
Journal of Dynamics and Differential Equations (2020) 32:483–503
https://doi.org/10.1007/s10884-019-09730-9

On Conditions for Rate-induced Tipping in Multi-dimensional
Dynamical Systems

Claire Kiers1 · Christopher K. R. T. Jones1

Received: 4 October 2018 / Revised: 18 December 2018 / Published online: 11 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The possibility of rate-induced tipping (R-tipping) away from an attracting fixed point has
been thoroughly explored in 1-dimensional systems. In these systems, it is impossible to have
R-tipping away from a path of quasi-stable equilibria that is forward basin stable (FBS), but
R-tipping is guaranteed for paths that are non-FBS of a certain type. We will investigate
whether these results carry over to multi-dimensional systems. In particular, we will show
that the same conditions guaranteeing R-tipping in 1-dimension also guarantee R-tipping in
higher dimensions; however, it is possible to haveR-tipping away from a path that is FBS even
in 2-dimensional systems. We will propose a different condition, forward inflowing stability
(FIS), which we show is sufficient to prevent R-tipping in all dimensions. The condition,
while natural, is difficult to verify in concrete examples. Monotone systems are a class for
which FIS is implied by an easily verifiable condition. As a result, we see how the additional
structure of these systems makes predicting the possibility of R-tipping straightforward in a
fashion similar to 1-dimension. In particular, we will prove that the FBS and FIS conditions
in monotone systems reduce to comparing the relative positions of equilibria over time. An
example of a monotone system is given that demonstrates how these ideas are applied to
determine exactly when R-tipping is possible.

Keywords Tipping · Loss of stability · Transitions · Time-dependent parameters

1 Introduction

Tipping can be described as a sudden, drastic, irreversible change in the behavior of a solution
as a result of a small change to the system. In part, tipping is interesting because it can be
observed in nature. A recent example in the literature concerns the rise of temperature in
peatlands (see [12]). There are different reasons that tipping can happen in a system; in
particular Ashwin et al. [2] describes three types of tipping: bifurcation-, noise-, and rate-
induced. This paper will focus on the third kind of tipping, which results from a fast parameter
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change in a dynamical system. It is the rate at which the parameter changes that causes the
tipping, not simply the amount that it changes. For a thorough introduction into rate-induced
tipping, the reader is encouraged to look in Ashwin et al. [3], but we will give a summary
here that is sufficient for the rest of the paper.

Suppose we have an autonomous dynamical system

ẋ = f (x, λ) (1.1)

where x ∈ U forU ⊂ R
n open, λ ∈ R

m , and f ∈ C2(U×R
m,Rn). If we want to explore the

possibility of rate-induced tipping in this system, we must allow the parameter λ to change
over time. Without loss of generality, we may assume that λ ∈ R because if not, we can
parametrize each component of λ with a different one-dimensional parameter. We want the
parameter change to be bounded and sufficiently differentiable, so we choose the parameter
shift Λ ∈ P(λ−, λ+) for some λ− < λ+ where

P(λ−, λ+) =
{
Λ ∈ C2(R, (λ−, λ+)) : lim

s→±∞ Λ(s) = λ± and lim
s→±∞

dΛ

ds
= 0

}

and obtain a corresponding non-autonomous system

ẋ = f (x,Λ(r t)) (1.2)

for some r > 0. The value r can be thought of as the rate at which Λ changes. When r is
small, the parameter change is gradual, and when r is large, the parameter change is very
sudden. We are interested in comparing the behavior of system (1.2) for different values of
r .

Since we prefer to work with autonomous systems, we introduce the variable s = r t and
augment system (1.2) as

ẋ = f (x,Λ(s))

ṡ = r .
(1.3)

Notice that if r = 0, then (1.3) reduces to (1.1) where λ = Λ(s).
Suppose that for all s ∈ R, X(s) is an attracting equilibrium for the corresponding

autonomous system (1.1) with λ = Λ(s) that depends continuously on s and

X± = lim
s→±∞ X(s)

are also attracting equilibria for λ = λ±. Then we say (X(s),Λ(s)) is a stable path.
As shown in Theorem 2.2 of Ashwin et al. [3], there is a unique trajectory xr (t) of

(1.3) such that xr (t) → X− as t → −∞, which is the local pullback attractor to X−. If
limt→∞ xr (t) = X+, then we say that xr (t) endpoint tracks the stable path (X(s),Λ(s)).
(Often we will just say tracks for short.) By Lemma 2.3 of Ashwin et al. [3], xr (t) endpoint
tracks (X(s),Λ(s)) for all sufficiently small r > 0. However, if xr (t) �→ X+ as t → ∞,
then xr (t) does not endpoint track (X(s),Λ(s)), and we say that rate-induced tipping (or
R-tipping) has occurred.

This kind of tipping is sometimes called irreversible rate-induced tipping because it
depends on the end behavior of the pullback attractor. This is different from transient rate-
induced tipping (not discussed in this paper), in which the pullback attractor for some r > 0
may leave a neighborhood of the the stable path X(s) during intermediate time values but
then approach X+ as t → ∞. (The “compost-bomb instability” in Wieczorek et al. [12] is
an example of transient rate-induced tipping.)
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Our interest is in showing what kinds of parameter changes Λ can lead to R-tipping for
some r > 0. Some results are already known for 1-dimensional systems (n = 1), and we
will give these in Sect. 2. These results are phrased in the language of forward basin stability
or forward basin stable paths (FBS), so we will focus on ways that FBS (or lack thereof)
relates to R-tipping in multi-dimensional systems (n > 1).

In Sect. 3, we will give a constructive proof showing that R-tipping will happen in certain
cases of no FBS, namely, if the position of a stable path (X(s),Λ(s)) at time s1 is contained
in the basin of attraction of a different stable path (Y (s),Λ(s)) at a later time s2. We will
look at the Lorenz ‘63 system and show how varying a parameter in a way that satisfies this
condition leads to R-tipping there. In Sect. 4 we will give an example of a 2-dimensional
system in which a path is FBS but the pullback attractor does not track it. In particular,
this will show that FBS is not sufficient to prevent R-tipping in multi-dimensional systems.
We will define a different condition, forward inflowing stability (FIS), which is sufficient to
prevent R-tipping away from a stable path.

In Sect. 5 we will focus on R-tipping in monotone systems. We will be able to use the
results from Sects. 3 and 4 to give conditions for guaranteeing or preventing R-tipping that
rely only on the relative positions of the equilibria in the system. For this reason, we will see
that monotone systems are ideal systems for thinking about R-tipping. In Sect. 6, we will
show how the methods described in this paper give a nearly complete characterization of the
possibilities of R-tipping in a particular 2-dimensional monotone system. Finally in Sect. 7
we will have some discussion about how the method of FIS could apply to a broader range
of examples than those explicitly covered here.

2 R-Tipping in 1-Dimensional Systems

We begin by giving the definition of forward basin stability and stating a result from Ashwin
et al. [3] about R-tipping in 1-dimensional systems (when n = 1) that we will reference in
later sections. Unless explicitly stated, we will continue to use the notation from Sect. 1.

