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Abstract

Background In order that the general public is not vulnerable to hackers, security bug
reports need to be handled by small groups of engineers before being widely discussed. But
learning how to distinguish the security bug reports from other bug reports is challenging
since they may occur rarely. Data mining methods that can find such scarce targets require
extensive optimization effort.

Goal The goal of this research is to aid practitioners as they struggle to optimize methods
that try to distinguish between rare security bug reports and other bug reports.

Method Our proposed method, called SWIFT, is a dual optimizer that optimizes both
learner and pre-processor options. Since this is a large space of options, SWIFT uses a
technique called e-dominance that learns how to avoid operations that do not significantly
improve performance.

Result When compared to recent state-of-the-art results (from FARSEC which is published
in TSE’18), we find that the SWIFT’s dual optimization of both pre-processor and learner is
more useful than optimizing each of them individually. For example, in a study of security
bug reports from the Chromium dataset, the median recalls of FARSEC and SWIFT were
15.7% and 77.4%, respectively. For another example, in experiments with data from the
Ambari project, the median recalls improved from 21.5% to 85.7% (FARSEC to SWIFT).

Conclusion Overall, our approach can quickly optimize models that achieve better recalls
than the prior state-of-the-art. These increases in recall are associated with moderate
increases in false positive rates (from 8% to 24%, median). For future work, these results
suggest that dual optimization is both practical and useful.
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1 Introduction

Security bug detection is a pressing current concern. A report from NIST comments that
“Current systems perform increasingly vital tasks and are widely known to possess vul-
nerabilities” (Black et al. 2016) (and by “vulnerability”, they mean a weakness in the
computational logic (e.g., code) found in software and some hardware components (e.g.,
firmware) that, when exploited, results in a negative impact on confidentiality, integrity, or
availability (MITRE 2017)). Daily, news reports reveal increasingly sophisticated security
breaches. As seen in those reports, a single vulnerability can have devastating effects. For
example, a data breach of Equifax caused the personal information of as many as 143 mil-
lion Americans — or nearly half the country — to be compromised (2019). The WannaCry
ransomware attack (2017) crippled British medical emergency rooms, delaying medical
procedures for many patients.

Developers capture and document software bugs and issues into bug reports which are
submitted to bug tracking systems. For example, the Mozilla bug database maintains more
than 670,000 bug reports with 135 new bug reports added each day (Chen and et al 2013).
Submitted bug reports are explicitly labeled as a security bug report (SBR) or non-security
bug report (NSBR). Within such bug tracking systems, Peters et al. (2018) warn that it
is crucial to correctly identify security bug reports and distinguish them from other non-
security bug reports. They note that software vendors ask that security bug reports should
be reported directly and privately to their own engineers. These engineers then assess the
bug reports and, when necessary, offer a security patch. The security bug, and its associ-
ated patch, can then be documented and disclosed via public bug tracking systems. This
approach maximizes the probability that a patch is widely available before hackers exploit a
vulnerability. However, due to the lack of security expertise knowledge, bug reporters some-
times mislabel security bug reports as non-security bug reports (Gegick et al. 2010). There
are cases when they are not sure when their bug is a non-security bug (which can be safely
disclosed) or when that bug is a security bug (that needs to be handled more discretely). For
example, Fig. 1 demonstrates a security bug report from the Apache Ambari project, which
is mislabelled as non-security bug report. It is a labor intensive process and thus impractical
for security practitioners to identify mislabelled security bug reports within a large set of
thousands of other non-security bug reports.

The problem that researchers need to address is how to distinguish security bug
reports properly. To tackle this problem, researchers have adopted various techniques. One
technique is to apply text mining to the security bug reports (Gegick et al. 2010; Goseva-
Popstojanova and Tyo 2018; Xia et al. 2014, 2016). The main idea here is to find some
combinations of relevant keywords in the bug reports (as well as features such as word fre-
quency) which are then combined together into classification models. But learning such
models is a challenging task since the ratio of security bug reports to other kinds of bug
reports may be very low. For example, data sets from Peters et al. (2018) show among the
45,940 bug reports, only 0.8% are security bug reports. Various methods exist for mining
such rarefied data — but those methods require extensive optimization effort before they
work well on a particular data set. Peters et al. proposed FARSEC (Peters et al. 2018), a
text mining method that used irrelevancy pruning (i.e., filtering). In their approach, develop-
ers first identified security related words. Next, they pruned away the irrelevant bug reports
(where “irrelevant” means “does not have those security-related keywords”). FARSEC was
evaluated using bug reports from one Chromium project and four Apache projects.
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f [Ambarij/ AMBARI-3153
.
./

Secure cluster: Yarn service check fails after configuring yarn for
spnego authentication.

v Details
Type: O Bug
Status: [ RESOLVED |
Priority: 2 Major
Resolution: Fixed
Affects Version/s: 141
Fix Version/s: 1.4.1
Component/s: ambari-agent
Labels: security

v Description

Yarn smoke test uses REST api exposed by ResourceManager to get its status. After configuring web
authentication yarn client that is assigned yarn service check needs to negotiate 401 HTTP authentication
response received while using REST api.

Fig. 1 An example of security bug report from the Apache Ambari project mislabelled as non-security bug
report from Peters et al. (2018)

The conjecture of this paper is that this text mining-based method for security bug reports
(e.g. as done with FARSEC) can be further enhanced. For example, FARSEC applied its data
miners using their default “off-the-shelf” configurations. Recently it has been shown that
hyperparameter optimization (which automatically learns the “magic” control parameters of
an algorithm) can result in better learners that outperform the learners with “off-the-shelf”
configurations (Agrawal et al. 2018; Agrawal and Menzies 2018; Fu et al. 2016; Herodotou
et al. 2011; Tantithamthavorn et al. 2016; Van Aken et al. 2017; Menzies and Shepperd
2019). To the best of our knowledge, this paper is the first attempt to apply hyperparameter
optimization to learn models that better distinguish security bug reports. To that end, we
separate and apply three different kinds of optimization strategies:

1. Learner hyperparameter optimization to adjust the parameters of the data miner; e.g.,
how many trees to use in random forest, or what values to use in the kernel of Support
Vector Machine (SVM).

2. Pre-processor hyperparameter optimization to adjust any adjustment to the training
data, prior to learning; e.g., to learn how to control outlier removal or, how to handle
the class imbalance problem.

3. Dual hyperparameter optimization that combines 1 and 2.

Standard practice in the search-based SE literature explores just learner or pre-processor
options, but seldom both. There are good reasons for this — the space of hyperparameters
is exponential on the number of optimization options. Hence optimizing both the learner
and pre-processor options is an exponentially slow process. Nevertheless, this paper shows
that if dual optimization can terminate, then it is a useful method. For example, for distin-
guishing security bug reports, dual optimization performs better than just optimizing learner
or pre-processor options individually. This paper succeeds at dual optimization, despite its
exponential nature, uses a technique called e-dominance to ignore operations that do not
significantly improve the performance. We call this method SWIFT in our work.
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In order to demonstrate the efficiency of dual optimization (i.e., SWIFT), we made com-
parison experiments with the baseline approach (i.e., FARSEC) as well as state-of-the-art
individual optimization methods (i.e., optimizing learners or optimizing pre-processors with
the differential evolutionary algorithm). To make that demonstration, we apply dual hyper-
parameter optimization to the options of Table 1. We make no claim that this is the entire
set of possible options. Rather, we just say that (a) any reader of the recent SE data mining
literature might have seen many of these; (b) that reader might be tempted to try optimizing

Table 1 List of pre-processors and learners explored in this study

Type Name Description
Pre-processor Normalizer Normalize samples individually to unit norm.
StandardScalar Standardize features by removing the mean and

scaling to unit variance.
MinMaxScaler Transforms features by scaling each feature to

a given range.

MaxAbsScaler Scale each feature by its maximum absolute value.

RobustScalar Scale features using statistics that are robust to
outliers.

KernelCenterer Center a kernel matrix.

QuantileTransformer Transform features using quantiles information.

PowerTransformer Apply a power transform featurewise to make data

more Gaussian-like.
Binarizer Binarize data (set feature values to 0 or 1) according
to a threshold.

PolynominalFeatures Generate polynomial and interaction features.
SMOTE Synthetic Minority Over-sampling Technique.
Learner Random Forest (RF) Generate conclusions using multiple entropy-based

decision trees.

K Nearest Neighbors (KNN) Classify a new instance by finding “K” examples of
similar instances.

Naive Bayes (NB) Classify a new instance by (a) collecting mean and
standard deviations of attributes in old instances of
different classes; (b) returning the class whose
attributes are statistically most similar to the new
instance.

Logistic Regression (LR) Map the output of a regression into 0 <n < 1;
thus enabling using regression for classification.

Multilayer Perceptron (MLP) A deep artificial neural network which is composed of

more than one perceptron.

Standard practice in previous literature is to optimize none or just one of these two groups (Bennin et al.
2019; Agrawal et al. 2018; Agrawal and Menzies 2018; Fu et al. 2016; Tantithamthavorn et al. 2018). Note
that a dual optimizer simultaneously explores both learner and pre-processing options

Note: The listed pre-processors and learners are based on scikit-learn version 0.21.2. SMOTE is implemented
independently without using existing scikit-learn library.
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the Table 1 options; (c) when we optimize these options in our method, we found that our
models were better than the prior state-of-the-art (Peters et al. 2018).
This study is structured around the following research questions:

RQ1. Can hyperparameter optimization techniques improve the performance of
models that better distinguish security bug reports from other bug reports?

We find that the dual hyperparameter optimization approach better distinguishes security
bug reports from non-security bug reports. Specifically, our new method increases the recall
on the security bug reports from 21.5% to 66.7% (median values for FARSEC and SWIFT,
respectively). This recall increase is associated with moderate false alarm rate increase from
8.0% to 24.0% (median values, FARSEC to SWIFT).

