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Abstract—By using the viewpoint of modern computational algebraic geometry, we explore properties of the optimization landscapes of
deep linear neural network models. After providing clarification on the various definitions of “flat” minima, we show that the geometrically
flat minima, which are merely artifacts of residual continuous symmetries of the deep linear networks, can be straightforwardly removed
by a generalized La-regularization. Then, we establish upper bounds on the number of isolated stationary points of these networks with
the help of algebraic geometry. Combining these upper bounds with a method in numerical algebraic geometry, we find all stationary
points for modest depth and matrix size. We demonstrate that, in the presence of the non-zero regularization, deep linear networks can
indeed possess local minima which are not global minima. Finally, we show that even though the number of stationary points increases
as the number of neurons (regularization parameters) increases (decreases), higher index saddles are surprisingly rare.

Index Terms—Deep linear network, global optimization, regularization, numerical algebraic geometry

1 INTRODUCTION

A DVANCEMENT in both computational algorithms and
computer hardware has led a surge in applied and
theoretical research activities for deep learning techniques.
Though the applied side of the research has been remarkably
successful with applications in such areas as computer
vision, natural language processing, machine translation,
object recognition, speech and audio recognition, stock
market analysis, bioinformatics, and drug analysis [1], [2], a
thorough theoretical understanding of the techniques have
not yet been achieved.

One of the urgent theoretical issues that is of particular
interest to the present work is the highly non-convex nature
of the underlying optimization problems that the techniques
bring with them: the cost function (also called the loss
function) of a typical deep learning task, such as the mean
squared error between the observed data and predicted data
from the deep network, is known to have numerous local
minima. Finding a minimum which possesses a desired
characteristic is usually a daunting task, especially for a high-
dimensional problem, and most of the times it turns out to
be an NP hard problem [3]. Nonetheless, in practice, for a
typical deep learning task, a reasonably good minimization
algorithm, such as a stochastic gradient descent (SGD) based
method, converges to a minimum that performs well. This
observation, along with several empirical results [4], [5], [6],
[71, [8], [9], [10], [11], [12], has led to the belief that there
is no bad minima in the loss functions of deep networks.
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In [13] (cf., [14], [15]), the loss function of a typical dense
feed-forward neural network with rectified linear (ReLu)
units was approximated by the Hamiltonion of a physics
model called the spherical p-spin model and analyzed using
random matrix theory and statistical physics techniques. It
concluded that for this approximate model, the number of
minima and saddle points at which the value of the loss
function is beyond certain threshold vanishes as the number
of hidden layers increases (cf. [16]) supporting the “no bad
minima” scenario, though the assumptions made to bring
the deep network to the spin glass model were unrealistic.
The specific characteristics of the minima that numerical
minimization algorithms may be looking for cab play a cru-
cial role in determining if and why the algorithm finds them
so efficiently [17]. In the literature, the distance of a minimum
from the global minimum has been the defining characteristic
of the “goodness” of minima, i.e., if the difference between
the loss function at the local minimum and that at the global
minimum is within certain threshold, then the minimum
is good enough for the task. There are recent examples of
artificial neural networks with such suboptimal minima for
deep nonlinear networks [18], [19], [20], [21] (and [22] for
neural networks without hidden layers). In [23], good and
bad minima are distinguished based not only in terms of
the the performance of the network on the training data but
also on the testing data, and it is empirically shown that
the volume of basin of attraction of good minima dominates
over that of bad minima (cf., [17], [24] for discussions on
good and bad minima). In [17], the shape and size of the
decision boundaries as well as size of the effective network
(measured in terms of number of non-zero weights) are
shown to provide further metrics of goodness of minima.
Another scenario that was proposed in [18], [25], and
further confirmed in [26], is that the loss function of a deep
network is typically proliferated by the large number of
saddle points (and degenerate saddles [27]) compared to
minima. Gradient based optimization algorithms may get
stuck at a saddle point rather than a minimum which slows



down the learning. This is typical for the types of nonlinear
multivariate cost functions one encounters in physics and
chemistry [28], [29], [30], [31], [32], [33], [34], [35]. Several
ways to escape from saddle points provided no singular
saddle points exist have been developed [25], [36], [37], and
also in the presence of singular saddle points in certain
specific cases [12], [38], [39]. It is argued that the probability
of converging to a saddle point is small enough to be ignored
empirically and theoretically. In addition, regularization is
often used to avoid saddle points and to improve global
optimal convergence.

In [4], a detailed mathematical analysis of simpler models
called deep linear networks was performed. Since then, the
model has become one of the ideal testing grounds for ideas
in artificial neural networks and deep learning [40]. Here,
we use the framework of a deep linear network to study the
effect of regularization on the minima by posing the problem
as an algebraic geometry problem. Below, we first briefly
describe the formulation of the model and then describe
some previous results.

1.1

A deep linear network is an artificial neural network with
multiple hidden layers with each neuron having a linear acti-
vation function. It is the linearity of the activation functions
that separates deep linear networks from the deep nonlinear
networks used in practice in which each neuron has a
nonlinear (or, at least, piecewise linear) activation function.
The mean squared error for the deep linear networks with
the usual Lo-regularization is defined to be [14], [40]
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where ||.|| is the vector norm, W; is the weight matrix for
the i" layer with hidden layers from i = 1,...,H and
output layer H +1, and A > 0 is the regularization parameter.
For m data points in the training set, d, input dimensions,
and d, output dimensions, the dimensions of X and Y
are d, x m and dy x m, respectively. Then, with d; hidden
neurons in the i*" hidden layer, matrix multiplication yields
that W7 € RledI,WQ € Rdedl, vy Wha X Ré>du We
also denote k = min(dy, ...,dy), i.e., the number of neurons
in the hidden layer with the smallest width. The number of
weights, or variables, is n = d,dds - - - ddy.

The simplicity of the deep linear network yields that it
can approximate functions which are linear in X and Y
though nonlinear in weights, whereas the real-world data
may also possess nonlinearity in X. However, these networks
contain most of the basic ingredients of a typical deep
nonlinear networks. Due to the network architecture, the
loss function of the deep linear networks (Egs. (1) and (2))
are still non-convex and non-trivial to analyze in a general
setting. Understanding the loss surfaces of the deep linear
networks also may enhance our understanding of the same
for deep nonlinear networks.
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1.2 Earlier Works on Loss Surfaces of Deep Linear Net-
works

Almost all the existing results for deep linear networks are
for networks without regularization, i.e., for A = 0. For a
deep linear network with A = 0 and H = 1 under the
assumptions that (1) XX " and XY " are invertible matrices,
@Y =YX"(XXT")"1XYT has d, distinct eigenvalues, (3)
dy = dy, i.e., an autoencoder, and (4) k < min{d,,d,}, it
was shown in [4] that:

1) L(W) is convex if either Wy or Wy are fixed, and the
entries of the other vary;
2) every local minimum is a global minimum.

Moreover, [4] also conjectured the following upon dropping
the H = 1 condition but retaining the other assumptions:

1) L(W) is convex if the entries of one W; vary while
the others are fixed;
2) every local minimum is a global minimum.

This conjecture was proven in more general settings of deep
linear networks in [14], [41], [42], for deep linear complex-
valued autoencoders with one hidden layer [43], as well as
for deep linear residual networks [21], [44]. Additionally, [45]
provides several necessary and sufficient conditions on global
optimality based on rank conditions on the W; matrices for
deep linear networks.

