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Abstract

The possibility of rate-induced tipping (R-tipping) away from an attracting fixed point has
been thoroughly explored in 1-dimensional systems. In these systems, it is impossible to have
R-tipping away from a path of quasi-stable equilibria that is forward basin stable (FBS), but
R-tipping is guaranteed for paths that are non-FBS of a certain type. We will investigate
whether these results carry over to multi-dimensional systems. In particular, we will show
that the same conditions guaranteeing R-tipping in 1-dimension also guarantee R-tipping in
higher dimensions; however, it is possible to have R-tipping away from a path thatis FBS even
in 2-dimensional systems. We will propose a different condition, forward inflowing stability
(FIS), which we show is sufficient to prevent R-tipping in all dimensions. The condition,
while natural, is difficult to verify in concrete examples. Monotone systems are a class for
which FIS is implied by an easily verifiable condition. As a result, we see how the additional
structure of these systems makes predicting the possibility of R-tipping straightforward in a
fashion similar to 1-dimension. In particular, we will prove that the FBS and FIS conditions
in monotone systems reduce to comparing the relative positions of equilibria over time. An
example of a monotone system is given that demonstrates how these ideas are applied to
determine exactly when R-tipping is possible.

Keywords Tipping - Loss of stability - Transitions - Time-dependent parameters

1 Introduction

Tipping can be described as a sudden, drastic, irreversible change in the behavior of a solution
as a result of a small change to the system. In part, tipping is interesting because it can be
observed in nature. A recent example in the literature concerns the rise of temperature in
peatlands (see [12]). There are different reasons that tipping can happen in a system; in
particular Ashwin et al. [2] describes three types of tipping: bifurcation-, noise-, and rate-
induced. This paper will focus on the third kind of tipping, which results from a fast parameter
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change in a dynamical system. It is the rate at which the parameter changes that causes the
tipping, not simply the amount that it changes. For a thorough introduction into rate-induced
tipping, the reader is encouraged to look in Ashwin et al. [3], but we will give a summary
here that is sufficient for the rest of the paper.

Suppose we have an autonomous dynamical system

x = f(x, ) (1.1)

where x € U forU C R" open, A € R",and f € C2(U x R™, R"). If we want to explore the
possibility of rate-induced tipping in this system, we must allow the parameter A to change
over time. Without loss of generality, we may assume that A € R because if not, we can
parametrize each component of A with a different one-dimensional parameter. We want the
parameter change to be bounded and sufficiently differentiable, so we choose the parameter
shift A € P(A_, A4) for some A_ < Ay where

dA
PO hy) = {A € CX(R, (h_,7y)): lim A(s) = Arand lim — = o}
s— o0 s—+oo ds

and obtain a corresponding non-autonomous system
x = f(x, A(rt)) (1.2)

for some r > 0. The value r can be thought of as the rate at which A changes. When r is
small, the parameter change is gradual, and when r is large, the parameter change is very
sudden. We are interested in comparing the behavior of system (1.2) for different values of
r.

Since we prefer to work with autonomous systems, we introduce the variable s = rt and
augment system (1.2) as

X = f(x, A(s))

s=r.

(1.3)

Notice that if » = 0, then (1.3) reduces to (1.1) where A = A(s).
Suppose that for all s € R, X(s) is an attracting equilibrium for the corresponding
autonomous system (1.1) with A = A(s) that depends continuously on s and
X4 = lim X(s)
s—+00
are also attracting equilibria for A = A. Then we say (X (s), A(s)) is a stable path.

As shown in Theorem 2.2 of Ashwin et al. [3], there is a unique trajectory x () of
(1.3) such that x"(t) — X_ ast — —oo, which is the local pullback attractor to X _. If
lim;— 00 X" (1) = X4, then we say that x"(¢) endpoint tracks the stable path (X (s), A(s)).
(Often we will just say tracks for short.) By Lemma 2.3 of Ashwin et al. [3], x” (¢) endpoint
tracks (X (s), A(s)) for all sufficiently small » > 0. However, if x" (r) /& X4 ast — o0,
then x" (¢) does not endpoint track (X(s), A(s)), and we say that rate-induced tipping (or
R-tipping) has occurred.

This kind of tipping is sometimes called irreversible rate-induced tipping because it
depends on the end behavior of the pullback attractor. This is different from transient rate-
induced tipping (not discussed in this paper), in which the pullback attractor for some r > 0
may leave a neighborhood of the the stable path X (s) during intermediate time values but
then approach X as t — oo. (The “compost-bomb instability” in Wieczorek et al. [12] is
an example of transient rate-induced tipping.)
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Our interest is in showing what kinds of parameter changes A can lead to R-tipping for
some r > 0. Some results are already known for 1-dimensional systems (n = 1), and we
will give these in Sect. 2. These results are phrased in the language of forward basin stability
or forward basin stable paths (FBS), so we will focus on ways that FBS (or lack thereof)
relates to R-tipping in multi-dimensional systems (n > 1).

In Sect. 3, we will give a constructive proof showing that R-tipping will happen in certain
cases of no FBS, namely, if the position of a stable path (X (s), A(s)) at time s is contained
in the basin of attraction of a different stable path (Y (s), A(s)) at a later time s,. We will
look at the Lorenz ‘63 system and show how varying a parameter in a way that satisfies this
condition leads to R-tipping there. In Sect. 4 we will give an example of a 2-dimensional
system in which a path is FBS but the pullback attractor does not track it. In particular,
this will show that FBS is not sufficient to prevent R-tipping in multi-dimensional systems.
We will define a different condition, forward inflowing stability (FIS), which is sufficient to
prevent R-tipping away from a stable path.

In Sect. 5 we will focus on R-tipping in monotone systems. We will be able to use the
results from Sects. 3 and 4 to give conditions for guaranteeing or preventing R-tipping that
rely only on the relative positions of the equilibria in the system. For this reason, we will see
that monotone systems are ideal systems for thinking about R-tipping. In Sect. 6, we will
show how the methods described in this paper give a nearly complete characterization of the
possibilities of R-tipping in a particular 2-dimensional monotone system. Finally in Sect. 7
we will have some discussion about how the method of FIS could apply to a broader range
of examples than those explicitly covered here.

2 R-Tipping in 1-Dimensional Systems

We begin by giving the definition of forward basin stability and stating a result from Ashwin
et al. [3] about R-tipping in 1-dimensional systems (when n = 1) that we will reference in
later sections. Unless explicitly stated, we will continue to use the notation from Sect. 1.