Definition 1 For s ∈ R, let B(X(s),Λ(s)) be the basin of attraction of the stable equilibrium
X(s) for the autonomous system (1.1) with λ = Λ(s). A stable path (X(s),Λ(s)) is forward
basin stable (FBS) if

{X(u) : u < s} ⊂ B(X(s),Λ(s)) for all s ∈ R.

The following theorem follows from Theorem 3.2 of Ashwin et al. [3] and its proof:

Theorem 1 Suppose we have a system of the form (1.3) for n = 1. Let (X(s),Λ(s)) be a
stable path. Set X± = lims→±∞ X(s).

1. If (X(s),Λ(s)) is FBS, there can be no R-tipping away from X− for this Λ.
2. If there is another stable path (Y (s),Λ(s)) with Y+ = lims→∞ Y (s) such that Y+ �= X+

and there are u < v such that

X(u) ∈ B(Y (v),Λ(v)),

then (X(s),Λ(s)) is not FBS and there is a parameter shift Λ̃ ∈ P(λ−, λ+) such that
there is R-tipping away from X− for this Λ̃ for some r > 0.
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3. If there is a Y+ �= X+ such that Y+ is an attracting equilibrium of (1.1) for λ = λ+ and

X− ∈ B(Y+, λ+),

then (X(s),Λ(s)) is not FBS and there is R-tipping away from X− for this Λ for all
sufficiently large r > 0.

In Sects. 3 and 4 we will see how the three parts of Theorem 1 do or do not generalize to
systems with n > 1.

3 Conditions to Guarantee R-Tipping

In this section we will prove that statements 2 and 3 of Theorem 1 generalize to multi-
dimensional systems. First, we must establish some lemmas that will be useful later. The
proofs are given in “Appendix”. In what follows, we will assume (X(s),Λ(s)) is a stable
path of (1.3) with X± = lims→±∞ X(s).

This first lemma deals with the initial behavior of the pullback attractor to X−.

Lemma 1 Let xr (t) be the pullback attractor to X− in (1.3). Given ε > 0, there exists an
S > 0 such that xr (t) ∈ Bε(X−) when rt < −S.

Next, we discuss the end behavior of a trajectory of (1.3). The purpose of Lemmas 2–5
is to show that if X+ is an attracting fixed point of (1.1) with λ = λ+ and B(X+, λ+) is its
basin of attraction, then any trajectory x(t) of (1.3) that is in a compact subset of B(X+, λ+)

for large enough t will converge to X+. In what follows, it will be helpful to distinguish
between the flow of the augmented system (1.3) and the flow of the reduced systems (1.1)
for different values of λ. So, we will use the notation

x ·λ′ t

to denote a trajectory of (1.1) with λ = λ′, while x(t) will denote a trajectory in (1.2) or
(1.3).

In autonomous systems, the omega limit set of a point x is defined to be ω(x) = {y :
x · tn → y for some tn → ∞}. Omega limit sets have the property that if z ∈ ω(y) and
y ∈ ω(x), then z ∈ ω(x). (See Section 4.1 of [10].) This next lemma states that, in a certain
sense, this property holds in non-autonomous systems like (1.2).

Lemma 2 Suppose y ·λ+ sn → z for some {sn} → ∞. If x(t) is a trajectory of (1.2) such
that x(tn) → y for some {tn} → ∞, then there exist {un} → ∞ for which x(un) → z.

If p is an attracting fixed point of an autonomous system, there are arbitrarily small
forward invariant neighborhoods of p. (This is follows from the Stable Manifold Theorem;
see Theorem 2.1 in Chapter 10 of [9].) This next lemma states that a similar statement is true
for X+ in (1.3), where the forward invariant neighborhoods around X+ extend both in the
x- and s-dimensions.

Lemma 3 For all sufficiently small ε > 0, there exists an S > 0 such that if x(T ) ∈ Bε(X+)

for rT > S, then x(t) ∈ Bε(X+) for all t ≥ T .
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If p is an attracting fixed point of an autonomous system, then by the Stable Manifold
Theorem there is a neighborhood V of p such that all trajectories with initial conditions in
V converge to p. This next lemma shows that a similar thing is true for X+ in (1.3), where
the attracting neighborhood around X+ extends both in the x- and s-dimensions.

Lemma 4 There exists an ε > 0 and an S > 0 such that if |x(t) − X+| < ε for r t > S, then
x(t) → X+ as t → ∞.

Using the preceding lemmas we can conclude the following:

Lemma 5 Let K ⊂ B(X+, λ+) be compact. Then there exists an S > 0 such that if x(T ) ∈ K
for rT > S, then x(t) → X+ as t → ∞.

Now we are ready to prove the generalization of statements 2 and 3 of Theorem 1:

Theorem 2 Suppose we have a system of the form (1.3) for any n ∈ N. Let (X(s),Λ(s)) be
a stable path. Set X± = lims→±∞ X(s).

1. If there is another stable path (Y (s),Λ(s))with Y± = lims→±∞ Y (s) such that Y+ �= X+
and there are u < v such that

X(u) ∈ B(Y (v),Λ(v)),

then (X(s),Λ(s)) is not FBS and there is a parameter shift Λ̃ ∈ P(λ−, λ+) such that
there is R-tipping away from X− for this Λ̃ for some r > 0.

2. If there is a Y+ �= X+ such that Y+ is an attracting equilibrium of (1.1) for λ = λ+ and

X− ∈ B(Y+, λ+),

then (X(s),Λ(s)) is not FBS and there is R-tipping away from X− for this Λ for all
sufficiently large r > 0.

Proof Wewill prove statement 1first. Based on the assumptions, it is clear that (X(s),Λ(s)) is
not forward basin stable. Pick ε > 0 such that K = Bε(X(u)) ⊂ B(Y (v),Λ(v)). By Lemma
2.3 of Ashwin et al. [3], there is an r0 > 0 such that for all r ∈ (0, r0), |xr (s/r)−X(s)| < ε/2
for all s ∈ R. Likewise, there exists an r1 > 0 such that for all r ∈ (0, r1), if xr (v/r) ∈ K ,
then xr (t) → Y+ as t → ∞. Now fix r ∈ (0,min{r0, r1}).

Following the proof of Theorem 3.2 inAshwin et al. [3], wewill construct a reparametriza-
tion

Λ̃(s) := Λ(σ(s))

using amonotonic increasingσ ∈ C2(R,R) that increases rapidly fromσ(s) = u toσ(s) = v

but increases slowly otherwise. In particular, for any M > 1 and η > 0 we choose a smooth
monotonic function σ(s) such that

σ(s) = s for s < u
1 ≤ d

ds σ(s) ≤ M for u ≤ σ(s) ≤ u + η
d
ds σ(s) = M for u + η < σ(s) < v − η

1 ≤ d
ds σ(s) ≤ M for v − η ≤ σ(s) ≤ v, and
d
ds σ(s) = 1 for σ(s) > v

(3.1)
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Let x [r ,Λ̃](t) denote the pullback attractor to (X−, λ−) with parameter change Λ̃. By
construction, we know that x [r ,Λ̃](u/r) ∈ Bε/2(X(u)). By choosing M > 1 sufficiently

large and η > 0 sufficiently small, we can guarantee that x [r ,Λ̃](v/r) ∈ Bε(X(u)) ⊂ K . This
guarantees that x [r ,Λ̃](t) → Y+ as t → ∞.