RQ?2. When learning how to distinguish security bug reports, is it better to dual
optimize the learners and the data pre-processors?

We will show that dual optimization is statistically significantly better in 31/40 data sets
with regard to recall results. This is more than twice as many wins as other approaches
explored in this paper. In addition, the dual optimization used here is faster (and scales better
to more complex problems) than other techniques.

IRQ3. Can hyperparameter optimization further improve the performance of rank-
ing security bug reports?

From the ranking evaluation experiment results, we can observe that individual hyper-
parameter optimization can achieve better ranking score than the best filter treatment from
FARSEC for all five projects studied here. In addition, dual optimization is better than
individual optimization in this metric across all five projects.

In summary, the contributions of this paper are:

— An improved result on prior state-of-the-art. Specifically, to distinguish security bug
reports from non-security bug reports, our methods are better than those reported in the
previous FARSEC paper from TSE’18.

— A comment on the value of optimizing (a) data pre-processors or (b) data mining learn-
ers. Specifically, to identify rare events, we show that dual optimization of (a) and (b)
does much better than optimizing either, individually.

— A demonstration of the practicality of dual optimization. As shown below, the overall
runtime for dual optimization (i.e., SWIFT) is five minutes for small datasets and 12
minutes for larger datasets such as the Chromium project on average. This is an impor-
tant result since our pre-experimental concern is that the cross-product of the option
space between the (a) data pre-processors and (b) data mining learners would be so
large as to preclude dual optimization.

The remainder of this paper is organized as follows. We introduce research background
and related work in Section 2. We then describe the details of our approach in Section 3.
In Section 4, we present our experiment details, including hyperparameter optimization
ranges, datasets, experiment rig, and metrics, etc. We answer proposed research questions in
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Section 5. We deliver the take-away messages in Section 6 and discuss the threats to validity
in Section 7 and then conclude in Section 8.

2 Background and Related Work

Various methods have been applied to address the need for more secure software. This
section first discusses how data mining has been applied to this problem, then we intro-
duce the state-of-the-art FARSEC technique, after which we introduce more details of
hyperparameter optimization.

2.1 Security Bug Reports and Data Mining

Data mining has recently been widely applied in bug report analysis, such as identification
of duplicated bug reports (Sun et al. 2011; Lazar et al. 2014; Hindle et al. 2016; Deshmukh
et al. 2017), prediction of the severity or impact of a reported bug (Lamkanfi et al. 2010;
Zhang et al. 2015; Tian et al. 2012; Yang et al. 2016; Yang et al. 2017), extraction of exe-
cution commands and input parameters from performance bug reports (Han et al. 2018),
assignment of the priority labels to bug reports (Tian et al. 2015), bug report field reassign-
ment and refinement prediction (Xia et al. 2016) and identify vulnerabilities from commit
message and bug reports (Zhou and Sharma 2017) .

In particular, a few studies of bug report classification are more relevant to our work.
Some of those approaches focus on building bug classification models based on analyz-
ing bug reports with text mining. For example, Zhou et al. (2016) leveraged text mining
techniques, analyzed the summary parts of bug reports and fed into machine learning
learners. Xia et al. (2014) developed a framework that applied text mining technology on
bug reports and trained a model on bug reports with known labels (i.e., configuration or
non-configuration). The trained model was used to predict the new bug reports. Goseva-
Popstojanova and Tyo (2018) used different types of textual feature vectors and focused
on applying both supervised and unsupervised algorithms in classifying security and non-
security related bug reports. Wijayasekara et al. (2014) extracted textual information by
utilizing the textual description of the bug reports. A feature vector was generated through
the textual information and then presented to a machine learning classifier.

Some other approaches use a more heuristic way to identify bug reports. For example,
Zaman et al. (2011) combined keyword searching and statistical sampling to distinguish
between performance bugs and security bugs in Firefox bug reports. Gegick et al. (2010)
proposed a technique to identify security bug reports based on keyword mining and
performed an empirical study based on an industry bug repository.

While all the above work significantly advanced the state-of-the-art, but results related
to data mining on software security issues are often problematic:

— Neuhaus et al. (2007) explored the dependency structure within RedHat Linux to learn
vulnerability predictors with precision and recall of 83% and 65%. Neuhaus and Zim-
mermann (2009) later applied their dependency-based methods to the same code base,
but at a much larger scale of granularity (system, not specific applications). Their results
were not impressive: precision and recall of 40% and 20%, respectively.

— Nguyen and Tran (2010), similarly, applied explored dependency structure. Though not
as impressive as Neuhaus and Zimmermann, they achieved precision and recall of 60%
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and 61%. However, their code dependency network analysis is not a general method for
building vulnerability predictors.

—  Scandariato et al. (2014) used a text mining approach over the source code for their
vulnerability predictors. They report prediction models with precision and recall over
95%. However, these results were based on a somewhat contentious methodology.
The unfiltered alerts of a static code analysis tool were used to label code compo-
nents as “vulnerable” or not. Such static code analysis tools have a notoriously large
false positive rate, declaring that many code components are “vulnerable” when the
vulnerabilities are actually false positives.

2.2 FARSEC: Extending Data Mining for Bug Reports

The previous section reported certain problems with existing methods where data mining
was applied to security related tasks. In the recently proposed FARSEC (Peters et al. 2018)
research, Peters et al. reported more success after focusing on a particular problem within
the security domain.

FARSEC is a technique that adds an irrelevancy pruning step to data mining in building
security bug reports prediction models. Table 2 lists the filters explored in the FARSEC
research. The purpose of filtering in FARSEC is to remove non-security bug reports with
security related keywords. To achieve this goal, FARSEC applied an algorithm that firstly
calculated the probability of the keywords appearing in security bug report and non-security
bug report, and then calculated the score of the keywords.

Inspired by previous works (Graham 2004; Jalali et al. 2008), several tricks were also
introduced in FARSEC to reduce false positives. For example, FARSEC built the farsectwo
filter by multiplying the frequency of non-security bug reports by two, aiming to achieve a
good bias. The farsecsgq filter was created by squaring the numerator of the support function
to improve heuristic ranking of low frequency evidence.

In addition, FARSEC also tested a noise detection algorithm called CLNI (Closet List
Noise Identification) (Kim et al. 2011). Specifically, CLNI works as follows: During each
iteration, for each instance i, a list of closest instances are calculated and sorted according
to Euclidean Distance to instance i. The percentage of top N instances with different class
values is recorded. If percentage value is larger or equal to a threshold, then instance i is
highly probable to be a noisy instance and thus included to noise set S. This process is
repeated until two noise sets S; and S;_; have the similarity over € (e.g., € is 0.99). A
threshold score (e.g., 0.75) is set to remove any non-buggy reports above the score.

Table 2 Different filters used in FARSEC

Filter Description

farsecsq Apply the Jalali et al. (2008) support function to the frequency of words found in SBRs
farsectwo Apply the Graham version (Graham 2004) of multiplying the frequency by two.

farsec Apply no support function.

clni Apply CLNI filter to non-filtered data.

clnifarsec Apply CLNI filter to farsec filtered data.

clnifarsecsq Apply CLNI filter to farsecsq filtered data.

clnifarsectwo Apply CLNI filter to farsectwo filtered data.
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One of the common issues with imbalanced data prediction is the large number of false
positives in the prediction results. This matters because it means potentially extra effort
is required from developers to check those false positives. FARSEC tries to address this
problem by generating a list of ranked bug reports. This method takes two steps. In the first
step, for a filter f, the ranked prediction results are selected from non-filtered data or data
with filters other than f which has less number of predicted security bug reports than filter
f. If the first step does not apply, the chronological order is used in step two. As a result, the
predicted security bug reports are close to the top of the list than non-security bug reports.

2.3 Hyperparameter Optimization for Learner and Pre-Processor Options

One data mining approach not fully explored by FARSEC (or much of other works reviewed
above) is hyperparameter optimization, i.e. the process of searching the most optimal
hyperparameters in data mining learners (Biedenkapp et al. 2018). In machine learning,
hyperparameters reflect policies within a model. For example:

—  For random forest, a hyperparameter could be the number of trees in the forest.

—  For nearest neighbor algorithm, a hyperparameter could be the number of k nearest
neighbors used for classification (Keller et al. 1985).

—  For text mining, a hyperparameter might control how many words are selected via term
weighting.

In this list, the first two are examples of learner hyperparameters while the third one is
an example of pre-processor hyperparameter that is selected before the learner executes.
Table 1 lists the learner and pre-processor options we explore in this study. The search space
of these parameters is shown in Table 3. In those tables, we use the same five machine
learning learners as seen in the FARSEC study, i.e., Random Forest (RF), Naive Bayes (NB),
Logistic Regression (LR), Multilayer Perceptron (MLP) and K Nearest Neighbor (KNN).
They are widely used for software engineering classification problems (Lessmann et al.
2008). As for the pre-processors, as mentioned in the introduction section, we do not claim
that this is the entire set of possible pre-processors. Rather, we just say that any reader of
the recent SE data mining literature might have seen many of these. Hence, they might be
tempted to try them.

Furthermore, Table 4 shows how often these kinds of hyperparameters have been
explored in the previous security relevant literature. As seen from the table:

— A minority of papers have explored learner hyperparameter optimization.

—  Only a handful of them have tried pre-processor hyperparameter optimization.

— We have only found one prior work that tried our dual optimization approach that
explored both pre-processor and learner optimization (Agrawal et al. 2019). However,
note that that paper was not in the security domain.

There are good reasons to try and avoid dual optimization — an exhaustive search through
all options is computationally intractable. Given N choices for P learner parameters, the
space of possible hyperparameter optimizations in (N)*. Worse still, if the space of options
increases to include learners and N choices for M pre-processors (such as those listed in
Table 1), then the search space is now (N)P+M  i.e. exponentially larger.