In [46] (cf. [47]), analytical forms of the stationary points
(including minima) characterizing the values of the loss
function were presented for deep linear networks as well as
for certain limited cases of unregularized deep nonlinear
networks. The aforementioned necessary and sufficient
conditions for global optimality were also reformulated with
the help of the analytical form of the critical points.

Layer-wise training of deep linear networks was investi-
gated from the dynamical systems point of view in [7] (see
also [48]) and was concluded that the learning speed can
remain finite even in the H — oo limit for a special class
of initial conditions on the weights, likely due to having no
local minima present in the landscape.

The A > 0 case, i.e., with regularization, is considered
in [49] by modeling a linear networks (though, not a deep
linear network) with Lj-regularization term as a continuous
time optimal control problem. The problem of characterizing
the critical points of the deep linear networks was reduced
to solving a finite-dimensional nonlinear matrix-valued
equation. Continuous time is essentially a surrogate index
for layers and the final weight matrix was assumed to be
square. It was shown that for a special case of the model, even
for small amount of regularization, saddle points emerge.
Moreover, [50, Prop. 2.2] shows that there are no bad minima
for 2-layer deep linear networks under certain constraints.

1.3 Our Contribution

The main conceptual contribution in this paper is to identify
solving the gradients of deep networks as a problem in
computational algebraic geometry, e.g., see [51], [52]. We
review the existing literature related to the optimization
landscape and put our algebraic geometry point of view into
perspective. The other key contributions from this viewpoint
are summarized as follows:



1) We clarify various definitions of flat minima, and
distinguish the geometric definition of flat minima from
the other definitions (Sec. 3.1). We then show their existence
in the unregularized landscapes of deep linear networks
(Remark 1, Sec. 3.1),

2) We prove that a straightforward extension of Lo-
regularization can guarantee to remove all flat minima: these
flat minima are only an artifact of the underlying residual
symmetries of the equations and can be removed using,
for example, the generalized Ls-regularization (Theorems 1
and 2, Sec. 3.2).

3) We take up a novel question on deep learning loss
surfaces: how many isolated stationary (also called critical)
points and, more specifically, minima are there in a typical
deep learning loss surface? With the help of algebraic
geometry, we provide the first results in this direction on
upper bounds on the number of stationary points for deep
linear networks (Propositions 3 and 4, Sec. 4). Obviously,
these upper bounds provide strict upper bounds on the
number of local minima.

4) We design a numerical algebraic geometric method
which guarantees to find all stationary points of the deep
linear networks which is applicable to networks of modest
size (Sec. 5.1; Tables 1 and 2, Sec. 5.3.1). With all stationary
points at hand, we explicitly show that the model exhibits
local minima which are not global minima for the regularized
case (Table 3 and Figure 5, Sec. 5.3.4 and 5.3.5).

5) We show that the number of stationary points increases
with the number of neurons and hidden layers, and decreases
when the regularization parameter is increased (Figures 1
and 2, Sec. 5.3.2).

6) We show that stationary points of higher index are
surprisingly rare, if any, in the landscape even though the
total number of stationary points may be a plenty, at least
for the cases at hand (Figures 3 and 4, Sec. 5.3.3).

7) As a simple real-world application, we apply our
approach to train a deep linear network to learn the Boston
housing data and confirm the above results using the pro-
posed methods and pointing out some differences (Sec. 5.3.6).

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to algebraic geometry and
discusses a relation between algebraic geometry and deep
linear networks. We also put our approach in perspective
with respect to other attempts to apply algebraic geometry
methods to machine learning. Section 3 shows how flat
stationary points of unregularized gradient equations can
be removed using a generalized regularization. Section 4
provides upper bounds on number of stationary points of
the gradient equations based on algebraic geometry. Section 5
introduces and applies homotopy continuation to provide
results for modest size systems. Section 6 discusses our
findings in more details.

2 ALGEBRAIC GEOMETRIC INTERPRETATION OF
DEEP LINEAR NETWORKS

In this section, we show that solving the gradient equations
of deep linear networks can be viewed as a problem in
computational algebraic geometry [51], [52], and briefly intro-
duce algebraic geometry terminologies while distinguishing
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our algebraic geometry interpretation of the problem with
previous attempts.

An abstract relation between statistical learning meth-
ods and algebraic geometry has been extensively investi-
gated [53]. Machine learning methods have been used to
improve computational algebraic geometry methods such as
in computing cylindrical algebraic decomposition [54] and
to find roots of certain polynomials [55], [56], [57]. Neural
networks have also been shown to effectively learn data
whose target function is a polynomial [10] (see also [58], [59]).

In the present paper, we explore the loss landscape by
interpreting solving the gradient systems of deep learning
as an algebraic geometry problem. The algebraic geometry
interpretation allows us to investigate the gradient equations
for both the regularized and unregularized cases and for
arbitrary data and size of all the matrices. Though we focus
on deep linear networks in this paper, the deep learning
problem can also be cast as an algebraic geometry problem
in the presence of all the conventional activation functions.

2.1 The Gradient Equations are Algebraic Equations

The critical points of the objective function L in (1) are points
at which all partial derivatives are equal to zero, i.e., satisfy
the gradient equations VL = 0. These gradient equations
form a system of equations which is nonlinear in its variables,
i.e., the entries of W;. This system is naturally an algebraic
system since each equation is polynomial in the variables.
Consider the matrix W =Wg,1---W; and define
U =TL2, W) and ;T =TI W, Then, 2L is a
matrix whose (j, k) entry is the partial derivative of L with
respect to the (j, k) entry of W;. In particular, one has

oL . m . m . .

Therefore, each partial derivative is polynomial in the entries
of Wi,...,Wn41. Hence, studying the critical points of L
is equivalent to studying the solution set to a system of
polynomial equations, namely, the gradient equations, which
is the central question in the field of algebraic geometry.

2.2 A Brief Introduction to Algebraic Geometry

In the context of deep linear networks, critical points are
real solutions to the gradient equations. It is common in
algebraic geometry [51], [52] to simplify the problem by
computing all solutions over the complex numbers since
the complex numbers form an algebraically closed field,
i.e., every univariate polynomial equation with complex
coefficients has at least one complex solution.

An algebraic set is the solution set of a collection of
polynomial equations. That is, the algebraic set associated
to the polynomial system f(x) = (f1(x), ..., fm(x)), where
X = (Z1,...,2y) InC"is

V(f)={xeC"| fix)=0,i=1,...,m}.

The real points in V(f) is simply Ve(f) = V(f) NR". An
algebraic set A is reducible if there exists nonempty algebraic
sets By, Bs C A such that A = B; U By, otherwise, A is
said to be irreducible. Every algebraic set can be presented
uniquely, up to reordering, as a finite union of irreducible
algebraic sets yielding its irreducible decomposition.



Each irreducible algebraic set A has a well-defined
dimension. Every irreducible algebraic set A of dimension 0 is
a singleton, i.e., of the form A = {p} in which case p is called
an isolated solution to the corresponding polynomial system.
A positive-dimensional irreducible algebraic set consists of
infinitely many points, e.g., a curve has dimension 1 and
a surface has dimension 2. In the context of the gradient
equations, isolated solutions correspond with isolated station-
ary points and positive-dimensional algebraic sets consist
of flat stationary points.

