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A B S T R A C T

A numerical and analytical study is made of the macroscopic or homogenized viscoelastic
response of suspensions of rigid inclusions in rubber under finite quasistatic deformations.
The focus is on the prototypical case of random isotropic suspensions of equiaxed inclusions
firmly embedded in an isotropic incompressible Gaussian rubber with constant viscosity. From a
numerical point of view, a robust scheme is introduced to solve the governing initial–boundary-
value problem based on a conforming Crouzeix–Raviart finite-element discretization of space
and a high-order accurate explicit Runge–Kutta discretization of time, which are particularly
well suited to deal with the challenges posed by finite deformations and the incompressibility
constraint of the rubber. The scheme is deployed to generate sample solutions for the basic case
of suspensions of spherical inclusions of the same (monodisperse) size under a variety of loading
conditions. From a complementary point of view, analytical solutions are worked out in the
limits: (𝑖) of small deformations, (𝑖𝑖) of finite deformations that are applied either infinitesimally
slowly or infinitely fast, and (𝑖𝑖𝑖) when the rubber loses its ability to store elastic energy and
reduces to a Newtonian fluid. Strikingly, in spite of the fact that the underlying rubber matrix
has constant viscosity, the solutions reveal that the viscoelastic response of the suspensions
exhibits an effective nonlinear viscosity of shear-thinning type. The solutions further indicate
that the viscoelastic response of the suspensions features the same type of short-range-memory
behavior — as opposed to the generally expected long-range-memory behavior — as that of the
underlying rubber. Guided by the asymptotic analytical results and the numerical solutions, a
simple yet accurate approximate analytical solution for the macroscopic viscoelastic response
of the suspensions is proposed.

1. Introduction

In spite of its ever-increasing practical relevance in engineering technologies and biological systems alike, a fundamental problem
n mechanics that so far has been sidestepped in the literature is that of the homogenization of nonlinear viscoelastic composite
aterials undergoing finite deformations. This avoidance is likely due to the three simultaneous technical challenges that the
roblem involves:

i) Long-range memory. The first technical challenge has to do with the fact that even viscoelastic composite materials made of
onstituents featuring the simplest types of short-range-memory behaviors, after homogenization, turn out in general to feature
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long-range-memory behaviors.1 This was first shown by Sanchez-Palencia (1980, Chapter 6) and Francfort and Suquet (1986) for
linear viscoelastic composite materials with Kelvin–Voigt constituents, and by Suquet (1987, Chapter 3) for composite materials
with Maxwell constituents.

(ii) Constitutive nonlinearity. The traverse of long-range memory can be convincingly handled with the Laplace transform and the
orrespondence principle when dealing with linear viscoelasticity; see, e.g., Hashin (1965, 1970), Yeong-Moo et al. (1998), Lahellec
and Suquet (2007a), and Idiart et al. (2020). However, no such powerful tool exists to deal with constitutively nonlinear viscoelastic
materials.

Nevertheless, by restricting attention to the asymptotic setting of infinitesimally small deformations and leveraging homogeniza-
tion techniques developed for nonlinear elastic materials within that same asymptotic setting, progress has been made over the past
twenty-five years in both numerical and analytical fronts. Indeed, numerical methods based on conventional finite elements (FE)
and fast Fourier transforms (FFT) for the discretization of space together with a standard first-order implicit discretization in time
have been successfully implemented to generate homogenization solutions not only for linear but also for a variety of nonlinear
viscoelastic materials; see, e.g., Brinson and Knauss (1991), Lévesque et al. (2004), Lahellec and Suquet (2007c), and Pallicity and
öhlke (2021). Likewise, analytical methods based on the ‘‘linearization’’ of the nonlinear viscoelastic constituents have also been
ntroduced to generate approximate solutions with reasonable success; see, e.g., Li and Weng (1997), Brenner et al. (2002), and
ahellec and Suquet (2007b).

iii) Geometric nonlinearity. The third technical challenge is posed by the geometric nonlinearity inherent to finite deformations.
recisely, on the one hand, finite deformations imply that the elastic part of the constitutive behavior of viscoelastic materials
s nonconvex. This poses significant problems for both numerical and analytical methods of solution; for numerical methods, for
xample, it is well-known that extreme care should be exercised in the selection of the time discretization when dealing with the
onconvex constraint of incompressibility (Simo, 1992). On the other hand, and perhaps more importantly, finite deformations imply
s well that the microstructure of the composite material at hand evolves and hence that it must be tracked. This too poses significant
ifficulties for any method of solution. These are more acute for viscoelastic fluids than for viscoelastic solids. This is because the
atter (Le Tallec et al., 1993; Reese and Govindjee, 1998; Kumar and Lopez-Pamies, 2016), as opposed to the former (Brady and
Bossis, 1988; Hu, 1998), can be treated with a Lagrangian description of the kinematics, which allows to account implicitly for the
evolution of microstructure.

In this context, this paper aims at providing a first2 homogenization result in nonlinear finite viscoelasticity. Our interest is
on suspensions of rigid inclusions in rubber. Within such a physically prominent class of materials, we restrict attention to the
prototypical case of random isotropic suspensions of equiaxed inclusions — id est, inclusions that are roughly spherical in shape but
that are not necessarily smooth or without a slightly preferred direction — that are firmly embedded in an isotropic incompressible
Gaussian rubber with constant viscosity.

We begin in Section 2 by formulating the pertinent homogenization problem. Sections 3 through 5 are devoted to working out
the solutions in several asymptotic limits for which the governing initial–boundary-value problem admits analytical treatment. These
include the limit of small deformations (Section 3), the limit of finite deformations that are applied either infinitesimally slowly or
‘‘infinitely’’ fast (Section 4), and the limit when the underlying rubber matrix does not store elastic energy and degenerates into a
Newtonian fluid (Section 5). Section 6 presents a numerical scheme to solve the governing initial–boundary-value problem under
arbitrary finite deformations and loading conditions. The scheme makes use of a conforming Crouzeix–Raviart FE discretization of
space and a high-order accurate explicit Runge–Kutta discretization of time. The combination of these two types of discretizations
results into a robust scheme that is capable of handling finite deformations and the incompressibility constraint of the rubber for
general loading conditions, irrespectively of whether they are applied slowly, fast, or span a large time range. In Section 7, we deploy
the proposed scheme to generate sample solutions for the basic case of suspensions of spherical inclusions of the same (monodisperse)
size under a variety of loading conditions suitably selected so as to extract the distinctive features of the macroscopic response of
the suspensions. Guided by the asymptotic solutions in Sections 3 through 5 and the numerical solutions in Section 7, we propose in
Section 8 a simple yet accurate approximate analytical solution for the macroscopic viscoelastic response of the suspensions. Most
notably, consistent with the asymptotic and numerical solutions, the two distinguishing characteristics of this approximate solution
are that it features the same type of short-range-memory behavior as that of the underlying rubber, with the caveat that its effective
viscosity is not constant, as that of the rubber, but instead is a nonlinear viscosity of shear-thinning type. We close by recording a
number of final comments in Section 9.

1 By short-range-memory viscoelastic behaviors we mean viscoelastic behaviors that can be written in terms of a single internal variable, possibly tensorial,
hat is solution of a first-order ordinary differential equation (ODE) in time. On the other hand, by long-range-memory viscoelastic behaviors we mean
iscoelastic behaviors that are described by hereditary integrals which cannot be reduced to a single first-order ODE. As an alternative terminology, short-
nd long-range-memory viscoelastic behaviors may also be referred to as narrow- and broad-spectrum behaviors.
2 While no homogenization result in nonlinear finite viscoelasticity has yet been presented in the literature — at least, we are not aware of any — we should
ention that strides have been made over the past two decades in advancing computational homogenization results in the related internal-variable-based context
2

f finite crystal plasticity; see Miehe et al. (2002) and Roters et al. (2010), for example.
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2. The problem

2.1. Microscopic description of the suspensions

Kinematics. Consider a random isotropic suspension of equiaxed, but of arbitrary shape otherwise, inclusions firmly embedded in
n isotropic incompressible rubber matrix. In its initial configuration, presumed to be undeformed and stress-free, at time 𝑡 = 0,
the bounded domain in R3 occupied by any such two-phase composite material is denoted by 𝛺0 and its boundary by 𝜕𝛺0. The
subdomains occupied by the rubber matrix (m) and collectively by the inclusions (i) are denoted by 𝛺(𝚖)

0 and 𝛺(𝚒)
0 = 𝛺0∖𝛺

(𝚖)
0 ,

respectively. The inclusions are taken to be of much smaller sizes than the macroscopic length scale of 𝛺0.
Material points are identified by their initial position vector 𝐗 ∈ 𝛺0. At a later time 𝑡 ∈ (0, 𝑇 ], in response to externally applied

mechanical stimuli to be described below, the position vector 𝐗 of a material point moves to a new position specified by

𝐱 = 𝐲(𝐗, 𝑡),

where 𝐲 is an invertible mapping from 𝛺0 to the current configuration 𝛺(𝑡), also contained in R3. We write the deformation gradient
and Lagrangian velocity fields at 𝐗 and 𝑡 as

𝐅(𝐗, 𝑡) = ∇𝐲(𝐗, 𝑡) = 𝜕𝐲
𝜕𝐗

(𝐗, 𝑡) and 𝐕(𝐗, 𝑡) = 𝐲̇(𝐗, 𝑡) = 𝜕𝐲
𝜕𝑡

(𝐗, 𝑡).

The ‘‘dot’’ notation will also be used throughout to denote the material time derivative (i.e., with 𝐗 held fixed) of other field
quantities.

Constitutive behavior of the rubber. Making use of the two-potential formalism (Halphen and Nguyen, 1975; Ziegler and Wehrli,
987; Kumar and Lopez-Pamies, 2016), the isothermal constitutive behavior of the rubber is taken to be characterized by two
hermodynamic potentials that describe how it stores energy through elastic deformation as well as how it dissipates energy through
iscous deformation: (𝑖) a free-energy function 𝜓𝚖 and (𝑖𝑖) a dissipation potential 𝜙𝚖.
The focus here is on the prototypical case of Gaussian rubber with constant viscosity, accordingly

𝜓𝚖(𝐅,𝐅𝑣) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝚖
2

[

𝐼1 − 3
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜓Eq
𝚖 (𝐅)

+
𝜈𝚖
2

[

𝐼𝑒1 − 3
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜓NEq
𝚖

(

𝐅𝐅𝑣−1
)

if 𝐽 = 1

+∞ otherwise

(1)

and

𝜙𝚖(𝐅,𝐅𝑣, 𝐅̇𝑣) =
⎧

⎪

⎨

⎪

⎩

1
2
𝐅̇𝑣𝐅𝑣−1 ⋅

[

2 𝜂𝚖  𝐅̇𝑣𝐅𝑣−1
]

if tr
(

𝐅̇𝑣𝐅𝑣−1
)

= 0

+∞ otherwise
. (2)

In these expressions, the second-order tensor 𝐅𝑣 is an internal variable of state that corresponds roughly to the ‘‘viscous part’’ of the
deformation gradient3 𝐅,

𝐼1 = 𝐅 ⋅ 𝐅 = tr 𝐂, 𝐽 = det 𝐅 =
√

det 𝐂, 𝐼𝑒1 = 𝐅𝐅𝑣−1 ⋅ 𝐅𝐅𝑣−1 = tr
(

𝐂𝐂𝑣−1
)

,

where 𝐂 = 𝐅𝑇𝐅 denotes the right Cauchy–Green deformation tensor, 𝐂𝑣 = 𝐅𝑣𝑇𝐅𝑣,

𝑖𝑗𝑘𝑙 =
1
2

(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −
2
3
𝛿𝑖𝑗𝛿𝑘𝑙

)

(3)

stands for the standard deviatoric orthogonal projection tensor, and 𝜇𝚖 ≥ 0, 𝜈𝚖 ≥ 0, 𝜂𝚖 ≥ 0 are material constants; the units of 𝜇𝚖
and 𝜈𝚖 are 𝑓𝑜𝑟𝑐𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ2, while 𝜂𝚖 has units of 𝑓𝑜𝑟𝑐𝑒 × 𝑡𝑖𝑚𝑒∕𝑙𝑒𝑛𝑔𝑡ℎ2.

The interested reader is referred to Kumar and Lopez-Pamies (2016) for a complete description of the two-potential framework as
it pertains to rubber. Here, it suffices to recall that, from a theoretical point of view, the thermodynamic potentials (1)–(2) satisfy the
principle of material frame indifference (or objectivity), the material symmetry requirements of isotropy, and the reduced dissipation
inequality, while, from a practical point of view, they capture the five basic features of rubber viscoelasticity, to wit:

• the storage of energy is primarily governed by changes in entropy of the underlying polymer network,
• the dissipation of energy is primarily governed by friction among neighboring polymer chains,
• when all forces are removed after an arbitrary loading path, rubber creeps back to its original configuration,
• when subjected to relaxation and creep loading conditions, rubber exhibits a transient response that then evolves into an
equilibrium state of deformation and stress, and

3 More specifically, the internal variable 𝐅𝑣 is such that 𝐅 = 𝐅𝑒𝐅𝑣, where 𝐅𝑒 corresponds roughly to the ‘‘elastic part’’ of the deformation gradient tensor 𝐅.
In the context of finite viscoelasticity, such a multiplicative type of internal variable appears to have been first put forth by Sidoroff (1974). Other constitutive
definitions — for instance, one where 𝐅 = 𝐅𝑣𝐅𝑒 — are of course possible for the internal variable 𝐅𝑣. The one utilized here is not only amply general but also
3

the most common in the literature.
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• when subjected to loading conditions of the same type but different loading rate, rubber exhibits different responses.
Specifically, the function 𝜓Eq

𝚖 in (1) characterizes the elastic energy storage in the rubber at states of thermodynamic equilibrium,
hereas 𝜓NEq

𝚖 characterizes the additional elastic energy storage at non-equilibrium states (i.e., the part of the energy that gets
issipated eventually). Accordingly, 𝜓Eq

𝚖 is a function solely of the deformation gradient 𝐅, while 𝜓NEq
𝚖 depends on 𝐅 and additionally

n the internal variable 𝐅𝑣. On the other hand, the constant 𝜂𝚖 in (2) characterizes the viscosity of the rubber. By now it is well-
stablished from statistical mechanics (Treloar, 1975; Doi and Edwards, 1998), and more so from an abundance of macroscopic
xperimental results, that at sufficiently large deformations and deformation rates the elasticity of rubber is non-Gaussian and that
ts viscosity is nonlinear. We shall comment further on these additional nonlinearities in Section 9 below.
In the spirit of the classical linear theory of viscoelasticity (Gross, 1953), it proves instructive to visualize the physical meaning

f the two thermodynamic potentials (1)–(2) pictorially in the form of a rheological model. Fig. 1 provides such a representation,
hich can be readily identified as the classical Zener — or standard solid — model for viscoelastic solids (Zener, 1948) generalized

to account for the constitutive and geometric nonlinearities inherent to finite deformations.