It is neither useful nor practical to explore such a large space of options via exhaus-
tive search. For example, grid search (Bergstra et al. 2011; Tantithamthavorn et al. 2016)
is a “brute force” hyperparameter optimizer that wraps a learner into for-loops that walk
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Table 3 List of hyperparameters optimized in different learners and pre-processors. The brief description of
each learner and pre-processor can be found in Table 1

Type Name Parameters Default Tuning Range
Learner Random Forest n_estimators 10 [10, 150]
min_samples_leaf 1 [1, 20]
min_samples_split 2 [2,20]
max_leaf_nodes None [2, 50]
max _features auto [0.01, 1]
max_depth None [1, 10]
Logistic Regression C 1.0 [1.0, 10.0]
max_iter 100 [50, 200]
verbose 0 [0, 10]
Multilayer Perceptron alpha 0.0001 [0.0001, 0.001]
learning_rate_init 0.001 [0.001, 0.01]
power_t 0.5 [0.1, 1]
max_iter 200 [50, 300]
momentum 0.9 [0.1, 1]
n_iter_no_change 10 [1, 100]
K Nearest Neighbor leaf size 30 [10, 100]
n_neighbors 5 [1, 10]
Naive Bayes var_smoothing le-9 [0.0, 1.0]
Pre-processor SMOTE k 5 [1, 20]
m 50 % [50, 400]
r 2 (1, 6]
Normalizer norm 12 [11, 12, max]
copy True [True, False]
StandardScaler copy True [True, False]
with_mean True [True, False]
with_std True [True, False]
MinMaxScaler copy True [True, False]
min 0 [-5,0]
max 1 (1, 5]
MaxAbsScaler copy True [True, False]
RobustScaler with_centering True [True, False]
with_scaling True [True, False]
g-min 25.0 [10, 40]
g-max 75.0 [60, 90]
copy True [True, False]
QuantileTransformer n_quantiles 1000 [10, 2000]
output_distribution uniform [uniform, normal]
ignore_implicit_zeros False [True, False]
subsample le5 [100, 150000]
copy True [True, False]
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Table 3 (continued)

Type Name Parameters Default Tuning Range
PowerTransformer method yeo-johnson [yeo-johnson,
box-cox]

standardize True [True, False]
copy True [True, False]

Binarization threshold 0.0 [0, 10]
copy True [True, False]

PolynomialFeatures degree 2 [2,4]
interaction_only False [True, False]
include_bias True [True, False]
order C [C, F]

through a wide range of all learner’s control parameters. Simple to implement, it has many
drawbacks. Firstly, even this brute force approach does not sample all the options since
its for-loops jump over numeric ranges using some increment value. This means that grid
search can actually skip over the important optimizations. Secondly, it suffers from the
“curse of dimensionality”. That is, after just a handful of options, grid search can miss
important optimizations. Thirdly, and worse still, much CPU resources can be wasted dur-
ing grid search since experience has shown that only a few ranges within a few optimization
parameters really matter (Bergstra and Bengio 2012).

An alternative to grid search is the random search (Bergstra and Bengio 2012) that
stochastically samples the search space and evaluates sets from a specified probability dis-
tribution. Evolutionary algorithms are a variant of random search that runs in “generations”
where each new generation is seeded from the best examples selected from the last gen-
eration (Goldberg 2006). Simulated annealing is a special form of evolutionary algorithms
where the population size is one (Kirkpatrick et al. 1983; Menzies et al. 2007b).

Genetic algorithms (GA) is another form of random search where the population size is
greater than one, and new mutants are created by crossing over parts of the better mem-
bers of the current population (Goldberg 2006; Panichella et al. 2013). Note one feature of
genetic algorithms is that, their mutation operator never changes during the execution of the
GA. That is, GAs have no facility for using experience from the domain to define better
mutators.

Another kind of random search, that does use domain experience to define better
mutators, is differential evolution (DE) (Storn and Price 1997). In differential evolution
algorithm, the size of a mutation is selected from a pool of previous cache of “superior”
mutations; i.e. mutants that are known to be better than other mutants. That is, as differen-
tial evolution algorithm learns more and more about what mutants are superior, it is also
learning how better to mutate old individuals into better ones. There are four major steps in
differential evolution algorithm — initialization, mutation, crossover, and selection:

— The initialization step creates a population of individuals, while each individual is an
instance of the parameters generated randomly within given bounds.

— In the mutation step, for each individual p; in the population, three other individuals
a, b, ¢ (not the current one) are randomly selected. A mutant individual is created by
combining these three selected individuals. The difference is then computed between
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Table 4 List of previous research studies that address security and software engineering problems

Reference Year Citation Learner Pre-processor Security
optimization optimization related
(Thornton et al. 2013) 2013 754 v X X
(Li et al. 2017) 2017 358 v X X
(Lamkanfi et al. 2010) 2010 285 X X v
(Sun et al. 2011) 2011 264 X X X
(Feurer et al. 2015) 2015 193 v X X
(Gegick et al. 2010) 2010 146 X X v
(Xia et al. 2017) 2017 139 v X X
(Tian et al. 2012) 2012 133 v X v
(Fu et al. 2016) 2016 100 v X X
(Tian et al. 2015) 2015 64 X X v
(Wang and Xu 2018) 2018 60 v X X
(Agrawal et al. 2018) 2018 59 X v v
(Lazar et al. 2014) 2014 54 X X X
(Agrawal and Menzies 2018) 2018 49 X v X
(Xia et al. 2014) 2014 44 X X X
(Tantithamthavorn et al. 2018) 2018 34 X v X
(Hindle et al. 2016) 2016 29 X X X
(Nair et al. 2018) 2018 29 v X X
(Zhang et al. 2015) 2015 28 X X v
(Wijayasekara et al. 2014) 2014 26 X X v
(Yang et al. 2017) 2017 23 X X v
(Chan et al. 2013) 2013 20 v X X
(Di Francescomarino et al. 2018) 2018 20 v X X
(Deshmukh et al. 2017) 2017 18 v X X
(Xia et al. 2016) 2016 17 X X X
(Osman et al. 2017) 2017 14 v X v
(Menzies et al. 2018) 2018 16 v X X
(Yang et al. 2016) 2016 11 X X v
(Goseva-Popstojanova and Tyo 2018) 2018 X X v
(Han et al. 2018) 2018 X X X
(Agrawal et al. 2019) 2019 v v X

In this list, only one prior publication optimized both the learner and pre-processor (see the last line) and
that paper did not explore the security domain. This list of papers was found either from the above literature
review or from Google Scholar using the search query, e.g., “((hyperparameter optimization) and (security))
or ((hyperparameter optimization) and (security bug reports)) or (optimization and security) or (optimization
and (pre-processors) and security), ((hyperparameter optimization) and (software engineering))”. These
queries returned more than 5,000 papers which were further pruned. We only used papers in the last ten
years (2010-2020) and which had appeared in (a) top conferences or (b) venues listed by Google Scholar as
“top-ranked” (e.g., see tiny.cc/top20soft_venues)

two individuals and added to the rest individual after multiplying a mutation factor
to the difference, i.e., yx = ax + f X (bx — cx). The mutation factor f is a positive
number that controls the amplification difference between two individuals.
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— At some crossover probability c¢f, the mutant attribute is then added to a vector that is
the new mutant in the crossover step.

—  Finally, during the selection step, differential evolution algorithm decides if the mutant
generated from a, b, ¢ is better than p;. If so, the mutant replaces p; and the algorithm
moves on to some other member of the population p;.

— All the above steps have to be repeated again for the remaining individuals p;, which
completes the first iteration of the algorithm. After this process, some of the original
individuals of the population will be replaced by better ones. That is, all subsequent
mutants will be built from the “superior” examples cached in the population.

As to the control parameters of the differential evolution algorithm, using advice from
the differential evolution algorithm user group (see tiny.cc/how2de), we set {np, f, cr} =
{10k, 0.8, 0.9}, where £ is the number of parameters to optimize, and np is the size of whole
population. Note that we set the number of iteration {g} to 3, 10, which are denoted as
DE3 and DEI0 respectively. A small number (i.e., 3) is used to test the effects of a CPU-
light effort estimator. A larger number (i.e., 10) is selected to check if anything is lost by
restricting the inference to small iterations.

In the software engineering literature, differential evolution algorithm has been seen to
outperform other methods such as (a) particle swarm optimization (Vesterstrgm and Thom-
sen 2004); (b) the grid search used by Tantithamthavorn et al. (2016) to optimize their defect
predictors; or (c) the genetic algorithm used by Panichella et al. (2013) to optimize a text
miner. Also, the differential evolution algorithm has been proven useful in prior software
engineering optimization studies (Fu et al. 2016).

3 SWIFT: The Dual Optimization Approach

Recent studies show substantial interest in automated hyperparameter optimization on com-
plex and computational expensive machine learning models with many hyperparameters.
By tailoring the models to the problems at hand, hyperparameter optimization improves the
model performance and even leads to new state-of-the-art results.

Apart from machine learning models, data pre-processing techniques are often involved
in practical machine learning pipeline. Real-world data is often inconsistent, lacking in
certain behaviors of trends, or even contains many errors. Data pre-processing trans-
forms the raw data into a more useful and efficient shape. Similar to model optimization,
pre-processing optimization also shows increasing interest (Agrawal and Menzies 2018).

While each individual optimization problem already experiences computational com-
plexity, for example, Tables 1 and 3 demonstrate a list of machine learning learners and
data pre-processing techniques, as well as their hyperparameter options. Even this partial
list includes thousands of configuration options. The cost of running an optimizer through
these options would be quite expensive, requiring days to weeks of CPU resources (Tan-
tithamthavorn et al. 2016, 2018). A combination of the above two optimization problems
(i.e., dual optimization) faces even more challenges.

A “simpler” optimizer is required to tackle the dual optimization challenge. This ideal
optimizer should be able to achieve better performance than each individual optimizer and
the computational complexity would not increase.