Definition 1 Fors € R, let B(X (s), A(s)) be the basin of attraction of the stable equilibrium
X (s) for the autonomous system (1.1) with L = A(s). A stable path (X (s), A(s)) is forward
basin stable (FBS) if

{X(u):u <s} CB(X(s), A(s)) for all s € R.
The following theorem follows from Theorem 3.2 of Ashwin et al. [3] and its proof:

Theorem 1 Suppose we have a system of the form (1.3) for n = 1. Let (X(s), A(s)) be a
stable path. Set X+ = limg_, 100 X(5).

1. If (X(s), A(s)) is FBS, there can be no R-tipping away from X _ for this A.
2. Ifthere is another stable path (Y (s), A(s)) with Y4 = limg_, o Y (5) such that Y4 # X4
and there are u < v such that

X(u) € B(Y(v), A(v)),

then (X (s), A(s)) is not FBS and there is a parameter shift A € P(h_, A+) such that
there is R-tipping away from X _ for this A for some r > 0.
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3. Ifthereisa Yy # X4 such that Y, is an attracting equilibrium of (1.1) for A = A4 and

X_ eBY4, Ayp),

then (X(s), A(s)) is not FBS and there is R-tipping away from X_ for this A for all
sufficiently large r > Q.

In Sects. 3 and 4 we will see how the three parts of Theorem 1 do or do not generalize to
systems with n > 1.

3 Conditions to Guarantee R-Tipping

In this section we will prove that statements 2 and 3 of Theorem 1 generalize to multi-
dimensional systems. First, we must establish some lemmas that will be useful later. The
proofs are given in “Appendix”. In what follows, we will assume (X (s), A(s)) is a stable
path of (1.3) with X4+ = lims_, 400 X (5).

This first lemma deals with the initial behavior of the pullback attractor to X _.

Lemma 1 Let x" () be the pullback attractor to X _ in (1.3). Given € > 0, there exists an
S > 0 such that x" (t) € Bs(X_) whenrt < —8.

Next, we discuss the end behavior of a trajectory of (1.3). The purpose of Lemmas 2-5
is to show that if X is an attracting fixed point of (1.1) with A = A and B(X 4, A1) is its
basin of attraction, then any trajectory x (#) of (1.3) that is in a compact subset of B(X 4, A)
for large enough ¢ will converge to X . In what follows, it will be helpful to distinguish
between the flow of the augmented system (1.3) and the flow of the reduced systems (1.1)
for different values of A. So, we will use the notation

Xt

to denote a trajectory of (1.1) with A = A/, while x(¢) will denote a trajectory in (1.2) or
(1.3).

In autonomous systems, the omega limit set of a point x is defined to be w(x) = {y :
x - t, — yforsomez, — o0o}. Omega limit sets have the property that if z € w(y) and
y € w(x), then z € w(x). (See Section 4.1 of [10].) This next lemma states that, in a certain
sense, this property holds in non-autonomous systems like (1.2).

Lemma2 Suppose y -, sp — z for some {s,} — oo. If x(t) is a trajectory of (1.2) such
that x(t,) — y for some {t,} — 00, then there exist {u,} — oo for which x(u,) — z.

If p is an attracting fixed point of an autonomous system, there are arbitrarily small
forward invariant neighborhoods of p. (This is follows from the Stable Manifold Theorem:;
see Theorem 2.1 in Chapter 10 of [9].) This next lemma states that a similar statement is true
for X4 in (1.3), where the forward invariant neighborhoods around X extend both in the
x- and s-dimensions.

Lemma 3 For all sufficiently small € > 0, there exists an S > 0 such that if x(T) € B(X4)
forrT > S, then x(t) € Be(Xy) forallt > T.
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If p is an attracting fixed point of an autonomous system, then by the Stable Manifold
Theorem there is a neighborhood V of p such that all trajectories with initial conditions in
V converge to p. This next lemma shows that a similar thing is true for X in (1.3), where
the attracting neighborhood around X extends both in the x- and s-dimensions.

Lemma4 There existsan € > 0 and an S > O such that if |x(t) — X4+| < € forrt > S, then
x(t) > Xy ast — oo.

Using the preceding lemmas we can conclude the following:

Lemma5 Let K C B(X4, A4) be compact. Then there existsan S > O such thatifx(T) € K
forrT > S, then x(t) - Xy ast — oo.

Now we are ready to prove the generalization of statements 2 and 3 of Theorem 1:

Theorem 2 Suppose we have a system of the form (1.3) for any n € N. Let (X (s), A(s)) be
a stable path. Set X+ = limg_, 10 X (5).

1. Ifthereis another stable path (Y (s), A(s)) withY+ = lims_, 400 Y (s) suchthat Y4 # X4+
and there are u < v such that

X(u) € B(Y (v), A(v)),

then (X (s), A(s)) is not FBS and there is a parameter shift Ae PO, A+) such that
there is R-tipping away from X _ for this A for some r > 0.
2. Ifthereisa Y4 # Xy such that Y, is an attracting equilibrium of (1.1) for A = Ay and

X_ eBY4,Ayp),

then (X(s), A(s)) is not FBS and there is R-tipping away from X_ for this A for all
sufficiently large r > 0.

Proof We will prove statement 1 first. Based on the assumptions, itis clear that (X (s), A(s))is
not forward basin stable. Pick € > 0 such that K = B (X (u)) C B(Y (v), A(v)). By Lemma
2.3 of Ashwinetal. [3], thereis anrg > Osuchthatforallr € (0, rg), |x" (s/r)—X(s)| < €/2
for all s € R. Likewise, there exists an r; > 0 such that for all r € (0, ry), if x" (v/r) € K,
then x" (t) — Y4 ast — oo. Now fix r € (0, min{rg, r1}).

Following the proof of Theorem 3.2 in Ashwin et al. [3], we will construct a reparametriza-
tion

A(s) 1= Ao (s))
using amonotonic increasingo € C 2(R, R) that increases rapidly fromo (s) = utoo(s) =v

but increases slowly otherwise. In particular, for any M > 1 and n > 0 we choose a smooth
monotonic function o (s) such that

o(s)=s for s <u
lgﬁa(s)SM for u <o(s) <u+n
%a(s):M for u+n<o(s)<v—n 3.1
lf%a(s)fM for v—n<o(s) <v, and

Lo(s)=1 for o(s) > v
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Let x!"-41(z) denote the pullback attractor to (X_, A_) with parameter change A. By
construction, we know that x4l (y /r) € Bepp(X(u)). By choosing M > 1 sufficiently
large and 1 > O sufficiently small, we can guarantee that xm Ay /r) € Bc(X(u)) C K. This
guarantees that x> 41(r) — Y, ast — oo.