Fig. 1. Rheological model of rubber.

Constitutive behavior of the inclusions. The rigid behavior of the inclusions can also be conveniently cast within the two-potential
formalism. In this case, the free-energy function can be simply written as

𝜓𝚒(𝐅) =
{

0 if 𝐅 = 𝐐 ∈ 𝑂𝑟𝑡ℎ+

+∞ otherwise
, (4)

where 𝑂𝑟𝑡ℎ+ stands for the set of all proper orthogonal second-order tensors, while the dissipation potential is identically 0.
In order to account for the perfectly rigid behavior (4) within the context of the numerical scheme introduced below in Section 6,

it will prove expedient not to work with (4) directly but to consider instead the regularized and hence more general case of elastic
isotropic inclusions with free-energy function

𝜓𝚒(𝐅) =
𝜇𝚒
2

[

𝐼1 − 3
]

− 𝜇𝚒 ln 𝐽 , (5)

where the parameter 𝜇𝚒 denotes the shear modulus of the inclusions in their undeformed state; by the same token, their bulk modulus
is given by 𝜅𝚒 = 2

3𝜇𝚒. The perfectly rigid behavior (4) can then be readily recovered as a special case of (5) by taking the limit of
𝜇𝚒 → +∞.

Pointwise constitutive behavior of the suspension. Given the free-energy functions (1), (5), and the dissipation potential (2), it follows
hat the first Piola–Kirchhoff stress tensor 𝐒 at any material point 𝐗 ∈ 𝛺0 and time 𝑡 ∈ [0, 𝑇 ] is expediently given by the relation
Kumar and Lopez-Pamies, 2016)

𝐒(𝐗, 𝑡) = 𝜕𝜓
𝜕𝐅

(𝐗,𝐅,𝐅𝑣), (6)

where 𝐅𝑣 is implicitly defined by the evolution equation

⎧

⎪

⎨

⎪

⎩

𝜕𝜓
𝜕𝐅𝑣

(𝐗,𝐅,𝐅𝑣) + 𝜕𝜙
𝜕𝐅̇𝑣

(𝐗,𝐅,𝐅𝑣, 𝐅̇𝑣) = 𝟎

𝐅𝑣(𝐗, 0) = 𝐈
, (7)

and where

𝜓(𝐗,𝐅,𝐅𝑣) =
(

1 − 𝜃𝚒(𝐗)
)

𝜓𝚖(𝐅,𝐅𝑣) + 𝜃𝚒(𝐗)𝜓𝚒(𝐅) and 𝜙(𝐗,𝐅,𝐅𝑣, 𝐅̇𝑣) =
(

1 − 𝜃𝚒(𝐗)
)

𝜙𝚖(𝐅,𝐅𝑣, 𝐅̇𝑣).

n these relations, 𝜃𝚒 denotes the characteristic function describing the spatial locations occupied by the inclusions in 𝛺0, that is,
𝜃𝚒 takes the value of 1 if 𝐗 ∈ 𝛺(𝚒)

0 and 0 otherwise. For later use, we introduce the notation

𝑐 ∶= 1
|𝛺0| ∫𝛺0

𝜃𝚒(𝐗)d𝐗 =
|𝛺(𝚒)

0 |

|𝛺0|

or the volume fraction of inclusions in the suspension.
4
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Upon direct use of the potentials (1), (2), (5), together with some algebraic manipulation, the pointwise constitutive response
6)–(7) of the suspension takes the more explicit form

𝐒(𝐗, 𝑡) =
(

1 − 𝜃𝚒(𝐗)
)

(

𝜇𝚖𝐅 − 𝑝𝐅−𝑇 + 𝜈𝚖𝐅𝐂𝑣
−1
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

𝐅 − 𝐅−𝑇 ) , (8)

here 𝑝 stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint 𝐽 = 1 of the rubber and 𝐂𝑣 is
efined by the evolution equation

⎧

⎪

⎨

⎪

⎩

𝐂̇𝑣(𝐗, 𝑡) =
𝜈𝚖
𝜂𝚖

[

𝐂 − 1
3
(

𝐂 ⋅ 𝐂𝑣−1
)

𝐂𝑣
]

𝐂𝑣(𝐗, 0) = 𝐈
. (9)

ote that the dependence on the internal variable 𝐅𝑣 enters (8) and (9) only through the symmetric combination 𝐂𝑣 = 𝐅𝑣𝑇𝐅𝑣.

2.2. Macroscopic or homogenized response

In light of the assumed small size of the inclusions and of their isotropic and hence statistically uniform spatial distribution,
the microscopically heterogeneous suspension described above is expected to behave macroscopically as a homogeneous material.
Its macroscopic or homogenized response can be defined as the relation between the history of the volume average of the first
Piola–Kirchhoff stress

{𝗦(𝑡), 𝑡 ∈ [0, 𝑇 ]} , 𝗦(𝑡) ∶= 1
|𝛺0| ∫𝛺0

𝐒(𝐗, 𝑡) d𝐗 (10)

nd the history of the volume average of the deformation gradient

{𝗙(𝑡), 𝑡 ∈ [0, 𝑇 ]} , 𝗙(𝑡) ∶= 1
|𝛺0| ∫𝛺0

𝐅(𝐗, 𝑡) d𝐗 (11)

when it is subjected to affine boundary conditions (Hill, 1972; Suquet, 1987).
Restricting attention, for definiteness, to affine deformations when 𝗙(𝑡) is prescribed, the problem amounts to solving the

initial–boundary-value problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Div
[(

1 − 𝜃𝚒(𝐗)
) (

𝜇𝚖∇𝐲 − 𝑝∇𝐲−𝑇 + 𝜈𝚖∇𝐲𝐂𝑣−1
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐲 − ∇𝐲−𝑇
)]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺0 × [0, 𝑇 ]

det ∇𝐲 = 1, (𝐗, 𝑡) ∈ 𝛺(𝚖)
0 × [0, 𝑇 ]

𝐲(𝐗, 𝑡) = 𝗙(𝑡)𝐗, (𝐗, 𝑡) ∈ 𝜕𝛺0 × [0, 𝑇 ]

𝐲(𝐗, 0) = 𝐗, 𝐗 ∈ 𝛺0

(12)

coupled with the evolution equation

⎧

⎪

⎨

⎪

⎩

𝐂̇𝑣(𝐗, 𝑡) =
𝜈𝚖
𝜂𝚖

[

∇𝐲𝑇∇𝐲 − 1
3
(

∇𝐲𝑇∇𝐲 ⋅ 𝐂𝑣−1
)

𝐂𝑣
]

, (𝐗, 𝑡) ∈ 𝛺(𝚖)
0 × [0, 𝑇 ]

𝐂𝑣(𝐗, 0) = 𝐈, 𝐗 ∈ 𝛺(𝚖)
0

(13)

for the deformation field 𝐲(𝐗, 𝑡), the pressure field 𝑝(𝐗, 𝑡), and the internal variable 𝐂𝑣(𝐗, 𝑡) for the case when 𝜇𝚒 = +∞, and then
computing the resulting history of the macroscopic stress (10).

Eq. (12)1 is nothing more than balance of linear momentum in the absence of inertia and body forces, Div𝐒 = 𝟎, specialized to
the constitutive behavior (8). Balance of angular momentum, 𝐒𝐅𝑇 = 𝐅𝐒𝑇 , is automatically satisfied by virtue of the material frame
indifference of the free-energy functions (1) and (5) and of the dissipation potential (2); see Section 2.1 in Kumar and Lopez-Pamies
(2016).

In general, the nonlinear initial–boundary-value problem (12)–(13) can only be solved numerically by means of schemes that
discretize both space and time. As announced in the Introduction, one of the main objectives of this work is to put forth one such
scheme alongside sample numerical solutions for the history of the macroscopic stress (10) in terms of the history of the macroscopic
deformation gradient (11) aimed at extracting the distinctive features of the macroscopic response of the suspension. We do so in
Sections 6 and 7. As elaborated prior to that in Sections 3, 4, and 5, nevertheless, Eqs. (12)–(13) permit great simplification in
several basic limits of physical significance. Those are the limits of: (𝑖) small deformations, (𝑖𝑖) finite deformations for slow and fast
deformation rates, and (𝑖𝑖𝑖) finite deformations in the absence of storage of elastic energy when the rubber reduces to a Newtonian
fluid. The second main objective of this work is to put forth a simple approximate solution for the macroscopic constitutive relation
between (10) and (11) for arbitrary finite deformations and loading conditions. This, again, we do in Section 8 with direct guidance
from the asymptotically exact and computational solutions worked out in Sections 3 through 7.

3. The homogenized response in the small-deformation limit

In the limit of small deformations as ‖𝗙(𝑡) − 𝐈‖ → 0, the nonlinear viscoelasticity problem (12)–(13) reduces asymptotically
to one of linear viscoelasticity that can be solved exactly — by virtue of the incompressibility of the rubber matrix and rigidity
5
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of the inclusions — in terms of a single linear elastostatics problem by means of the correspondence principle. It follows that the
macroscopic constitutive response of the suspension in such a limit, as characterized by the relation between the histories of their
macroscopic stress (10) and macroscopic deformation gradient (11), can be written in closed form in terms of the solution of the
pertinent elastostatics problem. The derivation of this asymptotic result goes as follows.

Introduce the macroscopic deformation measure 𝗛(𝑡) = 𝗙(𝑡) − 𝐈 and consider solutions to (12)–(13) of the asymptotic form

𝐲(𝐗, 𝑡) = 𝐗 + 𝐮(𝐗, 𝑡) + 𝑂(‖𝗛(𝑡)‖2) with 𝑢𝑖(𝐗, 𝑡) = 𝛤𝑖𝑗𝑘(𝐗, 𝑡)𝖧𝑗𝑘(𝑡),
𝑝(𝐗, 𝑡) = 𝜇𝚖 + 𝜈𝚖 + 𝑝0(𝐗, 𝑡) + 𝑂(‖𝗛(𝑡)‖2) with 𝑝0(𝐗, 𝑡) = 𝛴𝑗𝑘(𝐗, 𝑡)𝖧𝑗𝑘(𝑡),
𝐂𝑣(𝐗, 𝑡) = 𝐈 +𝐇𝑣(𝐗, 𝑡) +𝐇𝑣𝑇 (𝐗, 𝑡) + 𝑂(‖𝗛(𝑡)‖2) with 𝐻𝑣

𝑖𝑗 (𝐗, 𝑡) = 𝛶𝑖𝑗𝑘𝑙(𝐗, 𝑡)𝖧𝑘𝑙(𝑡)

in the limit as ‖𝗛(𝑡)‖ → 0; the tensors 𝜞 , 𝜮, 𝜰 quantifying the linearity of the fields in 𝗛(𝑡) are commonly referred to as
‘‘concentration’’ tensors. By making explicit use of this ansatz, standard calculations show that the Eqs. (12)–(13) reduce to 𝑂(‖𝗛(𝑡)‖)
to the initial–boundary-value problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Div
[(

1 − 𝜃𝚒(𝐗)
) (

𝜇𝚖(∇𝐮 + ∇𝐮𝑇 ) − 𝑝0𝐈 + 𝜈𝚖
(

∇𝐮 + ∇𝐮𝑇 −𝐇𝑣 −𝐇𝑣𝑇 ))+

𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐮 + ∇𝐮𝑇
)]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺0 × [0, 𝑇 ]

tr ∇𝐮 = 0, (𝐗, 𝑡) ∈ 𝛺(𝚖)
0 × [0, 𝑇 ]

𝐮(𝐗, 𝑡) = 𝗛(𝑡)𝐗, (𝐗, 𝑡) ∈ 𝜕𝛺0 × [0, 𝑇 ]

𝐮(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺0

(14)

coupled with the evolution equation

⎧

⎪

⎨

⎪

⎩

𝐇̇𝑣(𝐗, 𝑡) =
𝜈𝚖
𝜂𝚖

[∇𝐮 −𝐇𝑣] , (𝐗, 𝑡) ∈ 𝛺(𝚖)
0 × [0, 𝑇 ]

𝐇𝑣(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺(𝚖)
0

(15)

or the displacement field 𝐮(𝐗, 𝑡), the pressure field 𝑝0(𝐗, 𝑡), and the internal variable 𝐇𝑣(𝐗, 𝑡).
Upon recognizing that the linear system of ODEs (15) admits the simple explicit solution

𝐇𝑣(𝐗, 𝑡) = ∫

𝑡

0

𝑒−
𝑡−𝜏
𝜏𝚖

𝜏𝚖
∇𝐮(𝐗, 𝜏)d𝜏, 𝜏𝚖 ∶=

𝜂𝚖
𝜈𝚖
, (16)

and introducing the notation

𝐋(𝐗, 𝑡) =
(

1 − 𝜃𝚒(𝐗)
)

𝐋𝚖(𝑡) + 𝜃𝚒(𝐗)𝐋𝚒 with 𝐋𝚖(𝑡) = 2
(

𝜇𝚖 + 𝜈𝚖𝑒
− 𝑡
𝜏𝚖

)

 and 𝐋𝚒 = 2𝜇𝚒

for the initial relaxation function of the suspension, the Eqs. (14)–(15) can be recast in the more compact form

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Div
[

∫

𝑡

−∞
𝐋(𝐗, 𝑡 − 𝜏) 𝜕∇𝐮

𝜕𝜏
(𝐗, 𝜏)d𝜏 − (1 − 𝜃𝚒(𝐗))𝑝0𝐈

]

= 𝟎, (𝐗, 𝑡) ∈ 𝛺0 × [0, 𝑇 ]

tr ∇𝐮 = 0, (𝐗, 𝑡) ∈ 𝛺(𝚖)
0 × [0, 𝑇 ]

𝐮(𝐗, 𝑡) = 𝗛(𝑡)𝐗, (𝐗, 𝑡) ∈ 𝜕𝛺0 × [0, 𝑇 ]

𝐮(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺0

. (17)

n these last expressions,  stands, again, for the deviatoric orthogonal projection tensor (3), 𝑖𝑗𝑘𝑙 =
1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) denotes the

identity in the space of fourth-order tensors with major and minor symmetries, and it is tacitly assumed that 𝐮(𝐗, 𝑡) = 𝟎 for 𝑡 < 0.
Next, define the one-sided Laplace transform of any function of time 𝑓 (𝑡) in the usual manner as

{𝑓 (𝑡)} = 𝑓 (𝑠) = ∫

∞

0
𝑓 (𝑡)𝑒−𝑠𝑡 d𝑡.