Nowwewill prove statement 2. Pick ε > 0 such that B3ε(X−) ⊂ B(Y+, λ+). ByLemma1,
there is an S1 > 0 such that the pullback attractor xr (t) to X− satisfies xr (t) ∈ Bε(X−) if
r t < −S1. By Lemma 5, there is some S2 > 0 such that if xr (t) ∈ B2ε(X−) for r t > S2
then xr (t) → Y+ as t → ∞. Take S = max{S1, S2}.

By continuity, there is some M > 0 such that | f (x, λ)| < M for all x ∈ B2ε(X−) and
λ ∈ [λ−, λ+]. Pick any

r > 2
MS

ε
.

Suppose for the sake of contradiction that xr (S/r) /∈ B2ε(X−). We know xr (−S/r) ∈
Bε(X−), so let s′ = inf{s ∈ (−S, S] : xr (s/r) /∈ B2ε(X−)}. Then in fact s′ is a minimum
and s′ > −S. By the Mean Value Theorem, there is some s∗ ∈ (−S, s′) and λ ∈ [λ−, λ+]
such that

|xr (−S/r) − xr (s′/r)| = | f (xr (s∗/r), λ)|
∣∣∣∣− S

r
− s′

r

∣∣∣∣
< M

2S

r
< ε

Because xr (−S/r) ∈ Bε(X−), this implies that xr (s′/r) ∈ B2ε(X−), which is a contra-
diction. Therefore, xr (S/r) ∈ B2ε(X−). As shown above, this implies that xr (t) → Y+ as
t → ∞. Hence, there is R-tipping away from X− for all sufficiently large r > 0. ��
Example 1 We can apply Theorem 2 to the Lorenz equations:

ẋ = σ(y − x)

ẏ = x(ρ − z) − y

ż = xy − βz

(3.2)

As in Sparrow [11], we will fix σ = 10 and β = 8/3, but we will allow ρ to vary with
time. The corresponding augmented system for (3.2) is

ẋ = 10(y − x)

ẏ = x(Λ(s) − z) − y

ż = xy − 8

3
z

ṡ = r

for r > 0 and Λ ∈ P(15, 23). We will allow ρ to monotonically increase from 15 to 23, so
λ− = 15 and λ+ = 23. As explained in Doedel et al. [4] and Sparrow [11], in this parameter
regime there are three equilibria, one at the origin and the other two

C1 =
(√

8/3(ρ − 1),
√
8/3(ρ − 1), ρ − 1

)

C2 =
(
−√

8/3(ρ − 1),−√
8/3(ρ − 1), ρ − 1

)
.
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Fig. 1 Approximate solution curve to (3.2) with ρ = 22.9 and initial condition(√
8/3(14.1),

√
8/3(14.1), 14.1

)
(i.e. C1(s) when Λ(s) = 15.1). The trajectory converges to a point

on the stable path (C2(s), Λ(s)), indicating that (C1(s), Λ(s)) is not forward basin stable

BothC1,2 are attracting, and the origin is a saddle point. There are heteroclinic connections
from the origin toC1,2, and there are periodic orbits aroundC1,2. There is no chaotic attractor
for these values of ρ, although as ρ ↗ ρhet ≈ 24.0579, the time it takes for the unstable
manifold at the origin to approach C1,2 increases without bound.

We will focus on the stable path

C1(s) =
(√

8/3(Λ(s) − 1),
√
8/3(Λ(s) − 1),Λ(s) − 1

)

withC1± = lims→±∞ C1(s) and consider the possibility of R-tipping away from (C1−, λ−).
From plotting solutions to (3.2) in MATLAB, we see that (C1(s),Λ(s)) is not FBS (see
Fig. 1). Therefore, according to Theorem 2, we can expect R-tipping for some choices of Λ

and r > 0. Indeed if we choose

Λ(s) = 4 tanh(s) + 19

then for some values of r > 0 the pullback attractor to (C1−, λ−) tracks (C1(s),Λ(s)) and
for some values of r > 0 it tips to (C2(s),Λ(s)) (see Fig. 2).

4 Forward Basin Stability and Forward Inflowing Stability

Now that we have successfully generalized statements 2 and 3 of Theorem 1, we will turn
our attention to statement 1, which says that if a path is FBS in a 1-dimensional system, then
there will be no R-tipping away from that path. However, as the next example shows, FBS is
not enough to prevent R-tipping in systems where n > 1.

Example 2 Consider the following 2-dimensional system (which we have adapted from
Example 5.11 of [10]):

ẋ = −y

ẏ = −(x − λ) + 2(x − λ)3 − y((x − λ)2 − (x − λ)4 − y2)
(4.1)
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Fig. 2 In both figures, the blue/green dots mark the positions of (C1,2(s), Λ(s)). The blue dots correspond to
small values of s, and the green dots correspond to large values of s. The red curve is the pullback attractor to
(C1−, λ−). When r = 13, the trajectory endpoint tracks (C1(s), Λ(s)), but when r = 15 it does not (Color
figure online)

Fig. 3 Phase portrait for system
(4.1). (λ, 0) is a saddle point with
two homoclinic orbits (shown in

black). Both
(
λ ± 1√

2
, 0

)
are

attracting equilibria; their basins
of attraction are the regions
inside the homoclinic loops

 - 1  - 0.5  + 0.5  + 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Then (4.1) has fixed points at (λ, 0) and
(
λ ± 1√

2
, 0

)
. There are two homoclinic orbits at

(λ, 0) defined by the curves y = ±√
(x − λ)2 − (x − λ)4. Both

(
λ ± 1√

2
, 0

)
are attracting,

and their basins of attraction are the regions inside the corresponding homoclinic orbits. See
Fig. 3.

Then we will let λ change with time at a rate r > 0 by setting λ = Λ(s) and s = r t :

ẋ = −y

ẏ = −(x − Λ(s)) + 2(x − Λ(s))3 − y((x − Λ(s))2 − (x − Λ(s))4 − y2)

ṡ = r

(4.2)

For Λ we will take Λ(s) = 13
40 (1 + tanh(s)) so that λ− = 0 and λ+ = 0.65 < 1√

2
.

