and is returned to 
normalcy. The recovery time, rT, represents the total time taken for the 
disruptions to be fully removed from the client network. If the client 
network fails to recover within the prescribed simulation time, a large 
penalty value of 50 is applied. Both rFand rT are important recovery 
resilience metrics that indicate the effectiveness of the response activ
ities and team configuration decisions. The total performance loss, tPL, 
represents the total over-time loss of performance due to disruptions of 
the client network. The metric tPLis relevant when the CPS is required to 
continue functioning during disruptions. The maximum disruption 
propagation, mDPF, represents the highest performance loss that occurs 
during an experiment replication. This metric is relevant when long- 
term damages are expected from disruptions, even after the disrup
tions are removed. Examples include loss of sensitive information, un
recoverable damages, and wear and tear. 

Comparisons between strategic compatibility levels are provided in 
Fig. 3 and Table 7. 

The high strategic compatibility teams significantly outperform the 
other three team types: 12.7%–15.6% improved recovery fraction, 
7.3%–8.5% reduced recovery time, 9.6%–12.4% reduced total perfor
mance loss, and 5.5%–8.8% reduced maximum disruption propagation. 
Overall, the high strategic compatibility teams are proven to provide the 
best performance with statistical significance, followed by either 
randomly selected teams or medium strategic compatibility teams, then 
by the low strategic compatibility teams. The next comparisons are be
tween strategic compatibility levels and online response protocols 
(Fig. 4, and Table 8). 

When FCFS protocol is employed, high strategic compatibility teams 
provide 0.6%–1.3% reduced total performance loss and 1.3%–3.7% 
reduced maximum disruption propagation. This result is explained by 
the very low effectiveness of FCFS protocol in preventing the propaga
tion of disruptions. With SPT protocol, the usage of high strategic 
compatibility teams significantly improves the resilience of the client 
network: 161%–1540% increased recovery fraction, 13.4%–18.9% 
reduced recovery time, 18.2%–26.9% reduced performance loss, and 
11.6%–18% reduced maximum disruption propagation. It can be 
concluded that the SPT protocol highly depends on the appropriate 
strategic preparation of agent teams. With MNDP protocol, usage of high 
strategic compatibility teams provides a statistically significant 
improvement in resilience: 6.8%–11.2% increased recovery fraction, 
5.3%–10.5% reduced recovery time, 7.6%–12.2% reduced performance 
loss, and 4.6%–5.2% reduced maximum disruption propagation. With 
MATW protocol, the high strategic compatibility teams provide statis
tically significant better resilience: 3.6%–5.8% reduced recovery time, 
6.5%–11.6% reduced total performance loss, and 2.1%–7.7% reduced 
maximum disruption propagation. The lower improvement from 
employing high compatibility teams can be partially explained by the 
high effectiveness of the online response protocol MATW. 

The experiment results indicate that using high strategic compati
bility teams provides superior performance relative to other team types, 
demonstrating the effectiveness of employing the SLOC principle in 
strategic preparation of agent teams. The higher performance is most 
notable with the use of SPT online response protocol, followed by 
MNDP, then by MATW. It is also noted that using medium strategic 
compatibility teams is at about the same level of performance as the 
randomly selected teams. 

5. Conclusion and Discussion of applications 

Disruption propagation prevention and control can have significant 
social and economic value in the design of CPS. In the context of 

Table 6 
Details of the experiments.  

Factor # 
variations 

Details 

Client network 3 Barabasi-Albert random network vs Erdos-Renyi 
random network vs Watts-Strogatz random 
network, all 100-node and 200-edge. 