2.3 Difference Between Complexifying the Gradient
Equations and Complex Loss Functions

We note that neural networks with complex-valued weights
(and complex-valued inputs and outputs) have been studied
in the past [60], [61], [62], [63], [64] and have gained renewed
interest in deep learning [65], [66], [67], [68], [69] for use
in simultaneously modeling phase and amplitude data.
In particular, back-propagation for complex-valued neural
networks was developed in [63]. In [70], it was shown that the
XOR data which cannot be solved with a single real-valued
neuron in the hidden layer, but can be solved with a complex-
valued network. Such complex-valued neural networks were
shown to have better generalization characteristics [71] and
faster learning [72] in addition to biological motivations [65].
The aforementioned formulation of deep complex net-
works consider complex weights, inputs, and outputs, and
hence the corresponding loss function is also complex-valued.
On the other hand, in the present paper, we start from the
conventional real-valued weights, inputs, and outputs, with
the loss function also being real-valued. Then, we merely
complexify the gradient equations in that we assume weights
living in the complex space with inputs and outputs living in
the real space. In other words, the former is fundamentally a
complex-valued set up whereas, in the latter case, the weights
are complexified only for computational analysis purposes.

3 FLAT STATIONARY POINTS AND REGULARIZA-
TION

In this section, we briefly review the existing literature on
flat minima in deep learning and propose our approach to
remove them.

3.1 Flat Critical Sets

In [73], [74], an algorithm to search for some (but not
provably all) acceptable (i.e., almost) flat minima, which are
large connected regions of minima at which the training
error was below a threshold, was proposed. Such acceptable
flat minima correspond to weights many of which may
be specified with low precision (hence, with fewer bits of
information). In these references, it was also argued that
these minima also correspond to low complexity networks.

In [75], it was empirically shown that SGD based methods
tend to converge to sharp (flat) minima with large (small)
batch sizes. In [76], [77], it was argued that higher (lower)
ratio between learning rate and batch size pushes the SGD
towards flatter (sharper) minima, and that the flatter minima
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generalized better than sharper minima. In [78], an entropy-
SGD was proposed that actively bias the optimization to-
wards flat minima of specific widths (cf. [79], [80], [81], [82]).
However, later on, in [83], the above definitions of flatness of
minima were formalized and it was then argued that deep
networks do not necessarily generalize better when they
converge to “flat” minima (as defined above) than sharp
minima because one can reparametrize the loss function that
correspond to equivalent models but possessing arbitrarily
sharp minima.

In the current paper, we are interested in exactly flat
saddles and minima, i.e., the components of the stationary
points on which the loss function is precisely constant, whose
existence is well-known since the works of [84], [85], [86], [87]
(see [88] for a review). Such degenerate regions, sometimes
referred to as neuromanifolds, are quite common [89] in vari-
ous loss landscapes, not just artificial neural networks, due
to various symmetries [85], [90], [91] of the corresponding
loss functions. At such solutions, the Fischer information
matrix tends to be singular and traditional gradient descent
algorithms are known to slow down.

To be sure, the Hessian matrix of the loss function can be
singular at either isolated singular solutions (i.e., multiple
roots) as well as on a non-isolated degenerate solution region.
In [27], it was shown using numerical experiments for modest
size deep neural networks that the available SGD based
optimization routine converged to degenerate saddle points
at which the Hessian matrix not only has many positive
and negative eigenvalues but also multiple zero eigenvalues.
Moreover, they showed that the number of zero eigenvalues
increases with increasing depth. It was argued that for good
training, it is enough that deep neural network models
converge at degenerate saddle points as long as the training
error is low. Whereas, in [92], by computing the eigenvalues
of the Hessian of deep nonlinear networks after training as
well as at random points in the configuration space, it was
shown that a vast number of eigenvalues were zero. Hence,
most of the directions in the weight space of these networks
are flat leading to no change in the loss function.

In [93], it was shown that though small and large batch
gradient descent appeared to converge to seemingly different
minima, a straight line interpolation between the two did not
contain any barrier, implying that the two regions may be in
the same basin of attraction. In the present paper, we make
a distinction between isolated singular solutions and flat
minima. We also carry forward the distinction made in [93]
between almost flat minima within which the loss function
is almost constant and flat minima within which the loss
function is precisely constant. The former should be referred
to as wide minima.

In terms of algebraic geometry, a stationary point is
flat if it is not an isolated solution of the gradient equa-
tions. Hence, each flat stationary point lies on a positive-
dimensional component. For the purpose of this paper, we
focus on complex positive-dimensional stationary points
which may include real positive-dimensional solutions. In
the next section, we device a method to remove positive-
dimensional stationary solutions which removes complex
and real positive-dimensional stationary points.

We present a few examples to show some explicit results.
The first example arises in [39].



Example 1. The gradient of f(x,y, z) = 2zy+2r2—20—y—=2
is V(f) ={2y + 2z — 2,2x — 1,2z — 1}. The set of stationary
points which satisfy V(f) = 0 is the line defined by x — 1/2 =
y+z—1 =0, ie., in the complex space, the solution has dimension
1. At every point on this line, f(x,y, z) = —1.

Example 2. For H =1, m =5,d, = dy = 2,and dy = 1 with
A = 0, we consider the data matrices
7 -8 3 -5 10 v — 9 9
-7 10 6 -2 6| |10 3

-8 1 10

X = -8 9 10|°

The stationary points of Eqgs. (3) consist of three irreducible
components: a point that is an isolated saddle, a curve consisting
of flat saddle points, and a curve consisting of flat minima. The
point is Wi = 0 € RY™?2 and Wy = 0 € R*¥L. The flat saddle
points and flat minima have the form

Wi=a W, and Wy =a~*- W,

for any o # 0. For example, the flat saddle points approximately
have

o o 0.0206

Wi=[1 96330 | and W, = { —0.0180 }
while the flat minima approximately have

— — 0.2664

Wy=1[1 0.0696 | and W, = { 0.3045 ] .

Remark 1. This example generalizes to all critical points in the
unregularized case, i.e., A = 0. That is, if (Wq,..., Wgy1) is
a critical point, then so is (A1 W7, AQWQAl_l, ce WH+1AI_{1).
Hence, if there is a critical point with some W; # 0, then there are
always flat critical points in the unregularized case.

The traditional Lo-regularization with single parameter A
as in (1) is not necessarily enough to remove the flat
stationary points as shown in the following.

Example 3. For H =1, m =3,and d, = dy, =d; =2, let

1 2 3 123]

X:{123 1 -3 2

|

Forany A > 0 and a > 0, the following is a family of flat critical
points:

a a 14a

Wi = { Ha, N y(a,N) ]’WQZ\/%{ a

where
y(a, \) = /V/394/56 — a2 — \/28.

147(a, \) }
v(a; )

IfO < XA < \/ X, then this component consists of flat minima
which are real for 0 < a < /7(,/197/2 — X\)/14.