Let X(s) =
(
Λ(s) + 1√

2
, 0

)
. Then X− =

(
1√
2
, 0

)
and X+ =

(
1√
2

+ 13
20 , 0

)
. Because

0 < Λ(s) < 1√
2
for all s, the stable path (X(s),Λ(s)) is FBS. Nevertheless, R-tipping can

occur away from X−. See Fig. 4.
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Fig. 4 In both figures, the green lines represent the stable paths
(
−1/

√
2 + Λ(s), 0

)
and X(s) =(

1/
√
2 + Λ(s), 0

)
, and the red line represents the unstable path (Λ(s), 0). The black loops show the positions

of the homoclinic orbits in (4.1) when λ = 0 and 0.65. The blue curve is the pullback attractor to X−. When
r = 1, the pullback attractor endpoint tracks X(s). When r = 5, and the pullback attractor diverges to infinity
(does not endpoint track X(s)). Therefore, R-tipping has occurred. This shows that R-tipping can occur even
when a path is forward basin stable in multi-dimensional systems (Color figure online)

Example 2 shows that FBS is not enough to guarantee against R-tipping in 2-dimensional
systems. The reason that FBS is not sufficient in a 2-dimensional (or higher) system is that a
point x might be in the basin of attraction of a fixed point p, but the velocity vector at x may
not point toward p. The more dimensions there are in a system, the more directions there
are to move, so in a sense this makes R-tipping more likely to happen. Although Example 2
is an example of a 2-dimensional system, it would not be difficult to construct a system of
higher dimension in which there can be R-tipping away from a path that is FBS.

Therefore, since FBS is not enough to prevent R-tipping in systems of dimension greater
than 1, wewant to find a different condition that is sufficient to prevent R-tipping.We propose
a condition called forward inflowing stability (FIS) which guarantees that R-tipping cannot
happen away from a stable path. In what follows, we will assume that we have a system of
the form (1.3) with a stable path (X(s),Λ(s)).

Definition 2 We say the stable path (X(s),Λ(s)) is forward inflowing stable if for each s ∈ R

there is a compact set K (s) such that

1. X(s) ∈ Int K (s) for all s ∈ R;
2. if s1 < s2, then K (s1) ⊂ K (s2);
3. if x ∈ ∂K (s), then ∃t0 > 0 such that x ·Λ(s) t ∈ Int K (s) for all t ∈ (0, t0);
4. X± ∈ Int K± where K− = ⋂

s∈R K (s) and K+ = ⋃
s∈R K (s); and

5. K+ ⊂ B(X+, λ+) is compact.

Just as the notion of FBS compares the positions of equilibria along a path to basins of
attraction later on in the path, FIS compares the positions of equilibria along the path to
forward invariant sets (sets for which solutions “flow in”) later on down the path.

Proposition 1 If the stable path (X(s),Λ(s)) is FIS, then there is no R-tipping away from
X− for this Λ.

Proof Fix r > 0. By FIS, there exist sets K (s) satisfying the requirements of Definition 2.
Set K = ∪s∈RK (s)×{s}. If we pick a point x on the boundary of K when s = s0, then there
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- +

X
-
=X

+

x

Fig. 5 Here there three paths: two stable (solid black lines) and one unstable (dashed black line). Let
(X(s), Λ(s)) be the stable path that is defined for all λ-values. The red curves define K (s) for each s if
Λ(s) is one-to-one. The pullback attractor for (X−, λ−) is shown in blue. Notice that the pullback attractor is
fully contained in K = ∪s∈RK (s) × {s} and hence endpoint tracks (X(s), Λ(s)) (Color figure online)

exists a t0 > 0 such that x ·Λ(s0) t ∈ Int K (s0) for all t ∈ (0, t0). Since K (s0) ⊂ K (s) if
s0 < s and ds

dt = r > 0, there is some t1 > 0 such that x(t) ∈ Int K for all t ∈ (0, t1), where
x(t) is the solution through x in (1.3). Therefore, K is forward invariant under the flow of
(1.3).

Let xr (t) be the pullback attractor to X−. Because X− ∈ Int K− and K− = ⋂
s∈R K (s),

there is a T ∈ R such that xr (t) ∈ K (r t) for all t < T . Since K is forward invariant, this
implies that xr (t) ∈ K (r t) for all t ∈ R. In particular, xr (t) ∈ K+ for all t ∈ R.

We know K+ ⊂ B(X+, λ+) is compact. By Lemma 5 this implies xr (t) → (X+, λ+) as
t → ∞. Therefore, xr (t) endpoint tracks the stable branch (X(s),Λ(s)) regardless of r > 0,
so there is no R-tipping. ��
Example 3 Consider Fig. 5. We will assume that Λ(s) is injective, so that s and λ are in one-
to-one correspondence. Let (X(s),Λ(s)) be the stable path that is defined for all λ-values.
The red curves specify a choice of K (s) in the following way: K (s) is the closed interval
between the two red curves when λ = Λ(s). Based on what is shown in the figure, {K (s)}
satisfies the requirements in Definition 2, which shows that (X(s),Λ(s)) is FIS. The set
K = ∪s∈RK (s) × {s} forms a forward invariant “tube” around the stable path (X(s),Λ(s)).
As shown in Proposition 1, the pullback attractor for X− is always contained in K . There
can be no R-tipping away from X− for this reason.

In general, FBS and FIS are conditions that are independent of each other. The path in
Example 3 is not FBS but is FIS. Hence, FIS does not imply FBS. Likewise, FBS does not
imply FIS, as shown in Fig. 6. Also note that in multi-dimensional systems FBS cannot imply
FIS, as FIS prevents R-tipping, but FBS does not.

5 Monotone Systems

We will now focus our attention on rate-induced tipping in a special class of systems called
monotone systems. The benefit of monotone systems is that their extra structure enables us
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Fig. 6 The solid black curve is the stable path (X(s), Λ(s)), and the dashed black curve is an unstable path
(Y (s), Λ(s)) satisfying X− = Y+. The blue curve is the pullback attractor to X−. Assuming that Λ(s) is one-
to-one, (X(s), Λ(s)) is forward basin stable. However, it is not forward inflowing stable, since X− is on the
boundary of B(X+, λ+). Any possible choice of K− must contain a neighborhood of X−. Since K− ⊂ K+,
K+ cannot be fully contained in B(X+, λ+) (Color figure online)

in Proposition 2 to prove when rate-induced tipping can happen without having to calculate
the basins of attraction of the equilibria (which can be chaotic in systems of dimension 3 or
more, such as in Lorenz ‘63–see [4]). Likewise, in Proposition 3 we will be able to prove
when rate-induced tipping cannot happen, using a simpler condition than inflowing stability.

In the context of functions from R to R, monotonicity refers to the preserving (or the
reversing) of the ordering on the real numbers. To extend this notion to systems of dimension
higher than 1, we need to define an ordering on multi-dimensional spaces. We will use the
following partial ordering on Rn :

Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n . Then

x ≤ y ⇐⇒ xi ≤ yi for all i

x < y ⇐⇒ x ≤ y and x �= y

x � y ⇐⇒ xi < yi for all i .

If K , L ⊂ R
n are sets, we will write K � L to mean x � y for all x ∈ K and y ∈ L .

Furthermore, a set K is p-convex if for every x, y ∈ K satisfying x ≤ y, the line segment
joining them also belongs to K .