Applying this transform to Eqs. (17) leads to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Div
[

𝐋̃(𝐗, 𝑠)∇𝐮̂(𝐗, 𝑠) − (1 − 𝜃𝚒(𝐗))𝑝0𝐈
]

= 𝟎, 𝐗 ∈ 𝛺0

tr ∇𝐮̂ = 0, 𝐗 ∈ 𝛺(𝚖)
0

𝐮̂(𝐗, 𝑠) = 𝗛̂(𝑠)𝐗, 𝐗 ∈ 𝜕𝛺0

𝐮̂(𝐗, 0) = 𝟎, 𝐗 ∈ 𝛺0

, (18)

where

𝐋̃(𝐗, 𝑠) =𝑠𝐋(𝐗, 𝑠) =
(

1 − 𝜃𝚒(𝐗)
)

𝑠𝐋𝚖(𝑠) + 𝜃𝚒(𝐗)𝐋𝚒 =
(

1 − 𝜃𝚒(𝐗)
)

2
(

𝜇𝚖 +
𝜈𝚖𝜏𝚖𝑠
1 + 𝜏𝚖𝑠

)

 + 𝜃𝚒(𝐗)2𝜇𝚒.
6
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As expected, the governing Eqs. (18) in the Laplace domain for the fields 𝐮̂(𝐗, 𝑠) and 𝑝0(𝐗, 𝑠) feature identical mathematical structure
as the governing equations for the displacement and pressure fields in a linear elastic composite material with the same two-phase
particulate microstructure as the viscoelastic suspension — the ‘‘only’’ difference is that the constitutive properties and boundary
conditions in (18) are parameterized by the Laplace variable 𝑠. Accordingly, the same standard techniques of solution employed for
linear elastostatics problems apply to (18) directly. Once computed, however, the solution needs to be transformed back to the time
domain, which, in principle, can take considerable effort; see, e.g., Yeong-Moo et al. (1998).

Now, for the case of the isotropic suspension of rigid inclusions embedded in an isotropic incompressible matrix of interest here,
t so happens that the dependence on the Laplace variable 𝑠 can be factored out of the equilibrium equation (18); we discuss how
his remarkable feature applies to much more general viscoelastic composite materials — not just two-phase particulate composite
aterials with isotropic incompressible matrix and rigid inclusions — in Section 9 below. It follows that the displacement and
ressure fields solution of (18) are then of the simple separable form

𝑢̂𝑖(𝐗, 𝑠) = 𝛤𝑖𝑘𝑙(𝐗)𝖧̂𝑘𝑙(𝑠) and 𝑝0(𝐗, 𝑠) = 𝛴𝑖𝑗 (𝐗)𝖧̂𝑖𝑗 (𝑠), (19)

where the concentration tensors 𝜞 (𝐗) and 𝜮(𝐗) are solution of the 𝑠-independent linear elastostatics problem4

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕
𝜕𝑋𝑗

[

(

1 − 𝜃𝚒(𝐗) + 𝑘𝜃𝚒(𝐗)
)

𝑖𝑗𝑚𝑛
𝜕𝛤𝑚𝑘𝑙
𝜕𝑋𝑛

(𝐗) + 𝛿𝑖𝑗𝛴𝑘𝑙(𝐗)
]

= 0, 𝐗 ∈ 𝛺0

𝜕𝛤𝑚𝑘𝑙
𝜕𝑋𝑚

(𝐗) = 0, 𝐗 ∈ 𝛺0

𝛤𝑖𝑘𝑙(𝐗) = 𝛿𝑖𝑘𝑋𝑙 , 𝐗 ∈ 𝜕𝛺0

, with 𝑘 = +∞. (20)

Granted the separable solution (19), the otherwise intensive passage from the Laplace domain to the time domain is trivial in this
ase. By the same token, the computation of the history of the macroscopic stress (10) is straightforward. It reads

𝗦(𝑡) = 𝜇
(

𝗛 + 𝗛𝑇
)

− p 𝐈 + 𝜈
(

𝗛 + 𝗛𝑇 − 𝗛𝑣 − 𝗛𝑣𝑇
)

+ 𝑂
(

‖𝗛‖2
)

, (21)

where p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint tr 𝗛 = 0, 𝗛𝑣 is defined by the
evolution equation

⎧

⎪

⎨

⎪

⎩

𝗛̇𝑣(𝑡) = 𝜈
𝜂
[𝗛 − 𝗛𝑣]

𝗛𝑣(0) = 𝟎
, (22)

nd where the three effective material constants 𝜇, 𝜈, 𝜂 are given by the expressions

𝜇 = 𝑔(𝑐)𝜇𝚖, 𝜈 = 𝑔(𝑐)𝜈𝚖, 𝜂 = 𝑔(𝑐)𝜂𝚖 (23)

in terms of the enhancement coefficient

𝑔(𝑐) = 1
5|𝛺0| ∫𝛺0

(

1 − 𝜃𝚒(𝐗) + 𝑘𝜃𝚒(𝐗)
)

𝑘𝑙𝑚𝑛
𝜕𝛤𝑚𝑘𝑙
𝜕𝑋𝑛

(𝐗)d𝐗. (24)

Remark 1. The enhancement coefficient (24) depends not only on the volume fraction 𝑐 of the inclusions, but also on the specifics
of their shape, relative size, and spatial distribution, as characterized by the particular characteristic function 𝜃𝚒 of the suspension at
hand. We use 𝑐 as its only argument for notational simplicity. Its computation requires the solution of the boundary-value problem
(20) for the concentration tensor 𝜞 (𝐗). In general, this problem does not admit analytical solutions, but it is fairly straightforward
to generate numerical solutions for it by means of the FE method; see, e.g., the Appendix in Spinelli et al. (2015). This traverse
notwithstanding, there are classes of suspensions of practical interest that do admit analytical solutions for (24). One such class is
that generated by iterated homogenization (Norris, 1985; Avellaneda, 1987; Lefèvre and Lopez-Pamies, 2021). Within this class, for
later use, we recall that the simplest solution for (24) is given by

𝑔(𝑐) = (1 − 𝑐)−5∕2, (25)

which is a generalization of the classical dilute solution of Einstein (1906) worked out separately by Brinkman (1952) and Roscoe
(1952). It corresponds to a suspension of spherical inclusions of infinitely many sizes distributed in a manner such that they can fill
the entire space, thus its percolation at 𝑐 = 1. Recent numerical solutions (Lopez-Pamies et al., 2013b; Lefèvre and Lopez-Pamies,
2017a) have shown that the result (25) is accurately descriptive of suspensions of equiaxed inclusions of the same or different sizes
for volume fractions in the small-to-moderate range 𝑐 ∈ [0, 0.25]. That is, the enhancement coefficient (24) is fairly insensitive to
the shape, relative size, and spatial distribution of the inclusions up to about 𝑐 = 0.25.

4 Note that the rigidity of the inclusions, 𝑘 = +∞, in these equations is purely formal. A proper treatment alongside its numerical implementation can be
3

7

found in the work of Chi et al. (2016). Alternatively, for practical purposes, one may also set 𝑘 ≥ 10 and use Eq. (20) directly.
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Remark 2. To leading 𝑂(‖𝗛(𝑡)‖), consistent with an observation due to Hashin (1965) for linear viscoelastic composites with infinite
ontrast, the macroscopic response (21)–(22) of the suspension is of identical functional form as the response of the underlying
ubber matrix, namely, an isotropic incompressible Zener viscoelastic solid. Its three effective material constants (23) are simply
hose of the underlying rubber matrix multiplied by the very same enhancement coefficient (24), which necessarily coincides with
he enhancement coefficient that emerges in the limiting case when the rubber matrix is linear elastic; see, e.g., Section 2.1 in
efèvre and Lopez-Pamies (2017a).
In general, as already stressed in the Introduction, the homogenized response of viscoelastic composites is expected to exhibit a
uch more complicated time dependence than that of its constituents, even when these are of very simple type. The reason why
he homogenized response (21)–(22) for suspensions of rigid inclusions in rubber is — contrary to the general expectation — of the
ame form as that of the underlying rubber matrix can be attributed to the fact that there is only one relaxation mechanism in the
uspensions, namely, the shear relaxation of the rubber. We elaborate further on this key point in Section 9 below.

. The homogenized response at finite deformations for slow and fast deformation rates

For the limiting cases of finite deformations that are applied either infinitesimally slowly or ‘‘infinitely’’ fast5 in time 𝑡, the
onlinear viscoelasticity problem (12)–(13) reduces asymptotically — as one can surmise from the rheological model in Fig. 1 — to
wo finite elastostatics problems that are amenable to available methods of solution. We spell out the two relevant finite elastostatics
roblems alongside their solution next, one at a time.

.1. The limiting case of infinitesimally slow deformations

Consider macroscopic deformation gradients 𝗙(𝑡) that are applied slowly in time and that, without loss of generality, feature the
symptotic behavior

𝗙(𝑡) = 𝗙0 + 𝑡−1𝗙1 + 𝑂(𝑡−2) (26)

n the limit as 𝑡 → 𝑇 = +∞, where 𝗙0 and 𝗙1 stand for two (suitably well-behaved) constant second-order tensors of choice.
hysically, the prescription (26) describes a macroscopic deformation gradient 𝗙0 that is applied infinitesimally slowly.
In view of (26), we look for solutions to (12)–(13) of the asymptotic form

𝐲(𝐗, 𝑡) = 𝐲0(𝐗) + 𝑡−1𝐲1(𝐗) + 𝑂(𝑡−2),
𝑝(𝐗, 𝑡) = 𝑝0(𝐗) + 𝑡−1𝑝1(𝐗) + 𝑂(𝑡−2),

𝐂𝑣(𝐗, 𝑡) = 𝐂𝑣0(𝐗) + 𝑡
−1𝐂𝑣1(𝐗) + 𝑂(𝑡

−2) (27)

n the limit as 𝑡 → +∞. Recognizing from (27)3 that

𝐂̇𝑣 = −𝑡−2𝐂𝑣1 + 𝑂(𝑡
−3) and 𝐂𝑣−1 = 𝐂𝑣0

−1 − 𝑡−1𝐂𝑣0
−1𝐂𝑣1𝐂

𝑣
0
−1 + 𝑂(𝑡−2),

t is straightforward to solve equation (13) for the internal variable 𝐂𝑣(𝐗, 𝑡) to leading order to determine that

𝐂𝑣0 = ∇𝐲𝑇0 ∇𝐲0.

n turn, it is straightforward to deduce that, to leading order, Eqs. (12) simplify to the boundary-value problem

⎧

⎪

⎨

⎪

⎩

Div
[(

1 − 𝜃𝚒(𝐗)
) (

𝜇𝚖∇𝐲0 − (𝑝0 − 𝜈𝚖)∇𝐲−𝑇0
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐲0 − ∇𝐲−𝑇0
)]

= 𝟎, 𝐗 ∈ 𝛺0

det ∇𝐲0 = 1, 𝐗 ∈ 𝛺(𝚖)
0

𝐲0(𝐗) = 𝗙0𝐗, 𝐗 ∈ 𝜕𝛺0

(28)

or the deformation field 𝐲0(𝐗) and pressure field 𝑝0(𝐗).
For the case of interest here when 𝜇𝚒 = +∞, Eqs. (28) are nothing more than the governing equations for the homogenized elastic

esponse of a random isotropic suspension of rigid inclusions, with characteristic function 𝜃𝚒, embedded in a Gaussian rubber matrix
ith initial shear modulus 𝜇𝚖. In a string of recent contributions, Lopez-Pamies et al. (2013a,b), Goudarzi et al. (2015), Lefèvre and
opez-Pamies (2017a,b), and Lefèvre et al. (2019) have worked out rigorous computational and analytical results that include as
special case the solution for the homogenization problem (28) for a wide spectrum of characteristic functions 𝜃𝚒. These works
ave also put forth a simple yet accurate approximate solution, which states that the homogenized elastic response of isotropic
omposites made of any number of different Gaussian rubber phases is itself Gaussian; see Section 6 in Lefèvre and Lopez-Pamies
2017a). Accordingly, when specialized to the suspensions of interest here, this approximate solution states that, in terms of the
pplied macroscopic deformation gradients (26), the macroscopic stress (10) is simply given by

𝗦(𝑡) = 𝜇 𝗙0 − p 𝗙−𝑇0 + 𝑂(𝑡−1), (29)

where we recall that the effective material constant 𝜇 is given by expression (23)1 and p stands for the arbitrary hydrostatic pressure
associated with the incompressibility constraint det 𝗙0 = 1 of the suspension.