Now we will prove statement 2. Pick € > O suchthat B3¢ (X_) C B(Y4, A;).ByLemmal,
there is an S; > 0 such that the pullback attractor x" (r) to X_ satisfies x" () € B.(X-) if
rt < —S;. By Lemma 5, there is some Sp > 0 such that if x"(t) € By (X_) forrt > S,
then x” (#) — Y4 ast — oo. Take § = max{S, S»2}.

By continuity, there is some M > 0 such that | f(x, A)| < M for all x € By.(X_) and
A € [A_, A4]. Pick any

r>2—-.
€
Suppose for the sake of contradiction that x" (S/r) ¢ Br.(X_). We know x" (=S/r) €
Be(X_),solets” = inf{s € (—S,S]: x"(s/r) ¢ Ba(X_)}. Then in fact s’ is a minimum
and s’ > —S. By the Mean Value Theorem, there is some s* € (=S, s") and A € [A_, A4]
such that

. S /
W (=S8/r) = 2" (s )] = | f (7 (% /). W) ‘—r -2

28
<M—
r

< €

Because x"(—S/r) € B<(X_), this implies that x"(s'/r) € By<(X_), which is a contra-
diction. Therefore, x"(S/r) € By (X_). As shown above, this implies that x"(t) — Y, as
t — oo. Hence, there is R-tipping away from X _ for all sufficiently large r > 0. O

Example 1 We can apply Theorem 2 to the Lorenz equations:

i=0(y—x)
y=x(p—2)—Yy (3.2)
z=xy— Bz

As in Sparrow [11], we will fix ¢ = 10 and B = 8/3, but we will allow p to vary with
time. The corresponding augmented system for (3.2) is

x = 10(y — x)
y=x(A@s) —2) —y
ey S
Z=2xy 37

s=r

forr > 0and A € P(15,23). We will allow p to monotonically increase from 15 to 23, so
A_ = 15and A4 = 23. As explained in Doedel et al. [4] and Sparrow [11], in this parameter
regime there are three equilibria, one at the origin and the other two

Ci = (\/8/3(,0 —1),v/8/3(0 =1, p - 1)
C> = (~VB/3p =D, ~V8/3( — 10,0~ 1).
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40

Fig. 1 Approximate solution curve to (3.2) with p = 229 and initial condition
(\/8/3(14.1), V8/3(14.1), 14.1) (i.e. C1(s) when A(s) = 15.1). The trajectory converges to a point
on the stable path (C(s), A(s)), indicating that (Cy(s), A(s)) is not forward basin stable

Both Cj > are attracting, and the origin is a saddle point. There are heteroclinic connections
from the origin to C 2, and there are periodic orbits around C ». There is no chaotic attractor
for these values of p, although as p /' pper & 24.0579, the time it takes for the unstable
manifold at the origin to approach Cj 3 increases without bound.

We will focus on the stable path

Cis) = (VB/3(AW) = 1. VB/3(AW) = 1), A(s) — 1)

with C14+ = limg_, + o C1(s) and consider the possibility of R-tipping away from (C;_, A_).
From plotting solutions to (3.2) in MATLAB, we see that (C;(s), A(s)) is not FBS (see
Fig. 1). Therefore, according to Theorem 2, we can expect R-tipping for some choices of A
and r > 0. Indeed if we choose

A(s) = 4tanh(s) + 19

then for some values of r > 0 the pullback attractor to (C1—, A_) tracks (C1(s), A(s)) and
for some values of r > O it tips to (Ca(s), A(s)) (see Fig. 2).

4 Forward Basin Stability and Forward Inflowing Stability

Now that we have successfully generalized statements 2 and 3 of Theorem 1, we will turn
our attention to statement 1, which says that if a path is FBS in a 1-dimensional system, then
there will be no R-tipping away from that path. However, as the next example shows, FBS is
not enough to prevent R-tipping in systems where n > 1.

Example 2 Consider the following 2-dimensional system (which we have adapted from
Example 5.11 of [10]):

X ==y

4.1
Y= =) F20x =2 —y((x =)= (x == yH) @D
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20

40

(@ r=13 () r =15

Fig.2 In both figures, the blue/green dots mark the positions of (C1 2(s), A(s)). The blue dots correspond to
small values of s, and the green dots correspond to large values of s. The red curve is the pullback attractor to
(C1—, A—). When r = 13, the trajectory endpoint tracks (C(s), A(s)), but when r = 15 it does not (Color
figure online)

Fig.3 Phase portrait for system 1 T T T T T
(4.1). (1, 0) is a saddle point with o8l i
two homoclinic orbits (shown in ’
black). Both (i + 1. 0) are 0sr 1
L Boh (k& 35.0) are
attracting equilibria; their basins 041 1
of attraction are the regions 02k i
inside the homoclinic loops ’
> oFf B
0.2 1
-0.4 1
0.6 F 1
-0.8 1
1 . . . . .
A-1 A-0.5 A A+05 A+1
X

Then (4.1) has fixed points at (A, 0) and (k + % 0). There are two homoclinic orbits at

(X, 0) defined by the curves y = +,/(x — )2 — (x — A)*. Both (A + L, 0) are attracting,

V2
and their basins of attraction are the regions inside the corresponding homoclinic orbits. See
Fig. 3.
Then we will let A change with time at a rate r > O by setting A = A(s) and s = rt:
X=-y
= —(x = A®) +2(x = A’ = y((x = AE)* = (x = A6)* =y (42)

y
i,

For A we will take A(s) = z5(1 + tanh(s)) so that . = 0 and A = 0.65 < —=.
Let X(s) = (A(s) + %, 0). Then X_ = (%, O) and X = (% + %,O). Because
0< A@s) < % for all s, the stable path (X(s), A(s)) is FBS. Nevertheless, R-tipping can
occur away from X_. See Fig. 4.
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0.5

-0.5

@ar=1 (b)r=5

Fig. 4 In both figures, the green lines represent the stable paths (—1 N2+ A(s),O) and X(s) =

(1 / V2 4+ A(s), O) , and the red line represents the unstable path (A(s), 0). The black loops show the positions

of the homoclinic orbits in (4.1) when A = 0 and 0.65. The blue curve is the pullback attractor to X_—. When
r = 1, the pullback attractor endpoint tracks X (s). When » = 5, and the pullback attractor diverges to infinity
(does not endpoint track X (s)). Therefore, R-tipping has occurred. This shows that R-tipping can occur even
when a path is forward basin stable in multi-dimensional systems (Color figure online)

Example 2 shows that FBS is not enough to guarantee against R-tipping in 2-dimensional
systems. The reason that FBS is not sufficient in a 2-dimensional (or higher) system is that a
point x might be in the basin of attraction of a fixed point p, but the velocity vector at x may
not point toward p. The more dimensions there are in a system, the more directions there
are to move, so in a sense this makes R-tipping more likely to happen. Although Example 2
is an example of a 2-dimensional system, it would not be difficult to construct a system of
higher dimension in which there can be R-tipping away from a path that is FBS.