3.2 Regularization of flat critical sets

We begin the discussion of removing flat minima from the
landscapes of loss functions by pointing out two observa-
tions. First, in [20], [17], where the goal of the study was
to numerically investigate the loss landscape of a deep
nonlinear neural network with one hidden layer with the
tanh activation function, it was noted that the constant zero
eigenvalues disappeared as soon as the La-regularization
term was non-zero. Here, all the weights including the bias
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weights were regularized [17]. However, this observation
may not directly apply in general because the continuous
symmetries present in more complex systems may depend
on the network architectures, activation functions, data, etc.
Second, in [94], a spin glass model called the XY model
was found to exhibit residual continuous symmetries and a
generalized regularization term was used to remove them.

As outlined above, the existence of flat or degenerate
critical set is a very common phenomenon in the general
study of deep linear and nonlinear networks. At any point in
a flat critical set of £, the Hessian matrix of £ has at least one
zero eigenvalue. Such a zero eigenvalue of the Hessian matrix
signifies a certain degree of freedom in the weight matrices.
That is, there are directions in which weights infinitesimally
change without violating the gradient equations.

From a computational point of view, flat critical sets
introduce many unnecessary difficulties. For example, a
simple solver based on Newton’s iterations may encounter
numerical instabilities near a flat critical set. From a purely
theoretical point of view, flat critical sets indicate the training
data set and the network structure are not sufficient to
determine the optimal configuration of the weights. In this
section, we outline a “regularization” technique that could
perturb the loss function £(W) ever so slightly so that all the
critical points become nondegenerate (isolated) critical points.
That is, such a perturbation would remove the flatness from
all critical points.

Recall that for a smooth function f : R® — R, v €
R™ is said to be a regular value if, for each x € R" such
that f(x) = v, the Jacobian matrix D f is nonsingular at x.
Sard’s Theorem [95] states that almost all v € R™ are regular
values (in the sense of Lebesgue measure). This result can be
generalized into a stronger result on parametric systems that
fits our current situation. Let f(a,x) : R™ x R” — R" be
a smooth function. Generalized Sard’s Theorem [95], [96]
states that if O is a regular value for f, then for almost all
a € R™, 0 is a regular value of the function f,(x) = f(a, x)
with the parameter a fixed. In the following, we adapt this
idea to the context of deep linear networks.

Motivated by the aforementioned observations and Gen-
eralized Sard’s Theorem, we devise a regularization for the
deep linear networks. Given H + 1 matrices with positive
real entries A = (A1,...,Ag41) with each A; having the
same size as W;, we can consider a generalized Tikhonov
regularization of £ given by

A A 1
LA =L(W)+ S UIAso WallF + -+ [Amr1 o Wria || B),

where A; o W; denotes the Hadamard product (entrywise
product) between A; and W;. That is, each term in A; o W; is
of the form of \; ; xw; ; r, where each \; ; i, the (j, k) entry
of A;, is a small positive real numbers that serve as a penalty
coefficient. Therefore, the minimization problem for £*
attempts to minimize L and, at the same time, minimize each
entries of the weight matrices. Note here that the penalty
on each entry of the weight matrices could potentially be
different. It is straightforward to verify that

oLt

oW,

When the entries of A;’s are small positive real numbers,
we can see the above gradient system is a slightly perturbed

=U, (WXXT - YX)V,  + A 0Wi. (4




version of the original gradient system VL. In the following,
we demonstrate that this construction is sufficient to turn flat
critical set of £ into isolated nondegenerate critical points.
That is, the flatness of the critical points is removed.

First, we shall show the above regularization technique
is sufficient to “desingularize” all dense critical points. Here, a
dense critical point of £* is a (real) solution to gLWAi =0 for
each ¢ for which W; contains no zero entries, i.e., all weight
matrices are dense matrices.

Theorem 1 (Regularity of dense critical points). For almost
all choices of A, all dense (real) critical points of L™ are isolated
and nondegenerate.

Proof. Let W = (Wh,...,Wgy1) collect all the weight
matrices and let m be the total number of entries in all these
matrices. Consider the open set (R*)™ = (R \ {0})™. Let
FWy,...,Wgi1,A) = (%)iﬁl be the gradient of £*
with respect to Wi,...,Wgyi. Note that we treat the

parameters, i.e., the entries in the A;’s, as variables with

oF
a>\i7j,k

= Wijk

The Jacobian matrix of F' is an m X 2m matrix. Since g—i
is a diagonal matrix whose diagonal entries are w; ; ;, # 0,
we can conclude that the Jacobian matrix is of rank m, i.e.,
full row rank. Therefore O is a regular value for the map
F: (R*)™ x R™ — R™. By Generalized Sard’s Theorem [95],
for almost all choices of A € R™, 0 is a regular value
for the map Fy : (R*)™ — R™ given by Fy = F(-,A).
Consequently, for any W such that Fy (W) = F(W,A) =0,
the square Jacobian matrix g% must be of full column rank,
i.e., nonsingular, which implies W must be a nonsingular
solution of the equation. By the Inverse Function Theorem,
such a solution must also be geometrically isolated. O

Here, a critical point is considered (geometrically) isolated
if there is a neighborhood in which it is the only critical point.
An isolated critical point is considered nondegenerate when
the Hessian matrix at this point is nonsingular. The “almost
all choices” in the above statement is to be interpreted in
the sense of Lebesgue measure. It is also sufficient to take a
probabilistic interpretation: if the entries of A are chosen at
random, then with probability one, the above theorem holds.

Remark 2. Instead of randomly drawing each \;y, separately, one
can also consider N\ijr. = A+ pi;i.. Then, the p;;1’s are drawn from
a random distribution once for all and adjusting the regqularization
again reduces to a one parameter problem.

The above regularization result can also be generalized
to “sparse” cases which are desired in actual application. For
instance, in convolutional neural networks, the first layer is
generally highly structured and very sparse as it represents
the application of convolution matrices. Similarly, many real
world applications have specific sparsity pattern in mind. We
therefore generalize the above result with respect to certain
sparsity pattern. A sparsity pattern for the weight matrices is
a set \V of indices of the form (4, j, k) specifying the nonzero
positions. We say the matrices (Wy,..., Wg41) have the
sparsity pattern A if for each (i, j, k) € N, the (j, k) entry
of W; is nonzero while all other entries are zero. We can
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generalize the above theorem to weight matrices having a
given sparsity pattern in which the dense case considered in
Theorem 1 is a special case in which all entries are nonzero.

Theorem 2 (Regularity of sparse solutions). Given a sparsity
pattern N, for almost all choices of A, all (real) solutions of the
gradient system VL™ = 0 having the sparsity pattern N are
geometrically isolated and nonsingular.

Proof. Let W/ be the set of all w; ; s for which (4, j, k) € N.
That is, W collect all the nonzero entries in the weight
matrices. By fixing all the remaining entries to zero, the
gradient equations gLWAi fori = 1,...,H 4+ 1 under the
regularization can be considered as a system in W/ only.
Following the previous proof, we can define m = |[W/|
and F(WN,AN) to be the system of gradient equations
with AV (entries in A corresponding to W) also considered
to be variables. Then, as in the previous case, the Jacobian
matrix of F is an m X 2m matrix with 9F/OAN being a
diagonal matrix with nonzero diagonal entries wj ; for
(i,j, k) € N. Consequently, this Jacobian matrix also has full
row rank. By Generalized Sard’s Theorem, we can conclude
that for almost all choices of AN € R™, all solutions to
Exv(WN) = F(WN AY) = 0 must be geometrically
isolated and nonsingular. O

Note that the regularization £* is constructed as a
perturbation of the original loss function £ with small penalty
terms added to also minimize the magnitude of each weight
coefficient. The theory of homotopy continuation [97], [98]
also guarantees that for sufficiently small perturbation, this
process can be reversed. The following is an immediate
consequence of the Implicit Function Theorem.