5 Since inertia is not taken into account, ‘‘infinitely’’ fast should be understood in the usual sense of loading conditions that are applied in a time scale
hat is much smaller than the characteristic relaxation time of the problem, in the present context 𝜏𝚖 = 𝜂𝚖∕𝜈𝚖, but still large enough that inertial effects can be
8

neglected.
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4.2. The limiting case of ‘‘infinitely’’ fast deformations

Consider now applied macroscopic deformation gradients 𝗙(𝑡) of the form

𝗙(𝑡) = 𝐈 +(𝑡)
(

𝗙0 − 𝐈
)

, (30)

where (𝑡) stands for the Heaviside function

(𝑡) =

{

0 if 𝑡 ≤ 0

1 if 𝑡 > 0
(31)

and 𝗙0 is a (suitably well-behaved) constant second-order tensor of choice. Physically, the prescription (30) describes a macroscopic
eformation gradient 𝗙0 that is applied infinitely fast at 𝑡 = 0+.
We are interested in solving (12)–(13) at 𝑡 = 0+. To that end, we consider the ansatz

𝐲(𝐗, 𝑡) = 𝐗 + 𝐮0(𝐗, 𝑡)(𝑡),

𝑝(𝐗, 𝑡) = 𝜇𝚖 + 𝜈𝚖 + 𝑝0(𝐗, 𝑡)(𝑡),

𝐂𝑣(𝐗, 𝑡) = 𝐈 + 𝑡𝐂𝑣1(𝐗) + 𝑂(𝑡
2) (32)

nd introduce the notation

𝐲0(𝐗) = 𝐲(𝐗, 0+) = 𝐗 + 𝐮0(𝐗, 0+).

ecognizing from (32)3 that

𝐂̇𝑣 = 𝐂𝑣1 + 𝑂(𝑡) and 𝐂𝑣−1 = 𝐈 − 𝑡𝐂𝑣1 + 𝑂(𝑡
2),

t is a simple matter to solve equation (13) for the internal variable 𝐂𝑣(𝐗, 𝑡) to leading order to determine that

𝐂𝑣1 =
𝜈𝚖
𝜂𝚖

[

∇𝐲𝑇0 ∇𝐲0 −
1
3
(

∇𝐲0 ⋅ ∇𝐲0
)

𝐈
]

.

t follows that at 𝑡 = 0+ Eqs. (12) simplify to the boundary-value problem

⎧

⎪

⎨

⎪

⎩

Div
[(

1 − 𝜃𝚒(𝐗)
) (

(𝜇𝚖 + 𝜈𝚖)∇𝐲0 − (𝜇𝚖 + 𝜈𝚖 + 𝑝0)∇𝐲−𝑇0
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐲0 − ∇𝐲−𝑇0
)]

= 𝟎, 𝐗 ∈ 𝛺0

det ∇𝐲0 = 1, 𝐗 ∈ 𝛺(𝚖)
0

𝐲0(𝐗) = 𝗙0𝐗, 𝐗 ∈ 𝜕𝛺0

(33)

or the deformation field 𝐲0(𝐗) and pressure field 𝑝0(𝐗, 0+).
After setting 𝜇𝚒 = +∞, Eqs. (33) reduce to the governing equations for the homogenized elastic response of a random isotropic

uspension of rigid inclusions, with characteristic function 𝜃𝚒, embedded in a Gaussian rubber matrix with initial shear modulus
𝚖 + 𝜈𝚖. In line with (29) hence, the macroscopic stress (10) corresponding to a macroscopic deformation gradient 𝗙0 that is applied
infinitely fast at 𝑡 = 0+ is approximately given by the relation

𝗦(𝑡) = (𝜇 + 𝜈)𝗙0 − p 𝗙−𝑇0 + 𝑂(𝑡),

where, again, the effective material constants 𝜇 and 𝜈 are given by expressions (23)1,2 and p stands for the arbitrary hydrostatic
pressure associated with the incompressibility constraint det 𝗙0 = 1.

5. The homogenized response at finite deformations in the absence of storage of elastic energy

Yet another basic limit for which Eqs. (12)–(13) are amenable to available methods of solution is when 𝜇𝚖 = 0 and 𝜈𝚖 → +∞,
that is, when there is no storage of elastic energy and the rubber degenerates into a Newtonian fluid. In such a limit, the nonlinear
viscoelasticity problem (12)–(13) reduces asymptotically — as one would expect from the rheological model in Fig. 1 — to the
lassical homogenization of the Stokes flow of an initially random isotropic suspension of rigid inclusions in a Newtonian fluid. The
elevant calculations go as follows.
Set 𝜇𝚖 = 0 and consider solutions to (12)–(13) of the asymptotic form

𝐲(𝐗, 𝑡) = 𝐲0(𝐗, 𝑡) + 𝜈−1𝚖
𝐲1(𝐗, 𝑡) + 𝑂(𝜈−2𝚖

),

𝑝(𝐗, 𝑡) = 𝜈𝚖 + 𝑝0(𝐗, 𝑡) + 𝑂(𝜈−1𝚖
),

𝐂𝑣(𝐗, 𝑡) = 𝐂𝑣0(𝐗, 𝑡) + 𝜈
−1
𝚖

𝐂𝑣1(𝐗, 𝑡) + 𝑂(𝜈
−2
𝚖

) (34)

n the limit as 𝜈𝚖 → +∞. Upon substitution of this ansatz in Eq. (13) for the internal variable 𝐂𝑣(𝐗, 𝑡), noting that

𝐂̇𝑣 = 𝐂̇𝑣0 + 𝜈
−1
𝚖

𝐂̇𝑣1 + 𝑂(𝜈
−2
𝚖

) and 𝐂𝑣−1 = 𝐂𝑣−10 − 𝜈−1
𝚖

𝐂𝑣−10 𝐂𝑣1𝐂
𝑣−1
0 + 𝑂(𝜈−2

𝚖
),

t is a simple matter to solve the resulting asymptotic equations of 𝑂(𝜈𝚖) and 𝑂(𝜈0𝚖) to determine that

𝑣 𝑇
9

𝐂0 = ∇𝐲0 ∇𝐲0 (35)
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and

𝐂𝑣1 = −𝜂𝚖𝐂̇𝑣0 +
1
3

(

𝐂𝑣1 ⋅ 𝐂
𝑣
0
−1
)

𝐂𝑣0 + ∇𝐲𝑇0 ∇𝐲1 + ∇𝐲𝑇1 ∇𝐲0 −
1
3

[

(

∇𝐲𝑇0 ∇𝐲1 + ∇𝐲𝑇1 ∇𝐲0
)

⋅ 𝐂𝑣0
−1
]

𝐂𝑣0 (36)

for the first two terms in (34)3. By making direct use now of (34), (35), and (36), together with a change of Lagrangian to Eulerian
variables, the equation of 𝑂(𝜈0

𝚖
) emerging from (12) can be shown to reduce to the initial–boundary-value problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div
[

(

1 − 𝜒𝚒(𝐱)
) (

𝜂𝚖(∇𝐱𝐯 + ∇𝐱𝐯𝑇 ) − 𝑞𝐈
)

+ 𝜒𝚒(𝐱)
𝜇𝚒

det 𝐅0

(

𝐅0𝐅𝑇0 − 𝐈
)

]

= 𝟎, (𝐱, 𝑡) ∈ 𝛺(𝑡) × [0, 𝑇 ]

tr ∇𝐯 = 0, (𝐱, 𝑡) ∈ 𝛺(𝚖)(𝑡) × [0, 𝑇 ]

𝐯(𝐱, 𝑡) = 𝗙̇(𝑡)𝗙−1(𝑡)𝐱, (𝐱, 𝑡) ∈ 𝜕𝛺(𝑡) × [0, 𝑇 ]

(37)

coupled with the evolution equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝐅0
𝜕𝑡

+ 𝐯 ⋅ ∇𝐱𝐅0 = ∇𝐱𝐯 𝐅0, (𝐱, 𝑡) ∈ 𝛺(𝑡) × [0, 𝑇 ]

𝐅0(𝐱, 𝑡) = 𝗙(𝑡), (𝐱, 𝑡) ∈ 𝜕𝛺(𝑡) × [0, 𝑇 ]

𝐅0(𝐱, 0) = 𝐈, 𝐱 ∈ 𝛺0

for the velocity field 𝐯
(

𝐲0(𝐗, 𝑡), 𝑡
)

= 𝐲̇0(𝐗, 𝑡), the deformation gradient 𝐅0(𝐲0(𝐗, 𝑡), 𝑡) = ∇𝐲0(𝐗, 𝑡), and the pressure field 𝑞(𝐱, 𝑡). In these
last expressions, we have made use of the notation 𝜒𝚒(𝐲0(𝐗, 𝑡)) = 𝜃𝚒(𝐗), ∇𝐱𝐅0(𝐱, 𝑡) = 𝜕𝐅0(𝐱, 𝑡)∕𝜕𝐱, and ∇𝐱𝐯(𝐱, 𝑡) = 𝜕𝐯(𝐱, 𝑡)∕𝜕𝐱.

When specialized to rigid inclusions, 𝜇𝚒 = +∞, Eqs. (37) reduce to the governing equations for the homogenized viscous response
of a suspension of rigid inclusions, with characteristic function 𝜒𝚒, in a Newtonian fluid with viscosity 𝜂𝚖 under conditions of Stokes
low and of no-slip between the inclusions and the fluid; see, e.g., Einstein (1906), Hashin (1963), Batchelor and Green (1972),
Brady and Bossis (1988), Sierou and Brady (2001), and Stickel and Powell (2005). At any given fixed time 𝑡 ∈ [0, 𝑇 ], irrespectively
of whether the spatial distribution of the inclusions remains random and isotropic along the applied deformation path, the problem
(37) is thus mathematically equivalent to the linear elastostatics problem (18) that arises in the limit of small deformations. It then
follows that the volume average

𝗧(𝑡) ∶= 1
|𝛺(𝑡)| ∫𝛺(𝑡)

𝐓(𝐱, 𝑡)d𝐱

f the pointwise Cauchy stress

𝐓(𝐱, 𝑡) =
(

1 − 𝜒𝚒(𝐱)
) (

𝜂𝚖(∇𝐱𝐯 + ∇𝐱𝐯𝑇 ) − 𝑞𝐈
)

+ 𝜒𝚒(𝐱)
𝜇𝚒

det 𝐅0

(

𝐅0𝐅𝑇0 − 𝐈
)

ver the current configuration 𝛺(𝑡) is simply given by the effective relation

𝗧(𝑡) = 𝗗 − p𝐈. (38)

ere, p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint tr ∇𝐯 = 0, 𝗗(𝑡) = 1
2 (𝗙̇𝗙

−1+𝗙−𝑇 𝗙̇𝑇 )
enotes the macroscopic rate of deformation tensor, and the effective viscosity tensor  is given by

𝑖𝑗𝑘𝑙 =
𝜂𝚖

|𝛺(𝑡)| ∫𝛺(𝑡)

(

1 − 𝜒𝚒(𝐱) + 𝑘𝜒𝚒(𝐱)
)

𝑖𝑗𝑚𝑛
𝜕𝛾𝑚𝑘𝑙
𝜕𝑥𝑛

(𝐱)d𝐱, (39)

where, in line with (20) and (24), 𝑘 = +∞ and 𝜸(𝐱) is the concentration tensor that, together with 𝝈(𝐱), is solution of the linear
‘‘elastostatics’’ problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕
𝜕𝑥𝑗

[

(

1 − 𝜒𝚒(𝐱) + 𝑘𝜒𝚒(𝐱)
)

𝑖𝑗𝑚𝑛
𝜕𝛾𝑚𝑘𝑙
𝜕𝑥𝑛

(𝐱) + 𝛿𝑖𝑗𝜎𝑘𝑙(𝐱)
]

= 0, 𝐱 ∈ 𝛺(𝑡)

𝜕𝛾𝑚𝑘𝑙
𝜕𝑥𝑚

(𝐱) = 0, 𝐱 ∈ 𝛺(𝑡)

𝛾𝑖𝑘𝑙(𝐱) = 𝛿𝑖𝑘𝑥𝑙 , 𝐱 ∈ 𝜕𝛺(𝑡)

.

Recalling that for applied affine deformations (12)3 with det 𝗙(𝑡) = 1 we have the connection 𝗦(𝑡) = |𝛺0|
−1 ∫𝛺0

𝐒(𝐗, 𝑡)d𝐗 =
|𝛺(𝑡)|−1 ∫𝛺(𝑡) 𝐓(𝐱, 𝑡)∇𝐱𝐗𝑇 d𝐱 = 𝗧(𝑡)𝗙−𝑇 (𝑡), we can finally conclude from (38) that the macroscopic stress (10) in the limiting case
hen 𝜇𝚖 = 0 and 𝜈𝚖 → +∞ is given by

𝗦(𝑡) = 
(

𝗙̇𝗙−1𝗙−𝑇 + 𝗙−𝑇 𝗙̇𝑇 𝗙−𝑇
)

− p𝗙−𝑇 + 𝑂(𝜈−1
𝚖

). (40)

Remark 3. The response (40), or equivalently (38), is in general non-Newtonian. This is because the effective viscosity tensor (39) is
not a constant but rather a function of the deformation history via the evolution in time of the characteristic function 𝜒𝚒 describing
the microstructure. Indeed, the computation of the effective viscosity tensor (39) requires knowledge of the characteristic function
10

𝜒𝚒 in the current configuration. This amounts to keeping track of the evolution in space of all the inclusions in the suspension of
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interest along the given loading path, which is a significant task. Regardless of how 𝜒𝚒 evolves in time, however, it is worth noting
here for later use that the effective viscosity tensor (39) is bounded from below according to the Reuss bound (Willis, 1981)

 ≥ 2𝜂𝑅 with 𝜂𝑅 =
𝜂𝚖

1 − 𝑐
, (41)

where the inequality is meant in the sense of quadratic forms. For loading conditions for which the suspension remains isotropic,
(39) is bounded from below according to the tighter Hashin–Shtrikman bound (Willis, 1981)

 ≥ 2𝜂𝐻𝑆 with 𝜂𝐻𝑆 = 2 + 3𝑐
2(1 − 𝑐)

𝜂𝚖. (42)

. The homogenized response at finite deformations for arbitrary loading conditions

As already noted above, for general macroscopic deformation gradients 𝗙(𝑡), and general material constants 𝜇𝚖, 𝜈𝚖, 𝜂𝚖, the initial–
oundary-value problem (12)–(13) defining the macroscopic response (10)–(11) of the suspension can only be solved numerically.
n the sequel, we introduce a scheme to generate such numerical solutions. There are three challenges in doing so. The first one
s to accurately describe the random isotropic microstructure of the suspension in a computationally accessible manner. The other
wo have to do with the selections of stable space and time discretizations capable of dealing with large deformations and the
ncompressibility of the rubber over the entire time domain [0, 𝑇 ] of interest.

