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Abstract

Floorplans are commonly used to represent the layout of buildings. Research works toward computational techniques that
facilitate the design process, such as automated analysis and optimization, often using simple floorplan representations that
ignore the space’s semantics and do not consider usage-related analytics. We present a floorplan embedding technique that
uses an attributed graph to model the floorplans’ geometric information, design semantics, and behavioral features as the node
and edge attributes. A long short-term memory (LSTM) variational autoencoder (VAE) architecture is proposed and trained
to embed attributed graphs as vectors in a continuous space. A user study is conducted to evaluate the coupling of similar
floorplans retrieved from the embedding space for a given input (e.g., design layout). The qualitative, quantitative, and user
study evaluations show that our embedding framework produces meaningful and accurate vector representations for floorplans.
Besides, our proposed model is generative. We studied and showcased its effectiveness for generating new floorplans. We
also release the dataset that we have constructed. We include the design semantic attributes and simulation-generated human
behavioral features for each floorplan in the dataset for further study in the community.

Keywords Floorplan representation - Floorplan generation - LSTM Variational autoencoder - Attributed graph - Design

semantic features - Human behavioral features

1 Introduction

Floorplan representations support a set of fundamental activ-
ities in the architectural design process, such as the ideation
and development of new designs, their analysis and eval-
uation for any selected performance criteria, and the com-
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munication among the stakeholders. While computer-aided
design (CAD) and building information modeling (BIM)
approaches to support the creation of digital building mod-
els from which floorplans can be extracted, these methods
do not support the systematic representation or comparison
of floorplan features, which could be derived from geo-
metric and semantic properties, as well as more advanced
performance metrics, such as space utilization and occupant
behaviors [13,31]. Image processing techniques and convolu-
tional neural networks (CNNs) have been utilized to extract
features from floorplan images [42,43]. These features are
used for retrieving similar floorplans. In another branch, the
floorplans are represented with graphs, and graph matching
methods are utilized for comparing and retrieving similar
floorplans [40,41]. Other approaches like symbol spotting
methods [11,19,37] are utilized for retrieving similar floor-
plans. However, none of these works represent floorplans
with numerical vectors. Besides, they overlooked the design
semantic and human behavioral features. Design semantic
features are necessary because they have high-level infor-
mation for floorplans like the square footage of rooms.
Humans are the primary inhabitant of these buildings, and
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their behaviors (i.e., trajectories) are often highly correlated
with environments [47]. Their interaction with the environ-
ment provides necessary information for safety or other types
of design metrics like visibility and accessibility. Evacuation
time, travel distances, and crowd flow (also known as egress
flow) are some of the salient behavioral features which have
been widely used by researchers in analyzing and optimizing
architectural elements and environments using crowd simu-
lations as they relate to human movements [6,16,17].

We propose a novel technique for floorplan represen-
tation that models floorplans with attributed graphs as an
intermediate representation to address the limitations in pre-
vious works. A novel long short-term memory (LSTM)
variational autoencoder (VAE) model is proposed to embed
the attributed graphs in a continuous space. This method
considers the design semantics and high-level structural
characteristics, and crowd behavioral attributes of poten-
tial human-building interactions. This approach represents
floorplans with numerical vectors in which the geometrical
properties, design semantics, and human behavioral features
are encoded. These vectors facilitate different applications
related to floorplans, such as recommendation systems, real-
time evaluation of designs, fast retrieval of similar floorplans,
and any application that needs to cluster floorplans. The
qualitative and quantitative results show the performance of
our model for generating representative embedding vectors
such that the considered features are encoded accurately. A
user study is conducted to validate floorplan retrievals from
embedding spaces to their similarity with the input floor-
plans. Floorplan generation is an active area of research
in computer graphics. Recently floorplan generation meth-
ods based on machine learning have been integrated into
design workflows to facilitate and enhance the design pro-
cess, [9,21,52]. Although floorplan generation is not our
approach’s primary goal, the proposed model is generative.
We can automatically generate floorplans with desired char-
acteristics, as demonstrated by our experiments.

1.1 Contributions
Our contributions can be summarized as follow:

1. A workflow to represent floorplans as attributed graphs,
augmented with design semantic and crowd behavioral
features generated by running crowd simulations.

2. A novel unsupervised generative model to learn a mean-

ingful vector representation of floorplans using LSTM

variational autoencoder.

Generation of new floorplans using the proposed model.

4. A user study to evaluate the qualitative performance of
our approach.

5. Provision of a publicly released dataset of floorplans of
indoor environments, which are augmented with seman-

»
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tic and behavioral features. The semantic design features
are extracted by our automated tool, and the human
behavioral features are generated by hours of the run-
ning simulation.

2 Related work

Our work relates to research in two areas: floorplan repre-
sentation and floorplan generation.

2.1 Floorplan representation

Floorplan representation aims to represent floorplans with
numerical vectors whose structure and features are encoded
in these vectors. To the best of our knowledge, representing
floorplans by numerical vectors is not done to date. There
are some prior works for retrieving similar floorplans with
representing floorplans as images or graphs. They can be
mainly divided into three categories: image-based, graph-
based, and symbol spotting methods.