Intuitively, a monotone system is a dynamical system that preserves this partial ordering.
More specifically, a system of the form

ẋ = f (x) (5.1)

for f : U → R
n ,U ⊂ Rn open, ismonotone if x · t ≤ y · t whenever x ≤ y ∈ R

n and t ≥ 0.
Section 3 of Hirsch and Smith [7] demonstrates that if f ∈ C1 and U is p-convex, system
(5.1) is monotone if and only if

∂ fi
∂x j

≥ 0 ∀i �= j . (5.2)
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Thenwe have the following result about forward invariant sets inmonotone systemswhich
we will use later to prove a result about R-tipping in monotone systems:

Lemma 6 Suppose (5.1) is a monotone system where f ∈ C1 and U is p-convex. For any
p ∈ U, define K1(p) = {x ∈ U : x ≤ p} and K2(p) = {x ∈ U : x ≥ p}.
1. If fi (p) < 0 for all i , then the vector field f points into K1 on the boundary of K1, so

K1 is forward invariant.
2. If fi (p) > 0 for all i , then the vector field f points into K2 on the boundary of K2, so

K2 is forward invariant.

Proof By the assumptions on system (5.1), we know that ∂ fi
∂x j

≥ 0 for all i �= j .
The result is trivial if n = 1, so we will assume n ≥ 2. We will prove the statement for

K2; the proof for K1 is similar.
Assume fi (p) > 0 for all i . Pick any point y = (y1, . . . , yn) not equal to p on the

boundary of K2. The line � between y and p can be parametrized by t in the following way:

�(t) = ((y1 − p1)t + p1, (y2 − p2)t + p2, . . . , (yn − pn)t + pn).

We need to show that ẋi > 0 at y, or fi (�(1)) > 0, for all i such that yi = pi . We know that
fi (�(0)) > 0, so it will suffice to show that ( fi ◦ �)′(t) ≥ 0. In general, we have

( fi ◦ �)′(t) = Dfi (�(t)) · �′(t)

=
(

∂ fi
∂x1

,
∂ fi
∂x2

, . . . ,
∂ fi
∂xn

)
(�(t)) · (y1 − p1, y2 − p2, . . . , yn − pn)

≥ 0

because each ∂ fi
∂x j

(�(t)) · (y j − p j ) ≥ 0. ��

Using Lemma 6 we can establish the following result about R-tipping in monotone sys-
tems:

Proposition 2 Suppose we have a system of the form (1.3) where ẋ = f (x, λ) is a mono-
tone system on U (U is p-convex) for each λ ∈ [λ−, λ+]. Let (p(s),Λ(s)) be a path and
(q(s),Λ(s)) a stable path; denote p± = lims→±∞ p(s) and q± = lims→±∞ q(s). Sup-
pose for all s (including in the limits) D f (p(s)) has a positive eigenvalue whose associated
eigenvector has all positive components.

1. If q(s) � p(s) (resp. q(s) � p(s)) for all s ∈ R, including in the limits as s → ±∞,
and there is a u < v such that q(u) � p(v) (resp. q(u) � p(v)), then there is a
parameter shift Λ̃ such that there will be R-tipping away from q− for this Λ̃ for some
r > 0.

2. If q(s) � p(s) (resp. q(s) � p(s)) for all s ∈ R, including in the limits as s → ±∞,
and q− � p+ (resp. q− � p+), then there will be R-tipping away from q− for this Λ

for all sufficiently large r > 0.

Proof We will prove statement 1. The proof of statement 2 is similar but does not require
any reparametrization. Suppose q(s) � p(s) for all s ∈ R including in the limits and that
q(u) � p(v). Let xr (t) denote the pullback attractor to (q−, λ−).

Pick ε > 0 such that Bε(q(u)) � {p(v)}. By Lemma 2.3 of Ashwin et al. [3], there is an
r0 > 0 such that for all 0 < r < r0, |xr (s/r) − q(s)| < ε/2 for all s ∈ R.
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Fig. 7 If Df (p(s)) has a positive
real eigenvalue whose associated
eigenvector has all positive
components, then there is a point
z(s) such that
{z(s) ·Λ(s) t}t≤0 � {p(s)} and
fi (z(s), Λ(s)) > 0 for all i .
Using z(s), we can define the box
K2(z(s)) as in Proposition 2
satisfying K2(z(s)) � {p(s)}
and such that the flow of (1.1)
with λ = Λ(s) is pointing in on
all sides along the boundary of
K2(z(s))

K2(z(s))

p(s)

z(s)

For any s ∈ R, since Df (p(s)) has a positive real eigenvalue with an eigenvector that has
all positive components, by the Invariant Manifold Theorem (which is called “The Stable
Manifold Theorem” in [8]) there is a point z(s) such that {z(s) ·Λ(s) t}t≤0 � {p(s)} and
fi (z(s),Λ(s)) > 0 for all i . Then define K2(z(s)) = {x ∈ U : x ≥ z(s)}. By Lemma 6, the
vector field f (x,Λ(s)) is pointing in on all sides along the boundary of K2(z(s)). See Fig. 7
for an illustration.

Because z(s) can be chosen to be arbitrarily close to p(s), let us also say that z(v) satisfies
{z(v)} � Bε(q(u)) and that z(s) varies continuously in s.

Because the system converges as s → ∞, there is an S0 > v such that the flow of the
autonomous system (1.1) with λ = Λ(s) points in along the boundary of K2(z(S0)) for every
s ≥ S0 and q+ /∈ K2(z(S0)). Then K2(z(S0)) × [S0,∞) is forward invariant under the flow
of (1.3) for any r > 0. Additionally, we can choose r1 > 0 sufficiently small so that⋃

s∈[v,S0]
K2(z(s)) × {s}

is forward invariant under the flow of (1.3). Now fix r ∈ (0,min{r0, r1}).
As in the proof of Theorem 2, we can construct a reparametrization

Λ̃(s) := Λ(σ(s))

using a smooth monotonic increasing σ ∈ C2(R,R) that increases rapidly from σ(s) = u to
σ(s) = v but increases slowly otherwise. In particular, for any M > 1 and η > 0 we choose
a smooth monotonic function σ(s) that satisfies (3.1).

Let x [r ,Λ̃](t) denote the pullback attractor to (X−, λ−) with parameter change Λ̃. By
construction, we know that x [r ,Λ̃](u/r) ∈ Bε/2(q(u)). By choosing M > 1 sufficiently large

andη > 0 sufficiently small,we can guarantee that x [r ,Λ̃](v/r) ∈ Bε(q(u)) ⊂ K2(z(v)). This
implies that x [r ,Λ̃](t) ∈ K2(z(S0)) for all sufficiently large t and therefore x [r ,Λ̃](t) �→ q+
as t → ∞. ��

The power of Proposition 2 is in being able to determine when R-tipping will happen
without having to know exactly where the basins of attraction are. Since the systems in
question are monotone, it suffices to check the relative positions of different equilibria. In
this sense, checking for the possibility of R-tipping inmonotone systems is much like looking
for R-tipping in 1-dimensional systems because in 1 dimension, the basins of attraction are
completely determined by the positions of the equilibria. (And in fact all 1-dimensional
systems are monotone.)
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Now we will see how the idea of forward inflowing stability can be applied to monotone
systems to show that there will not be rate-induced tipping. As we have already seen, in
multi-dimensional systems there are many different “directions” in which a trajectory can
tip. It will be useful for the next result if we narrow our focus from tipping in general to
tipping in a particular direction. We make the following definition:

Definition 3 Let (q(s),Λ(s)) be a stable path in system (1.3), and let xr (t) denote the pull-
back attractor to q−. Let L ⊂ U be closed and q+ /∈ L . We say that xr (t) tips to L if there is
some r > 0 and T > 0 such that xr (t) ∈ L for all t ≥ T .