In 2005, Deb et al. (2005) proposed an idea named e-dominance that partitions the out-
put space of an optimizer into e-sized grids. The principle of this idea is that if there exists
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some € value below which it is useless or impossible to distinguish the results, then it super-
fluous to explore anything less than €. Specifically, consider the bug reports classification
task discussed in this paper, if the performances of two learners (or a learner with various
hyperparameters) differ in less than some € value, then we cannot statistically distinguish
them. For the learners which do not significantly improve the performance, we can further
reduce the attention on them.

Inspired by the idea of e-dominance, we propose a method named SWIFT to address
the dual optimization problem. From a high level, SWIFT is essentially a tabu search; i.e.,
if some settings resulted in some performance within € of any older result, then SWIFT
marked that option as “to be avoided”. SWIFT applies “item ranking” in seeking optimal
learner and pre-processor, and further refines their option ranges. SWIFT returned the best
setting seen during the following three stage process:

— Initialization: all option items i are assigned equal weightings.

— The item ranking stage reweights items i in column 2 of Table 3; e.g. terms like
“Random Forest” or “RobustScaler”.

—  The numeric refinement stage adjusts the tuning ranges of the last column in Table 3.

In summary, what is happening here is that item selection handles the “big picture”
decisions about what pre-processor or learner to use while numeric refinement focuses on
smaller details about numeric ranges.

More specifically, the algorithm runs as follows:

— Initialization: Assign weights w; = 0 to all items i in column 2 of Table 3.

— Item ranking: Ni times, we make a random selection of a learner and pre-processor
from column 2, favoring those items with higher weights. For the selected items, we
select a value at random from the “Tuning Range”s of the last column of Table 3. Using
that selection, we build a model and evaluate it on test data. If we obtain a model whose
performance is more/less than € of any prior results, then we add/subtract (respectively)
1.0 from w;.

—  Numeric refinement: N, times, we refine the numeric tuning ranges (lo, hi) seen in the
last column of Table 3. In this step, the item ranking continues. But now, if ever some
numeric tuning value lo < b < hi produces a better model, then we adjust that range,
as follows. Whichever of x € (lo, hi) that is the furthest from b is moved to (b + x)/2.

(Aside: It should be pointed out that SWIFT is not a multi-objective optimization prob-
lem. We choose g-measure as our optimization goal (i.e., the aim to increase). G-measure is
the harmonic mean of recall and the complement of false alarms. More description of this
metric and the reason of the choice are further discussed in Section 4.4.)

Agrawal et al. (2019) have successfully applied e-dominance to some SE tasks such
as software defect prediction and SE text mining, and they proposed the approach named
DODGE. For the cases studied by DODGE, that approach was able to explore a large space
of hyperparameter options, while at the same time generated models that performed as well
or better than the prior state-of-the-art in defect prediction and SE text mining (Agrawal
etal. 2019). SWIFT is an improved version of DODGE since we found that DODGE cannot
be directly applied to our bug report data without any modification effort. There are several
reasons for this after investigation.

Firstly, DODGE guided its optimization using metrics that were alien to this domain. For
example, the “Popt20” goal used in the original DODGE studied by Agrawal et al. (2019)
optimizes for an economic concern not explored by Peters et al. in the FARSEC study.
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Popt20 is relevant to general SE tasks, but not for security-related domains. Specifically, we
want to find as many of the security bug reports as possible, even if that means developers
have to spend some time exploring a few more false positives. Accordingly, we swapped
out Popt20 in favor of the “g-measure” as defined in Section 4.

Second, once we changed evaluation goals, another concern became apparent. We found
that the distribution of the w; weights was far more skewed in the security bug report data
than in the other kinds of software engineering tasks studied by Agrawal et al. This skewed
data meant that, usually, there was only one good learner and one good data pre-processor
for the security data sets. We conjecture that this is so since we require specific biases to
find the target concept of something so particular as a security bug report. For the original
version of DODGE, such skewed w; weights are a problem since, as mentioned above, item
ranking continues during the numeric refinement stage.

SWIFT is specifically designed for our security data. SWIFT is designed to make better
use of the w; skews. After item ranking, SWIFT only takes the best learner and data pre-
processor forward into numeric refinement. While the above two changes were only a small
coding change to the original DODGE, their effects were profound.

4 Experiment
4.1 Hyperparameter Optimization Ranges

This paper compares SWIFT against the differential evolution algorithm (described in
Section 2) since recent papers at ICSE (Agrawal and Menzies 2018) the IST jour-
nal (Agrawal et al. 2018) reported that the differential evolution algorithm can find large
improvement in learner performance for SE data. Table 5 lists the control settings for the
differential evolution algorithm used in this paper (that table was generated by combining
the advice at the end of Section 2.3 with Table 3). For SWIFT, we used the settings recom-
mended by Agrawal et al. (2019). Note that proving the optimum of our solution is not the
goal of this paper. In fact, like Wolpert (Wolpert and Macready 1997), we doubt if there is
any “best” optimizer that works for all data (for more on that, see the “No Free Lunch” the-
orem discussion (Wolpert and Macready 1997) in search and optimization). Therefore, this
paper is not searching for the “best” result, but rather it is searching for “better” than the
prior state-of-the-art.

Note that SWIFT and differential evolution algorithm were applied to learners from the
scikit-learn toolkit (Pedregosa et al. 2011). Table 3 lists all the hyperparameters we select
for both data mining learners and data pre-processors based on scikit-learn.

We choose not to explore other hyperparameter optimizers, for pragmatic reasons.
Numerous other studies have shown that the differential evolutionary algorithm (DE) well
performed for optimization problems (Menzies et al. 2018; Fu and Menzies 2017; Fu et al.
2016; Wang et al. 2015; Yildizdan and Baykan 2020; Onan et al. 2016). If our goal was to
claim that DE was somehow the optimal optimizer, we would have to perform a wider range
of study of optimizers (i.e more than just DE). However, our goal is not that (and, in fact,
there are support theoretical reasons for assuming that no optimizer is ever “best” for all
data sets (Wolpert and Macready 1997)). Rather, our purpose is to provide an improvement
on the prior state-of-the-art (the FARSEC paper). As shown below, that can be achieved
using DE. While in future work we aim to explore other optimizers, for the purposes of this
paper, using DE is enough.
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4.2 Data

For this work, we compare the differential evolutionary algorithm (DE) and SWIFT to FAR-
SEC using the same data as used in the FARSEC study. The data set includes five projects:
four from Apache projects (i.e., Ambari, Camel, Derby and Wicket) (Ohira et al. 2015) and
one from the Chromium project. For the Apache projects, one thousand bug reports are ran-
domly selected for each project with BUG or IMPROVEMENT label from the JIRA bug
tracking system (Ohira et al. 2015). All the selected bug reports are then classified with
scripts or manually into six high impact bugs (i.e., Surprise, Dormant, Blocking, Security,
Performance, and Breakage bugs). All the target bug reports in our data set all belong to
Security bug reports (i.e., bug reports of the type Security). For the Chromium project, secu-
rity bugs are labeled as Bug-Security when submitted to bug tracking systems. All other
types of bug reports in the data set are treated as non-security bug reports.

The datasets from FARSEC are publicly available. Our experiments reproduce and
improve the FARSEC results using the same datasets. Table 6 shows the characteristics of
the FARSEC datasets. As we see from the table, one unique feature of the data set is the rar-
ity of the target class. The “SBRs %” column in both training and testing data set indicates
that security bug reports make up a very small percentage of the total number of bug reports
in projects like Chromium.

4.3 Experimental Rig

Our experiment design is mainly divided into two parts. When we optimize learners or data
pre-processors individually, we divide each training data into B = 10 bins, and validate our
models using bin B; after training them on training data - B;. This 10-fold cross-validation
is used to pick the best candidate learner/pre-processor as well as their hyperparameters with
the highest performance for that data set. We also need to point out that the 10-fold cross-
validation does not apply to the dual optimization, and the way we select the best candidate
learner and pre-processor in SWIFT is based on weight calculation and we further refine
their hyperparameter’s numeric ranges as we discuss in Section 3.

After finding the best learners and/or pre-processors, we then train the models with the
whole training dataset, and test on the separate testing dataset as FARSEC.

Table 5 List of parameters in differential evolution (DE) algorithm for different learners and pre-processor

Learner & Pre-processor DE Parameter
NP F CR | ITER
Random Forest 60
Logistic Regression 30
Multilayer Perceptron 60 | 0.8 | 09 3,10
K Nearest Neighbor 20
Naive Bayes 10
SMOTE 30 | 0.8 | 09 10

* Note: NP is the size of population; F is the parameter con-
trolling the differential weight; CR is the probability threshold;
ITER is the number of iterations.
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Table 6 Imbalanced characteristic of bug report data sets from FARSEC (Peters et al. 2018)

Training Testing
Project Filter #SBRs #BRs SBRs( %) #SBRs #BRs SBRs( %)
Chromium train 20,970 0.37
farsecsq 14,219 0.54
farsectwo 20,968 0.37
farsec 20,969 0.37
clni 77 20,154 038 115 20,970 0.55
clnifarsecsq 13,705 0.56
clnifarsectwo 20,152 0.38
clnifarsec 20,153 0.38
Wicket train 500 0.80
farsecsq 136 2.94
farsectwo 143 2.80
farsec 302 1.32
clni 4 392 1.02 6 500 120
clnifarsecsq 46 8.70
clnifarsectwo 49 8.16
clnifarsec 196 2.04
Ambari train 500 4.40
farsecsq 149 14.77
farsectwo 260 8.46
farsec 462 4.76
clni 2 409 5.38 7 500 1.40
clnifarsecsq 76 28.95
clnifarsectwo 181 12.15
clnifarsec 376 5.85
Camel train 500 2.80
farsecsq 116 12.07
farsectwo 203 6.90
farsec 470 2.98
clni 14 440 318 18 500 3.60
clnifarsecsq 71 19.72
clnifarsectwo 151 9.27
clnifarsec 410 3.41
Derby train 500 9.20
farsecsq 57 80.70
farsectwo 185 24.86
farsec 489 941
clni 46 446 10.31 42 500 8.40
clnifarsecsq 48 95.83
clnifarsectwo 168 27.38
clnifarsec 435 10.57
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4.4 Evaluation Metrics

To understand the open issues with bug report classification, firstly we must define how
they are assessed. If (TN, FN, FP, TP) are the true negatives, false negatives, false positives,
and true positives, respectively, found by a classifier, then:

—  pd = Recall = TP/(TP+FN), the percentage of the actual security bug reports that are
predicted to be security bug reports.