2.1.1 Image-based methods

Several approaches based on conventional image processing
techniques for comparing floorplans are proposed. In these
approaches, floorplans are represented as images and his-
togram of oriented gradients (HOG) [10], bag of features
(BOF) [27], local binary pattern (LBP) [1], and run length
histogram [ 18] have been utilized for extracting features from
these images. Then, these extracted features are used for
comparison and retrieving floorplans. By emerging convo-
lutional neural networks (CNN), In [43], a deep CNN is
presented for feature extraction to address the limitation of
conventional image processing techniques for extracting fea-
tures. These methods suits object-centric floorplans datasets
in which floorplans are annotated with furniture or specific
visual symbols. However, these features are not semantics
and do not correctly capture the high-level design features.
Moreover, human behavioral features are not considered in
these methods.

2.1.2 Graph-based methods

In this category, floorplans are represented with graphs, and
graph matching methods are utilized for measuring their
similarity. Different strategies are used for representing floor-
plans as a graph. In [42] rooms are nodes, and edges capture
the adjacency between the rooms. Besides, nodes are aug-
mented with furniture types annotated in floorplans. In [41],
the graphs are augmented with more attributes like room area
and furniture style in three different representation layers.
Since in these works, floorplans are represented with graphs,
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all of them capture the floorplans structure, and some of them
add attributes to nodes. However, mainly they do not include
semantic and high-level features as well as human behavioral
features. Moreover, all of these methods use graphs as a final
representation and do not provide numerical vectors.

2.1.3 Symbol spotting methods

Symbol spotting is a special case of content-based image
retrieval (CBIR) [19,37] which is used for document anal-
ysis. The system retrieves zones from the documents that
are likely to contain the giving query. Queries could be a
cropped or hand-sketched images. Pattern recognition tech-
niques are used in symbol spotting methods like moment
invariants such as Zernike moments in [26]. Reducing search
space in symbols spotting methods is proposed based on
hashing of shape descriptors of graph paths (Hamiltonian
path) in [11]. SIFT/SURF [51] features being efficient and
scale-invariant are commonly used for spotting symbols in
graphical documents. Symbol spotting methods are applied
to small datasets which do not have complex images, and
they are only applicable for retrieval purpose.

2.2 Floorplan generation

Floorplan generation aims to generate floorplan designs auto-
matically by satisfying some constraints like room sizes and
adjacency between rooms. We can divide them into two
groups: procedural/optimization-based methods and recently
deep learning methods.

2.2.1 Procedural/optimization-based methods

The constraints are manually defined in these methods, and
optimization methods are used for constraint satisfaction to
generate new floorplans. In [31], they used the Bayesian net-
work to learn synthesizing floorplans with given high-level
requirements. In [38,39], they proposed an enhanced evolu-
tionary strategy (ES) with a stochastic hill climbing (SHC)
technique for floorplan generation.

2.2.2 Deep learning methods

In [52], a deep network was proposed for converting a given
floorplan layout as input to a floorplan with predicting rooms
and walls location. In [9], they proposed a method compris-
ing three deep network models to generate floorplans. In the
first step, the model generates the layout. In the second step,
the room locations are generated, and finally, furniture loca-
tions will be generated. In this model, users are in the loop,
and they can modify the input for the next steps. In [21],
they proposed a framework based on deep generative net-
work. Users specify some properties like room count, and

their model converts a layout graph, along with a building
boundary, into a floorplan. A graph-constrained generative
adversarial network is proposed in [34]. They took an archi-
tectural constraint as a graph (i.e., the number and types) and
produced a set of axis-aligned bounding boxes of rooms.

2.3 Comparison to prior work

Previous works do not represent floorplans with numerical
vectors. They usually overlooked the design semantic and
human behavioral features. This paper presents floorplans
with numerical vectors encoded with design semantic, human
behavioral features, and room directions. Besides, we also
utilize generative models for addressing floorplan generation
at the same time. The proposed method is an extension of a
recent approach [2] with the following extensions:

— Anovel LSTM variational autoencoder with two branches
for representing attributed graphs with features on both
nodes and edges with numerical vectors. Besides, we also
include rooms’ directions as edge attributes to maintain
layout symmetry.

— We study and showcase the generative power of our
model for generating new floorplans.

— We conducted a user study to evaluate the qualitative
performance of our embedding approach.

3 The proposed framework

Figure 1 illustrates the proposed framework, comprising of
two components. The first component models floorplans with
attributed graphs that nodes and edges of these graphs are
augmented with design semantic and human behavioral fea-
tures. The second component embeds attributed graphs in a
continuous space. The details are provided in the following
sections.

3.1 Dataset

We used the HouseExpo dataset [28] that includes 35, 126
2D floorplan layouts in JavaScript Object Notation (JSON)
format. There are 25 room types in this dataset where some of
them share similar semantic labels (e.g., toilet and bathroom
or terrace and balcony). We reduced the types to 10. This
reduction is made by removing less common types based on
reported statistical metrics in the dataset (e.g., freight ele-
vator) and considering a unique type for similar proposed
components. The final room types are Bedroom, Bathroom,
Office, Garage, Dining Room, Living Room, Kitchen, Hall,
Hallway and Unknown. Unknown type is considered for
room segments with a noisy label that we cannot assign a
unique label. Additionally, we remove from the set the floor-
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Fig. 1 An overview of the proposed approach. a Floorplans are
firstly converted to attributed graphs as immediate representation, with
attributes residing on both nodes and edges; b random walk is applied
to the attributed graphs to generate a set of node sequences and edge

plans with inaccurate or missing labels. At the end of this
process, we obtain 8729 floorplan layouts. This preprocess-
ing is done to make the dataset reliable for training. Corrupted
data will decrease the training accuracy and makes the out-
comes undesirable.