Therefore, since FBS is not enough to prevent R-tipping in systems of dimension greater
than 1, we want to find a different condition that is sufficient to prevent R-tipping. We propose
a condition called forward inflowing stability (FIS) which guarantees that R-tipping cannot
happen away from a stable path. In what follows, we will assume that we have a system of
the form (1.3) with a stable path (X (s), A(s)).

Definition 2 We say the stable path (X (s), A(s)) is forward inflowing stable if foreach s € R
there is a compact set K (s) such that

X(s) € Int K(s) for all s € R;

if 51 < s, then K(s1) C K(s2);

if x € K (s), then 319 > O such that x - 4(5) ¢ € Int K(s) forall t € (0, #9);
X4 € Int Ky where K_ = (,.g K(s) and Ky = [ J g K(s); and

K4+ C B(X4, A4) is compact.

ARl e

Just as the notion of FBS compares the positions of equilibria along a path to basins of
attraction later on in the path, FIS compares the positions of equilibria along the path to
forward invariant sets (sets for which solutions “flow in”") later on down the path.

Proposition 1 If the stable path (X (s), A(s)) is FIS, then there is no R-tipping away from
X_ for this A.

Proof Fix r > 0. By FIS, there exist sets K (s) satisfying the requirements of Definition 2.
Set K = User K (s) x {s}. If we pick a point x on the boundary of K when s = sg, then there
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/
X =X N\
-

A

Fig. 5 Here there three paths: two stable (solid black lines) and one unstable (dashed black line). Let
(X(s), A(s)) be the stable path that is defined for all A-values. The red curves define K (s) for each s if
A(s) is one-to-one. The pullback attractor for (X_, A_) is shown in blue. Notice that the pullback attractor is
fully contained in K = Ugcr K (s) x {s} and hence endpoint tracks (X (s), A(s)) (Color figure online)

exists a fp > 0 such that x - 55 * € Int K(so) for all ¢ € (0, #). Since K (so) C K (s) if
so < s and % =r > 0, there is some 7; > 0 such that x(¢) € Int K forall ¢t € (0, ¢;), where
x(t) is the solution through x in (1.3). Therefore, K is forward invariant under the flow of
(1.3).

Let x” (1) be the pullback attractor to X_. Because X_ € Int K_ and K_ = [,z K (5),
there is a T € R such that x" (t) € K(rt) forall t < T. Since K is forward invariant, this
implies that x" () € K (rt) for all ¢ € R. In particular, x"(t) € K forall r € R.

We know K4 C B(X4, A1) is compact. By Lemma 5 this implies x" (¢) — (X4, A4+) as
t — oo. Therefore, x” (¢) endpoint tracks the stable branch (X (s), A(s)) regardless of r > 0,
so there is no R-tipping. O

Example 3 Consider Fig. 5. We will assume that A(s) is injective, so that s and A are in one-
to-one correspondence. Let (X (s), A(s)) be the stable path that is defined for all A-values.
The red curves specify a choice of K (s) in the following way: K (s) is the closed interval
between the two red curves when A = A(s). Based on what is shown in the figure, {K (s)}
satisfies the requirements in Definition 2, which shows that (X (s), A(s)) is FIS. The set
K = User K (s) x {s} forms a forward invariant “tube” around the stable path (X (s), A(s)).
As shown in Proposition 1, the pullback attractor for X_ is always contained in K. There
can be no R-tipping away from X _ for this reason.

In general, FBS and FIS are conditions that are independent of each other. The path in
Example 3 is not FBS but is FIS. Hence, FIS does not imply FBS. Likewise, FBS does not
imply FIS, as shown in Fig. 6. Also note that in multi-dimensional systems FBS cannot imply
FIS, as FIS prevents R-tipping, but FBS does not.

5 Monotone Systems

We will now focus our attention on rate-induced tipping in a special class of systems called
monotone systems. The benefit of monotone systems is that their extra structure enables us
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Fig. 6 The solid black curve is the stable path (X (s), A(s)), and the dashed black curve is an unstable path
(Y (s), A(s)) satisfying X = Y. The blue curve is the pullback attractor to X —. Assuming that A(s) is one-
to-one, (X(s), A(s)) is forward basin stable. However, it is not forward inflowing stable, since X_ is on the
boundary of B(X 4+, A4+). Any possible choice of K_ must contain a neighborhood of X_. Since K_ C K4,
K cannot be fully contained in B(X 4, A4) (Color figure online)

in Proposition 2 to prove when rate-induced tipping can happen without having to calculate
the basins of attraction of the equilibria (which can be chaotic in systems of dimension 3 or
more, such as in Lorenz ‘63-see [4]). Likewise, in Proposition 3 we will be able to prove
when rate-induced tipping cannot happen, using a simpler condition than inflowing stability.

In the context of functions from R to R, monotonicity refers to the preserving (or the
reversing) of the ordering on the real numbers. To extend this notion to systems of dimension
higher than 1, we need to define an ordering on multi-dimensional spaces. We will use the
following partial ordering on R”:

Suppose x = (x1, ..., X2), Yy = V1, ..., yn) € R". Then

x <y <= x; <y;foralli

X<y < x<yandx #y

XKy < x; <y;foralli.
If K, L C R" are sets, we will write K << Ltomeanx < y forallx € Kandy € L.
Furthermore, a set K is p-convex if for every x, y € K satisfying x < y, the line segment
joining them also belongs to K.

Intuitively, a monotone system is a dynamical system that preserves this partial ordering.
More specifically, a system of the form

x=f(x) (GRY)

for f : U — R",U C R" open, is monotoneif x -t < y-t wheneverx <y € R" andt > 0.
Section 3 of Hirsch and Smith [7] demonstrates that if f € C! and U is p-convex, system
(5.1) is monotone if and only if

dfi

3Xj

>0Vi#j. (5.2)
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Then we have the following result about forward invariant sets in monotone systems which
we will use later to prove a result about R-tipping in monotone systems:

Lemma 6 Suppose (5.1) is a monotone system where f € C' and U is p-convex. For any
pe U, define Ki(p)={xeU:x <pland Kr2(p) ={x € U : x > p}.

1. If fi(p) < O for all i, then the vector field f points into K1 on the boundary of K1, so
K is forward invariant.

2. If fi(p) > O forall i, then the vector field f points into K, on the boundary of K>, so
K> is forward invariant.

Proof By the assumptions on system (5.1), we know that af; >0 foralli # j.