— pf = False Alarms = FP/(FP+TN), the percentage of the non-security bug reports that
are reported as security bug reports.

—  prec = Precision = TP/(TP+FP), the percentage of the predicted security bug reports
that are actual security bug reports.

—  f-score = F-Measure = 2*pd*prec/(pd+prec), the harmonic mean of the model’s
precision and recall.

This paper adopts the same evaluation criteria as the original FARSEC paper; i.e. the
recall (pd) and false alarm (pf) measures. Also, to control the optimization algorithm, we
are endeavoring to minimize false alarms while maximizing recall. To achieve those goals,
we maximize the g-measure which is the harmonic mean of recall and the complement of
false alarms in our algorithm.

_ 2xpdx(1—pf)

1
pd - (L—pf) )

g is maximal when both recall (pd) is high and false alarm (pf) is low.

We choose g-measure based on the following considerations. For an imbalanced dataset
where there is a skew in the class distribution (e.g., negative samples are much more than
positive samples), we have two competing goals:

—  On the one hand, we want to focus on minimizing false negatives (i.e., security bug
reports are not missed in prediction (Scandariato et al. 2014)).

— On the other hand, we prefer not to predict too many non-security bug reports as
security bug reports, which is (1 — pf) that also represents specificity.

As to why we use these measures but not some others such as precision, Menzies et al.
(2007a) argue that when the target class is less than 10% (as is with all our data), the preci-
sion results become more a function of the random number generator used to divide data (for
testing purposes). Therefore, we cannot recommend precision for this kind of data. (Aside:
we are not alone in this view (that precision should not be used). For example, the FARSEC
paper (that this work builds on) did not assess its models via precision.)

Besides the above, we also use another evaluation measure called IFA (Initial False
Alarm) to evaluate the performance. IFA is the number of initial false alarm encountered
before we make the first correct prediction (Huang et al. 2017, 2019). IFA is widely used
in defect prediction, and previous works (Kochhar et al. 2016; Parnin and Orso 2011)
have shown that developers are not willing to use a prediction model if the first few
recommendations are all false alarms.

Furthermore, metrics like recall and g-measure are set-based measures, and they are
computed using unordered sets of data. To evaluate the results of ranking bug report, mean
average precision (MAP) is commonly used to indicate the quality of a ranking by com-
paring with the ground truth. A higher MAP value usually means more actual security bug
reports that predicted are close to the top of the list.
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Equations (2) and (3) show how average precision (AP) and MAP are computed. Specif-
ically, AP, is the average of precision @k where P (k) is the precision at point k in the
ranked list and » is the number of predicted security bug reports. As done in the FARSEC
paper, we say that M A P, is the mean of cumulative average precision scores for each decile.

= P(k)
AP, = —_— 2
n
k=1
N
AP,
MAP, = 2} N’” 3)
1=

4.5 Statistics

This study ranks treatments using the Scott-Knott procedure recommended by Mittas &
Angelis in their 2013 IEEE TSE paper (Mittas and Angelis 2013). This method sorts results
from different treatments, then splits them in order to maximize the expected value of dif-
ferences in the observed performances before and after divisions. For lists /, m, n of size
Is, ms, ns where [ = m U n, the “best” division maximizes E(A); i.e. the difference in the
expected mean value before and after the spit:

ms ns
E(A) = Fabs(m.p, — L’ + Eabs(n.u —1L.u)?

Scott-Knott then checks if that “best” division is actually useful. To implement that check,
Scott-Knott would apply some statistical hypothesis test H to check if m, n are significantly
different (and if so, Scott-Knott then recurses on each half of the “best” division). For this
study, our hypothesis test H was a conjunction of the Al12 effect size test of and non-
parametric bootstrap sampling; i.e. our Scott-Knott divided the data if both bootstrapping
and an effect size test agreed that the division was statistically significant (95% confidence)
and not a “small” effect (A12 > 0.6).

For a justification of the use of non-parametric bootstrapping, see Efron & Tibshi-
rani (1994, p220-223). For a justification of the use of effect size tests see Kampenes et al.
(2007) who warn that even if a hypothesis test declares two populations to be “significantly”
different, then that result is misleading if the “effect size” is very small. Hence, to assess
the performance differences we first must rule out small effects. Vargha and Delaney’s
non-parametric A12 effect size test explores two lists M and N of size m and n:

an=| > {(1)5 Fx>3 1 un)

if x ==
xeM,yeN f Y

This expression computes the probability that the numbers in one sample are bigger than
in another. This test was endorsed by Arcuri and Briand (2011). Tables 7, 8 and 9 present the
results of our Scott-Knott procedure for each project data set. These results are discussed,
extensively, in the next section.

5 Results

In this section, Tables 7, 8 and 9 report results with and without hyperparameter optimiza-
tion of the pre-processors or learners or both. For the sake of completeness, we also add
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Table 7 RQI results: recall

Prior state Optimize Data pre- Data pre- Tune
of the art learners ~ processing processing both
(Peters et al. 2018)  (only) (no tuning) (tuned) (dual)
DE+ DE+
Project Filter FARSEC Learners  Pre-processors  Pre-processors SWIFT
Chromium  train 15.7 46.9 68.7 73.9 86.1
farsecsq 14.8 64.3 80.0 84.3 722
farsectwo 15.7 40.9 78.3 77.4 774
farsec 15.7 46.1 80.8 72.2 77.4
clni 15.7 30.4 74.8 72.2 80.9
clnifarsecsq 49.6 72.2 82.6 86.1 72.2
clnifarsectwo 15.7 50.4 79.1 74.8 78.3
clnifarsec 15.7 47.8 78.3 74.7 722
Median Recall 15.7 473 78.7 74.8 774
Wicket train 16.7 0.0 66.7 66.7 50.0
farsecsq 66.7 50.0 83.3 83.3 83.3
farsectwo 66.7 50.0 66.7 66.7 66.7
farsec 333 66.7 66.7 66.7 66.7
clni 0.0 16.7 50.0 50.0 50.0
clnifarsecsq 33.3 83.3 83.3 83.3 83.3
clnifarsectwo  33.3 50.0 66.7 66.7 66.7
clnifarsec 50.0 66.7 66.7 66.7 66.7
Median Recall  33.3 50.0 66.7 66.7 66.7
Ambari train 14.3 28.6 57.1 57.1 85.7
farsecsq 429 57.1 57.1 57.1 85.7
farsectwo 57.1 57.1 57.1 57.1 85.7
farsec 14.3 571 57.1 57.1 85.7
clni 14.3 28.6 57.1 57.1 85.7
clnifarsecsq 57.1 57.1 57.1 57.1 71.4
clnifarsectwo  28.6 57.1 57.1 57.1 85.7
clnifarsec 14.3 57.1 57.1 57.1 85.7
Median Recall 21.5 57.1 57.1 57.1 85.7
Camel train 11.1 16.7 333 44.4 55.6
farsecsq 16.7 44.4 44.4 55.6 66.7
farsectwo 50.0 444 61.1 61.1 61.1
farsec 16.7 222 333 333 55.6
clni 16.7 16.7 333 38.9 50.0
clnifarsecsq 16.7 389 27.8 333 61.1
clnifarsectwo  11.1 61.1 72.2 61.1 61.1
clnifarsec 16.7 22.2 333 38.9 55.6
Median Recall 16.7 38.5 333 41.7 58.4
Derby train 38.1 47.6 54.7 59.5 69.0
farsecsq 54.8 59.5 54.7 66.7 66.7
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Table 7 (continued)

Prior state Optimize  Data pre- Data pre- Tune
of the art learners processing processing both
(Peters et al. 2018)  (only) (no tuning) (tuned) (dual)
DE+ DE+
Project  Filter FARSEC Learners  Pre-processors  Pre-processors ~ SWIFT
farsectwo 47.6 59.5 47.6 66.7 78.6
farsec 38.1 47.6 57.1 59.5 64.3
clni 23.8 45.2 57.7 61.9 69.0
clnifarsecsq 54.8 59.5 76.2 69.0 66.7
clnifarsectwo 35.7 59.5 54.8 61.9 66.7
clnifarsec 38.1 47.6 61.9 57.1 66.7
Median Recall 38.1 53.6 56.0 61.9 66.7
Overall Median Recall 21.5 50.0 57.1 61.9 66.7

In these results, higher recalls (a.k.a. pd) are better. For each row, the best results are highlighted in boldface
(these are the cells that are statistically the same as the best median result — as judged by our Scott-Knot test).
Across all rows, SWIFT has the most number of best results

results of precision and f-measure in Tables 10 and 11. Using those results, we can now

answer our proposed research questions.

5.1 RQ1

RQ1. Can hyperparameter optimization techniques improve the performance of
models that better distinguish security bug reports from other bug reports?

5.1.1 Recall Results

In the recall results of Table 7, we can observe that FARSEC rarely achieves the best results
while SWIFT is much better than FARSEC. For example:

— In the Chromium project, median recall changes from 15.7% to 77.4% from FARSEC

to SWIFT.

— In the Ambari project, the median recall changes from 21.5% to 85.7% from FARSEC

to SWIFT.