3.2 Floorplans to attributed graphs

After pruning the dataset, we model each floorplan with an
attributed graph. The rooms compose nodes, and the edges
are their connectivity if there is an immediate door between
the room pairs. For this conversion, we compiled house-
Expo samples as images. Then we utilized a series of image
processing techniques for room segmentation and finding
their connectivity. Graph structure resembles the structure of
floorplans like the number of rooms and their connectivity.
Considering floorplan structure is necessary but not enough.
To have a better and more meaningful representation, we need
to integrate high-level design semantic features. Moreover,
humans inhabit these buildings, and their interaction with the
environment provides valuable implicit information. Integra-
tion of how they interact with environments is necessary for
safety or other types of design metrics like visibility and
accessibility. Therefore, we augmented the graphs with both
high-level design semantic features and human behavioral
features (Table 1).

The semantic design features include room type, square
footage, and the connection direction. The room types
represented with a 10-dimensional one-hot vector where
roomType; = 1 if the type is ith type and other entities are
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sequences; ¢ embedding vectors are learned with a novel parallel LSTM
VAE model; d the learned embedding vectors can be used for different
downstream tasks

zero. The square footage is represented with a scalar value
and direction of connection with a four-dimensional one-
hot vector. We considered four main directions: North, East,
South, and West. Thus, direction; = 1 if direction belongs
to ith direction and other entities are zero. The room types
are provided as a label in the dataset, and image processing
techniques extract both square footage and direction of the
connection. We are not given the cardinal directions. There-
fore, we considered the top left corner of floorplan images
as the origin. Hence, the +y axis points to the north, and
other directions are considered relatively. For calculating the
direction, we need a reference point (i.e., room). The direc-
tion between rooms is the direction from the node (i.e., room)
with the highest degree (room with more connections) to the
node with a low degree. Usually, the node (i.e., room) with
the highest degree is the main room in the floorplans like
the living room or hallway. In other words, the node with
the highest degree is the reference for setting the directions.
Please note in the graph that the edges are bidirectional if
there is a door between two rooms, and connection direction
is the assigned feature. The room type and square footage
are specific to each room, and we consider them as node fea-
tures. However, the connection direction is a shared property
between room pairs; we add it to the edge features (edge
between room pairs).

The human behavioral features are generated by running
simulations (Fig. 2). They include metrics regarding evacu-
ation time, traveled distance, flow rate, and the number of
successful/unsuccessful agents to exit from the correspond-
ing building (Table 1). To generate these behavioral features,



Graph-based generative representation learning of semantically and behaviorally augmented floorplans

Table 1 Features on nodes and
edges

Feature classes

Feature types Dimension

Node features

Behavioral

Edge features

Design semantic

Design semantic

—

Square footage room types

—
(]

Not completed agents
Max evacuation time
Min evacuation time
Exit flow rate
Completed agents
Max traveled distance
Avg evacuation time
Avg traveled distance
Min traveled distance

GG GGG GV GGV

Direction

Fig.2 Crowd simulations are used to compute behavioral features for
the floorplans. Layout walls are shown in brown, crowds are shown in
green, and the blue flag shows the building exit point (for evacuation)

we converted 2D floorplans to 3D models loadable in a crowd
simulator, SteerSuite [46]. The simulator automatically pop-
ulates virtual agents in each room with the target to exit
the floorplan. In one of the training models (e.g., Model
3) presented in Sect. 4.2, we incorporated these behavioral
features (retrieved from simulations—dynamic) along with
design semantic and edge features (retrieved from the geo-
metric/topological characteristics of the environment—static)
to evaluate how effectively they impact the embedding space.
For example, we can expect to retrieve neighbors (floorplans)
from Model 3, which do not look symmetrical in terms of
holding their overall shape but are behaviorally similar and
would yield similar values for behavioral features, and also
if users are able to correctly perceive the ordering of the
retrieved neighbors which are retrieved using Model 3 than
other embedding models that are trained using design seman-
tic alone or design semantic plus edge features.

Note that in our simulations, the only obstacles the agents
interact with are the walls of the environment (static obstacle)
or the other agents (dynamic obstacle). However, our simula-
tion setup does not restrict us from including different kinds
of obstacles in the environment (e.g., pillars or other physical
objects). The past research has shown that the placement of

pillars or other obstacles at proper locations can often facil-
itate movements (e.g., crowd flow) during the evacuation of
the environment [6,16,17]. Figure 3 shows a snapshot of the
simulation in the presence of 4 obstacles in the environment.
All human behavioral features are presented with one scalar
value with a total dimension of 9. These features are gener-
ated for each room; hence we added them to the nodes feature
vector.

At the end of this step, each floorplan is represented with
an attributed graph G = (V, E) in which V denotes its
vertex set (room segments) and £ C V x V denotes its
edges (connectivity between room pairs). Each node v has
a 20-dimensional feature vector F,, and each edge e has a
four-dimensional feature vector F,.

3.3 Floorplan embedding

We model the floorplans with attributed graphs with features
on both nodes and edges as described in Sect. 3.2. These
graphs represent floorplan geometry, their design seman-
tics, and behavioral features. They can be used directly for
floorplan representation. However, graph analysis is expen-
sive in terms of computation and space cost. This challenge
is addressed by proposing efficient graph analysis methods
like [14,25,29] but are not efficient enough. Besides, These
methods do not represent graphs with a compact numeri-
cal vector. Another solution for addressing the complexity
of graph analysis is graph embedding. Graph embedding
maps the graphs to a low-dimensional space in which their
properties and information are maximally preserved. In this
low-dimensional space, the graphs with similar properties
are close. We have different graphs like the heterogeneous
graph, homogeneous graph, attributed graph. It means the
input for graph embedding methods are varying, and a sin-
gle method cannot handle all types. Graph embedding can
mainly be divided into node embedding, edge embedding,
hybrid embedding, and whole-graph embedding [8].