The result is trivial if n = 1, so we will assume n > 2. We will prove the statement for
K>; the proof for K is similar.

Assume f;(p) > O for all i. Pick any point y = (y1,..., y,) not equal to p on the
boundary of K;. The line ¢ between y and p can be parametrized by ¢ in the following way:

Uty = (1 — pot+p1, (y2— p2)t + p2, ... (Yn — pp)t + pa)-
We need to show that X; > O at y, or f;(£(1)) > 0, for all i such that y; = p;. We know that
fi(£(0)) > 0, so it will suffice to show that ( f; o £)’(r) > 0. In general, we have
(fi 0 0) (1) = Df; (L)) - £ (1)
_ <8ﬁ % Bf,

axy axy

) () -1 — P1,Y2 = P25 -++»Yn — Pn)

>0

because each g){; @) -(yj —pj)=0. o

Using Lemma 6 we can establish the following result about R-tipping in monotone sys-
tems:

Proposition 2 Suppose we have a system of the form (1.3) where X = f(x, \) is a mono-
tone system on U (U is p-convex) for each A € [A_, A;]. Let (p(s), A(s)) be a path and
(q(s), A(s)) a stable path; denote p+ = lims_, 1o, p(s) and g+ = limg_, 400 q(s). Sup-
pose for all s (including in the limits) Df (p(s)) has a positive eigenvalue whose associated
eigenvector has all positive components.

1. If q(s) < p(s) (resp. q(s) > p(s)) forall s € R, including in the limits as s — Fo0,
and there is a u < v such that g(u) > p(v) (resp. q(u) <K p(v)), then there is a
parameter shift A such that there will be R- tipping away from q_ for this A for some
r > 0.

2. If q(s) < p(s) (resp. q(s) > p(s)) forall s € R, including in the limits as s — Fo00,
and q— > py (resp. q— <K py), then there will be R-tipping away from q_ for this A
for all sufficiently large r > 0.

Proof We will prove statement 1. The proof of statement 2 is similar but does not require
any reparametrization. Suppose g(s) < p(s) for all s € R including in the limits and that
q(u) > p(v). Let x"(¢) denote the pullback attractor to (g—, A_).

Pick € > 0 such that B (¢ (u)) > {p(v)}. By Lemma 2.3 of Ashwin et al. [3], there is an
ro > O such that forall 0 < r < ro, |x"(s/r) — q(s)| < €/2 forall s € R.
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Fig.7 If Df(p(s)) has a positive
real eigenvalue whose associated __)KZ(Z(S))
eigenvector has all positive

components, then there is a point

z(s) such that _H
{2(8) - AGs) }r=0 > (p(s)} and z(s)

fi(z(s), A(s)) > O foralli.
Using z(s), we can define the box
K> (z(s)) as in Proposition 2
satisfying K2 (2(5)) > (p(s))
and such that the flow of (1.1)
with & = A(s) is pointing in on
all sides along the boundary of
K> (z(s))

p(s)

For any s € R, since Df (p(s)) has a positive real eigenvalue with an eigenvector that has
all positive components, by the Invariant Manifold Theorem (which is called “The Stable
Manifold Theorem” in [8]) there is a point z(s) such that {z(s) - () t}i<0 > {p(s)} and
fi(z(s), A(s)) > O for all i. Then define K>(z(s)) = {x € U : x > z(s)}. By Lemma 6, the
vector field f(x, A(s)) is pointing in on all sides along the boundary of K(z(s)). See Fig. 7
for an illustration.

Because z(s) can be chosen to be arbitrarily close to p(s), let us also say that z(v) satisfies
{z(v)} < Bc(g(u)) and that z(s) varies continuously in s.

Because the system converges as s — oo, there is an Sy > v such that the flow of the
autonomous system (1.1) with A = A(s) points in along the boundary of K> (z(Sp)) for every
s > Soand g+ ¢ K2(z(So)). Then K2(z(Sp)) x [Sp, 00) is forward invariant under the flow
of (1.3) for any » > 0. Additionally, we can choose r; > 0 sufficiently small so that

U KaGs) x {s)

s€lv,So]

is forward invariant under the flow of (1.3). Now fix r € (0, min{rg, r1}).
As in the proof of Theorem 2, we can construct a reparametrization

Als) := Ao (s))

using a smooth monotonic increasing o € C%(R, R) that increases rapidly from o (s) = u to
o (s) = v but increases slowly otherwise. In particular, for any M > 1 and > 0 we choose
a smooth monotonic function o (s) that satisfies (3.1).

Let x["’/{J(t) denote the pullback attractor to (X_, A_) with parameter change A. By
construction, we know thatx[”’i](u/r) € B¢/2(q(u)). By choosing M > 1 sufficiently large
andn > 0 sufﬁcie;ntly small, we can guarantee thatx[’*’i](v/r) € Bc(q(u)) C K2~(z(v)). This

implies that xI">41(r) € K»(z(Sp)) for all sufficiently large 7 and therefore x4 (r) A ¢
ast — oQ. O

The power of Proposition 2 is in being able to determine when R-tipping will happen
without having to know exactly where the basins of attraction are. Since the systems in
question are monotone, it suffices to check the relative positions of different equilibria. In
this sense, checking for the possibility of R-tipping in monotone systems is much like looking
for R-tipping in 1-dimensional systems because in 1 dimension, the basins of attraction are
completely determined by the positions of the equilibria. (And in fact all 1-dimensional
systems are monotone. )
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Now we will see how the idea of forward inflowing stability can be applied to monotone
systems to show that there will not be rate-induced tipping. As we have already seen, in
multi-dimensional systems there are many different “directions” in which a trajectory can
tip. It will be useful for the next result if we narrow our focus from tipping in general to
tipping in a particular direction. We make the following definition:

Definition 3 Let (¢(s), A(s)) be a stable path in system (1.3), and let x” (¢) denote the pull-
back attractor to g_. Let L C U be closed and g+ ¢ L. We say that x" (¢) tips to L if there is
somer > 0and T > O such that x" () € L forallt > T.

Proposition 3 Suppose we have a system of the form (1.3) where x = f(x, X) is a mono-
tone system on U (U is p-convex) for each A € [A_, A;]. Let (p(s), A(s)) be a path and
(q(s), A(s)) be a stable path; denote py = limg_, 100 p(s) and q+ = limg_ 100 q(s).
Suppose for all s € R (including in the limits) Df (p(s)) has a positive eigenvalue whose
associated eigenvector has all positive components. If

q(s1) K p(s2) (resp. q(s1) > p(s2))

for all s1 < s (including in the limits as s1 — —o0 and s — o0) then there cannot be
R-tipping away from q_ to {x : x > py} (resp. to {x : x < p4}) for this A.