.1. Weak form of the governing equations in a periodic setting

In practice, the characteristic function 𝜃𝚒 for a given suspension of interest is not expected to be fully available. But even if it
ere, as is well known, it would not be feasible from a computational point of view to deal with all the microstructural information
hat it would contain. A well-settled approach to circumvent this obstacle is that of idealizing the suspension as a periodic medium
here the defining unit cell contains a random isotropic distribution of a sufficiently large but finite number 𝑁𝚒 of inclusions
hat approximates the actual suspension; see, e.g., Gusev (1997), Michel et al. (1999), Segurado and Llorca (2002), Ghossein and
évesque (2012), Lopez-Pamies et al. (2013b), and Shrimali et al. (2019). In such an approach, which we follow here, the pertinent
alculations reduce to calculations over just the unit cell, 𝑌0 say. Precisely, the histories of the macroscopic first Piola Kirchhoff
tress (10) and deformation gradient tensor (11) specialize to

{𝗦(𝑡), 𝑡 ∈ [0, 𝑇 ]} , 𝗦(𝑡) = 1
|𝑌0| ∫𝑌0

𝐒(𝐗, 𝑡) d𝐗

and

{𝗙(𝑡), 𝑡 ∈ [0, 𝑇 ]} , 𝗙(𝑡) = 1
|𝑌0| ∫𝑌0

𝐅(𝐗, 𝑡) d𝐗,

while the initial–boundary-value problem (12)–(13), when rewritten in weak form, specializes to finding 𝐲(𝐗, 𝑡) ∈  and 𝑝(𝐗, 𝑡) ∈ 
uch that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝑌0

[

(

1 − 𝜃𝚒(𝐗)
)

(

𝜇𝚖∇𝐲 − 𝑝∇𝐲−𝑇 + 𝜈𝚖∇𝐲𝐂𝑣
−1
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐲 − ∇𝐲−𝑇
)

]

⋅ ∇𝐰 d𝐗 = 0 ∀𝐰 ∈ 0, 𝑡 ∈ [0, 𝑇 ]

∫𝑌0

[

(

1 − 𝜃𝚒(𝐗)
)

(det ∇𝐲 − 1) + 𝜃𝚒(𝐗)
(

det ∇𝐲 +
𝜇𝚒
𝑝

)]

𝑞 d𝐗 = 0 ∀𝑞 ∈  , 𝑡 ∈ [0, 𝑇 ]
(43)

with 𝐂𝑣(𝐗, 𝑡) defined by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐂̇𝑣(𝐗, 𝑡) = 𝐆 (∇𝐲(𝐗, 𝑡),𝐂𝑣(𝐗, 𝑡))

=
𝜈𝚖
𝜂𝚖

[

∇𝐲𝑇∇𝐲 − 1
3
(

∇𝐲𝑇∇𝐲 ⋅ 𝐂𝑣−1
)

𝐂𝑣
]

, (𝐗, 𝑡) ∈ 𝑌 (𝚖)
0 × [0, 𝑇 ]

𝐂𝑣(𝐗, 0) = 𝐈, 𝐗 ∈ 𝑌 (𝚖)
0

. (44)

In these expressions,  and  stand for sufficiently large sets of admissible deformation 𝐲 and pressure 𝑝 fields that are consistent
with the following periodicity conditions:

𝐲(𝐗, 𝑡) = 𝗙(𝑡)𝐗 + 𝐲̌(𝐗, 𝑡), where 𝐲̌ is 𝑌0−periodic, and 𝑝 is 𝑌0−periodic. (45)

Similarly, 0 stands for a sufficiently large space of vector fields 𝐰 that are 𝑌0-periodic. Moreover, 𝑌
(𝚖)
0 denotes the subdomain

occupied by the rubber matrix in the unit cell 𝑌0 and, for later convenience, we have introduced the function 𝐆 to denote the
right-hand side of the evolution equation for 𝐂𝑣.
11
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6.2. Time discretization

Consider now a partition of the time interval under consideration [0, 𝑇 ] into discrete times 𝑡𝑘 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑚, 𝑡𝑚+1,… , 𝑡𝑀 = 𝑇 }.
With help of the notation 𝐲𝑘(𝐗) = 𝐲(𝐗, 𝑡𝑘), ∇𝐲𝑘(𝐗) = ∇𝐲(𝐗, 𝑡𝑘), 𝑝𝑘(𝐗) = 𝑝(𝐗, 𝑡𝑘), 𝐂𝑣𝑘(𝐗) = 𝐂𝑣(𝐗, 𝑡𝑘), 𝐂̇𝑣𝑘(𝐗) = 𝐂̇𝑣(𝐗, 𝑡𝑘), the governing
Eqs. (43)–(44) at any given discrete time 𝑡𝑘 take then the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝑌0

[

(

1 − 𝜃𝚒(𝐗)
)

(

𝜇𝚖∇𝐲𝑘 − 𝑝𝑘∇𝐲−𝑇𝑘 + 𝜈𝚖∇𝐲𝑘𝐂𝑣𝑘
−1
)

+ 𝜃𝚒(𝐗)𝜇𝚒
(

∇𝐲𝑘 − ∇𝐲−𝑇𝑘
)

]

⋅ ∇𝐰 d𝐗 = 0 ∀𝐰 ∈ 0

∫𝑌0

[

(

1 − 𝜃𝚒(𝐗)
) (

det ∇𝐲𝑘 − 1
)

+ 𝜃𝚒(𝐗)
(

det ∇𝐲𝑘 +
𝜇𝚒
𝑝𝑘

)]

𝑞 d𝐗 = 0 ∀𝑞 ∈ 
(46)

and

𝐂̇𝑣𝑘(𝐗) = 𝐆
(

∇𝐲𝑘(𝐗),𝐂𝑣𝑘(𝐗)
)

, (47)

where we emphasize that we are yet to choose an explicit or implicit time discretization for 𝐂̇𝑣𝑘(𝐗) in terms of 𝐂
𝑣(𝐗, 𝑡).

6.3. Space discretization: conforming Crouzeix–Raviart finite elements

Having discretized the Eqs. (43)–(44) in time, the next step is to further discretize them in space. To this end, we begin by
considering partitions ℎ𝑌0 =

⋃𝙽𝑒
𝑒=1 

(𝑒) of the unit cell 𝑌0 that comprise 𝙽𝑒 non-overlapping quadratic simplicial elements  (𝑒). Given
this partition, we look for approximate solutions ℎ𝐲𝑘(𝐗) and ℎ𝑝𝑘(𝐗) of the deformation field 𝐲𝑘(𝐗) and the pressure field 𝑝𝑘(𝐗) at
time 𝑡𝑘 in the finite dimensional subspace of quadratic Crouzeix–Raviart conforming finite elements; see, e.g., Chapter II in Girault
and Raviart (1986), Chapter 8 in Boffi et al. (2012).

As elaborated in Section 5 and the Appendix in Lefèvre and Lopez-Pamies (2017b) in the more general setting of periodic
homogenization of deformable dielectrics, it follows that ℎ𝐲𝑘(𝐗) and ℎ𝑝𝑘(𝐗) admit the representations

ℎ𝐲𝑘(𝐗) =
𝙽𝑛
∑

𝑛=1

ℎ𝑁 (𝑛)
𝐶𝑅(𝐗)𝐲

(𝑛)
𝑘 and ℎ𝑝𝑘(𝐗) =

4𝙽𝑒−1
∑

𝑙=0

ℎ𝑁 (𝑙)
𝑃 (𝐗)𝑝(𝑙)𝑘 (48)

in terms of the global degrees of freedom 𝐲(𝑛)𝑘 and 𝑝(𝑙)𝑘 and associated global shape functions ℎ𝑁 (𝑛)
𝐶𝑅(𝐗) and

ℎ𝑁 (𝑙)
𝑃 (𝐗) that result from the

assembly process, where 𝙽𝑛 stands for the total number of nodes in the partition ℎ𝑌0 of the unit cell 𝑌0. Physically, 𝐲
(𝑛)
𝑘 corresponds to

the deformation field ℎ𝐲𝑘(𝐗) at node (𝑛) and time 𝑡𝑘, whereas 𝑝
(𝑙)
𝑘 corresponds to the value of the pressure ℎ𝑝𝑘(𝐗) at the barycenters

of the elements and the three components of its gradient at time 𝑡𝑘. By making use of the representations (48), analogous ones
for the test functions 𝐰 and 𝑞, and enforcing the periodicity conditions (45), Eqs. (46) reduce to a system of nonlinear algebraic
equations for the degrees of freedom 𝐲(𝑛)𝑘 and 𝑝(𝑙)𝑘 that depend on the values, say ℎ𝐂𝑣𝑘, of the internal variable 𝐂𝑣𝑘 at the Gaussian
quadrature points employed to carry out the integrals in (46). We write this system as

1
(ℎ𝐲𝑘, ℎ𝑝𝑘, ℎ𝐂𝑣𝑘;𝗙𝑘

)

= 0, (49)

where we have included explicitly the parametric dependence on the applied macroscopic deformation gradient 𝗙𝑘 = 𝗙(𝑡𝑘) at time
𝑡𝑘 for clarity. Similarly, we write the coupled system of corresponding nonlinear algebraic equations that results from (47) for the
internal variable 𝐂𝑣𝑘 at the Gaussian quadrature points as

2
(ℎ𝐲𝑘, ℎ𝐂𝑣𝑘,

ℎ𝐂̇𝑣𝑘;𝗙𝑘
)

= 0. (50)

6.4. The solver: a Newton-like method staggered with a fifth-order explicit Runge–Kutta time integration

Having discretized the governing Eqs. (43)–(44) into the system of coupled nonlinear algebraic Eqs. (49)–(50) for the global
degrees of freedom 𝐲(𝑛)𝑘 , 𝑝

(𝑙)
𝑘 , and the internal variables

ℎ𝐂𝑣𝑘 at the Gaussian quadrature points at time 𝑡𝑘, the final step is to solve
these for given material constants 𝜇𝚖, 𝜈𝚖, 𝜂𝚖, 𝜇𝚒, given characteristic function 𝜃𝚒, given applied macroscopic deformation gradient
𝗙(𝑡), given time discretization 0 = 𝑡0, 𝑡1, ...𝑡𝑚, 𝑡𝑚+1,… , 𝑡𝑀 = 𝑇 , and given space discretization ℎ𝑌0. We do so by following a staggered
scheme, which involves solving the Eqs. (49) and (50) iteratively one after the other at every time step 𝑡𝑘 until convergence is
reached.

Precisely, the algorithm to solve (49) and (50) for 𝐲(𝑛)𝑘 , 𝑝
(𝑙)
𝑘 , and

ℎ𝐂𝑣𝑘 at 𝑡𝑘 is as follows:

• Step 0. Set 𝑟 = 1 and define appropriate tolerances 𝑇𝑂𝐿1, 𝑇𝑂𝐿2 > 0. For a given solution ℎ𝐲𝑘−1, ℎ𝑝𝑘−1, and ℎ𝐂𝑣𝑘−1 at time 𝑡𝑘−1,
define also ℎ𝐲𝑘,0 = ℎ𝐲𝑘−1, ℎ𝑝𝑘,0 = ℎ𝑝𝑘−1, and ℎ𝐂𝑣𝑘,0 =

ℎ𝐂𝑣𝑘−1.
• Step 1. Given the applied macroscopic deformation gradient 𝗙𝑘, find ℎ𝐲𝑘,𝑟 and ℎ𝑝𝑘,𝑟 such that

1
(

ℎ𝐲𝑘,𝑟, ℎ𝑝𝑘,𝑟, ℎ𝐂𝑣𝑘,𝑟−1;𝗙𝑘
)

= 0. (51)
12
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• Step 2. Having solved the sub-problem (51) for ℎ𝐲𝑘,𝑟 and ℎ𝑝𝑘,𝑟, find ℎ𝐂𝑣𝑘,𝑟 such that

2
(

ℎ𝐲𝑘,𝑟, ℎ𝑝𝑘,𝑟, ℎ𝐂𝑣𝑘,𝑟,
ℎ𝐂̇𝑣𝑘,𝑟;𝗙𝑘

)

= 0. (52)

• Step 3. If ‖1(ℎ𝐲𝑘,𝑟, ℎ𝑝𝑘,𝑟, ℎ𝐂𝑣𝑘,𝑟;𝗙𝑘)‖∕‖1(
ℎ𝐲𝑘,0, ℎ𝑝𝑘,0, ℎ𝐂𝑣𝑘,0;𝗙𝑘)‖ ≤ 𝑇𝑂𝐿1 and ‖2(ℎ𝐲𝑘,𝑟, ℎ𝑝𝑘,𝑟, ℎ𝐂𝑣𝑘,𝑟,

ℎ𝐂̇𝑣𝑘,𝑟;𝗙𝑘)‖∕‖2(
ℎ𝐲𝑘,0,

ℎ𝑝𝑘,0, ℎ𝐂𝑣𝑘,0,
ℎ𝐂̇𝑣𝑘,0;𝗙𝑘)‖ ≤ 𝑇𝑂𝐿2, then set ℎ𝐲𝑘 = ℎ𝐲𝑘,𝑟, ℎ𝑝𝑘 = ℎ𝑝𝑘,𝑟, ℎ𝐂𝑣𝑘 = ℎ𝐂𝑣𝑘,𝑟, and move to the next time step 𝑡𝑘+1; otherwise

set 𝑟 ← 𝑟 + 1 and go back to Step 1.

he sub-problem (51). In view of the fact that the internal variable ℎ𝐂𝑣𝑘,𝑟−1 is kept fixed, the sub-problem (51) amounts to an
incompressible finite elastostatics problem formulated with hybrid finite elements. Therefore, to solve for 𝐲(𝑛)𝑘 and 𝑝(𝑙)𝑘 , we make
use of a Newton-like nonlinear method together with a direct solver (LU) for the resulting saddle-point linear system of equations at
each Newton iteration. For problems of large size (3𝙽𝑛 + 4𝙽𝑒 > 107), instead of a direct solver, an iterative (Krylov subspace) solver
with a suitable block preconditioner is required.