Proposition 1. For sufficiently small reqularization coefficients A,
as all entries of A shrink to 0 uniformly, the critical points of L
also move smoothly and either converge to reqular critical sets of L
or diverge to infinity.

Here, “diverge to infinity” means as the perturbation
coefficients in Aﬁshrink to zero, certain coordinates of the
critical point of £ are unbounded.

Remark 3. More rigorous description of this phenomenon of
diverging solutions can be given in terms of projective space
(e.g., see [51], [52]) which encapsulates infinity as an actual place
in the space. In that sense, certain critical points of L may
converge to “saddle points at infinity” of L.

Another important observation from the homotopy point
of view is that while this perturbation slightly alters the loss
landscape, any global minimum will survive in the following
sense. The following is an immediate consequence of [99] as
well as the Implicit Function Theorem.

Proposition 2. For sufficiently small reqularization coefficients A,
as all entries of A shrink to 0 uniformly, there is at least one critical
point of LA that will converge to a global minimum of L.

Below, we show the regularization technique imple-
mented for Ex. 1.

Example 4. A regularization of the polynomial in Ex. 1 is

fz,y, 2) :2my—|—2x2—2x—y—z+ﬁloo(2m2+y2+3z2)



with gradient
V(f)={s5%+2y+22—2,20+ 5% — 1,2z + 552 — 1}.

The critical point system V(f) = 0 defines a zero-dimensional
solution set. In fact, there is a unique stationary point, which is
approximately (0.49925,0.74925,0.24975).

Remark 4. There have been various methods proposed for escaping
flat saddle points (in the wide minima sense) in the absence of
singular saddles [25], [36], [37]. Recent attempts have also been
made to extend such methods in the presence of singular saddle
points in limited cases [12], [38], [39]. Using the generalized
Lo-regularization, only the former set of methods may be required
to escape saddles and achieve a deeper minimum.

3.3 Role of the Regularization

The following emphasizes the role of regularization and,
specifically, that of the proposed generalized Ls-regular-
ization. Regularization is a frequently used technique in
machine learning models using neural networks in practice,
such as LASSO. It benefits the resulting model using machine
learning methods in several ways such as avoiding the
problem of overfitting and ill-conditioned optimization stage.
Here, we adopted a generalized Ls-regularization technique
that provides two additional benefits.

From a computational point of view, the generalized
Lj-regularization ensures all critical points are isolated. This
allows the use of efficient, scalable, and stable numerical
methods such as homotopy continuation methods [100],
[101], [102], [103], to locate all critical points.

From the perspective of training, another important role
that the generalized L-regularization plays is in ensuring a
certain form of robustness of the training process. The regu-
larity of the critical points established in Theorem 2 combined
with Generalized Sard’s Theorem ensures that sufficiently
small perturbations in the training data causes small changes
in the critical points of £* and preserves their indices.

4 ESTIMATING NUMBER OF SOLUTIONS

By using the generalized Lj-regularization, we are left with
only isolated stationary points. In this section, we focus on
estimates on the number of isolated solutions of Eqs. (4).

4.1

The algebraic geometry interpretation of the gradient sys-
tem of deep linear networks allows us to utilize different
bounds on the number of complex solutions to bound the
number of stationary points. To that end, suppose that
f(x) = (fi(x),..., fn(x)) is a polynomial system where
x € C", i.e, f is a square system of polynomials.

Upper Bounds on Number of Solutions

4.1.1

The simplest upper bound on the number of isolated complex
points in V(f) is the classical Bézout bound (CBB) which
is simply the product of the degrees of the polynomials
in f, namely []""_; deg f;. In fact, this bound, and all others
discussed below, are generically sharp with respect to the
structure that they capture.

Classical Bézout Bound
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From (3) and the definition of £*, we can see that the
leading terms in each polynomial are formed by the product
of 2H + 1 matrices. Therefore, each polynomial has degree
2H + 1. The CBB is therefore the product of these degrees:

Proposition 3. The regularized loss function L™ has at most
(2H + 1)™ complex isolated critical points where n is the total
number of weights.

Refinements of CBB can be accomplished by utilizing
additional structure such as the multihomogeneous structure
resulting in the multihomogeneous Bézout bound. Since the
next bound under consideration is always no larger than
the multihomogeneous Bézout bound, we will not consider
multihomogeneous structure here.

4.1.2 BKK Bound

Since the systems arising from real-world applications are
typically sparse, a refinement of the CBB based on the
sparsity structure is the Bernshtein-Kushnirenko-Khovanskii
Bound, or simply BKK Bound [104], [105]. It is given by a
geometric invariant defined on the monomial structure —
the mixed volume of the convex bodies created by the set of
monomials appear in f (i.e., the Newton polytopes of f). This
bound was originally proposed for bounding the number of
solutions in (C*)™ = (C \ {0})™ but can also be extended to
a bound on number of isolated solutions in C™ [106], [107].

By exploiting the sparsity structure, the BKK bound for
the gradient system of £* is much lower than the Bézout
number as shown in Table 1.

4.2 Analytical Results for Mean Number of Real Solu-
tions of Random Polynomial Systems

There are only a handful of results known for the upper
bounds on the number of isolated real stationary points of
polynomial loss functions [108] and for upper bounds on the
number of isolated real solutions of systems of polynomial
equations [109], [110], [111], [112], [113], [114], [115].

To gain further insight on the number of real stationary
points of (1) (with entries of X and Y picked randomly
from some probability distribution), we compare the existing
analytical results for the mean number of real stationary
points of random polynomial cost functions. The most
general random polynomial cost function is written as:

2.

la|<2H 42

e29)

F(x) = ATyt .. i, (5)

with n being the number of variables and 2H + 2 is the
highest degree of the monomials, @ = (o, ...,a,) € N"isa
multi-integer with |a| = a3 + - - - + a,. Here, a,, are random
coefficients i.i.d. drawn from the Gaussian distribution with
mean 0 and variance 1. In [108], it was shown that the mean
number of real stationary points of this cost function, i.e., the
mean n%r?})?r of real solutions of the corresponding gradient
X

system —-—

2, Ofori=1,...,n,is:

Npu(H,n) = V2(2H + 1), 6)

i.e., the mean number of real stationary points of the random
polynomial of the same degree and number of variables as
the loss function of the deep linear network. This result also



yields that the mean number of real stationary points of such
a dense random polynomial function is significantly smaller
than the corresponding CBB as expected since CBB bounds
the number of complex solutions.