@ Springer
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Fig. 3 A snapshot of the simulation in the presence of the obstacles
(e.g., pillars/hurdles). Top: the crowd simulation in 3D. Bottom: Crowd
trajectories overlayed on top of the environment layout

In this paper, we are dealing with whole-attributed-graph
embedding. We want to represent each attributed graph with
a vector. These vectors encode graph (floorplan) structure
as well as their design semantics and behavioral features.
Besides, these graphs are unlabeled, i.e., we do not have a
label for each graph to perform supervised classification or
regression. Moreover, the graphs vary (in terms of the number
of nodes), and the number of nodes is relatively small. We can
use other types of embedding like node embedding and then
use the node embedding vectors’ average as the whole-graph
representation. However, with this strategy, the whole-graph
structure is not appropriately captured and does not lead to
accurate vector representation [4,48].

There are quite a few works for the whole-graph embed-
ding. Some whole-graph embedding methods rely on the
efficient calculation of graph similarities in graph classi-
fication tasks [4,32,35,44]. These methods are supervised
and need a labeled dataset. Besides, they are designed
for unattributed graphs. On the contrary, our graphs are
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attributed and unlabeled. Therefore, these methods do not
apply to our problem, and we need an unsupervised method.
Graph2Vec [33] is an unsupervised method that maximizes
the likelihood of graph subtrees given graph embedding and
generates vector representations. However, since this model
uses subgraphs, the global graph information is not captured
correctly [48]. Besides, this method is not applicable for
graphs with attributes both on nodes and edges. In [48], for
capturing the whole-graph structures, they take advantage of
random walk for converting graphs to a set of sequences.
Then an LSTM autoencoder is presented to learn graph rep-
resentations. However, this method suits unattributed graphs.

Sentences are presented with a sequence of words. Each
word in sentences is represented with an embedding vector.
In other words, we have a sequence of vectors in sentences.
In [7,50], LSTM variational autoencoder is used for text and
sentence embedding and generation. The methods proposed
in [7,48,50] motivate us to convert our graphs to sequences
(like sentences which are a sequence of vectors) and propose
a novel LSTM variational autoencoder model that suits our
unlabeled attributed graphs with feature both on nodes and
edges. In particular, we convert each floorplan (graph) into
a set of sequences (Sect. 3.5), and we propose a generative
model that maps our graphs (sequences) to a d-dimensional
space 0 : G — R?. The proposed model is detailed in the
next section.

3.4 Model

We present a novel LSTM variational autoencoder architec-
ture illustrated in Fig. 1. LSTM is a special kind of recurrent
neural network (RNN). It is designed for learning long-term
dependencies by introducing state cell [20] to address the
vanishing gradient in vanilla RNN with long-term sequences
[5]. Autoencoders are a type of unsupervised neural net-
work with two connected networks. The first network is an
encoder that converts the inputs to latent vectors in a low-
dimensional space. The second network is the decoder, which
reconstructs the original input vector from latent vectors [24].
However, the vanilla autoencoders map each input to a con-
stant vector. The embedding space with vanilla autoencoder
is not continuous, and interpolation is not allowed. varia-
tional autoencoder (VAE) is a generative model designed
to address vanilla autoencoders’ limitations by learning the
probability density function (PDF) of the training data [23].
The VAE generates a continuous embedding space in which
vector operations are allowed.

As mentioned we have attributes both on nodes and
edges with different dimensions. To address this difference
in dimension, we consider a parallel LSTM VAE with two
branches, one for node sequences and one for correspond-
ing edge sequences. Let S, = $u,, Sy, ..., Sp; be a node
sequence and S, = S¢;, Se,, ..., S¢;_; be the corresponding
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edge sequence. We aim to learn an encoder and decoder to
map between the space of these two sequences and their con-
tinuous embedding z € R? where d is a hyperparameter. In
each branch, the encoder is defined by a variational posterior
q4(z|Sy) and g4 (z]S,) and the decoder by a generative dis-
tribution py (S, |z) and py(S,|z), where 6 and ¢ are learned
parameters. For each branch, loss function has two terms (Eq.
1). The first term is reconstruction error that we used Mean
Square Error (MSE). This term encourages the decoder to
learn to reconstruct the data S, S,. The second term which is
aregularizer is Kullback—Leibler (KL) divergence to penalize
loss if the encoder outputs representations that are different
than a standard normal distribution N (0, 1) [45]. In training,
two branch loss functions are summed for back-propagation

(Eq. ).

Lossorar = (|1S0 — Sall* + K LIgg(z]Sy), N (0, 1)
+(I1Se = Sell* + K LIgg(zISe), NO, D]) (1)

In both branches for the encoder, we have an LSTM layer
with 256 units. In the following, we have two fully connected
layers with dimension 16 for generating u and o and conse-
quently the d = 16. Then we have the sampling, and finally,
we have the decoder with one LSTM layer with 256 units for
reconstructing the input sequences. The number of layers and
number of units/neurons are set experimentally for best per-
formance. Adam [22] is used as optimizer. Before training,
each graph is converted to a set of sequences (Sect. 3.5), and
these sequences are used as input for training. After train-
ing, each graph is represented by averaging its sequences’
embedding vectors, Eq. 2 [48]. The Nseq is the number of
sequences, and RS is the corresponding latent vector to each
sequence.