Proposition 3 Suppose we have a system of the form (1.3) where ẋ = f (x, λ) is a mono-
tone system on U (U is p-convex) for each λ ∈ [λ−, λ+]. Let (p(s),Λ(s)) be a path and
(q(s),Λ(s)) be a stable path; denote p± = lims→±∞ p(s) and q± = lims→±∞ q(s).
Suppose for all s ∈ R (including in the limits) D f (p(s)) has a positive eigenvalue whose
associated eigenvector has all positive components. If

q(s1) � p(s2) (resp. q(s1) � p(s2))

for all s1 ≤ s2 (including in the limits as s1 → −∞ and s2 → ∞) then there cannot be
R-tipping away from q− to {x : x ≥ p+} (resp. to {x : x ≤ p+}) for this Λ.

Proof Wewill assume that q(s1) � p(s2) for all s1 ≤ s2 and prove the corresponding result.
The proof of the other result is similar.

Because each Df (p(s)) has a positive real eigenvalue whose associated eigenvector has
all positive components, by the Invariant Manifold Theorem there is a z(s) � p(s) such
that z(s) ·Λ(s) t → p(s) as t → −∞ and fi (z(s),Λ(s)) < 0 for all i . By changing z(s) if
necessary, we also can guarantee that q(s) � z(s) � p(s) for all s ∈ R, including in the
limits and that z(s1) ≤ z(s2) for all s1 ≤ s2.

Now define K (s) = {x ∈ U : x ≤ z(s)} for all s, including in the limits. Then the {K (s)}
satisfy all the conditions in Definition 2 except they are not compact, and we do not know that
K+ ⊂ B(q+, λ+). Nevertheless, arguments like those in Proposition 1 show that the pullback
attractor xr (t) to q− must satisfy xr (t) ∈ K+ for all t ∈ R. Now K+ � {x : x ≥ p+}, so
xr (t) does not tip to {x : x ≥ p+} for any r > 0. ��

Proposition 3 significantly simplifies the conditions for showing that a systemwill not have
R-tipping. In general, ourmethod is to establish that a path is FIS, which can be quite difficult,
but when the systems in question are monotone, it suffices to check the relative positions of
the equilibria. Once again, this makes checking for R-tipping in monotone systems similar
to checking for R-tipping in 1-dimensional systems because it reduces to comparing the
positions of equilibria.

Notice that in Proposition 3 we cannot conclude that rate-induced tipping does not happen
at all; it is possible that the parameter change in system (1.3) may cause rate-induced tipping
to happen away from q− in another direction. But given a particular monotone system, one
could perhaps apply Proposition 3 along with some other arguments to conclude that no
rate-induced tipping is possible for a given parameter change.

6 An Example

Here we give an example of a two-dimensional monotone system that will allow us to apply
the things proven in this paper, particularly in Sect. 5. For x = (x1, x2) ∈ R

2, consider the
system
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ẋ1 = −x31 + ax21 + bx1 − a(b + 1) + x2

ẋ2 = x1 − x2
(6.1)

for any b > −1 and a satisfying |a| <
√
b + 1. Let

f (x) =
(
f1(x)
f2(x)

)
=

(−x31 + ax21 + bx1 − a(b + 1) + x2
x1 − x2

)

denote the vector field generated by (6.1). The fixed points of (6.1) are p1 =
(

− √
b + 1,

−√
b + 1

)
, p2 = (a, a), and p3 = (√

b + 1,
√
b + 1

)
. The derivative matrix at a point

x = (x1, x2) is

Df (x) =
(

α(x) 1
1 −1

)
(6.2)

where α(x) = −3x21 + 2ax1 + b. This shows that (6.1) is monotone. If α(x) < −1, then
(6.2) has two negative eigenvalues, and if α(x) > −1, then (6.2) has one positive and one
negative eigenvalue. In our parameter regime,

α
(
±√

b + 1,±√
b + 1

)
< −1,

so p1 and p3 are attracting equilibria, whereas α(a, a) > −1, so p2 is a saddle node. An
eigenvector associated with the positive eigenvalue λ+ of Df (p2) is(

λ+ + 1
1

)
,

which points in the all-positive direction.
Now, let us consider the possibility of rate-induced tipping in (6.1). To do this, we let a

and b depend on a parameter that can vary with time:

ẋ1 = −x31 + a(Λ(s))x21 + b(Λ(s))x1 − a(Λ(s))(b(Λ(s)) + 1) + x2

ẋ2 = x1 − x2

ṡ = r ,

(6.3)

where Λ ∈ P(λ−, λ+) for some λ− < λ+ and a, b : [λ−, λ+] → R are smooth functions
satisfying b(λ) > −1 and |a(λ)| <

√
b(λ) + 1 for all λ ∈ [λ−, λ+]. We will use the notation

f (x, λ) =
(
f1(x, λ)

f2(x, λ)

)
=

(−x31 + a(λ)x21 + b(λ)x1 − a(λ)(b(λ) + 1) + x2
x1 − x2

)

to denote the first two components of the vector field of (6.3). There are two stable paths in
this augmented system: (p1(s),Λ(s)) and (p3(s),Λ(s)). The path (p2(s),Λ(s)) is unstable.
For ease of notation, we will define

lim
s→±∞ pi (s) = pi±.

We have the following result about the possibility of R-tipping in system (6.3):

Proposition 4 1. If there exist s1 < s2 such that

−√
b(Λ(s1)) + 1 > a(Λ(s2)) (resp.

√
b(Λ(s1)) + 1 < a(Λ(s2)))

then there is a parameter shift Λ̃ ∈ P(λ−, λ+) such that there is R-tipping away from
p1− (resp. p3−) for this Λ̃ for some r > 0.
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2. If, for all s1 < s2 (including in the limit as s1 → −∞ or s2 → ∞),

−√
b(Λ(s1)) + 1 < a(Λ(s2)) (resp.

√
b(Λ(s1)) + 1 > a(Λ(s2)))

then (p1(s),Λ(s)) (resp. (p3(s),Λ(s))) is forward inflowing stable and there cannot be
R-tipping away from (p1−, λ−) (resp. (p3−, λ−)) for this Λ.

Remark 1 Notice that Proposition 4 gives a nearly exhaustive description of whether a given
parameter change will lead to R-tipping or not for (6.3). The only cases left out are boundary
cases when, for instance,

√
b(Λ(s1)) + 1 is equal to, but never greater than, a(Λ(s2)) for

some s1 < s2.