4.3 Equations for the Zero Training Error

This subsection briefly considers the problem of finding a
special type of minima, called the zero training error minima, as
these were recently studied for certain class of deep learning
models. In [116], deep nonlinear networks with rectified
linear units (ReLUs) were considered and the ReLUs were
approximated with polynomials of certain degree. When
there are more weights than the number of data points, there
always are infinitely many global minima expected.
For deep linear networks, zero training error minima
satisfy L(W) =0, i.e.,
WeWg - W1 X).; —Y.; =0, @)

)

foralli = 1,...,m. It must be emphasized that these minima
may only exist if the model can fit all the training data
perfectly well. Except for some special cases, it is also difficult
to know if such minima exist for a chosen model a priori.
Clearly, if such minima exist, they are the global minima
of the model for the specific dataset. Here, we assume that
such zero training error minima do exist for our deep linear
networks for the given data matrices. Then, (7) is again a
system of m polynomial equations in n variables. In short, for
H >1and Y # 0, the zero training error minima system (7)
has no isolated solutions. For the case when m = n, the CBB
is (H + 1)™ complex isolated solutions.

We emphasis that the assumption that such zero training
error minima do exist is a very strong one as it means that
each data point is exactly fit, which either may not occur in
practice or may be a case of over-fitting.

Remark 5. For the underdetermined systems, the CBB and BKK
are actually bounds on the number of connected components (flat
stationary points). The existence of positive-dimensional compo-
nents reduces the maximum number of isolated solutions. In fact,
even for an apparently underdetermined system, it may be possible
to have only isolated stationary points over the real numbers.
However, except for the special case of m = n, these bounds do not
provide any detailed information about flat stationary points.

4.4 Symmetrical Solutions

This subsection shows the existence of symmetries in the
solutions of the gradient equations of deep linear networks.

Proposition 4. When H = 1, if W and W3 form a solution to
system (4), then simultaneously switching the signs of the i*® row
of W and ith column of Wy also yields a solution for i = 1,...d;.

Proof. Suppose that r; is the i*! row of W} and ¢; is the i*}
column of W' Thus, (4) can be rewritten as

di
(ws)" ((Z cm;) Xx' - YXT> + A oWy =0 (8)

i=1

dy
((Z cim> XX — YXT> Wi+ Ao W5 =0 (9)

i=1
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The result is immediately seen from (8) and (9). O

If H = 1and di = n, Prop. 4 shows that if (4) has a
solution such that all entries of W} and W3 are nonzero,
then it has at least 2" solutions. This can be generalized to
arbitrary H to show that a natural sequence of simultaneous
sign switching will lead to additional solutions.

5 NUMERICALLY FINDING ALL THE STATIONARY
SOLUTIONS OF THE DEEP LINEAR NETWORKS

Although solving systems of nonlinear equations can be a
prohibitively difficult task, identifying (4) as a system of
polynomial equations allows for several sophisticated com-
putational algebraic geometry techniques to be employed to
find all isolated complex solutions of the system. Once all
complex solutions have been computed, the real solutions
can then be trivially identified. Symbolic methods such as
using Grobner basis techniques [52], [51] and techniques
in real algebraic geometry [117] could be used to solve
these systems, they may severely suffer from algorithmic
complexity issues. The approach we utilize is homotopy
continuation which has already been applied to find minima
and stationary points of artificial neural networks in the
literature [118], [119], [120], [121], [122], [123]. Local real
homotopy methods perform well in finding solutions (and
often guarantee global convergence to a solution), they do
not guarantee to find all isolated solutions. In this section,
we describe a sophisticated method called the numerical
homotopy continuation (NPHC) [124], [125] method which
guarantees to find all complex isolated solutions of systems
of multivariate polynomial equations. Then, we present our
results for the deep linear networks using the NPHC method.

5.1 The NPHC Method

For a square system of polynomial equations f(x) = 0, i.e.,
f(x) = (fi(x),..., fn(x)) and x = (x1,...,2,), one first
determines an upper bound, such as the ones described in
Sec. 4, on the number of isolated complex solutions. Then,
another square polynomial system g(x) is constructed such
that satisfying the following two properties:

1) g(x) = 0is easy to solve, and
2) the number of complex solutions g(x) = 0 is equal
to the corresponding upper bound.

For the CBB from Sec. 4.1.1, a straightforward choice is
g(x) = (z{* —1,..., 2% — 1) where d; = deg f;. For tighter
upper bounds, constructing g(x) can be more involved and
the reader is referred to [100], [103] for further details.
Next, a parametrized system h(x; ¢) is formed connecting
f(x) and g(x) creating a so-called polynomial homotopy. A
homotopy that linearly interpolates between f(x) and g(x) is

h(x;t) = (1 - )f(x) + yig(x) =0 (10)

where ¢ € [0, 1] such that h(x; 1) = g(x) and h(x;0) = f(x),
and v € C is a generic complex number.

For each complex isolated solution of h(x; 1) = g(x) =0,
all of which are known by construction, a numerical
predictor-corrector method evolves the solution of h(x; ) = 0
fromt = 1tot = 0. Aslong as v is a generic complex number,



every complex isolated solution of f(x) = 0 can be reached
starting from a solution of g(x) = 0. Specifically, it is proven
[126] that each of such solution path can only exhibit either
of the two characteristics:

1) the path converges at t = 0 and hence a solution of
f(x) = 01is found, or
2) the path diverges to infinity as t — 0.

In particular, every solution path is regular over ¢ € (0, 1]
and yields no bifurcation, singularities, path-crossing, etc.
Hence, after tracking all possible solution paths (as many
as the estimated upper bound), we obtain all complex
isolated solutions of f(x) = 0. Moreover, the method is
embarrassingly parallelizable since each solution path can be
tracked independent of each other.

Example 5. Using the data from Ex. 2, if we utilize A = 0.01,
there are only 13 isolated stationary points, 5 of which are real.
Two are local minima that are both global minima and the other
three are saddles.

5.2 Computational Details

The setup for the results described next, which demonstrate
the effect of changing A, d,, d,, m, and H on number of
isolated real solutions, is as follows. For each case, we take
each entry of the data matrices X € R%*"™ and Y € R%*™
ii.d. drawn from the Gaussian distribution with mean 0 and
variance 1. Each entry of the matrices A; are drawn i.i.d from
the uniform distribution between 0 and Ay,,x > 0. For every
case, 1000 trials are run with all isolated solutions computed
using the software Bertini [103] which provides an efficient
implementation of the NPHC method. We explore how the
change of any of the five variables impact the solutions of (4)
for modest size systems.

5.3 Results

Using the setup from Sec. 5.2, the following summarizes
results of solving (4).

5.3.1  Enumeration of Complex and Real Solutions

The first experiment is to compare the upper bounds on the
number of solutions discussed in Sec. 4 with results from
numerical experiments.

Table 1 records the number of weights n, CBB, BKK, mean
number of complex solutions N, the Dedieu-Malajovich
number of average real solutions of random polynomial cost
function A'pjs, the maximum number of real solutions (for
all A-values), and the maximum index among all the solu-
tions over all samples for various values of H, m, d,, and d,,
while fixing d; = - -- = dg = 2. As expected, the CBB grows
exponentially with the number of variables. Though the BKK
count grows rapidly as well, it is significantly smaller than
CBB. Nonetheless, the actual number of complex solutions
computed using the NPHC method is even smaller compared
to these two bounds. Moreover, the maximum number of
real solution is also smaller than Dedieu-Malajovich number.
Both these observations yield that our gradient system is
highly sparse and structured compared to that of the dense
polynomial cost functions (5).
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Table 2 records numerical results for the mean number of
complex solutions N¢, maximum number of real solutions
out of all samples max(Ng), and the maximum index out of
all real solutions of all samples max([).