" RS, @)

3.5 Graphs to sequences

Graphs can be converted to sequences by methods including
but not limited to random walk or breadth-first search (BFS).
In [48], the random walk, BFS, and shortest path between
all pairs of nodes are utilized. The experiments show that
sequences generated by random walk lead to a better vec-
tor representation. The reason is that random walk captures
more than immediate neighbors of nodes. The random walk
is introduced in [36] for converting graphs to sequences. In
this version, we pick a node, and then we choose one of its
edges randomly to move to the next node. We repeat this
procedure until we get a walk of some predefined length.
(Length of a walk is defined by the number of nodes on the
walk, and a shorter walk than the predefined length will be

padded into the predefined length.) Later, two other versions
are proposed.

Random Walk 1 In [15], the random walk is modified to
have two parameters Q and P.Parameter Q is the probability
of discovering the graph’s undiscovered parts, and parameter
P is the probability of returning to the previous node. We call
the random walk proposed in [15] “random walk 1.”

Random Walk 2 In [48] the random walk is modified by
adding probability 1/D(N), where D(N) is the degree of
node N. We start from a node in this walk, and the next
node will be selected by its probability 1/D(N). We call this
random walk presented in [48] as “random walk 2.”

We used both walks with different walk lengths to find
the best performer walk and walk length. Besides node
sequences, the edge sequences are captured at the same time.
Both nodes and edge sequences are used for training the
model.

4 Experiments
4.1 HouseExpo++ dataset

The original HouseExpo dataset includes 35, 126 2D floor-
plans. For each floorplan, the number of rooms, the bounding
box of the whole floorplan, a list of vertices, a dictionary of
room categories, as well as their bounding boxes are pro-
vided [28]. While we can use the provided bounding box of
the rooms for segmentation, these bounding boxes are not
accurate; therefore, we use them only for labeling. We com-
pile these floorplans (JSON format) into images. Then, we
segment the images to find the rooms, their possible connec-
tions, the direction of connections, and their square footage.
The provided bounding boxes in the original dataset are used
for assigning labels to room segments by the criterion of max-
imum overlapping. The described processes are done with
our automated tool by image processing techniques. More-
over, we convert these JSON formatted floorplans to files in
areadable format with our 3D crowd simulator (SteerSuite).
Then by running simulations, we record the human behavior
features (features are provided in Table 1). We call this aug-
mented dataset as HouseExpo++ that is publicly available in

[3].
4.2 Training

As described in Sect. 3.5, we converted graphs to nodes and
edge sequences. We utilized both mentioned walks with walk
lengths 3,5, and 7. For random walk 1, we set both Q and P to
0.5. For each graph, we run the random walk 11 times. There-
fore, we have 11 sets of node and edge sequences for each
graph. Out of 11, one set is considered as a proxy set (proxy
graph). These proxy sets do not participate in training and are
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only used later for evaluation. As mentioned, we have two
random walks, and we run each of them with walk lengths 3,
5, and 7. In total, we have 6 different sets of sequences. On
average, we have 5 nodes in each graph. However, because of
randomness in random walks, all sequences are not valid. For
example, it happens to have a sequence which is the repeti-
tion of two nodes. These types of irregularities are pruned. On
average, we have 306440 node sequences and 306440 corre-
sponding edge sequences in these 6 sets. The sequences with
lengths less than the target length are padded with zeros. We
trained three models considering a different set of features.

Model 1 In this model, we only considered the design
semantic features on nodes. We removed the edge branch,
and the model is trained only with nodes sequences. The
dimension of node features is 11.

Model 2 In this model, we considered semantic design
features both on nodes and edges. The model is trained with
both branches. The features dimension on nodes is 11 and on
edges is 4.

Model 3 In this model, we considered all semantic design
features and human behavioral features. The model is trained
with two branches. The features dimension on nodes is 20
and on edges is 4.

All three models have the same described architecture
and loss function. Note that in Model 1, the edge branch is
removed, and we have only the node branch’s loss function.
However, in the other two models, the loss is the summation
of two branches’ loss. The learning rate was set empirically
as 0.001. All three models are trained on a machine with 32
GB RAM, 12 *3.50 GHz cores CPU, and Quadro K620 GPU
with 2 GB Memory. On average, each model takes about 4
hours for training with 50 epochs.

4.3 Quantitative evaluations

This section presents quantitative results from the experi-
ments.

4.3.1 Nearest neighbor ranks

As mentioned, by embedding, the graphs are mapped to a
continuous embedding space. The graphs with similar struc-
tures and properties should be close to each other in the
embedding space. The closeness of two floorplans can be
measured by the euclidean distance of the two corresponding
embedding vectors (smaller distance denotes higher simi-
larity). If this embedding space is well constructed, similar
floorplans in terms of structure and semantic and behavioral
properties should be closed. Therefore, for each graph (called
query graph), we compute the euclidean distance from this
graph to other graphs (including itself) and rank the other
graphs for this graph according to the distance. We hypoth-
esize that each graph should find itself as the first nearest
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neighbor and its proxy graph (a different set of sequences
for the query graph) in close ranks. This study is indepen-
dent of considered features on graphs and only shows the
model’s effectiveness for generating valid embedding vec-
tors. Therefore, we use all three models to obtain the top 5
nearest neighbors for each floorplan in their corresponding
learned embedding space. We calculate the average percent-
age of graphs that have themselves in the first rank and the
percentage of proxy graphs in the other four ranks. Table 2
shows these average percentages with different walk lengths
for both random walks.