The sub-problem (52). The sub-problem (52) corresponds to a nonlinear system of first-order ODEs wherein the constraint of
incompressibility det ℎ𝐂𝑣𝑘,𝑟 = 1 is built-in. Because of the requirement of satisfying this nonlinear constraint along the entire time
domain, as already noted in the Introduction, extreme care must be exercised in the choice of time-integration scheme (Simo, 1992).
Based on a wide range of numerical experiments and comparisons with alternative implicit schemes, together with its proven success
in integrating a variety of other types of nonlinear system of first-order ODEs (Lawson, 1967; Shu and Osher, 1988; Lefèvre et al.,
2019), we make use of the explicit fifth-order Runge–Kutta scheme introduced by Lawson (1966). A key advantage of this scheme
is that it allows to solve the sub-problem (52) explicitly. The solution reads

ℎ𝐂𝑣𝑘,𝑟 =
ℎ𝐂𝑣𝑘−1 +

𝛥𝑡𝑘
90

(

7𝐆1 + 32𝐆3 + 12𝐆4 + 32𝐆5 + 7𝐆6
)

ith

𝐆1 =𝐆
(

∇ℎ𝐲𝑘−1, ℎ𝐂𝑣𝑘−1
)

𝐆2 =𝐆
(

1
2
∇ℎ𝐲𝑘−1 +

1
2
∇ℎ𝐲𝑘,𝑟, ℎ𝐂𝑣𝑘−1 +𝐆1

Δ𝑡𝑘
2

)

𝐆3 =𝐆
(

3
4
∇ℎ𝐲𝑘−1 +

1
4
∇ℎ𝐲𝑘,𝑟, ℎ𝐂𝑣𝑘−1 + (3𝐆1 +𝐆2)

Δ𝑡𝑘
16

)

𝐆4 =𝐆
(

1
2
∇ℎ𝐲𝑘−1 +

1
2
∇ℎ𝐲𝑘,𝑟, ℎ𝐂𝑣𝑘−1 +𝐆3

Δ𝑡𝑘
2

)

𝐆5 =𝐆
(

1
4
∇ℎ𝐲𝑘−1 +

3
4
∇ℎ𝐲𝑘,𝑟, ℎ𝐂𝑣𝑘−1 + 3(−𝐆2 + 2𝐆3 + 3𝐆4)

Δ𝑡𝑘
16

)

𝐆6 =𝐆
(

∇ℎ𝐲𝑘,𝑟, ℎ𝐂𝑣𝑘−1 + (𝐆1 + 4𝐆2 + 6𝐆3 − 12𝐆4 + 8𝐆5)
Δ𝑡𝑘
7

)

,

here Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1 and where we recall that the function 𝐆 is defined by (44)1. A parametric study has indicated that time
increments Δ𝑡𝑘 ≤ 10−2𝜏𝚖 are sufficiently small to lead to converged solutions, at least for all the loading conditions that we have
investigated in this work; recall that 𝜏𝚖 characterizes the relaxation time (16)2 of the underlying rubber matrix. All the numerical
results that are reported in the sequel have been generated with the time increment Δ𝑡𝑘 = 10−3𝜏𝚖.

7. Sample computational results for suspensions of monodisperse spherical inclusions

We now deploy the scheme proposed in the preceding section to generate solutions for the macroscopic response of a basic type
of suspensions, that of monodisperse spherical inclusions.

For ease of implementation, we take the unit cell to be the unit cube 𝑌0 = (0, 1)3. For the construction of the random distributions
of the inclusions in such unit cells, we make use of the algorithm introduced by Lubachevsky and Stillinger (1990). Although this
lgorithm allows to generate microstructures spanning the full range of volume fractions — from the dilute limit 𝑐 ↘ 0 to the
ercolation threshold 𝑐 ↗ 𝑐∗ ≈ 0.64 (Scott, 1960; Lubachevsky et al., 1991) — we do not wish to deal with the computational
emands of highly packed microstructures here and restrict our attention to the range 𝑐 ∈ [0, 0.25]. A parametric study within such
range of volume fractions shows that microstructures with a total of 𝑁𝚒 = 30 inclusions per unit cell can render macroscopic
ehaviors that are essentially isotropic. Accordingly, all the results presented in the sequel correspond to computations based on
nit cells containing 𝑁𝚒 = 30 inclusions. For the FE discretization of the constructed unit cells, we make use of the open-source
esh generator code NETGEN (Schöberl, 1997). Meshes with about 800,000 elements were checked to be sufficiently refined to
eliver accurate solutions. Fig. 2 shows a representative unit cell at volume fraction 𝑐 = 0.15 alongside its FE discretization with
29,849 elements.
Fig. 3 presents results for various types of uniaxial tension/compression loading conditions with 𝗙(𝑡) = 𝖥11(𝑡)(𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗

2) + 𝖥33(𝑡)𝐞3 ⊗ 𝐞3 and 𝗦(𝑡) = 𝖲33(𝑡)𝐞3 ⊗ 𝐞3, where {𝐞𝑖} 𝑖 = 1, 2, 3 stands for the laboratory frame of reference and 𝖥33(𝑡) > 0 is
rescribed. Specifically, Fig. 3(a) presents results for the stress 𝖲33∕𝜇𝚖, normalized by the initial equilibrium shear modulus 𝜇𝚖 of
13

he underlying rubber matrix, as a function of the stretch 𝖥33 for the case when 𝖥33 is first increased to 𝖥33 = 1.9, subsequently
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Fig. 2. Representative unit cell 𝑌0 containing 𝑁𝚒 = 30 randomly distributed spherical inclusions of the same size at volume fraction 𝑐 = 0.15 and its FE
discretization ℎ𝑌0 with 729,849 elements.

Fig. 3. Macroscopic response of suspensions of monodisperse spherical inclusions, at volume fractions 𝑐 = 0.05 and 0.15, in a rubber matrix, with material
constants 𝜈𝚖 = 𝜇𝚖, 𝜏𝚖 = 𝜂𝚖∕𝜈𝚖 = 1 s, under various types of uniaxial tension/compression loading conditions. (a) Normalized stress–stretch relation for a uniaxial
tension/compression loading/unloading cycle at constant stretch rate |𝖥̇33| = 100 s−1. (b) Normalized stress–stretch relation for a uniaxial tension loading/unloading
cycle at constant stretch rates |𝖥̇33| = 10−2 and 10−1 s−1.

decreased to 𝖥33 = 1∕1.9 = 0.53, and then increased again to 𝖥33 = 1 at the constant stretch rate of |𝖥̇33| = 100 s−1 for all three
parts of the loading. Fig. 3(b) presents results for 𝖲33∕𝜇𝚖 as a function of 𝖥33 for the case when 𝖥33 is increased to 𝖥33 = 1.45 and
then decreased back to 𝖥33 = 1 at two different constant stretch rates, |𝖥̇33| = 10−2 and 10−1 s−1. All the results in Fig. 3 pertain
to suspensions wherein the rubber matrix has initial non-equilibrium shear modulus 𝜈𝚖 = 𝜇𝚖, initial relaxation time6 𝜏𝚖 = 1 s, and
hence viscosity 𝜂𝚖 = 𝜏𝚖𝜈𝚖 = 𝜇𝚖 s. Moreover, the results in Fig. 3(a) pertain to a suspension with 𝑐 = 0.05 volume fraction of rigid
inclusions, while those in Fig. 3(b) correspond to suspensions with 𝑐 = 0.15.

Figs. 4(a) and (b) present results entirely analogous to those of Fig. 3 for loading conditions of simple shear with 𝗙(𝑡) =
12(𝑡)𝐞1 ⊗ 𝐞2 + 𝐈, where 𝖥12(𝑡) is prescribed. Moreover, Figs. 4(c) and (d) present results for a two-step relaxation test, wherein
12 is first increased to 𝖥12 = 0.10 at the constant shear rate of |𝖥̇12| = 10−1 s−1, then held fixed for a time of 𝑡 = 10 s, then increased
o 𝖥12 = 0.25 at the same constant shear rate of |𝖥̇12| = 10−1 s−1, and then held fixed again for the same amount of time 𝑡 = 10 s.
he results in Figs. 4(c) and (d) pertain to a suspension with 𝑐 = 0.25 volume fraction of rigid inclusions.
Finally, Fig. 5 (Fig. 6) presents relaxation results entirely analogous to those of Figs. 4(c)–(d) for suspensions wherein the rubber

matrix has initial non-equilibrium shear modulus 𝜈𝚖 = 0.1𝜇𝚖, 10𝜇𝚖 (𝜈𝚖 = 𝜇𝚖), initial relaxation time 𝜏𝚖 = 1 s (𝜏𝚖 = 0.1, 10 s), and
hence viscosity 𝜂𝚖 = 𝜏𝚖𝜈𝚖 = 0.1𝜇𝚖 s, 10𝜇𝚖 s (𝜂𝚖 = 𝜏𝚖𝜈𝚖 = 0.1𝜇𝚖 s, 10𝜇𝚖 s).

6 The choice of relaxation time 𝜏𝚖 = 1 s implies actually that the time scale is normalized by the relaxation time 𝜏𝚖 of the rubber matrix, whatever this may
14

be. Here and subsequently, for notational simplicity and without loss in generality, we use s as the unit of time.
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Fig. 4. Macroscopic response of suspensions of monodisperse spherical inclusions, at volume fractions 𝑐 = 0.05, 0.15, 0.25, in a rubber matrix, with material
constants 𝜈𝚖 = 𝜇𝚖, 𝜏𝚖 = 𝜂𝚖∕𝜈𝚖 = 1 s, under various types of simple shear loading conditions. (a) Normalized stress–shear relation for a forward/backward
loading/unloading shear cycle at constant rate |𝖥̇12| = 100 s−1. (b) Normalized stress–shear relation for a shear loading/unloading cycle at constant rates
𝖥̇12| = 10−2 and 10−1 s−1. (c) Normalized stress–shear relation and (d) corresponding stress–time relation showing the two instances at which the shear is held
ixed for a two-step relaxation test in simple shear where the shear is increased at the same constant rate 𝖥̇12 = 10−1 s−1 for the two loading steps.

For direct comparison with the computational FE results for the suspensions (solid circles), all the plots in Figs. 3 through 6
include the corresponding results for the unfilled rubber matrix (dashed lines). They also include the results based on the approximate
solution (solid lines) introduced in the next section.

The above representative computational results provide a pivotal insight: the responses of the suspensions are qualitatively
similar, albeit notably more nonlinear, to those of the underlying rubber matrix and thus suggest that they may feature the same
type of short-range-memory behavior — as opposed to the generally expected long-range-memory behavior — for arbitrary finite
deformations and loading conditions. The agreement shown by all the figures between the computational results and the approximate
solution described next provide quantitative evidence that this may indeed be the case.

Before proceeding with the introduction of the approximate solution, it is important to emphasize two aspects about the above
set of sample computational results. The first one is that they correspond to a range of loading conditions for which the nonlinear
viscous dissipation of the underlying rubber matrix is fully probed (between the asymptotic limits of slow and fast rates discussed
in Sections 4.1 and 4.2) given that the deformation rates considered are primarily of the same, of one more, and of one less order of
magnitude than the relaxation time 𝜏𝚖 of the rubber. The second aspect that is important emphasizing is that the local deformations
in the rubber are significantly larger than the applied macroscopic deformations because of the presence of the rigid inclusions, and
so the results also fully probe the nonlinear (equilibrium and non-equilibrium) elasticity of the rubber.

8. An approximate solution

The asymptotic results presented in Section 3 have shown that the constitutive relation (10)–(11) that describes the macroscopic
iscoelastic response of the suspensions of interest in this work is of identical functional form as that describing the underlying
15
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Fig. 5. Macroscopic response of suspensions of monodisperse spherical inclusions, at volume fraction 𝑐 = 0.25, in a rubber matrix, with material constants
𝜈𝚖 = 0.1𝜇𝚖, 10𝜇𝚖 and 𝜏𝚖 = 𝜂𝚖∕𝜈𝚖 = 1 s, under a two-step relaxation test in simple shear where the shear is increased at the same constant rate 𝖥̇12 = 10−1 s−1 for
the two loading steps. (a)–(c) The normalized stress–shear relations. (b)–(d) The normalized stress-time relations.

rubber matrix in the limit of small deformations. Remarkably, the asymptotic results presented in Sections 4 and 5 together with
the computational results presented in Section 7 suggest that the same remains true at finite deformations, with the caveat that the
iscosity of the suspensions is not a constant but rather a function of the deformation history. Precisely, the results suggest that the
macroscopic constitutive relation (10)–(11) can be cast within the two-potential framework as

𝗦(𝑡) = 𝜕𝛹
𝜕𝗙

(𝗙,𝗙𝑣) − p 𝗙−𝑇 (53)

with evolution equation

⎧

⎪

⎨

⎪

⎩

𝜕𝛹
𝜕𝗙𝑣

(𝗙,𝗙𝑣) + 𝜕𝛷
𝜕𝗙̇𝑣

(𝗙,𝗙𝑣, 𝗙̇𝑣) = 𝟎

𝗙𝑣(0) = 𝐈
(54)

in terms of an effective free-energy function of the form

𝛹 (𝗙,𝗙𝑣) =

{

𝛹Eq(𝗙) + 𝛹NEq (𝗙𝗙𝑣−1
)

if det 𝗙 = 1

+∞ otherwise
(55)

and an effective dissipation potential of the form

𝛷(𝗙,𝗙𝑣, 𝗙̇𝑣) =

⎧

⎪

⎨

⎪

1
2
𝗙̇𝑣𝗙𝑣−1 ⋅

[

2 𝜂(𝗙,𝗙𝑣) 𝗙̇𝑣𝗙𝑣−1
]

if tr
(

𝗙̇𝑣𝗙𝑣−1
)

= 0

+∞ otherwise
, (56)
16
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a

Fig. 6. Macroscopic response of suspensions of monodisperse spherical inclusions, at volume fraction 𝑐 = 0.25, in a rubber matrix, with material constants 𝜈𝚖 = 𝜇𝚖
nd 𝜏𝚖 = 𝜂𝚖∕𝜈𝚖 = 0.1, 10 s, under a two-step relaxation test in simple shear where the shear is increased at the same constant rate 𝖥̇12 = 10−1 s−1 for the two
loading steps. (a)–(c) The normalized stress–shear relations. (b)–(d) The normalized stress-time relations.

where 𝗙𝑣 is the macroscopic internal variable of state that roughly corresponds to the ‘‘viscous part’’ of the macroscopic deformation
gradient 𝗙, 𝛹Eq and 𝛹NEq are the effective stored-energy functions that characterize, respectively, the elastic energy storage in the
suspension at states of thermodynamic equilibrium and the additional elastic energy storage at non-equilibrium states, while the
function 𝜂(𝗙,𝗙𝑣) characterizes their effective viscosity.

Remark 4. At present, despite all the asymptotic and computational evidence pointing in that direction, we do not have a rigorous
proof that the exact homogenized response of the suspension is indeed of the short-range-memory form described by Eqs. (53)–(56).
The proof, if there is one, would appear to require establishing the direct link between the local fields 𝐲(𝐗, 𝑡) and 𝐂𝑣(𝐗, 𝑡) and the
resulting internal macrovariable 𝗙𝑣.