— Overall, as shown in the last line of Table 7, the improvement is from 21.5% to 66.7%

(FARSEC to SWIFT).

In addition, in Table 7, the boldface cells show the “best” results in each row (where
“best” is defined using the statistical significance tests of Section 4.5). Overall, SWIFT is
statistically significantly best in 31/40 of all the rows of Table 7. This is more than twice as
many wins as other approaches explored in this table; e.g. DE+pre-processors scores best
in only 13/40 rows. Hence, for this data set, we say that dual optimization of both learners

and pre-processors work best.

Just for completeness, we note that for all methods with any data pre-processing proce-
dure (i.e., in the last three columns of Table 7) work well for the Wicket project. Clearly, for
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Table 8 RQ1 results: false positive rate (a.k.a., pf), the lower values are better
Prior state Optimize  Data pre- Data pre- Tune
of the art learners processing processing  both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors SWIFT
Chromium train 0.2 6.8 24.1 17.8 24.0
farsecsq 0.3 10.3 315 25.1 14.3
farsectwo 0.2 6.5 27.6 23.1 26.1
farsec 0.2 6.9 36.1 14.9 14.7
clni 0.2 4.1 24.8 13.6 26.2
clnifarsecsq 3.8 14.2 30.4 25.6 14.0
clnifarsectwo 0.2 7.0 29.9 12.8 18.9
clnifarsec 0.2 10.4 29.0 17.1 20.2
Median FPR 0.2 7.0 29.5 17.5 19.5
Wicket train 7.1 5.1 32.0 12.1 275
farsecsq 38.3 44.5 71.3 66.8 66.7
farsectwo 36.6 42.3 68.2 62.9 61.5
farsec 8.1 23.1 43.9 26.1 233
clni 5.5 24 21.1 12.5 144
clnifarsecsq 25.5 66.8 66.8 66.8 57.5
clnifarsectwo 27.7 39.9 61.3 61.3 52.8
clnifarsec 10.5 23.1 38.9 22.9 22.1
Median FPR 18.0 31.5 52.6 43.7 40.2
Ambari train 1.6 0.8 20.1 10.8 17.8
farsecsq 144 2.8 30.4 17.2 23.7
farsectwo 3.0 2.8 22.1 17.8 19.7
farsec 4.9 2.0 19.9 7.1 20.3
clni 2.6 0.8 12.4 8.9 18.1
clnifarsecsq 7.7 24 13.4 7.1 29.0
clnifarsectwo 4.5 2.8 13.0 5.1 22.7
clnifarsec 0.0 2.4 7.9 39 18.9
Median FPR 3.8 2.4 16.7 8.0 20.0
Camel train 3.5 1.5 27.4 35.9 15.8
farsecsq 114 24.7 20.5 234 27.8
farsectwo 41.8 17.6 71.0 53.1 45.2
farsec 6.9 124 39.4 28.0 35.7
clni 12.3 7.9 33.6 353 24.7
clnifarsecsq 139 14.9 12.4 15.6 27.2
clnifarsectwo 7.7 50.0 64.9 51.9 38.8
clnifarsec 5.0 11.6 24.9 34.4 37.1
Median FPR 9.6 13.7 30.5 34.8 31.8
Derby train 6.8 39.3 222 20.7 19.7
farsecsq 29.9 40.6 51.7 51.5 22.5

@ Springer



53 Page22of37 Empir Software Eng (2021) 26: 53

Table 8 (continued)

Prior state Optimize Data pre- Data pre- Tune
of the art learners processing processing both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors SWIFT
farsectwo 124 242 279 33.6 40.0
farsec 6.3 4.1 21.0 19.0 13.8
clni 0.4 35 16.8 24.5 25.5
clnifarsecsq 29.9 424 74.7 65.1 42.3
clnifarsectwo 9.2 242 36.5 30.3 52.2
clnifarsec 6.8 3.9 28.8 10.9 19.6
Median FPR 8.0 242 28.4 274 24.0
Overall Median FPR 8.0 13.7 29.5 27.4 24.0

Same as Table 7; i.e. the best results are highlighted in boldface. While FARSEC has the most best results,
these low false positive rates are only achieved by settling for low recalls (see Table 7)

this data set, data pre-processing such as repairing the class imbalance issue is essential for
good performance.

5.1.2 False Positive Rate Results

As to the false positive rate results, Table 8 shows that FARSEC has the lowest false pos-
itive rate across more than half of the datasets with filters. However, as shown in Table 7,
FARSEC achieves those low false positive rate by settling for some low recalls.

As to SWIFT, we note that its improvements in recall (seen above) come at the cost
of some increments in false positive rate. As shown in the last line of Table 8, the overall
median false positive rate increases from 8% to 24% (FARSEC to SWIFT). While, ideally,
the false positive rate is zero, it is inevitable that there is some cost in dealing with security
problems. Another way to look at this is to say while our methods help distinguishing secu-
rity bug reports (from other bug reports), they also highlight the costs involved in securing
software. Our method can better distinguish security bug reports than the prior state-of-the-
art. However, to do so, there is some increase in the workload of developers who have to
read more code and suffer a (slightly) higher false positive rate. Such is the price of software
quality assurance.

Hence we say that this 16% increase in overall false positive rates is the acceptable and
inevitable “price” of increasing recall. As to acceptable, the overall false alarms are still less
than a quarter — which is in the same range as many other software analytic applications.

As to inevitable, consider two models:

—  One just predicts “yes” all the time. This model has 100% recall (since it finds every
target class) but it suffers from large false positive rates.

le.g. Fig. 12 of Menzies et al. (2007c) lists nine SE data mining applications with median false positive rates
of 25%.
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Table9 RQI results: initial false alarm (IFA)
Prior state Optimize  Data pre- Data pre- Tune
of the art learners processing processing  both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors SWIFT
Chromium train N/A 62 75 61 58
farsecsq N/A 20 72 54 36
farsectwo N/A 37 91 78 87
farsec N/A 62 112 62 56
clni N/A 41 86 48 74
clnifarsecsq N/A 41 57 62 37
clnifarsectwo N/A 37 89 47 58
clnifarsec N/A 62 113 63 54
Median IFA N/A 41 88 62 57
Wicket train N/A 25 60 34 46
farsecsq N/A 29 37 33 39
farsectwo N/A 32 35 34 31
farsec N/A 23 44 30 22
clni N/A 12 44 21 27
clnifarsecsq N/A 9 8 9 6
clnifarsectwo N/A 11 12 8
clnifarsec N/A 17 33 15 18
Median IFA N/A 20 36 26 25
Ambari train N/A 7 8 9
farsecsq N/A 8 21 14
farsectwo N/A 1 19 12
farsec N/A 1 35 24 17
clni N/A 1 32 19 13
clnifarsecsq N/A 8 18 10 8
clnifarsectwo N/A 7 28 8 11
clnifarsec N/A 5 10 4 17
Median IFA N/A 6 20 11 10
Camel train N/A 6 19 23 15
farsecsq N/A 23 29 32 14
farsectwo N/A 4 13 8 25
farsec N/A 17 21 20 8
clni N/A 16 37 33 30
clnifarsecsq N/A 5 3 3 4
clnifarsectwo ~ N/A 19 22 15 12
clnifarsec N/A 14 23 29 22
Median IFA N/A 15 22 22 15
Derby train N/A 4 6 3 2
farsecsq N/A 4 4 4
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Table9 (continued)

Prior state Optimize Data pre- Data pre- Tune
of the art learners processing processing both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors SWIFT
farsectwo N/A 4 3 5 3
farsec N/A 1 8 7 4
clni N/A 1 8 5 3
clnifarsecsq N/A 1 2 2 1
clnifarsectwo N/A 2 9 8 4
clnifarsec N/A 1 3 3 2
Median IFA N/A 2 5 5 3
Overall median IFA N/A 15 22 22 15

IFA is the number of false alarms developers must suffer through before finding their first target. Lower
values are better. Same as format as Table 7; i.e. best results are shown in boldface

— Another model just predicts “no” all the time. This second model has 0% false positive
rate (i.e., it never makes mistakes in prediction) but it also has a 0% recall (since it
never finds any target class).

In practice, all learners make trade-offs between recall and false positive rate as they
explore models somewhere on a curve between:

—  Recall from 0% to 100%

—  False positive rate from 0% to 100%

— In addition, unless the learner is broken, this curve bends upwards away from the
recall == false positive rate line towards the point recall=100% and false positive
rate=0% (but rarely does any learner reach this point).

This means that as a learner tries different models, increased recall comes at the cost of also
increasing false positive rates. The trick here is to increase recall more than false positive
rate, as is done by SWIFT. In this paper, we show that we can increase median recall from
21.5% to 66.7% (while at the same time only increasing median false positive rate by 16%
from 8% to 24%).

5.1.3 Initial False Alarms Results

IFA is the number of false positives a programmer must suffer through before they find a
real security bug report. Table 9 shows our IFA results. There are three points to note from
this table:

— FARSEC has no results in this table because FARSEC does not report results for this
metric.

— For IFA, methods that only with/tune the data pre-processors perform worse than
methods that optimize the learners (i.e., DE+Learners and SWIFT).

— In terms of absolute numbers, the IFA results are low for the Derby project. From
Table 6, we can conjecture a reason for this — of the data set with a higher percentage of
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security bug reports, the data sets have the more known target class, which is more likely
to reduce the number of false positives encounter before the first correct prediction.

At the other end of the spectrum, IFA is much larger for the Chromium project (median
values for DE+learner or SWIFT of about 40 or 60). This result highlights the high
cost of building highly secure software. When the target class is rare, even with our
best-of-breed methods, some non-trivial amount of manual effort may be required.

5.1.4 Precision and F-Measure Results

For the sake of completeness, we also provide the results of precision and f-measure.
Tables 10 and 11 present the corresponding precision and f-measure results from each
technique besides FARSEC. We make the following remarks about these results.