Proof Statement 1 is a consequence of Proposition 2. The proof of statement 2 requires more
work. We will show that there can be no R-tipping away from (p1−, λ−) if

−√
b(Λ(s1)) + 1 < a(Λ(s2))

for all s1 < s2. The proof of the corresponding statement is similar.
Let r > 0 and let xr (t) be the pullback attractor to p1−. By Proposition 3, xr (t) does not

tip to {x : x ≥ p2−}, but in fact the proof of Proposition 3 shows something stronger: there
is a z satisfying p1+ � z � p2+ such that xr (t) ∈ {x : x ≤ z} for all t .

Choose c < infs∈R
{−√

b(Λ(s)) + 1
}
. Then

0 < −c3 + a(Λ(s))c2 + (b(Λ(s)) + 1)c − a(Λ(s))(b(Λ(s)) + 1)

for all values of s (including in the limits as s → ±∞), and therefore

c3 − a(Λ(s))c2 − b(Λ(s))c + a(Λ(s))(b(Λ(s)) + 1) < c.

Choose any d satisfying

c3 − a(Λ(s))c2 − b(Λ(s))c + a(Λ(s))(b(Λ(s)) + 1) < d < c

for all values of s (including in the limits as s → ±∞) and set p = (c, d). Then p � p1(s)
for all s, and fi (p, λ) > 0 for all i and λ ∈ [λ−, λ+]. If we set K (s) ≡ {x : p ≤ x ≤ z}, then
{K (s)} clearly satisfies the first 4 conditions of Definition 2 to show that (p1(s),Λ(s)) is
forward inflowing stable. The only thing that remains to be shown is that K+ ⊂ B(p1+, λ+).

What we are going to show is that K+ = {x : p ≤ x ≤ z} is in the basin of attraction
of p1+ under the flow of (6.1) when λ = λ+. Fix some x ∈ K+. As shown above, K+ is a
forward invariant box, so {x · t}t≥0 stays in K+ for all time. Hence, ω(x) is nonempty and
compact. By Theorem 3.22 of Hirsch and Smith [7], ω(x) is a fixed point, and therefore must
be p1. Because x was an arbitrary point in K+, K+ is in the basin of attraction of p1+.

Therefore, (p1(s),Λ(s)) is FIS, and there cannot be R-tipping away from (p1−, λ−). ��
Let us look at a couple of specific examples to illustrate Proposition 4.

Example 4 LetΛ(s) = 1
2 (1+ tanh(s)). Then λ− = 0 and λ+ = 1.We define the dependence

of a and b on the parameter λ to be a(λ) = 2λ and b(λ) = 8λ. This means that b(Λ(s)) > −1
and a(Λ(s)) <

√
b(Λ(s)) + 1 for all s. However,√

b(Λ(−5)) + 1 < a(Λ(5)),

which implies by Proposition 4 there will be R-tipping away from p3− for some parameter
shift Λ̃ and some r > 0. In this case, Λ̃(s) = Λ(s) works. See Fig. 8a. Note that because
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Fig. 8 In both pictures, the green curves represent the stable paths p1(s) = −√
b(Λ(s)) + 1 and p3(s) =√

b(Λ(s)) + 1 and the red curve represents the unstable path p2(s) = a(Λ(s)) for different values ofλ = Λ(s).
The blue curves are pullback attractors to the stable paths. In (a), the position of p3(s) for small s-values is
smaller than the position of p2(s) for larger s-values. Therefore, R-tipping is possible away from p3−. In (b),
p1(s1) < p2(s2) < p3(s1) for all s1 < s2 (including in the infinite limits), so R-tipping is not possible away
from either p1− or p3−. Pullback attractors are shown in blue for both paths (Color figure online)

Λ is a one-to-one function of s, we can plot the positions of the trajectory and the quasi-
stable/unstable equilibria against λ = Λ(s) rather than s. This is convenient because the
range of s is infinite, but the range of Λ is bounded.

Example 5 Once again, let Λ(s) = 1
2 (1 + tanh(s)), but this time define a(λ) = 1

2λ and
b(λ) = λ. Then b(Λ(s)) > −1 and a(Λ(s)) <

√
b(Λ(s)) + 1 for all s. Furthermore,

−√
b(Λ(s)) + 1 < −1 < 0 < a(Λ(s)) <

1

2
< 1 <

√
b(Λ(s)) + 1

for all s, so by Proposition 4 there can be no R-tipping away from either p1− or p3−. See
Fig. 8b.

7 Conclusion

In summary, we have shown that R-tipping results aremore complicated inmulti-dimensional
systems than in one-dimensional systems. R-tipping can happen anytime a path is not forward
basin stable of a certain type, and sometimes there can be R-tipping even if a path is FBS.
We proposed forward inflowing stability as a condition that prevents R-tipping in systems
of all dimensions. One drawback is that it is difficult to know when a path is FIS because
it requires knowledge about the autonomous systems with fixed parameter values and what
sort of forward invariant sets exist around the equilibria. One future direction we could take
is to give more concrete results about how to determine whether a path is FIS.

In this paper, we focused on stable paths of equilibria. However, in multi-dimensional
systems, there could be stable paths of other attracting invariant sets, such as periodic orbits.
In such a situation, different kinds of R-tipping are possible, known as partial tipping and full
tipping (see [1]). Not much work has been done to determine when these kinds of tipping
can or cannot happen, but the FBS and FIS methods could be used as a starting point, as
we believe the results given in this paper are generalizable to invariant sets other than fixed
points.
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Appendix: Proofs of Lemmas from Sect. 3

The proof of Lemma 1 closely follows the proof of Theorem 2.2 in Ashwin et al. [3]:

Proof Let us assume for the sake of simplicity that X− = 0. Let

ω(ε) := sup{|dx f (x,Λ(s)) − dx f (0,Λ(s))| : s ∈ R, |x | < ε}
δ(S) := max

{
sup
s<−S

| f (0,Λ(s))|, sup
s<−S

|dx f (0,Λ(s)) − dx f (0, λ−)|
}

.

Note that ω(ε) → 0 as ε → 0 and δ(S) → 0 as S → ∞.
By the linear stability of X−, the eigenvalues of

A := dx f (0, λ−)

have negative real parts, so there are K > 0 and α > 0 such that
∣∣et A∣∣ ≤ Ke−αt for t ≥ 0

(see Lemma 3.3.19 of [5]).
Now set h(x, s) = f (x,Λ(s)) − Ax so that

ẋ = Ax + h(x, s) (7.1)

Then

dxh(x, s) = dx f (x,Λ(s)) − A

= [dx f (x,Λ(s)) − dx f (0,Λ(s))] + [
dx f (0,Λ(s)) − dx f (0, λ−)

]
Therefore, if s < −S, we have

|h(0, s)| ≤ δ(S), |dxh(x, t)| ≤ ω(|x |) + δ(S).