As Table 2 shows, in both random walks, walk length 5
leads to better performance. Besides, random walk 2 is supe-
rior. By random walk 2 and walk length 5, each graph is in the
first rank and 92% of proxy graphs in the second rank. Since
proxy graphs are a different set of sequences on the graphs,
a good percent of the proxy graphs should be present in top
ranks if the model performs appropriately. Random walk 2
captures our graph’s structure better, and consequently, it has
better performance. In graphs (i.e., floorplans), we always
have the central node (i.e., room) with a high degree. Then
moving toward this node gives the sequences that capture our
graph structure better. The walk length has a dependency on
the size of the available graphs in the dataset. For us, walk
length 5 is the suitable length since, in both random walks, the
embedding performance is better compared to walk length 3
and 5. In [2], with vanilla LSTM Autoencoder, on average
84% of proxy graphs are in the second rank. However, this
new model improves this percentage to 92%.

4.3.2 Clustering

As mentioned in the previous section, floorplans with similar
properties are close in the embedding space. This similarity is
in terms of floorplans structure, design semantics, and human
behavioral features. There are many parametric methods for
clustering like KMeans [49] that we need to give the number
of clusters as the input parameter. Since we do not want to
limit ourselves to a specified number of clusters, we used
density-based spatial clustering of applications with noise
(DBSCAN). Itis anonparametric clustering method based on
density. Each dense region (close-packed points) represents
a cluster, and the points in the low-density areas are marked
as outliers. It has two parameters, the minimum number of
points in each cluster, and the maximum distance between
two samples in each cluster [12].

We sampled 1000 floorplans, and we run DBSCAN over
their embedding vectors generated by our three models to
cluster them. We calculated the standard deviation for the
number of nodes, average node degrees, node types, edge
types, and flow rate for each cluster. The average of men-
tioned metrics on all clusters is provided in Table 3. The
number of nodes and average node degrees are almost simi-
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Table 2 Average of nearest neighbor ranks (Sect. 4.3.1) with two types of random walks and walk length 3, 5, or 7 for our three models.

Walk length Rank of query floorplan within 5 NN Rank of proxy graph within 5 NN
3 [100, 0,0, 0, 0] [0,51,2,1,1]
Random walk 1 5 [100,0,0,0,0] [0,76,4,2,2]
7 [100, 0,0, 0, 0] [0,56,2,1,1]
3 [100, 0,0, 0, 0] [0, 85,3,2,1]
Random walk 2 5 [100,0,0,0,0] [0,92,2,1,1]
7 [100, 0,0, 0, 0] [0, 88,3,1,1]

For each graph, we compute the euclidean distance from this graph to other graphs (including itself and a proxy graph which is a different set of
sequences of the query graph) and rank the other graphs for this graph according to the euclidean distance. Each graph should find itself as the first
nearest neighbor and its proxy graph in close ranks. We calculate the percentage of graphs that have themselves in the first rank and the percentage
of proxy graphs in the other top four ranks (e.g., “[0, 76, 4, 2, 2]” in the table denotes that 76% graphs have their proxy as the top 2 nearest neighbor,
4% as top 3,2% as top 4, and 2% as top 5). This analysis showcases that walk length 5 can lead to better performance, and random walk 2 is superior

Table 3 Average of standard

deviation for number of nodes. Number of nodes Average of node degrees Node types Edge types Flow rates
node degrees, node types, edge  nrodel 1 0,164 0.092 111 2.12

type and flow rate in clusters out

of 1000 samples in our three Model 2 0.168 0.091 1.06 1.34

models Model 3 0.161 0.093 1.07 1.41

lar in all three models. The reason is that all the corresponding
features to these metrics are available in three models. The
node type is a common feature in all three models. However,
in models 2 and 3, the performance is better. It is because
of integrating edge types in these two models. Edge type is
not a considered feature in model 1, and we have the worse
performance in model 1. Flow rate is only available in model
3, which we have the best performance. However, model 2’s
performance for the flow rate is satisfactory and shows that
integrating edge direction helps find more similar floorplans
with similar flow rates. Figure 4 shows the resulting clusters
over 1000 samples in model 3. For visualization, the vec-
tors’ dimension is reduced to two by t-distributed stochastic
neighbor embedding (TSNE) [30], and two sample floor-
plans from one of the clusters show the graph properties are
encoded accurately with our model.

4.4 Qualitative evaluations

This section presents qualitative results from the experi-
ments.

4.4.1 Nearest neighbors (NNs)

As described, we trained three models with a different set
of features. Each model makes an embedding space. We
selected three random floorplans and found their top 5 nearest
neighbors in each model’s corresponding embedding space.
Figure 5 shows the query floorplans and their top 5 nearest
neighbors. For each sample, the first row shows the NNs in
the first model’s embedding space, the second line shows
the NNs in the second model’s embedding space, and the
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Fig. 4 Clusters after running DBSCAN over 1000 random samples.
Two samples from one of the clusters are shown. They have the same
number of nodes, same node degrees, and similar room types (blue
nodes are bedrooms, and yellow nodes are living rooms). Besides, the
average square footage for the top floorplan is 23.49, and for the bottom
floorplan is 25.38. This shows that the embedding space indeed captures
the design semantics of floorplans

third row shows the NNs in the third model’s embedding
space. As shown in the image, with the first model, the floor-
plans have the same structure in terms of room numbers,
room (node) degrees, and room types. However, the room
arrangements are not similar. In the second model, since the
edge features are added, the high-rank NNs follow the same
arrangement, and with moving toward low-rank NNs, the
arrangement similarity is decreased. However, they have a
similar structure yet. In the third model, the human behav-
ior features are added, and floorplans with similar behavioral
features get close to query floorplans. The last row for each
sample shows the visualization of the crowd flow rate. The
numbers inside floorplans in the first and second row show
the square footage of each room. In the third row, the num-
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The room’s color denotes the room type, and the numerical value inside
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Fig.6 Floorplan generation with interpolating in embedding space. We
select two random sequences from two random floorplans, and after
encoding them, we calculate the difference of their embedding vectors.