Note that m = 1 is a pathological case as it refers to only
one data point case, but it still creates nonlinearity in the
gradient equations yielding nontrivial solutions. Moreover,
the value of m does not change the degree of the polynomials
but only the monomial structure of the polynomials. When
m = 1, the matrix XX 7 in (4) is singular and of rank 1,
which imposes additional structure. For m > 1 and d, < m,
XX is nonsingular with probability 1 so that the polyno-
mial system has the very same structure yielding a constant
number of complex solutions for generic values of X and Y.

5.3.2 Distribution of Number of Real Solutions

To see the impact of the regulation term A, we change
the maximum value A, of the interval on which A is
uniformly distributed. Figure 1 shows how the distribution
of Ng changes as a function of Apax. In particular, the
mean number of real solutions decrease as A..x increases
which yields the phenomenon of topology trivialization
[127], [128], [129], [130], [131]. As Apax increase beyond 1,
there are more samples with no real solutions. Furthermore,
as Apax approaches zero, the mean number of real solutions
becomes relatively stable but the condition number of the
real solutions begin to increase. This is expected since the
system (4) is converging to the unregularized case.

40

m=1 dﬁ:dy:Z )
A m=5d =d =
30 o L]
s . m=5.dx=dy=
Z
c 20
E A ry Iy
E A

Fig. 1. The mean of Ny as a function of Amax for H =1 and d; = 2.

Figure 2 demonstrates the impact on the average number
of real solutions as a function of d,, d,;, and m. It shows that
increasing any of these three parameters leads to an increase
in the mean number of real solutions. Combining Figure 2
and Table 1, one notices that the more data points there are,
the more real solutions to (4) there are, on average.

5.3.3 Index-resolved Number of Real Solutions

The next experiment compares the ratio of number of real
solution with index I, N7, to the total number of real
solutions using 1000 samples for each case. For the samples
for which there are no real solutions, we set the ratio to be 0.

Figure 3 and 4 demonstrate the index distribution as
a function of d;, Amax, and m, respectively. From Table 2
and the right plot of Figure 3, we notice that, for the cases
H =1,m=2,and d, = d; = 2, even though the number of
variables increased from 8 to 14 as d,, increased from 2 to 5,
the number of isolated solutions remained the same. It also
shows that when H =1, m =2,dy = d; = 2, and Apax = 1,
the highest index is 4 and the probability of a solution to (4)
is not an extrema of £ increases as d, increases.
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TABLE 1
Upper bounds on the number solutions for (4) based on CBB and BKK, with comparison to the Dedieu-Malajovich number N, which are
independent of the parameter values. When the network has more than one layer, d; = 2 for all integers i. The number of isolated complex solutions
with generic parameters is NV¢ while max(Nr) and max(I) the maximum number of real solutions and the highest index of a real solution found
among all the samples, respectively.

H m dy dy CBB BKK  Nc Nppu(H,n) max(Ng) max(l)
1 1 2 2 8 3% = 6561 1024 33 199 9 2
1 1 2 10 310 5184 33 592 9 2
1 1 4 2 12 312 16384 33 1786 9 2
1 1 5 2 14 34 40000 33 5357 9 2
1 1 10 2 24 324 640000 33 1301759 9 2
1 1 2 3 10 310 5184 73 592 9 2
1 1 2 4 12 312 16384 129 1786 9 2
1 1 2 5 14 314 40000 201 5357 9 2
2 1 2 2 12 512 =152587890625 770048 641 6250000 65 3
TABLE 2

Computational results of N¢, Nr, Npas, and max(I) for the cases m > 1. As in Table 1, Npys and A¢ are independent of the choice of A. The
values max(Ng) and max(I) are based on 1000 samples for each case with A € [0,1] and d; = 2 for all integers i.

H m d, dy Ne  Npum(H,n) max(Ng) max(])

1 2 2 2 8 225 199 29 4

1 2 3 2 10 225 592 29 4

1 3 2 2 8 225 199 29 4

1 4 2 2 8 225 199 29 4

1 5 2 2 225 199 29 4

1 20 2 2 225 199 29 4

1 5 3 3 12 2537 1786 73 6
. 16 - ! B A le2 04 8 s
815 dy 0.8 Vo A STel v d=3
2 o d ° A A =1e0 03 o
@ 1 . » 06 > Apgtet a5
$13 b = 4 A te2| 02 ¥ x
X 0.4 A A =te3
2 12 . w max
o 0.2F v & 01
o 11 : v
5 v - % " |
= 10 0 i~ 0
<"l 0 1 2 3 4 0 1 2 3 4

9 Index Index
2 3 4 5
d /d /m
Xy

Fig. 2. The mean of N for different value of d (circles), d, (triangles)
and m (diamonds) where Amax = 1. For circles: H = 1, m = 2, and
dy = di = 2. For triangles: H = 1, m = 2, and d, = dy = 2. For
diamonds: H =land d; = dy =di1 = 2.

The left plot of Figure 3 reveals that as Ay,.x approaches 0,
the index distribution reach an equilibrium. Figure 4 informs
us that, for cases where H = 1 and d, = d, = d; = 2, the
highest solution index is 4 and the peak frequency is always
reached by solutions with index 2. Similar as in the cases
with different d,, the probability that a solution to (4) is a
saddle point of £ increases sub-linearly as the number of
data points increases.

Fig. 3. The index distribution for different d,, and Amax. For the left plot,
H=1,m=5,d; =dy =di =2,and A € [0, Amax]. For the right plot,
H=1m=2,dy=d1 =2,and Apax = 1.

0.4

¥ ® m=5
®E m=4
0.3 vV m=3
*  m=2
z
2 o5 ?
0.1 z
0
0 1 2 3 4

Index

Fig. 4. The index distribution for different m where H = 1, d; = 2,
dy = 2,and Apax = 1.
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Fig. 5. The minimum, mean, and maximum of global minimum loss
function value at real solutions of 1000 samples with different Apmax. The
other parametersare H =1, m =5,and di = d, = dy = 2.

5.3.4 Minima

In the following, we take a closer look at the structure of
all the real solutions for each sample. It is straightforward
to verify that the configuration with all weights being zero
is always a solution of (4). For the cases where H = 1 and
m = 1, we have a total of 13,000 samples consisting of 13
different scenarios listed in Tables 1 and 2 and Figure 1. For
these cases, all local minima are global minima, and the
absolute values of all the local minima are the same, i.e., all
the minima are symmetrically related to each other.

For the cases where H > 1 or m > 1, we have a total of
15,000 samples consisting of 15 different scenarios as listed
in Tables 1 and 2 and Figure 1. Here, we observe instances
where there exist local minima which are not global minima.
One such instance is given in Table 3 and the parameters for
the system are

—0.1297  0.5236 —2.1491 0.3252  0.7313
X =|-1.0135 -1.4616 —-1.6352 —0.4289 —0.8680f ,
0.2523 1.8664 1.2240  0.0116  0.9282
0.6973 —0.6288 1.0285 —0.9793 1.0402
Y = [-0.0452 —0.8566 —0.2397 —1.1334 1.2315(, (11)
0.1912  —-0.3887 —0.4516 0.0221  0.5602
0.383 0.6917 0.9245 04827 0.884
Ay = 0298 0.8805 0.0813 , A1 = 10.1283 0.1963] .
’ ' ’ 0.2529 0.1214

When H = 1 and m = 5, we notice that all sample runs
with Apax = 100 exhibit all local minima are global minima.
However, combining with the observation from Figure 1, this
may only be an artifact of the topology trivialization.