Agent network 4 Random team selection vs low strategic 
compatibility vs medium strategic compatibility 
vs high strategic compatibility 

Disruption 
scenario 

1 25 initial disruptions 

Online response 
protocols 

4 FCFS (baseline) vs SPT (baseline) vs MNDP vs 
MATW, based on (Nguyen and Nof, 2019)  
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Collaborative Control Theory, the Collaborative Response against 
Disruption Propagation/Strategic Lines of Collaboration (CRDP/SLOC) 
is introduced as an expansion of the CRDP framework, analyzing the 
effects of strategic preparation of teams of response agents against 
disruption propagation damaging a CPS. The new SLOC principle is 
developed and introduced as a general and adaptable collaborative 
control principle to design and select the appropriate strategic decisions 
in preparation against disruption propagation. The CRDP/SLOC model 

is validated using a set of experiments with three different random 
network models, four agent team selection protocols (with one protocol 
based on the SLOC principle), and four online response protocols. The 
developments of the CRDP/SLOC model and the SLOC principle for 
strategic selection of response agent teams are contributions to the 
research area of disruption propagation response in general, and in CPSs 
design in particular. The development of the CRDP/SLOC model dem
onstrates the generality of the CRDP framework to model collaboration 
response activities to tackle disruption propagation and furthering 
research in CPS resilience. Specifically, the SLOC principle addresses one 
important research direction of the CRDP model, the long-term value of 
strategic preparation and analytical decision-making. By applying 
complex network representation, the SLOC principle can be adapted to 
different types of CPSs and different disruption mechanisms, disruption 
propagation mechanisms, response mechanisms, and strategic prepara
tion types. Practitioners, however, should employ robust validation in 
adapting the SLOC principle to significantly different cases. 

From the results of this research, the following recommendations are 
made to managers, supervisors, and coordinators of CPSs and complex 
networks, e.g. production networks, supply networks, and information 
networks: 

Fig. 3. Comparison chart of strategic compatibility levels (with 95% confidence intervals).  

Table 7 
Comparison table of strategic compatibility levels.  

Strategic 
Compatibility 

Recovery 
Fraction 
rF  

Recovery 
Time 
rT  

Total 
Performance 
Loss 
tPL  

Maximum 
Disruption 
Propagation 
Fraction 
mDPF  

Random 0.416 31.941 0.465* 0.647* 
Low 0.405* 32.368 0.480 0.671* 
Medium 0.416 32.055 0.469 0.654* 
High 0.469* 

(þ12.74%) 
29.628* 
( 7.24%) 

0.421* 
( 9.46%) 

0.612* 
( 5.41%) 

*: indicates statistical significance at.α ¼ 0:05 
Best values of a metric are bolded, and compared with next best values. 

Fig. 4. Comparison chart of strategic compatibility levels and online response protocols (with 95% confidence intervals).  
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(1) The CRDP framework is recommended for managers and super
visors. The framework can be applied to further develop their 
comprehensive understanding of disruptions, disruption propa
gation, and response to disruptions, and how these components 
interact with each other. 

(2) Then, the SLOC principle can be applied to support the prepara
tion of strategic resources against different disruption propaga
tion scenarios. The strategic preparation should be accompanied 
by the use of advanced collaborative coordination protocols to 
coordinate response activities, in order to achieve better system 
resilience. 

At this stage of research, the CRDP/SLOC model is limited in terms of 
disruption occurrence modeling and response activities modeling. 
Another limitation is the assumption of homogeneous node types and 
disruption types used in the network model. Although strategic 
compatibility with the client network has been discussed in this work, 
the synergy of the strategic decisions and the tactical (on-line) decisions 
has not been explored. Therefore, further research is recommended in 
the following directions:  

(1) New collaboration mechanisms among response agents/teams in 
response to disruption propagation.  

(2) Consideration of different node types and disruption types, and 
adapting the team preparation protocols and team coordination 
protocols accordingly.  

(3) Generalization of collaborative control principles for disruption 
propagation response. 

(4) The modeling of disruption detection activities, disruption pre
vention activities, in addition to repair. 

(5) Development of advanced analysis and protocols to further sup
port the team formation and reconfiguration decisions.  

(6) Exploration and analysis of the synergy and counter-synergy 
between the strategic team preparation decisions and the 
tactical (on-line) response decisions. 
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