Proof We will assume that g(s1) < p(s) forall s; < 55 and prove the corresponding result.
The proof of the other result is similar.

Because each Df (p(s)) has a positive real eigenvalue whose associated eigenvector has
all positive components, by the Invariant Manifold Theorem there is a z(s) <« p(s) such
that z(s) -a¢s) t = p(s) ast — —oo and f;(z(s), A(s)) < O for all i. By changing z(s) if
necessary, we also can guarantee that g(s) < z(s) < p(s) for all s € R, including in the
limits and that z(s1) < z(sp) for all 51 < s3.

Now define K (s) = {x € U : x < z(s)} for all s, including in the limits. Then the {K (s)}
satisfy all the conditions in Definition 2 except they are not compact, and we do not know that
K+ C B(g4+, A+). Nevertheless, arguments like those in Proposition 1 show that the pullback
attractor x” (¢) to ¢g— must satisfy x"(¢) € K4 forallt € R. Now Ky < {x : x > p.}, so
x"(t) does not tip to {x : x > p,} forany r > 0. O

Proposition 3 significantly simplifies the conditions for showing that a system will not have
R-tipping. In general, our method is to establish that a path is FIS, which can be quite difficult,
but when the systems in question are monotone, it suffices to check the relative positions of
the equilibria. Once again, this makes checking for R-tipping in monotone systems similar
to checking for R-tipping in 1-dimensional systems because it reduces to comparing the
positions of equilibria.

Notice that in Proposition 3 we cannot conclude that rate-induced tipping does not happen
at all; it is possible that the parameter change in system (1.3) may cause rate-induced tipping
to happen away from ¢_ in another direction. But given a particular monotone system, one
could perhaps apply Proposition 3 along with some other arguments to conclude that no
rate-induced tipping is possible for a given parameter change.

6 An Example
Here we give an example of a two-dimensional monotone system that will allow us to apply

the things proven in this paper, particularly in Sect. 5. For x = (x1, x2) € R?, consider the
system
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X1 :—xl3+axl2+bx1—a(b+1)+x2

. 6.1)
X2 = X1 —Xx2
for any b > —1 and a satisfying |a| < /b + 1. Let

fl(x)) _ (—x% + axl2 +bx;—ab+1) —i—xz)
L) X1 —x2

denote the vector field generated by (6.1). The fixed points of (6.1) are p; = ( —/b+1,

—b+ 1), p2 = (a,a), and p3 = («/b +1,b+ 1). The derivative matrix at a point
x = (x1,x2) is

f(X)=<

Df(x) = (“(lx) _1 1) (6.2)

where o(x) = —3x12 + 2axy + b. This shows that (6.1) is monotone. If «(x) < —1, then
(6.2) has two negative eigenvalues, and if «(x) > —1, then (6.2) has one positive and one
negative eigenvalue. In our parameter regime,

o (iﬁ, wm) <1,

so p1 and p3 are attracting equilibria, whereas «(a, a) > —1, so pj is a saddle node. An
eigenvector associated with the positive eigenvalue A of Df (p2) is

Al +1
1 b

which points in the all-positive direction.
Now, let us consider the possibility of rate-induced tipping in (6.1). To do this, we let a
and b depend on a parameter that can vary with time:

X1 = —x} +a(A))x] + b(A)x1 — a(A)(B(AE) + 1) + x2
X2 =X] — X2 (6.3)
s=r,
where A € P(A_, Ay) forsome A_ < Ay and a,b : [A_, A4] — R are smooth functions
satisfying b(A) > —1l and |a(A)| < o/b(A) + 1forall A € [A_, A+]. We will use the notation
A, A)) _ (] +a@a} +bGx —aG)(b() + 1) + X2>
fa(x, 1) X1 — X2

to denote the first two components of the vector field of (6.3). There are two stable paths in
this augmented system: (p1(s), A(s)) and (p3(s), A(s)). The path (p2(s), A(s)) is unstable.
For ease of notation, we will define

f(x,k)=<

lim p;(s) = pi+.
s—+o00
We have the following result about the possibility of R-tipping in system (6.3):

Proposition4 1. Ifthere exist s1 < s such that

—Vb(AGs1) + 1 > a(A(s2)) (resp. v/ b(A(s1) + 1 < a(A(52)))

then there is a parametel;shift Ae PO, A+) such that there is R-tipping away from
pi1— (resp. p3_) for this A for some r > Q.
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2. 1If, for all s1 < s2 (including in the limit as s — —00 or 5o — 00),

—Vb(AGs1) + 1 < a(A(s2)) (resp. v/ b(A(s1)) + 1 > a(A(s2)))

then (p1(s), A(s)) (resp. (p3(s), A(s))) is forward inflowing stable and there cannot be
R-tipping away from (p1—, L_) (resp. (p3—, A_)) for this A.

Remark 1 Notice that Proposition 4 gives a nearly exhaustive description of whether a given
parameter change will lead to R-tipping or not for (6.3). The only cases left out are boundary
cases when, for instance, /b(A(s1)) 4+ 1 is equal to, but never greater than, a(A(s2)) for
some §s1 < §2.

Proof Statement 1 is a consequence of Proposition 2. The proof of statement 2 requires more
work. We will show that there can be no R-tipping away from (p;—, A_) if

—Vb(A(s1)) + 1 < a(A(s2))

for all s1 < s7. The proof of the corresponding statement is similar.

Let r > 0 and let x” (r) be the pullback attractor to pj_. By Proposition 3, x" (¢) does not
tip to {x : x > pp_}, but in fact the proof of Proposition 3 shows something stronger: there
is a z satisfying p14+ < z < p24+ such that x"(¢) € {x : x < z} forall ¢.

Choose ¢ < infyer {—+/B(A(s)) + 1}. Then

0 < —c® +a(A@) + (b(A(s)) + De — a(A) (b(A(s)) + 1)
for all values of s (including in the limits as s — =£00), and therefore
¢ = a(A())c? = b(A(s))e + a(A@)(b(A(s)) + 1) < c.
Choose any d satisfying
¢ —a(A($)c* = b(A(s))c + a(A@)(b(AG) + 1) <d < ¢

for all values of s (including in the limits as s — 400) and set p = (¢, d). Then p < pi1(s)
forall s,and f;(p,A) > Oforalliand X € [A_, A;]. If weset K(s) = {x : p < x < z}, then
{K (s)} clearly satisfies the first 4 conditions of Definition 2 to show that (p;(s), A(s)) is
forward inflowing stable. The only thing that remains to be shown is that K+ C B(p14, A4).
What we are going to show is that Ky = {x : p < x < z} is in the basin of attraction
of pi4 under the flow of (6.1) when A = A4. Fix some x € K. As shown above, K is a
forward invariant box, so {x - t};>0 stays in K for all time. Hence, w(x) is nonempty and
compact. By Theorem 3.22 of Hirsch and Smith [7], @ (x) is a fixed point, and therefore must
be p1. Because x was an arbitrary point in K4, K is in the basin of attraction of pj.
Therefore, (p1(s), A(s)) is FIS, and there cannot be R-tipping away from (p;_, A_). O

Let us look at a couple of specific examples to illustrate Proposition 4.