bers depict flow rates. Please note, as mentioned in Sect. 3.2,
the north is at the top, and other directions are recognized
correspondingly.

5 Floorplan generation

Given that variational autoencoders are generative, we study
the skill of our model for generating new floorplans. Gen-
erating new floorplans can be done with sampling from
the posterior distribution of sequences or with homotopies
[7,50].

5.1 Sampling from posterior distribution

VAE learns the data distribution instead of deterministic
mapping. Therefore, we can sample from these posterior dis-
tributions for generating new data. As mentioned in Sect. 4.2,
for each graph, we run arandom walk 11 times to generate 11
sets of node and edge sequences. To generate a new floorplan,
we select a floorplan and a set from its 11 sets of node and
edge sequences. By decoding the samples from the posterior
distribution of these sequences, we get new sequences. There
could be different strategies to produce a new floorplan with
these newly generated sequences. We select the node with
the highest degree that is repeated in all sequences as the
central node. Therefore, the arrangement of other rooms can
be fixed relatively. These new sequences give us informa-
tion about room types and square footage. Our method does
not encode the rooms’ geometry shape; therefore, we can
assume the room shapes are similar to the initially selected
floorplan or any arbitrary shapes that satisfy the generated
square footages (Fig. 6). Generating new floorplans with this
approach is limited and gives us similar floorplans regarding
the number of rooms and room types. The only changes in
new floorplans are the square footage and geometry shape of
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Generated Floorplans

Adding half of their difference to the base vector and decoding it gives
us a new sequence. These new sequences can be used for generating
new floorplans. See Sect. 5 for details

rooms. The square footage generated in the new sequences
does not have the same value for each room. However, con-
sidering the original sequences as references, the average
generated square footage can be used for a new floorplan.

5.2 Homotopies

VAE makes a continues embedding space, and it allows inter-
polation in this space. We used the concept of homotopy
that means the set of points on the line between two embed-
ding vectors. Instead of a set of random points, we limit our
experiment to the point in the middle of the line. We can
select two random sequences from two random floorplans,
and after encoding them, we can calculate the difference of
their embedding vectors. Adding half of their difference to
the base vector and decoding it gives us a new sequence. Fig-
ure 7 shows an example. We can generate new floorplans by
replacing the newly generated sequence with the old random
sequence from the original floorplan. It can happen between
any other random sequences, and in this way, we can generate
more derivative samples. Different strategies for interpola-
tion and generating new floorplans could be used here. With
homotopy, we do not have the mentioned limitations in sam-
pling from the posterior distribution. Floorplans with varying
room types can be generated as a result of interpolation, and
the only limitation is the geometry shape of rooms, which
is not encoded. We can assume the geometry shapes are the
same as reference floorplans or any arbitrary shapes that sat-
isfy the generated square footages to address this limitation.

6 User study
In this section, we present a user study to evaluate the quality

and efficiency of our models of graph embeddings. Three dif-
ferent embedding models are tested: (1) trained with design
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ing the samples from the posterior distribution of these sequences, we

obtain new sequences and then map them into new floorplans

Table 4 Demographic information and domain knowledge ratings of expert participants (self-reported)

Gender Sex

Age Country of Residence

Demographic information
Female: 4 (40%)
Male: 6 (60%)

Female: 4 (40%)
Male: 6 (60%)

18 — 24 years old: 4 (40%)
25 — 34 years old: 4 (40%)
35 — 44 years old: 2 (20%)

China: 1 (10%)
United States: 4 (40%)
Canada: 5 (50%)

Poor Below average Average Above average Excellent Avg. scale

Domain knowledge

Ability to interpret architectural or 0 (0%) 1 (10%) 1 (10%) 7 (70%) 1 (10%) 3.80
interior designs?

Prior experience with architecture 2 (20%) 0 (0%) 1(10%) 6 (60%) 1 (10%) 3.40
or interior designs?

Prior experience in urban planning 3 (30%) 0 (0%) 2 (20%) 5 (50%) 0 (0%) 2.90
and design?

Prior understanding of 2 (20%) 0 (0%) 3 (30%) 5 (50%) 0 (0%) 3.10
computational tools for
architectural design space
exploration?

Prior understanding of pedestrian 0 (0%) 2 (20%) 4 (40%) 3 (30%) 1 (10%) 3.30

movement flow or crowd flow?

semantic features only on nodes, (2) design semantic fea-
tures both on nodes and edge, and (3) design semantic both
onnodes and edges and behavioral features. Given a floorplan
(input), we query five similar floorplans (nearest neighbors)
from each embedding model.

6.1 Hypothesis

Our hypothesis is twofold: (a) the user-perceived sequence
of floorplans as top five nearest neighbors match with the
sequence captured by our model as nearest neighbors and
(b) users perform better in their perceived sequence of top
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five nearest neighbors for models (2) and (3) than model (1)
which is only trained with design semantic features.