8.1. Approximation of the effective free-energy functions 𝛹Eq(𝗙) and 𝛹NEq (𝗙𝗙𝑣−1
)

The results in Section 4 indicate in particular that 𝛹Eq and 𝛹NEq correspond to the free-energy functions that describe the
homogenized elastic response of the given suspension of rigid inclusions, with characteristic function 𝜃𝚒, embedded in Gaussian
rubber matrices with initial shear moduli 𝜇𝚖 and 𝜈𝚖, respectively. As already noted above around equation (29), simple yet accurate
approximations for these effective free-energy functions are given by

𝛹Eq(𝗙) =
𝜇
2
[

I1 − 3
]

and 𝛹NEq
(

𝗙𝗙𝑣−1
)

= 𝜈
2
[

I 𝑒1 − 3
]

, (57)

where

I1 = 𝗙 ⋅ 𝗙 = tr 𝗖, I 𝑒1 = 𝗙𝗙𝑣−1 ⋅ 𝗙𝗙𝑣−1 = tr
(

𝗖𝗖𝑣−1
)

with 𝗖 = 𝗙𝑇 𝗙 and 𝗖𝑣 = 𝗙𝑣𝑇 𝗙𝑣, and where the effective material constants 𝜇 and 𝜈 are given by expressions (23) .
17

1,2



Journal of the Mechanics and Physics of Solids 154 (2021) 104544K. Ghosh et al.

r
S

w
t
r

w

a

i

o
f
𝑙

v
f
p

8

(
s

w
o

T

R

8.2. Approximation of the effective viscosity 𝜂(𝗙,𝗙𝑣)

On the other hand, the asymptotic result in Section 5 indicates that the effective viscosity 𝜂 is not necessarily a constant but
ather a function of the evolution of the microstructure and hence of the deformation history. At time 𝑡 = 0, as established in
ection 3, when 𝗙(0) = 𝗙𝑣(0) = 𝐈 and the microstructure of the given suspension is characterized by 𝜃𝚒, we have that

𝜂(𝐈, 𝐈) = 𝜂,

here 𝜂 is the initial effective viscosity given by expression (23)3. As the suspension is finitely deformed, the spatial distribution of
he rigid inclusions evolves and, as a result, so possibly does its viscosity. A parametric analysis of a wide range of computational
esults, presented separately in the Appendix to avoid loss of continuity, has revealed that the formula

𝜂(𝗙,𝗙𝑣) = 𝜂̆(I 𝑣1 ,J
𝑣
2 ) = 𝜂∞(I 𝑣1 ) +

𝜂0(I 𝑣1 ) − 𝜂∞(I 𝑣1 )

1 +
(

𝐾1 J𝑣2
)𝛽1

(58)

ith
⎧

⎪

⎨

⎪

⎩

𝜂0(I 𝑣1 ) = 𝜂 +𝐾2(I
𝑣𝛽2
1 − 3𝛽2 )𝜂

𝜂∞(I 𝑣1 ) = 𝜂𝚖 + tanh
[

𝐾3(I
𝑣𝛽3
1 − 3𝛽3 )

]

(𝜂𝐻𝑆 − 𝜂𝚖)

nd

I 𝑣1 = tr 𝗖𝑣, J𝑣2 = 𝜈2

2

[

𝗖𝑣−1𝗖 ⋅ 𝗖𝗖𝑣−1 − 1
3

(

𝗖 ⋅ 𝗖𝑣−1
)2

]

s able to describe fairly accurately the effective viscosity of all the suspensions that we have examined. Here, we recall that 𝜂 and
𝜂𝐻𝑆 are given by expressions (23)3 and (42)2, while 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, and 𝛽3 are non-negative effective constants that depend
n the materials constants 𝜇𝚖, 𝜈𝚖, 𝜂𝚖 describing the viscoelastic behavior of the underlying rubber matrix and on the characteristic
unction 𝜃𝚒 describing the initial microstructure of the given suspension; while 𝐾2, 𝐾3, 𝛽1, 𝛽2, and 𝛽3 are unitless, 𝐾1 has units of
𝑒𝑛𝑔𝑡ℎ4∕𝑓𝑜𝑟𝑐𝑒2.
We close this subsection by emphasizing that the choice (58) is just one plausible approximation for the effective nonlinear

iscosity of the suspensions. More refined approximations may be within reach by coupling the procedure outlined in the Appendix
or the computational determination of the effective viscosity with emerging deep learning tools for ODEs, which appear to be
articularly well suited for this endeavor.

.3. The proposed approximate homogenization solution

Direct use of the approximations (57) and (58) in the effective free-energy function (55) and the effective dissipation potential
56), and of these in (53)–(54), leads to the following approximation of the macroscopic constitutive relation (10)–(11) for the
uspension:

𝗦(𝑡) = 𝜇 𝗙 − p 𝗙−𝑇 + 𝜈 𝗙𝗖𝑣−1, (59)

here p stands for the arbitrary hydrostatic pressure associated with the incompressibility constraint det 𝗙 = 1 and the dependence
n the macroscopic internal variable 𝗙𝑣 enters through the symmetric combination 𝗖𝑣 = 𝗙𝑣𝑇 𝗙𝑣 defined by the evolution equation

⎧

⎪

⎨

⎪

⎩

𝗖̇𝑣(𝑡) = 𝜈
𝜂̆(I 𝑣1 ,J

𝑣
2 )

[

𝗖 − 1
3
(

𝗖 ⋅ 𝗖𝑣−1
)

𝗖𝑣
]

𝗖𝑣(0) = 𝐈
. (60)

he following remarks are in order.

emark 5 (The Effective Material Constants 𝜇, 𝜈, and Their Computation). The proposed approximate macroscopic response (59)–
(60) contains two effective material constants, 𝜇 and 𝜈. Physically, they correspond to the initial shear moduli that describe the
equilibrium and the non-equilibrium elasticity of the suspension at hand in the limit of small deformations. For convenience, we
recall from Section 3 that they are given by the expressions

𝜇 = 𝑔(𝑐)𝜇𝚖 and 𝜈 = 𝑔(𝑐)𝜈𝚖 (61)

in terms of the corresponding initial shear moduli 𝜇𝚖 and 𝜈𝚖 of the underlying rubber matrix and of the enhancement function
𝑔(𝑐), which itself is given by expression (24) in terms of the characteristic function 𝜃𝚒 describing the initial microstructure of the
suspension.

In principle, for a given characteristic function 𝜃𝚒 of interest, as already noted in Remark 1, the computation of the effective
material constants (61) amounts to solving the linear elastostatics boundary-value problem (20) for the concentration tensor 𝜞 (𝐗)
and to subsequently carrying out the volume average in (24) to determine the corresponding enhancement function 𝑔(𝑐). For practical
purposes, as also already alluded to in Remark 1, it suffices to make use of the explicit formula (25) for 𝑔(𝑐) when dealing with
suspensions with volume fractions in the range 𝑐 ∈ [0, 0.25].
18
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Table 1
Values of the effective material constants 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, and 𝛽3 in the effective viscosity (58) for the suspensions of monodisperse spherical inclusions
examined in Section 7.
𝜈𝚖∕𝜇𝚖 𝜏𝚖(s) 𝑐 𝐾1∕𝜇𝚖 𝐾2 𝐾3 𝛽1 𝛽2 𝛽3
1 1 0.05 2.301 0.061 0.934 2.109 2.322 0.823
1 1 0.15 2.740 0.520 0.909 0.975 1.619 0.540
1 1 0.25 1.471 0.520 0.910 1.189 2.011 0.550
0.1 1 0.05 2.023 0.873 0.923 2.109 2.322 0.823
10 1 0.05 0.031 0.076 0.932 2.109 2.322 0.823
0.1 1 0.15 2.740 0.518 0.909 0.975 1.619 0.540
10 1 0.15 2.637 0.782 1.128 0.975 1.619 0.540
0.1 1 0.25 1.028 0.257 1.000 1.189 2.011 0.550
10 1 0.25 0.295 1.062 1.064 1.189 2.011 0.550
1 0.1 0.05 2.022 0.001 0.923 2.109 2.322 0.823
1 10 0.05 0.680 0.000 0.924 2.109 2.322 0.823
1 0.1 0.15 2.734 0.019 0.909 0.975 1.619 0.540
1 10 0.15 2.716 0.031 0.915 0.975 1.619 0.540
1 0.1 0.25 1.647 0.000 0.987 1.189 2.011 0.550
1 10 0.25 1.334 0.922 0.997 1.189 2.011 0.550

Remark 6 (The Effective Material Function 𝜂̆(I 𝑣1 ,J
𝑣
2 ) and its Computation). In addition to the two effective material constants 𝜇 and

𝜈, the proposed approximate macroscopic response (59)–(60) contains one effective material function, 𝜂̆(I 𝑣1 ,J
𝑣
2 ). Physically, again,

this function characterizes the nonlinear viscosity of the suspension.
Specifically, the proposed effective viscosity (58) is a function of two invariants, I 𝑣1 and J𝑣2 . As elaborated in the Appendix,

the latter provides a measure of the ‘‘viscous part’’ of the macroscopic stress 𝗦 in the suspension, while the former provides
a measure of the ‘‘viscous part’’ of the macroscopic deformation gradient 𝗙. According to (58), the larger the value of J𝑣2 , the
smaller the value of the effective viscosity. This is commonly referred to as shear thinning, a behavior that falls squarely within
that of numerous suspensions of rigid inclusions in Newtonian fluids, which, again, in the present more general setting of finite
viscoelasticity corresponds to the limit when 𝜇𝚖 = 0 and 𝜈𝚖 → +∞; see, e.g., Krieger and Dougherty (1959), Cross (1970), Krieger
(1972), Jeffrey and Acrivos (1976), and Stickel and Powell (2005). The shear thinning described by (58) is deformation dependent
via I 𝑣1 .

Concerning its computation, the effective viscosity (58) contains nine effective material constants, 𝜂 = 𝑔(𝑐)𝜂𝚖, 𝜂𝐻𝑆 = (2 +
𝑐)𝜂𝚖∕2(1 − 𝑐), 𝜈 = 𝑔(𝑐)𝜈𝚖, 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, and 𝛽3. The computation of 𝜂 requires knowledge of the same enhancement coefficient
𝑔(𝑐) associated with the effective elastic constant 𝜈 discussed in the preceding remark, whereas that of 𝜂𝐻𝑆 only requires knowledge
of the volume fraction 𝑐 of inclusions in the suspension. The computation of the 𝐾 ′𝑠 and 𝛽′𝑠, which needs to be carried out
umerically, is presented in Appendix. Table 1 logs the values of the 𝐾 ′𝑠 and 𝛽′𝑠 for the suspensions of monodisperse spherical
nclusions studied in Section 7.

emark 7 (The Limit of Small Deformations). In the limit of small deformations as ‖𝗙(𝑡) − 𝐈‖ = ‖𝗛(𝑡)‖ → 0, a calculation akin to that
etailed in Section 3 shows that the macroscopic response (59)–(60) reduces asymptotically to the exact solution (21)–(22).

emark 8 (Finite Deformations Applied Infinitesimally Slowly and ‘‘Infinitely’’ Fast). In the limit of finite deformations that are applied
ither infinitesimally slowly or ‘‘infinitely’’ fast, the macroscopic response (59)–(60) reduces to

𝗦(𝑡) = 𝜇 𝗙 − p 𝗙−𝑇

nd

𝗦(𝑡) = (𝜇 + 𝜈)𝗙 − p 𝗙−𝑇 ,

respectively. As already noted in Section 4, these results are not exact in general, but they are very accurate for arbitrary
deformations.

Remark 9 (The Absence of Storage of Elastic Energy). In the limit as 𝜇𝚖 = 0 and 𝜈𝚖 → +∞, when the underlying rubber matrix
egenerates into a Newtonian fluid, taking 𝐾2 ↘ 0 and 𝐾3 → +∞, a calculation akin to that presented in Section 5 shows that the
acroscopic response (59)–(60), when written in terms of the macroscopic Cauchy stress 𝗧 = 𝗦𝗙𝑇 , specializes to

𝗧(𝑡) =
(

𝜂𝐻𝑆 +
𝜂 − 𝜂𝐻𝑆

1 + (𝐾1J2)𝛽1

)

𝗗 − p𝐈, (62)

where, again, 𝗗 = 1
2 (𝗙̇𝗙

−1 + 𝗙−𝑇 𝗙̇𝑇 ) stands for the macroscopic rate of deformation tensor and

J2 =
1
2
tr𝗧2

𝐷

denotes the second principal invariant of the deviatoric Cauchy stress 𝗧𝐷 = 𝗧 − 1
3 (tr𝗧)𝐈. The constitutive response (62) is that of a

non-Newtonian fluid with shear thinning of the classical form introduced by Krieger and Dougherty (1959). While the result (62) is
19
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not an exact solution in general, it has been established to provide a fairly accurate approximation, at least for simple shear flows;
see Krieger (1972) and Stickel and Powell (2005), for example.

Remark 10 (Accuracy). By construction, as noted in the preceding three remarks, the proposed approximate macroscopic response
(59)–(60) is exact in the limit of small deformations and, albeit not exact, very accurate for finite deformations that are applied
either slowly or fast, as well as for the case when the underlying rubber matrix approaches the behavior of a Newtonian fluid.
Comparisons with a wide spectrum of computational results, a representative sample of which have been presented in Section 7
above, suggest that (59)–(60) remains accurate for arbitrary finite deformations, loading conditions, material constants 𝜇𝚖, 𝜈𝚖, 𝜂𝚖
escribing the viscoelastic behavior of the underlying rubber matrix, and microstructures, as described by the characteristic function
𝚒.

emark 11 (Numerical Implementation). From a further practical point of view, we close this section by remarking that the same
umerical scheme presented in Section 6 applies mutatis mutandis to the constitutive relation (59)–(60) in order to solve macroscopic
nitial–boundary-value problems of interest.