The decreasing trends are expected, as we select g-measure as our optimization target,
which increases the recall and sacrifices the precision value. But, to some extent, these
results also confirm the correctness of our choice. On the one hand, the improvement
of recall with SWIFT is significant. On the other hand, for 4 out of 5 projects, the
sacrifice of precision is moderate. For tasks such as bug report classification with the
imbalanced data characteristic, as well in the context of security, in general, positive
examples such as security bug reports are preferred not to be missed out. Hence, we
would still recommend optimizing g-measure for future studies.

There is little information gain in exploring both precision and f-measure since these
results nearly echo each other (reason: f-measure is calculated as a combination of
precision and recall).

We admit the importance of precision, however, in some special domains such as secu-
rity, there is little information gain in exploring precision results. As seen from our
results, none of the techniques (including FARSEC) performs well under the precision
metric. Hence, a low precision is not necessarily a reason to “discount” an optimizer.
When the target class is rare, such low precision might actually be expected. For exam-
ple, consider a query in the Google search engine, where it takes three pages before the
user finds the target page. With 10 results per page, this means that the Google search
engine is scoring a precision of 31—0 ~ 3%. In this case, as precision is the fraction of
retrieved pages that are relevant, such low precision is only a problem of time cost since
the user wastes much time exploring irrelevant results before finding the target they
care about. Our IFA results in Table 9, from the aspect of effort, also shows that, in the
case of bug report classification, these low precision results do not lead to too much
wasted time (evidence: the last row of Table 9 shows that users need to explore 15 to
22 false positives before finding a real security bug report — which is a small number
when considering the size of total bug reports).

5.2 RQ2

RQ2. When learning how to distinguish security bug reports, is it better to dual
optimize the learners and the data pre-processors?

This research question explores the merits of dual optimization of learner plus pre-

processor versus just optimizing one or the other. To answer this question, we count how
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Table 10 RQ1 results: precision. Higher values are better. Same as format as Table 7; i.e. best results are
shown in boldface

Prior state Optimize  Data pre- Data pre- Tune
of the art learners processing processing  both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors  SWIFT
Chromium  train 31.0 3.6 1.5 2.2 1.9
farsecsq 23.9 33 1.4 1.8 2.7
farsectwo 31.0 34 1.5 1.8 1.6
farsec 31.0 3.6 1.2 2.6 2.8
clni 277 3.8 1.6 2.8 1.7
clnifarsecsq 6.7 2.7 1.5 1.8 2.8
clnifarsectwo ~ 27.7 3.8 1.4 3.1 22
clnifarsec 27.7 24 1.5 2.3 1.9
Median Prec 27.7 35 1.5 2.3 2.1
Wicket train 2.8 0.0 2.5 6.3 22
farsecsq 2.1 1.4 1.4 1.5 1.5
farsectwo 2.2 1.4 1.2 1.3 1.3
farsec 4.8 34 1.8 3.0 34
clni 0.0 8.3 2.8 4.7 4.1
clnifarsecsq 1.6 1.2 1.2 1.2 1.4
clnifarsectwo 1.4 1.5 1.3 1.3 1.5
clnifarsec 5.5 34 2.0 34 3.5
Median Prec 2.2 1.5 1.6 2.3 1.9
Ambari train 11.1 40.0 2.9 5.4 54
farsecsq 4.1 18.8 2.0 3.4 4.1
farsectwo 21.1 18.8 2.7 33 49
farsec 4.0 25.0 3.0 7.9 4.8
clni 7.1 40.0 4.7 6.5 53
clnifarsecsq 9.5 214 4.3 7.9 2.7
clnifarsectwo 8.3 18.8 45 10.7 43
clnifarsec 100.0 214 7.3 13.6 5.1
Median Prec 8.9 21.4 3.7 7.2 49
Camel train 10.5 30.0 3.6 3.9 11.6
farsecsq 52 5.6 6.7 8.2 8.3
farsectwo 4.3 7.7 2.8 3.8 44
farsec 8.3 4.8 2.6 3.6 55
clni 4.8 7.3 3.0 4.0 7.0
clnifarsecsq 4.3 9.0 7.8 6.2 7.1
clnifarsectwo 5.1 4.0 3.7 3.8 5.1
clnifarsec 11.1 5.2 4.0 4.1 5.3
Median Prec 52 6.4 3.7 4.0 6.3
Derby train 34.0 9.6 17.9 20.3 23.7
farsecsq 14.4 11.5 8.5 10.6 214
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Table 10 (continued)

Prior state Optimize Data pre- Data pre- Tune

of the art learners processing processing both

(Peters et al. 2018) (only) (no tuning) (tuned) (dual)

DE+ Pre- DE+ Pre-
Project Filter FARSEC Learners processors processors SWIFT
farsectwo 26.0 17.9 13.0 15.5 15.3
farsec 35.6 514 19.3 21.6 30.0
clni 83.3 529 24.0 18.2 194
clnifarsecsq 14.4 17.9 8.6 8.6 12.7
clnifarsectwo 26.3 11.0 12.1 15.3 10.5
clnifarsec 34.0 52.8 16.0 31.9 239
Median Prec 30.2 17.9 14.5 16.9 20.4
Overall median Prec 8.9 6.4 3.7 4.0 49

often each method achieves top-rank (and has boldface results) across all three metrics of
the rows in Tables 7, 8 and 9.
Those count results are shown in Table 12. From this table, we can say, in terms of recall:

—  SWIFT’s dual optimization is clearly the best.
— Optimize just the data pre-processors comes a distant second.
—  Optimize just the learners (with DE+Learners) is even worse.

Hence we say that, when distinguishing security bug reports, it is not enough to just tune
the learners.
In terms of false positive rates, we see that:

—  Optimize just the learner is a comparatively better method than other methods.
—  Other treatments do not do well on the false alarm scale.

That said, optimize just the learner achieves a score of 14/40 — which is not even half the
results. Hence, based on false positive rates, we cannot comment on what works best for
improving this metric.

In terms of IFA (initial false alarms), we see that:

—  Methods that do not optimize a learner do not perform well.
—  There is is no clear winner for the best method since DE+Learners or SWIFT perform
nearly the same as each other.

Based on the above observations, we could sum up the conclusions:

—  Our experiment results show that dual optimization works well for recall.
—  Also, not optimizing the learners performs badly for IFA.
—  There is no clear pattern in Table 12 regarding false positive rates.

That said, the results of false positive rates seen in Table 8 are somewhat lower than the
false positive rates seen in other software analytic papers (Menzies et al. 2006). Hence, on
a more positive note, we can still recommend dual optimization since:

— It has many benefits (much higher recalls).
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Table 11 RQI results: f-measure

Prior state Optimize  Data pre- Data pre- Tune
of the art learners processing processing  both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+Pre-
Project Filter FARSEC Learners processors processors  SWIFT
Chromium  train 20.8 6.7 3.0 4.3 3.8
farsecsq 18.3 6.2 2.7 35 52
farsectwo 20.8 6.2 3.0 35 32
farsec 20.8 6.6 2.4 5.0 54
clni 20.0 6.8 32 55 33
clnifarsecsq 11.9 5.3 29 3.6 5.3
clnifarsectwo 20.0 7.0 2.8 6.0 43
clnifarsec 20.0 4.6 29 4.5 3.8
Median f-score ~ 20.0 6.4 2.9 4.4 4.1
Wicket train 4.8 0.0 4.8 11.6 4.2
farsecsq 4.0 2.6 2.8 29 2.9
farsectwo 4.2 2.8 2.3 2.5 2.6
farsec 8.3 6.5 3.5 5.8 6.4
clni 0.0 11.1 53 8.6 75
clnifarsecsq 3.0 24 24 24 2.7
clnifarsectwo 2.8 2.9 2.6 2.6 3.0
clnifarsec 9.8 6.5 4.0 6.5 6.7
Median f-score 4.1 2.8 3.2 4.4 3.6
Ambari train 12.5 333 55 9.5 10.1
farsecsq 74 26.1 3.8 6.4 7.8
farsectwo 30.8 26.1 5.1 6.2 9.2
farsec 6.3 31.6 5.6 133 8.9
clni 9.5 333 8.5 11.3 9.9
clnifarsecsq 16.3 28.6 7.9 13.3 5.2
clnifarsectwo 12.9 26.1 8.1 17.1 8.1
clnifarsec 25.0 28.6 12.5 20.7 9.5
Median f-score  12.7 28.6 6.8 12.3 9.1
Camel train 10.8 214 6.5 7.1 19.2
farsecsq 7.9 9.7 114 143 14.7
farsectwo 7.9 12.8 54 7.1 8.2
farsec 11.1 7.5 4.7 6.4 10.0
clni 7.5 10.2 5.4 7.2 12.3
clnifarsecsq 6.8 14.6 12.2 10.2 12.6
clnifarsectwo 7.0 7.4 7.0 7.2 9.3
clnifarsec 13.3 79 7.0 7.4 9.7
Median f-score 7.9 10.0 6.8 7.2 11.2
Derby train 36.0 15.8 26.7 30.0 35.0
farsecsq 22.8 19.1 14.7 18.4 324
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Table 11 (continued)

Prior state Optimize Data pre- Data pre- Tune
of the art learners processing processing both
(Peters et al. 2018) (only) (no tuning) (tuned) (dual)
DE+ Pre- DE+Pre-
Project  Filter FARSEC Learners processors processors SWIFT
farsectwo 33.6 27.3 20.2 25.1 25.6
farsec 36.8 48.1 28.6 31.4 40.9
clni 37.0 474 33.8 279 30.1
clnifarsecsq 22.8 27.3 15.4 15.2 21.3
clnifarsectwo 30.3 18.5 19.8 24.4 18.1
clnifarsec 36.0 48.7 253 40.4 352
Median f-score 34.8 27.3 22.8 26.5 31.3
Overall median F-score 12.7 10.0 6.8 7.2 9.1

F-measure (or f-score) is defined as the harmonic mean of the model’s precision and recall. Higher values
are better. Same as format as Table 7; i.e. best results are shown in boldface

—  With no excessive cost (not large increase in false alarms; IFA results are nearly as good
as other methods).