Example 4 Let A(s) = %(1 +tanh(s)). Then A_ = O and A = 1. We define the dependence
of a and b on the parameter A to be a(X) = 21 and b(A) = 8A. This means that b(A(s)) > —1
and a(A(s)) < +/b(A(s)) + 1 for all s. However,

Vb(A(=5)) + 1 < a(A(5)),

which implies by Proposition 4 there will be R-tipping away from p3_ for some parameter
shift A and some r > 0. In this case, A(s) = A(s) works. See Fig. 8a. Note that because

@ Springer



Journal of Dynamics and Differential Equations (2020) 32:483-503 499

Fig. 8 In both pictures, the green curves represent the stable paths py(s) = —+/b(A(s)) + 1 and p3(s) =
Vb(A(s)) + 1 and the red curve represents the unstable path ps (s) = a(A(s)) for different values of A = A(s).
The blue curves are pullback attractors to the stable paths. In (a), the position of p3(s) for small s-values is
smaller than the position of p;(s) for larger s-values. Therefore, R-tipping is possible away from p3_. In (b),
p1(s1) < pa(s2) < p3(sy) forall s; < s (including in the infinite limits), so R-tipping is not possible away
from either pj_ or p3_. Pullback attractors are shown in blue for both paths (Color figure online)

A is a one-to-one function of s, we can plot the positions of the trajectory and the quasi-
stable/unstable equilibria against A = A(s) rather than s. This is convenient because the
range of s is infinite, but the range of A is bounded.

Example 5 Once again, let A(s) = %(1 + tanh(s)), but this time define a(A) = %)\ and
b(A) = A. Then b(A(s)) > —1 and a(A(s)) < «/b(A(s)) + 1 for all s. Furthermore,

—Vb(AG)+1 < —-1<0<a(A(s)) < % <1 <b(A(s)) +1

for all s, so by Proposition 4 there can be no R-tipping away from either p;_ or p3_. See
Fig. 8b.

7 Conclusion

In summary, we have shown that R-tipping results are more complicated in multi-dimensional
systems than in one-dimensional systems. R-tipping can happen anytime a path is not forward
basin stable of a certain type, and sometimes there can be R-tipping even if a path is FBS.
We proposed forward inflowing stability as a condition that prevents R-tipping in systems
of all dimensions. One drawback is that it is difficult to know when a path is FIS because
it requires knowledge about the autonomous systems with fixed parameter values and what
sort of forward invariant sets exist around the equilibria. One future direction we could take
is to give more concrete results about how to determine whether a path is FIS.

In this paper, we focused on stable paths of equilibria. However, in multi-dimensional
systems, there could be stable paths of other attracting invariant sets, such as periodic orbits.
In such a situation, different kinds of R-tipping are possible, known as partial tipping and full
tipping (see [1]). Not much work has been done to determine when these kinds of tipping
can or cannot happen, but the FBS and FIS methods could be used as a starting point, as
we believe the results given in this paper are generalizable to invariant sets other than fixed
points.
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Appendix: Proofs of Lemmas from Sect. 3

The proof of Lemma 1 closely follows the proof of Theorem 2.2 in Ashwin et al. [3]:
Proof Let us assume for the sake of simplicity that X_ = 0. Let

w(€) = sup{|dy f(x, A(s)) —dx f(0, A(s))| : s € R, |x] < €}

8(S) = maX{ sup | f(0, A(s)|, sup |dx f(0, A(s)) — dx f (0, L)I} :

s<—S s<—S

Note that w(¢) — 0ase — 0and §(S) — Oas S — oo.
By the linear stability of X_, the eigenvalues of

A:=d f(0,h)

have negative real parts, so there are K > 0 and o > 0 such that ‘e’A‘ < Ke ™ fort >0
(see Lemma 3.3.19 of [5]).
Now set h(x,s) = f(x, A(s)) — Ax so that

X = Ax 4+ h(x, s) (7.1)

Then

deh(x,s) = dc f(x, A(s)) — A
= [d f(x, A($)) = dy (O, AN+ [dx (0, A(5)) = d £ (0, 1-)]
Therefore, if s < —S, we have
1h(0, )| = 8(S), ldxh(x, )] < w(lx]) +5(S).
Consider the inequalities

4Ka lw(e) < 1
2Ka'8(8) <€ (7.2)
4Ka~15(S) <1,

for €, § > 0. If we choose € sufficiently small, we can find some Sy > O to satisfy (7.2).
Now, we know that §(S) — 0 as § — o0, so there is an S; > 0 such that § > §; implies
that 6(S) < §(Sp). Then if S > Sy, (7.2) is satisfied.

Now, fix any r > 0. We will show that the pullback attractor x" (¢) to X_ = 0 satisfies
|x"(t)] < € aslong as rt < —Sj.

Let P be space of continuous functions x(¢) defined for ¢ < —% such that |x(7)| < e.
We define x for x € P by

1
x(1) :/ WAL (x (u), ru) du.

Then if x € P, X = x if and only if x(¢) is a solution of (7.1). Also,

[£(@®)] <e,
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S0 x > X is a map from P to itself. Furthermore, if x, xo € P, then
. . 1
[lX1 — X2l < Ellm —x2.

where ||x]|| := sup, s, r [x(@)I. Thus, x +> X is a contraction mapping on P, so there is a
unique x(¢) € P such that x(¢) = x(¢). This x(¢) is a solution to (7.1) and satisfies |x(¢)| < €
for all ¥ < —S;/r. This x(¢) must be the pullback attractor to X_ = 0, since the pullback
attractor is the only trajectory of (1.3) that stays within a small neighborhood of X _ for all
backward time. (See Theorem 2.2 of [3].) ]

Proof of Lemma 2 Fix r > 0. For each n € N, there exists some N,, € N such that m > N,
implies |y -y, sm — 2| < % (If n > 2, choose N, > N;,_1.) Since A(rt) — Ay ast — oo,
there exists some 7,, > 0 and §, > O such that if |x(+) — y| < §, and t > T,, then
[x(t+sn,) =Y ap SN, | < % There exists some M,, € Nsuch thatzy, > T, andif m > M,
then |x(t,) — y| < 8. (Again, if n > 2, choose M,, > M,,_1.)