6.2 Apparatus

Floorplans are presented as 2D blueprints (e.g., a top-down
skeletal view of an environment layout). The users (e.g.,
study participants) viewed these blueprints as high-resolution
images on their own computer screens via an online survey.
For model (1), each room in a floorplan is annotated with
room dimension (e.g., square footage area) and color-coded
with respect to its room type. The annotation for model (2)
is similar to model (1) with the addition of edges between
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rooms and their respective directions (e.g., north, east, west,
and south). For model (3), we showed color-coded trajecto-
ries of virtual occupants from the rooms they spawned into
the exit, along with the square footage area of each.

6.3 Participants

Ten (10) domain experts from the architecture community (4
female and 6 male) voluntarily participated in the user study.
Table 4 shows the demographic information and domain
knowledge of the experts. On average, all the participants
had above average experience and expertise in interpreting
architecture designs and were knowledgeable of computa-
tional tools for design space exploration (self-reported). In
addition, every participant was asked for consent before the
start of the study.

6.4 Procedure and task

The user study is conducted as an online survey and deliv-
ered in four parts. In part (a), users are asked to provide their
demographic information and report the domain knowledge
and expertise in architecture and urban design. In part (b),
users are presented with five different input floorplans. For
each input floorplan, a sequence of 5 nearest neighbors is
presented in a randomized order, retrieved using model (3),
and presented to the users “without” any visual annotations.
Users are asked to interactively reorder the given sequence
of floorplans (e.g., via drag and drop) based on their per-
ceived “similarity” of these floorplans with respect to the
input floorplan. The ordering sequence is arranged such that,
more a floorplan is toward the left in the order, the nearest
it gets to the input floorplan. In parts (c), (d), and (e), the
nearest neighbors are retrieved using models (1), (2), and
(3), respectively, for the identical five input floorplans which
are used in part (b). In parts (c), (d), and (e), the floorplans
are presented to the users “with” visual annotations for their
respective features. We estimated that the user study would
take up to 15 minutes at maximum to complete.

6.5 Independent and dependent variables

Input floorplans and the retrieved nearest neighbors from
the models are the primary independent variables. The rear-
ranged sequences of floorplans by the users are the only
dependent variables.

6.6 Results

Figure 8 shows the user-ordered sequences of the nearest
neighbors for the three models from the user study. The col-
ored bars for each neighbor of an input floorplan represent
the number of users who correctly perceived the neighbor’s

order in the given sequence. Overall, about 28.68% of the
neighbors are accurately ordered in their sequences based
on their perceived similarity with respect to input floorplans
for model (1), 59.28% for model (2), and about 77.6% for
model (3), collectively by all the users. These results high-
light that users least performed when they had to perceive
the similarity between floorplans by considering the design
semantic features alone. In contrast, they performed compar-
atively better when presented with the neighbors annotated
with edge and/or behavioral attributes. The users performed
the best for the model (3) when presented with the floor-
plans visually annotated with design semantics (e.g., room
types), edge (e.g., the movement direction of the agents),
and behavioral (e.g., movement flow of the agents) features.
The findings from the user study suggest that both of our
hypotheses stand valid.

We also wanted to analyze the users’ performance in
perceiving the ordering sequence of the neighbors when
floorplans are not visually annotated with their respective
features. To test this, we used the input floorplans and their
neighbors from model (3) and presented them as the model
(0) in the user study. These floorplans were presented to
the users without any visual annotations. This was to ana-
lyze how important the visual annotation of the features is
and its significance to assist users in perceiving the neigh-
bors in their correct order. Interestingly, about 45.68% of the
neighbors were accurately ordered in their sequences based
on their perceived similarity with respect to input floorplans
for model (0). This result revealed that the annotations for
design semantic features alone are not a good representative
to convey the spatial feature information of the floorplans.
As well, that the users better perceive the floorplans retrieved
from the embedding space that is trained not only with the
design semantic feature alone but also with the additional
edge and/or dynamic behavioral features.

7 Conclusion

This paper aims to represent floorplans with numerical vec-
tors such that design semantic and human behavioral features
are encoded. Precisely, the framework consists of two com-
ponents. In the first component, an automated tool is designed
for converting floorplan images to attributed graphs. The
attributes are designed semantic and human behavioral fea-
tures generated by simulation. In the second component,
we proposed a novel LSTM variational autoencoder for
both embedding and generating floorplans. The qualitative,
quantitative, and expert evaluation shows our embedding
framework produces meaningful and accurate vector rep-
resentations for floorplans, and its abilities for generating
new floorplans are showcased. Besides, we make our dataset
public to facilitate the research in this domain. This dataset
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Fig. 8 Accuracy of user-ordered sequences of the nearest neighbors.
Colored bars for each neighbor of an input floorplan represent the num-
ber of users who correctly perceived the neighbor’s order in the given
sequence. Gray bars are for the nearest neighbors, which are queried

includes both the extracted design semantic features and
simulation-generated human behavioral features.

This contribution holds promise to pave the way for novel
developments in automated floorplan clustering, exploration,
comparison, and generation. By encoding latent features
in the floorplan embedding, designers can store multi-
dimensional information of a building design to identify
floorplan alterations that share similar or different features
quickly. While in this work, we encode features derived from
dynamic crowd simulations of building occupancy. The pro-
posed approach can virtually scale to encode any static or
dynamic performance metric.
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