. Final comments

The homogenization results worked out in this paper for the viscoelastic response of suspensions of rigid inclusions in rubber
nder finite quasistatic deformations are striking — at least at first sight — on two counts. First, contrary to the generally expected
ong-range-memory behavior, the response appears to exhibit a short-range-memory behavior akin to that of the underlying rubber
atrix. What is more, the effective viscosity of the suspensions exhibits shear thinning, this in spite of the fact that the viscosity of
he underlying rubber is constant.
Much like for suspensions of rigid inclusions in Newtonian fluids, the shear-thinning viscosity can be attributed to the evolution

f microstructure that invariably occurs under finite deformations. On the other hand, the apparent short-range-memory behavior
s likely the manifestation of the fact that there is only one relaxation mechanism in the suspensions: the shear relaxation of the
ubber.

single mechanism of relaxation. To illustrate the concept of a single mechanism of relaxation in more precise terms and to gain
nsight into its implications, consider an isotropic linear viscoelastic composite material characterized by the pointwise constitutive
relation

𝐒(𝐗, 𝑡) = ∫

𝑡

−∞
𝐋(𝐗, 𝑡 − 𝜏) 𝜕𝐇

𝜕𝜏
(𝐗, 𝜏)d𝜏 with 𝐋(𝐗, 𝑡) = 2𝜇(𝐗)𝑓 (𝑡) + 3𝜅(𝐗)𝑓 (𝑡) , (63)

here, using the same notation employed in Section 3 above, 𝐋(𝐗, 𝑡) stands for the relaxation function of the material and  = −
s the standard volumetric orthogonal projection tensor. While arbitrarily heterogeneous through 𝜇(𝐗) and 𝜅(𝐗), the constitutive
elation (63) has a single mechanism of relaxation characterized by the function 𝑓 (𝑡). Its Laplace transform reads

𝐒̂(𝐗, 𝑠) = 𝑠𝑓 (𝑠)
[

2𝜇(𝐗) + 3𝜅(𝐗)
]

𝐇̂(𝐗, 𝑠). (64)

t follows that the 𝑠-dependent term 𝑠𝑓 (𝑠) in (64) can be factored out of the governing equation Div 𝐒̂(𝐗, 𝑠) = 𝟎 and hence that the
resulting homogenized response (see Section 3) exhibits the same time-dependent behavior as its local response, precisely,

𝗦(𝑡) = ∫

𝑡

−∞
𝗟(𝑡 − 𝜏) 𝜕𝗛

𝜕𝜏
(𝜏)d𝜏 with 𝗟(𝑡) = 2𝜇𝑓 (𝑡) + 3𝜅𝑓 (𝑡) . (65)

The result (65) makes it plain that the two-phase suspensions of rigid inclusions in isotropic incompressible rubber that we have
investigated in this paper are but one example of composite materials with a single mechanism of relaxation; one where 𝜅(𝐗) = +∞.
The result (65) also makes it plain that any such material would exhibit a short-range-memory homogenized response if its local
behavior is of short-range memory.

Beyond the limit of small deformations just outlined, based on the asymptotic and computational results presented in this paper,
and on additional computational results not included here for conciseness, we conjecture that viscoelastic composite materials
featuring a single mechanism of relaxation, after homogenization, will continue to exhibit a single mechanism of relaxation even
when finitely deformed.

Non-Gaussian rubber with nonlinear viscosity. As alluded to in the Introduction, the idealizations of Gaussian elasticity and constant
viscosity do not apply to actual rubber, or, more generally, to elastomers at large, at sufficiently large deformations and deformation
rates. Indeed, actual elastomers feature non-Gaussian elasticity and nonlinear viscosity, the latter being typically of shear-thinning
type; see Gent (1962), Khan and Lopez-Pamies (2002), Amin et al. (2006), Kumar and Lopez-Pamies (2016), and Chockalingam
et al. (2021) for example.

Preliminary results entirely analogous to the ones presented here but for suspensions of rigid inclusions in a certain type of non-
Gaussian rubber with nonlinear viscosity have indicated that their homogenized response still remains described by a model of the
form (53)–(56), with the caveat that the effective free energies in (55) are non-Gaussian and the effective nonlinear viscosity in the
dissipation potential (56) contains contributions from the nonlinear viscosity of the underlying rubber and from the evolution of the
microstructure. This behavior falls squarely within the conjecture made above for materials with a single mechanism of relaxation.
Plans to continue the study of the homogenized response of these more general systems and its comparison with experiments are
underway and will be reported elsewhere.
20
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Appendix. The functional form (58) of the effective viscosity

With some abuse of notation, assuming that the homogenized response (53) of the suspension depends on the macroscopic
internal variable 𝗙𝑣 only through its symmetric combination 𝗖𝑣 = 𝗙𝑣𝑇 𝗙𝑣 as does its local counterpart (8), we begin by rewriting
the material function 𝜂(𝗙,𝗙𝑣) in (56) describing the effective viscosity of the suspension as

𝜂(𝗙,𝗙𝑣) = 𝜂(𝗙,𝗖𝑣).

Now, from material frame indifference and material symmetry requirements, we have that

𝜂(𝐐𝗙𝐊,𝐊𝑇𝗖𝑣𝐊) = 𝜂(𝗙,𝗖𝑣) ∀𝐐,𝐊 ∈ 𝑂𝑟𝑡ℎ+. (66)

With some further abuse of notation, it follows from the constraint (66) that the function 𝜂(𝗙,𝗖𝑣) admits the representation

𝜂(𝗙,𝗖𝑣) = 𝜂(𝗖,𝗖𝑣) = 𝜂(I1, I2, I 𝑣1 , I
𝑣
2 , I

𝑣
4 , I

𝑣
5 , I

𝑣
6 , I

𝑣
7 ) (67)

in terms of the eight standard invariants

I1 = tr 𝗖, I2 = tr 𝗖2, I 𝑣1 = tr 𝗖𝑣, I 𝑣2 = tr 𝗖𝑣2,

I 𝑣4 = tr (𝗖𝗖𝑣) , I 𝑣5 = tr
(

𝗖2𝗖𝑣
)

, I 𝑣6 = tr
(

𝗖𝗖𝑣2
)

, I 𝑣7 = tr
(

𝗖2𝗖𝑣2
)

(68)

of the macroscopic right Cauchy–Green deformation tensor 𝗖 and 𝗖𝑣; see, e.g., Boehler (1987).
At this stage, the crux of the matter is to determine the precise form of (67) in terms of the eight invariants (68). In principle,

his could be accomplished by generating computational results for the macroscopic response of the suspension of interest under
oading conditions that vary one of the eight invariants (68) at a time while keeping the other seven fixed and then having the
roposed approximate macroscopic response (53) match those results thereby determining the corresponding effective viscosity (67).
hile conceptually simple, the computational cost of this approach is prohibitive. Here, we follow a more pragmatic approach that
inges on the physically-based premise that the effective viscosity of any given suspension depends primarily on two quantities:
𝑖) the ‘‘viscous part’’ of the macroscopic deformation gradient 𝗙 and (𝑖𝑖) the ‘‘viscous part’’ of the macroscopic stress 𝗦. The
implest invariant in (68) that provides a measure of the viscous part of the macroscopic deformation gradient 𝗙 is I 𝑣1 . To identify
corresponding invariant that provides a measure of the viscous part of the macroscopic stress 𝗦, we first define

𝗧𝑣𝐷 = 2𝜂(𝗖,𝗖𝑣)𝗗𝑣 = 𝜂(𝗖,𝗖𝑣)
(

𝗙̇𝑣𝗙𝑣−1 + 𝗙𝑣−𝑇 𝗙̇𝑣𝑇
)

= 𝜈
[

𝗙𝑣−𝑇𝗖𝗙𝑣−1 − 1
3

(

𝗖 ⋅ 𝗖𝑣−1
)

𝐈
]

(69)

as the viscous part of the Cauchy stress 𝗧 = 𝗦𝗙𝑇 in the suspension; note that relation (69) is the evolution equation (60) multiplied
by 𝗙𝑣−𝑇 from the left, 𝗙𝑣−1 from the right, and rewritten for an arbitrary effective viscosity 𝜂(𝗖,𝗖𝑣). The second principal invariant
of the stress (69) is given by

J𝑣2 = 1
2
tr 𝗧𝑣𝐷

2 = 𝜈2

2

[

𝗖𝑣−1𝗖 ⋅ 𝗖𝗖𝑣−1 − 1
3

(

𝗖 ⋅ 𝗖𝑣−1
)2

]

nd provides the stress measure that we are after. When rewritten in terms of the invariants (68), it takes the form

J𝑣2 = 𝜈2

2

[

I 𝑣1
(

I2 − I 21
)

+ 2I1I 𝑣4 − 2I 𝑣5 + 1
6

(

I1
(

I 𝑣1
2 − I 𝑣2

)

− 2I 𝑣1 I
𝑣
4 + 2I 𝑣6

)2
]

. (70)

We henceforth take I 𝑣1 and the combination (70) as the variables that quantify the viscous part of the macroscopic deformation
gradient 𝗙 and the viscous part of the macroscopic stress 𝗦 in the suspension and thus write

𝜂(I1, I2, I 𝑣1 , I
𝑣
2 , I

𝑣
4 , I

𝑣
5 , I

𝑣
6 , I

𝑣
7 ) = 𝜂̆(I 𝑣1 ,J

𝑣
2 ). (71)

In view of the connection (70), note that the proposed prescription (71) depends on all invariants (68) save for I 𝑣.
21
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Having settled on the functional dependence (71) for the effective viscosity, the next step is to determine its precise form. We do
o by generating computational results — via the FE scheme presented in Section 6 — for the macroscopic response of the suspension
of interest under loading conditions that vary J𝑣2 and I 𝑣1 independently and then having the proposed approximate macroscopic
response (59) with (60) match those results thereby determining the value of the effective viscosity 𝜂̆(I 𝑣1 ,J

𝑣
2 ) as a function of its

arguments.
Precisely, we consider loading conditions of the form

𝗙(𝑡) = 𝗙0 +(𝑡)
(

𝗙1 − 𝗙0
)

, (72)

where (𝑡) stands for the Heaviside function (31); this is a generalization of the loading (30) considered in Section 4.2 in that a
macroscopic deformation gradient 𝗙1 is applied infinitely fast starting from a state in equilibrium that is not necessarily undeformed
but rather described by the macroscopic deformation gradient 𝗙0. Under such loading conditions, the approximate macroscopic
response (59)–(60) can be written explicitly in the asymptotic limit as 𝑡→ 0+. The result reads

𝗦(𝑡) = 𝜇 𝗙1 − p 𝗙−𝑇1 + 𝜈 𝗙1𝗖−1
0 − 𝑡 𝜈2

𝜂̆
(

I 𝑣1 |0+,J
𝑣
2 |0+

)

(

1 − 1
3
𝗖1 ⋅ 𝗖

−1
0

)

𝗙1𝗖
−1
0 𝗖1𝗖

−1
0 + 𝑂(𝑡2), (73)

here 𝗖0 = 𝗙𝑇0 𝗙0, 𝗖1 = 𝗙𝑇1 𝗙1, and the arguments in the viscosity function are given by

I 𝑣1 |0+ = tr 𝗖0 and J𝑣2 |0+ = 𝜈2

2

[

𝗖−1
0 𝗖1 ⋅ 𝗖1𝗖

−1
0 − 1

3
(

𝗖1 ⋅ 𝗖
−1
0
)2] .

t follows from (73) that

𝜂̆
(

I 𝑣1 |0+,J
𝑣
2 |0+

)

= − 𝜈2

tr 𝗦̇(0+)

(

1 − 1
3
𝗖1 ⋅ 𝗖

−1
0

)

𝗙𝑇1 𝗖
−1
0 ⋅ 𝗖−1

0 𝗖1. (74)

Fig. 7. The effective viscosity 𝜂̆ for a suspension of monodisperse spherical inclusions at 𝑐 = 0.15 volume fraction in a rubber matrix with material constants
𝜈𝚖 = 𝜇𝚖, 𝜂𝚖 = 𝜏𝚖𝜈𝚖, 𝜏𝚖 = 1 s. The results are shown normalized by the viscosity 𝜂𝚖 of the rubber matrix as functions of the invariants I 𝑣1 and J 𝑣2 . The solid circles
correspond to FE results while the solid surface in (a) and solid lines in (b)–(c) correspond to the proposed formula (58) with the pertinent fitted effective
onstants listed in Table 1, namely, 𝐾1∕𝜇𝚖 = 2.740, 𝐾2 = 0.520, 𝐾3 = 0.909, 𝛽1 = 0.975, 𝛽2 = 1.619, 𝛽3 = 0.540.
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Rather expediently, relation (74) states that the function 𝜂̆
(

𝐼𝑣1 , 𝐽
𝑣
2
)

for the effective viscosity can be evaluated at any desired values
of its arguments by applying loading conditions of the form (72) with different choices of initial 𝗙0 and final 𝗙1 macroscopic
deformation gradients and by computing the time derivative 𝗦̇(𝑡) of the resulting macroscopic stress 𝗦(𝑡) at time 𝑡 = 0+.

Fig. 7 presents a set of representative results for the effective viscosity 𝜂̆ determined in the manner outlined above for a suspension
of monodisperse spherical inclusions. The results pertain to a rubber matrix with material constants 𝜈𝚖 = 𝜇𝚖, 𝜂𝚖 = 𝜏𝚖𝜈𝚖, 𝜏𝚖 = 1 s,
olume fraction of inclusions 𝑐 = 0.15, and show the normalized effective viscosity 𝜂̆∕𝜂𝚖 as a function of the invariants I 𝑣1 and J𝑣2 ;
hile part (a) shows results in the entire (I 𝑣1 ,J

𝑣
2 )-space, parts (b) and (c) show results in terms of I 𝑣1 for several fixed values of J

𝑣
2

nd viceversa, respectively. Two observations are immediate. The first one is that 𝜂̆ is a decreasing function of J𝑣2 . The other one is
hat 𝜂̆ is an increasing function of I 𝑣1 .

omputation of the effective material constants 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, 𝛽3 in (58). In addition to the results (solid circles) for the effective
iscosity 𝜂̆ obtained directly from FE computations, all three parts of Fig. 7 also include the results (solid surface and lines) given
y the approximation (58) proposed in the main body of the text with effective material constants 𝐾1∕𝜇𝚖 = 2.740, 𝐾2 = 0.520,
3 = 0.909, 𝛽1 = 0.975, 𝛽2 = 1.619, 𝛽3 = 0.540. These values were obtained via a least-squares fit of the FE data with the formula
58). The computation of the effective material constants 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, 𝛽3 for a given suspension of interest amounts thus to
irst generating numerical results for the effective viscosity 𝜂̆

(

𝐼𝑣1 , 𝐽
𝑣
2
)

in the (I 𝑣1 ,J
𝑣
2 )-space in the manner outlined above and then

itting via least squares the formula (58) to those results thereby determining the corresponding values for 𝐾1, 𝐾2, 𝐾3, 𝛽1, 𝛽2, 𝛽3.
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