Now, set u,, = sy, + tp,. Then,

|x(un) — z| = |x(tpm, + sn,) — 2|
[x(pm, +SN,) — Y ay SN, 1Y oy SN, — 2]
1 1

7+7
n

IA

A

S|

Therefore, x(u,,) — z asn — oo. ]

Proof of Lemma 3 Let us assume for the sake of simplicity that X = 0 and A = 0. Since
(X4, 24+) = (0, 0) is attracting, all eigenvalues of A = d, f(0, 0) have negative real part,
so there is some k > 0 such that Re(u) < —k for every eigenvalue p of A. We can choose
an inner product (, ) on U such that (Ax, x) < —k(x,x) for all x € U (see the lemma in
Chapter 7, Section 1 of [6]). This defines a norm ||x|| = (x, x)!/2. By Taylor’s formula in
several variables we can write

fx, ) =Ax +a(x, ) + B(x),

where ||a(x, 1)|] < y(x, A)|A| for a positive continuous y, and ||B(x)|| < §(x)||x||, where
§ is positive, continuous and §(x) — 0 as x — 0. Then we can write (1.3) as

i% = Ax + a(x, A(s)) + B(x)

ds _

dr

For a given € > 0 and S > 0, define N s = Bc(0) x [S, 00), where Bc(0) = {x € U :
[|1x|] < €}. Note that

r

d
- (I1l?) =24, x)

=2(Ax, x) + 2{a(x, A(s)), x) +2(B(x), x)
—2k(x, x) + 2l (x, AHI - 11x]]+ 2B - [1x]]
—2kl|x[1* + 2y (x, AGHIAG)] - []x]] +28(x) - [1x][*

IA

IA
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|AGs)]

[xll

=2|Ix|? (—k+2y(x,A(s)) +5(x)>

Choose € > 0 such that if ||x|| < €, §(x) < % Then choose S > O such that if s > S,
[A(s)| < f—;[ where M > SUP| x| <e,elA  hy ] y(x,A). Thus, if ||x|| =€ and s > S,

d ., ke \ K
IelD? < 2¢ (—k+2y<x,A(s)>( >+f)

4Me 2
k k
262 (—k+ =+ =
<e< +2+2>

=0

Therefore, for sufficiently small € > 0 there exists an S > 0 such that the vector field of
(1.3) points into Ne g on its boundary, so N¢ s is forward invariant. ]

Proof of Lemma 4 Pick an € > 0 sufficiently small for Lemma 3. Make € smaller if necessary
so that B¢(X4) C B(X4, A4). Then by Lemma 3, there exists an S > 0 such that if
x(t) € Bo(X4) forrT > S, then x(¢) € Be(X4) forallt > T. Now fix r > 0. Since
Bc(X4) is compact, there is some y € B.(Xy) such that x(t,) — y ast, — oo. But
y € B(X4, A+) by assumption, so y - t — X4 in the autonomous system (1.1). Therefore,
by Lemma 2, there exists a {u,,} — oo such that x(u,) - X.

Now pick any § € (0, €). Then by Lemma 3, there exists some Ss > 0 such that if
x(T) € Bs(X4) forrT > Ss,thenx(T) € Bs(X4) forallt > T. By the previous paragraph,
thereisau,; > Ss/r suchthat |x(u,;) —X1| < §. Therefore, |x(r) — X4 | < §forallt > u,;.
Hence x (1) —> X4 ast — oo. O

Proof of Lemma 5 By Lemma 4, thereis ane€ > Oand an S; > O suchthatif |x () — X4+ | < €

forrt > Sy, then x(t) — X4 ast — oo. Since K C B(X,, A4) is compact, there is some

Top > Osuchthaty -, t € Bep(Xy) forany y € K and t > Ty. Also, there is some S, > 0

such thatif x(T) = yo € K forrT > S, then |x(T +Tp) — yo -, To| < €/2forany y € K.
Take S = max{S;, S»}. Then, suppose x(T) € K forrT > S.If x(T) = yo, then

|X(T 4 To) = X4| < |x(T 4+ To) — yo -». Tol 4 y0 2 To — X 1|
€/24+¢€/2

=c

A

Therefore, x(t) — X4 ast — oo. O

References

1. Alkhayuon, H., Ashwin, P.: Rate-induced tipping from periodic attractors: partial tipping and connecting
orbits. Chaos: Interdiscip. J. Nonlinear Sci. 28, 033608 (2018)

2. Ashwin, P., Wieczorek, S., Vitolo, R., Cox, P.: Tipping points in open systems: bifurcation, noise-induced
and rate-dependent examples in the climate system. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng.
Sci. 370, 1166-1184 (2012)

3. Ashwin, P, Perryman, C., Wieczorek, S.: Parameter shifts for nonautonomous systems in low dimension:
bifurcation- and rate-induced tipping. Nonlinearity 30(6), 2185-2210 (2017)

4. Doedel, E., Krauskopf, B., Osinga, H.: Global organization of phase space in the transition to chaos in
the lorenz system. Nonlinearity 28(11), 113-139 (2015)

5. Hinrichsen, D., Pritchard, A.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability
and Robustness, Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005)

@ Springer



Journal of Dynamics and Differential Equations (2020) 32:483-503 503

Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press,
Inc, Cambridge (1974)

Hirsch, M., Smith, H.: Monotone dynamical systems. In: Cafiada, A., Drabek, P., Fonda, A. (eds.) Hand-
book of Differential Equations: Ordinary Differential Equations, chap 4, vol. 4, pp. 239-357. Elsevier,
Amsterdam (2006)

Perko, L.: Differential Equations and Dynamical Systems, Texts in Applied Mathematics, vol. 7, 3rd edn.
Springer, New York (2001)

Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press, Boca
Raton (1999)

Robinson, C.: An Introduction to Dynamical Systems: Continuous and Discrete. American Mathematical
Society, Providence (2012)

. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical

Sciences, vol. 41. Springer, New York (1982)
Wieczorek, S., Ashwin, P., Luke, C., Cox, P.: Excitability in ramped systems: the compost-bomb instability.
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 467(2129), 1243-1269 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	On Conditions for Rate-induced Tipping in Multi-dimensional Dynamical Systems
	Abstract
	1 Introduction
	2 R-Tipping in 1-Dimensional Systems
	3 Conditions to Guarantee R-Tipping
	4 Forward Basin Stability and Forward Inflowing Stability
	5 Monotone Systems
	6 An Example
	7 Conclusion
	Acknowledgements
	Appendix: Proofs of Lemmas from Sect. 3
	References