Further to this comment of “no excessive cost”, Table 13 shows the average runtime
for each treatment. From the table, optimization on learners with the differential evolution
algorithm consumes much more CPU time than others, while dual optimization as SWIFT
shows slight advantages even better than optimizing data pre-processors. In addition, during
our experiment, we also notice that, learners such as K Nearest Neighbors and Multilayer
Perceptron can be slow to optimize, especially for large datasets such as the Chromium
project which has about 20,000 data instances. However, since these learners are rarely
selected as a “best” learner (see from Table 14), we would further recommend not using
those learners for bug report classification task.

Table 12 How often is each treatment seen to be best in Tables 7, 8 and 9

Metric Rank Method Win Times
Recall 1 SWIFT 31/40
2 Pre-processors 14/40
3 DE-+Pre-processors 13/40
4 DE+Learners 3/40
False Positive Rate 1 DE+Learners 14/40
2 Pre-processors 1/40
3 SWIFT 1/40
4 DE+Pre-processors 0/40
IFA 1 DE+Learners 22/40
2 SWIFT 18/40
3 DE-+Pre-processors 4/40
4 Pre-processors 3/40
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Table 13 Average runtime (in minutes) of optimizing all learner’s hyperparameters, pre-processor’s hyper-
parameters and running SWIFT

Project DE3 DEI10 Data Pre-processor SWIFT
Optimization

Chromium 455 876 20 12
Wicket 8 11 8 5
Ambari 8 11 8 5
Camel 8 11 8 5
Derby 8 11 8 5

Note that DE3 terminates after 3 generations and DE10 terminates after 10 generations

5.3 RQ3

RQ3. Can hyperparameter optimization further improve the performance of rank-
ing security bug reports?

As the users of the bug reports, one of the major requirements is to distinguish as many
actual security bug reports as possible. Our previous treatments are trying to seek a balance
between recall and specificity, as stated in Section 4.4. The result of choosing g-measure as
the optimization target is an increment of recall while at the cost of increasing false positive
rate at the same time (see Tables 7 and 8). This usually could indicate that developers who
use such tools would need to spend more time and effort to check those unexpected false
positive predictions.

For many prominent applications such as web search engine, what is germane to users is
how many good results are on the first page or the first two or three pages. Inspired by this,
a ranking result of predicted bug reports would therefore be more helpful and reduce the
required effort for developers. As we describe in Section 2.2, FARSEC employs a ranking
method that sorts the predicted security bug reports. As a result, the actual security bug
reports are closer to the top of the rank list.

We apply the same ranking technique as FARSEC, while the learners and/or pre-
processors are optimized. The evaluation results based on the MAP metric are shown in
Fig. 2. In the figure, the baseline (shown in blue color) is the method that does not apply
any ranking technique (i.e., with the original chronological order). The orange line denotes

Table 14 The time of each learner that is selected as the “best” learner

Learner FARSEC DE+ Data Pre- Data Pre-processor SWIFT
Learners processor Optimization

Naive Bayes 6 21 23 16 17

Logistic Regression 16 5 5

Multilayer Perceptron 6 3 0 9 6

Random Forest 10 9 12 11 13

K Nearest Neighbors 2 2 0 0 1
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Fig.2 Comparison of different treatments in ranking bug report prediction results. This plot shows its results
using the deciles of (3) (from Section 4.4) and higher y-axis is better. Different treatments are denoted with
lines of different colors. Specifically, the baseline (shown in blue color) is the method that does not apply
any ranking technique (i.e., with the original chronological order). The orange line denotes the best ranking
results from FARSEC among all filters

the best ranking results from FARSEC among all filters. The other treatments are denoted
with lines of different colors.

The key observations from the figure are:

The baseline method performs badly (the blue line) since this is with no ranking

technique, whatsoever.

In all data sets, the ranking generated using the prior state-of-the-art (the orange line
for FARSEC filters) is below other treatments that try to rank the predicted bug reports.
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— In a result that is consistent with the main message of this paper, in all data sets, the
rankings generated by dual optimization (the brown SWIFT line) is above other methods.

The experiment results of ranking security bug reports, as well as results in previous
research questions, could indicate that our proposed dual optimization of learners and pre-
processors are promising. This approach could be recommended to better aid practitioners
with similar domain tasks.

6 Discussion

SWIFT has demonstrated new results that improve the prior state-of-the-art. Speaking more
broadly, what are the other lessons that could be taken from this work? We make the
following comments.

Firstly, at the general application level, we have shown here it is possible to reason about
rare event data (e.g., here the target security bug reports can be as rare as only taking up 1%
of the total bug reports). Apart from the security case studied here, another lesson we would
offer is that (sometimes) practitioners do not need (much) data to start data mining. This is
an intriguing statement, since in this era of “big data”, it is often assumed that scare of data
would be a large obstacle. Here we offer a somewhat more optimistic comment: effective
models can be built even when data is scarce.

Secondly, at the methodological level, we offer the following suggestion: avoid using
Al tools “off-the-shelf” without modifying them for the local domain. SE practitioners need
to develop specialized machine learning tools that are better suited to particular SE prob-
lems. Existing machine learning algorithms that we might call “general AI machine learning
tools” maybe not “general” at all. Rather, they are tools whose default settings were cho-
sen according to the data used in the past to commission those tools. Hyperparameter
optimization tools should always be applied to adjust Al tools to the local data.

(Aside: One objection to the above point is that such optimization process can be unduly
expensive. This objection is certainly true when we use traditional hyperparameter optimiz-
ers (e.g. genetic algorithms that evaluate thousands to millions of options (Holland 1992)).
However, our empirical results from Table 13 shows that effective hyperparameter opti-
mization can be accomplished in minutes. We note that, aside from data mining for security,
previous researchers have achieved similar “fast optimization” results in several other SE
domains (Agrawal et al. 2019).)

We are not the only researchers who make this second point. Other researchers in the
software analytics literature also advocate tuning general Al tools to SE tasks. For example,
Binkley et al. (2018) note that information retrieval tools for SE often equate word frequency
with word importance, even though the number of occurrences of a variable name such as
“tmp” is not necessarily indicative of its importance. They argue that the negative impacts
of such differences manifest themselves when “off-the-shelf” information retrieval tools are
applied in the software domain. Another example comes from sentiment analysis. Standard
sentiment analysis tools are usually trained on non-SE data (e.g., the Wall Street Journal or
Wikipedia). Novielli et al. (2018) recently developed their own sentiment analysis for the
software engineering domain. After re-training those tools on an SE corpus, they found not
only better performance at predicting sentiment, but also more agreement between different
sentiment analysis tools.

Thirdly, it is natural to ask whether optimizing data pre-processors is more important
than optimizing the learners (or vice versa). In reply, we say that there is no evident hints
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from our empirical results show that one of them has obvious advantages over the other. In
fact, recalling RQ2, we say that (at least in this domain) it is better to tune both.

Fourthly, another question we are asked is “in other domains, do our results say that some
learners/pre-processors will perform better?”. Our results do not support such conclusion.
Table 14 shows that the “best” classifier is highly variable across our datasets. Hence, we
cannot offer one general conclusion for all projects. However, what we do offer is a general
method for finding the best local solution. Further, as shown by the runtime in Table 13, it
may not be especially slow to apply our general method for finding the best local solution.

7 Threats to Validity

As to any empirical study, biases can affect the final results. Therefore, conclusions drawn
from this work must be considered with threats to validity in mind.

Sampling Bias Sampling bias threatens any classification experiment. For example, the
data sets used here come from FARSEC, i.e., one Chromium project and four Apache
projects in different application domains. In addition, the bug reports from Apache projects
are randomly selected with a BUG or IMPROVEMENT label for each project with extra
labeling effort.

Learner Bias Research into automatic classifiers is a large and active field. While different
machine learning algorithms have been developed to solve different classification problem
tasks. Any data mining study, such as this paper, can only use a small subset of the known
classification algorithms. For this work, we selected our learners such that we can compare
our results to prior work. Accordingly, we used the same learners as Peters et al. in their
FARSEC research.

Input Bias Our results come from the space of hyperparameter optimization explored in
this paper. In theory, other ranges might lead to other results. That said, our goal here is not
to offer the best optimization but to argue that dual optimization of data pre-processors and
learners is preferable to optimize either, just by itself. For those purposes, we would argue
that our current results suffice.

Evaluation Bias In our work, we choose some commonly used metrics as FARSEC for
evaluation purpose and set g-measure as our optimization target. We do not use some other
metrics because relevant information is not available to us or we think they are not suitable
enough to this specific task (e.g., precision). In addition, we use equal weight in recall and
specificity in the definition of g-measure, which is widely adopted in existing literature. We
agree that it is important for these two elements to be re-weighted for different tasks, and
this can be further explored as one of our future directions. Our implementation is flexible
and we can adjust to proper metrics or balances with minor code modification.

8 Conclusion
Distinguishing security bug reports from other kinds of bug reports is a pressing problem

that threatens not only the viability of software services, but also consumer confidence in
those services. Prior results on how to distinguish security bug reports have had issues with

@ Springer



53 Page34of37 Empir Software Eng (2021) 26: 53

the scarcity of target data (specifically, such incidents occur rarely). In a recent TSE’18
paper, Peters et al. proposed some novel filtering algorithms to help improve security bug
report classification. Results from FARSEC show that such filtering techniques can improve
the performance.

But more than that, our experiments show that we can further do better than FARSEC
using hyperparameter optimization of data mining learners and data pre-processors. Our
results show that it is more advantageous to apply dual optimization of both the data-
processor and the learner, which we will recommend in solving similar problems in future
work.
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