Consider the inequalities

4Kα−1ω(ε) ≤ 1

2Kα−1δ(S) ≤ ε

4Kα−1δ(S) ≤ 1,

(7.2)

for ε, S > 0. If we choose ε sufficiently small, we can find some S0 > 0 to satisfy (7.2).
Now, we know that δ(S) → 0 as S → ∞, so there is an S1 > 0 such that S ≥ S1 implies
that δ(S) ≤ δ(S0). Then if S ≥ S1, (7.2) is satisfied.

Now, fix any r > 0. We will show that the pullback attractor xr (t) to X− = 0 satisfies
|xr (t)| < ε as long as r t < −S1.

Let P be space of continuous functions x(t) defined for t < − S1
r such that |x(t)| ≤ ε.

We define x̂ for x ∈ P by

x̂(t) =
∫ t

−∞
e(t−u)Ah(x(u), ru) du.

Then if x ∈ P , x̂ = x if and only if x(t) is a solution of (7.1). Also,

|x̂(t)| ≤ ε,
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so x �→ x̂ is a map from P to itself. Furthermore, if x1, x2 ∈ P , then

||x̂1 − x̂2|| ≤ 1

2
||x1 − x2||,

where ||x || := supt<−S1/r |x(t)|. Thus, x �→ x̂ is a contraction mapping on P , so there is a
unique x(t) ∈ P such that x(t) = x̂(t). This x(t) is a solution to (7.1) and satisfies |x(t)| ≤ ε

for all t < −S1/r . This x(t) must be the pullback attractor to X− = 0, since the pullback
attractor is the only trajectory of (1.3) that stays within a small neighborhood of X− for all
backward time. (See Theorem 2.2 of [3].) ��
Proof of Lemma 2 Fix r > 0. For each n ∈ N, there exists some Nn ∈ N such that m ≥ Nn

implies |y ·λ+ sm − z| < 1
n . (If n ≥ 2, choose Nn > Nn−1.) Since Λ(r t) → λ+ as t → ∞,

there exists some Tn > 0 and δn > 0 such that if |x(t) − y| < δn and t > Tn , then
|x(t + sNn )− y ·λ+ sNn | < 1

n . There exists some Mn ∈ N such that tMn > Tn and ifm ≥ Mn ,
then |x(tm) − y| < δn . (Again, if n ≥ 2, choose Mn > Mn−1.)

Now, set un = sNn + tMn . Then,

|x(un) − z| = |x(tMn + sNn ) − z|
≤ |x(tMn + sNn ) − y ·λ+ sNn | + |y ·λ+ sNn − z|
<

1

n
+ 1

n

= 2

n

Therefore, x(un) → z as n → ∞. ��
Proof of Lemma 3 Let us assume for the sake of simplicity that X+ = 0 and λ+ = 0. Since
(X+, λ+) = (0, 0) is attracting, all eigenvalues of A = dx f (0, 0) have negative real part,
so there is some k > 0 such that Re(μ) < −k for every eigenvalue μ of A. We can choose
an inner product 〈, 〉 on U such that 〈Ax, x〉 ≤ −k〈x, x〉 for all x ∈ U (see the lemma in
Chapter 7, Section 1 of [6]). This defines a norm ||x || = 〈x, x〉1/2. By Taylor’s formula in
several variables we can write

f (x, λ) = Ax + α(x, λ) + β(x),

where ||α(x, λ)|| ≤ γ (x, λ)|λ| for a positive continuous γ , and ||β(x)|| ≤ δ(x)||x ||, where
δ is positive, continuous and δ(x) → 0 as x → 0. Then we can write (1.3) as

dx

dt
= Ax + α(x,Λ(s)) + β(x)

ds

dt
= r

For a given ε > 0 and S > 0, define Nε,S = Bε(0) × [S,∞), where Bε(0) = {x ∈ U :
||x || < ε}. Note that

d

dt

(||x ||2) = 2〈ẋ, x〉
= 2〈Ax, x〉 + 2〈α(x,Λ(s)), x〉 + 2〈β(x), x〉
≤ −2k〈x, x〉 + 2||α(x,Λ(s))|| · ||x || + 2||β(x)|| · ||x ||
≤ −2k||x ||2 + 2γ (x,Λ(s))|Λ(s)| · ||x || + 2δ(x) · ||x ||2
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= 2||x ||2
(

−k + 2γ (x,Λ(s))
|Λ(s)|
||x || + δ(x)

)

Choose ε > 0 such that if ||x || ≤ ε, δ(x) < k
2 . Then choose S > 0 such that if s ≥ S,

|Λ(s)| < kε
4M where M > sup||x ||≤ε,λ∈[λ−,λ+] γ (x, λ). Thus, if ||x || = ε and s ≥ S,

d

dt
(||x ||)2 < 2ε2

(
−k + 2γ (x,Λ(s))

(
kε

4Mε

)
+ k

2

)

< 2ε2
(

−k + k

2
+ k

2

)

= 0

Therefore, for sufficiently small ε > 0 there exists an S > 0 such that the vector field of
(1.3) points into Nε,S on its boundary, so Nε,S is forward invariant. ��
Proof of Lemma 4 Pick an ε > 0 sufficiently small for Lemma 3. Make ε smaller if necessary
so that Bε(X+) ⊂ B(X+, λ+). Then by Lemma 3, there exists an S > 0 such that if
x(t) ∈ Bε(X+) for rT > S, then x(t) ∈ Bε(X+) for all t ≥ T . Now fix r > 0. Since
Bε(X+) is compact, there is some y ∈ Bε(X+) such that x(tn) → y as tn → ∞. But
y ∈ B(X+, λ+) by assumption, so y · t → X+ in the autonomous system (1.1). Therefore,
by Lemma 2, there exists a {un} → ∞ such that x(un) → X+.

Now pick any δ ∈ (0, ε). Then by Lemma 3, there exists some Sδ > 0 such that if
x(T ) ∈ Bδ(X+) for rT > Sδ , then x(T ) ∈ Bδ(X+) for all t ≥ T . By the previous paragraph,
there is a unδ > Sδ/r such that |x(unδ )−X+| < δ. Therefore, |x(t)−X+| < δ for all t ≥ unδ .
Hence x(t) → X+ as t → ∞. ��
Proof of Lemma 5 By Lemma 4, there is an ε > 0 and an S1 > 0 such that if |x(t)− X+| < ε

for r t > S1, then x(t) → X+ as t → ∞. Since K ⊂ B(X+, λ+) is compact, there is some
T0 > 0 such that y ·λ+ t ∈ Bε/2(X+) for any y ∈ K and t ≥ T0. Also, there is some S2 > 0
such that if x(T ) = y0 ∈ K for rT > S2, then |x(T +T0)− y0 ·λ+ T0| < ε/2 for any y0 ∈ K .

Take S = max{S1, S2}. Then, suppose x(T ) ∈ K for rT > S. If x(T ) = y0, then

|x(T + T0) − X+| ≤ |x(T + T0) − y0 ·λ+ T0| + |y0 ·λ+ T0 − X+|
< ε/2 + ε/2

= ε

Therefore, x(t) → X+ as t → ∞. ��
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