5.3.5 Loss Function at Real Solutions

To see how the value of A« impacts the loss function value,
we compute the global minimum of each sample and plot the
minimum, mean, and maximum of 1000 samples for different
values of Apax and summarized in Figure 5. We observe that
as Apax approaches zero, the mean and minimum of the
global minima approaches nonzero constants. This implies
that, for a generic case with 5 data points and one hidden
layer, there can be no values of W; and W, such that the loss
function achieves a global minimum of 0, i.e., not possible to
have a zero training error minima.
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5.3.6 A simple application to the Boston Housing data

To better explain the implication of the algebraic theory on
the loss surface of a deep linear network, we apply the above
described method to the Boston housing data which can be
found at https:/ /www.cs.toronto.edu/~delve/data/boston/
bostonDetail.html. There are 13 variable factors documented
which may contribute to the price of a house. For the
purpose of this example, we remove the two categorical
variables from the data. We train a neural network with linear
activation function to predict the price of Boston houses. The
loss function for the 2-layer deep linear network is given as

IPrice — Wa x W7 X factors|| + || A1 o W1 || + ||A2 0 Wa]|. (12)

The Price is a scalar indicating the predicted price of a house
using the 11 factors. The hidden layer W; has size 2 x 11 and
the layer W5 has size 1 x 2. Here, when A; and A are zero,
there exist only flat minima. By Theorem 1, when A; and Ag
are randomly selected, there are finitely many critical points
for (12). Consequently, there are finitely many local minima.

Here, we find all local minima and saddle points of (12)
using Bertini with A1 and As randomly selected uniformly
in [0, 1]. There are 5 sets of real solutions including the trivial
(zero) solution. The 4 non-trivial isolated solutions have the
following format:

11 columns
—N—
Solution1 [0 O] x [g I%}
Wo S—
Wi
11 columns
—
Solution2 [0 —0] x [ OD OD]
_ .
Wa
Wi
11 columns
——
Solution3 [0 0] x R
0 --- 0
Wa
Wi
11 columns
. - .- -O
Solution4 [0 0] x [ 0 ... 0 ]
Wa
W1

In particular, Solutions 1 and 2 share the same values on the
non-zero elements as does Solutions 3 and 4. Following the
notation in Table 3, we present the optimal solutions below
in Table 4.

Following a similar procedure as in Section 5, we obtain
multiple sets of solutions while decreasing the magnitude of
Ay and A; to 0. These four solutions yield the same minimum
loss function value of 112.6 while the zero solution has a
higher loss function value at 547.5. Figure 6 shows the loss
function near Solution 1 and the zero solution. The trivial
solution is a saddle point and not a minimum. Here, all local
minima are global minima.

To compare the solution of the deep linear network
with traditional linear regression, we compute the linear


https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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TABLE 3
All local minima arising from (11) with H = 1, m = 5, d = dy = 3, and d1 = 2 such that there are local minima which are not global minima.
w?l wSl 1”% qu u€3 “€3 u&l Wy “%1 wiy uéz “%2 A
0.42959 0.36758 0.30899 -0.10019 -0.01419 -0.23650 -0.50336 0.33655 -0.01843 -0.11969  -0.14925 0.54928  7.13717
-0.42959 0.36758  -0.30899  -0.10019 0.01419  -0.23650 0.50336  -0.33655 0.01843 -0.11969  -0.14925 0.54928  7.13717
-0.42959 -0.36758  -0.30899 0.10019 0.01419 0.23650 0.50336  -0.33655 0.01843 0.11969 0.14925 -0.54928 7.13717
0.42959  -0.36758 0.30899 0.10019  -0.01419 0.23650  -0.50336 0.33655  -0.01843 0.11969 0.14925  -0.54928 7.13717
0.54286  -0.05927 0.22411  -0.05389  -0.04306 0.26254  -0.51936 0.16009 0.25030 0.05058 -0.17838 -0.07580 7.16775
0.54286 0.05927 0.22411 0.05389  -0.04306 -0.26254 -0.51936 0.16009 0.25030  -0.05058 0.17838 0.07580  7.16775
-0.54286  -0.05927 -0.22411 -0.05389  0.04306  0.26254  0.51936 -0.16009 -0.25030  0.05058 -0.17838 -0.07580 7.16775
-0.54286  -0.05927 -0.22411  -0.05389 0.04306 0.26254 0.51936  -0.16009  -0.25030 0.05058 -0.17838 -0.07580 7.16775
TABLE 4
The nontrivial optima of (12). Solutions 1 and 2 are negatives of each other and so are Solutions 3 and 4.
Solution No. wiy why why whs why whs whe why why wiy  wh g wh 1y
1(2) 23803 -0.0305 0.0187 -0.0139 -0.9908 2.4981 -0.0030 -0.4401 -0.0008 -0.1770 0.0059 -0.1823
wi) wi, wiy w?3 w?y wis w% w?y w?s wiy w? 10 w1y
3(4) 2.6526  -0.0273 -0.0168 -0.0125 -0.8891 2.2416 -0.0027 -0.3950 -0.0007 -0.1588 0.0053 -0.1635

e Global optimum

The loss function value
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Fig. 6. The loss surfaces near two solutions found by Bertini. The top
figure shows the loss surfaces for Solution 1 against variable w1, and
wYs. The bottom figure shows the loss surfaces for zero solution against
variable wi, and w9

regression model for the Boston housing data with the
following loss function:

||Price — W x factors||

where W is a vector of size 1 x 11. For the Boston house data,
the Lo-difference between W at the global (and the only)
minimum for the linear regression without any regularization
and the product WoW; computed from the global minima
for the deep linear network as A vanishes is numerically zero.
Thus, the linear regression model is correctly reproduced.

6 CONCLUSIONS AND DISCUSSION

Understanding nonconvexities of optimization problems aris-
ing in deep learning and their implications are an active area
of research. Deep linear networks have served as an ideal test
ground of ideas as they qualitatively capture certain features
of deep nonlinear networks yet simple enough for analytical
and numerical investigations. In the present paper, we have
initiated an ambitious plan to understand the loss landscapes
of deep networks from an algebraic geometric point of
view. Our approach is to provide practicable results from
algebraic geometry rather than abstract ones by invoking
computational and numerical methods in algebraic geometry.

Algebraic Geometry Interpretation:- In the present paper, after
reviewing existing results on deep learning loss surfaces as
well as for deep linear loss surfaces, we observed that the
system of gradient equations of the deep linear networks is
an algebraic system and argued that by complexifying the
equations brings the problem of solving this system into the
complex algebraic geometry domain. In turn, we can utilize
many of the mature results and methods from algebraic
geometry to gain insights into the optimization landscapes
of these systems.

We emphasis that the algebraic geometric interpretation
of gradient equations is not restricted only to the deep
linear networks: classes of deep nonlinear networks which



obviously fall under the algebraic geometry paradigm are
deep polynomial networks and deep complex networks.
While any other activation functions can be approximated
by polynomials of finite degrees, the gradient systems for
most of the contemporary activation functions used for
deep nonlinear networks in practice such as hyperbolic
tangent, sigmoid, rectified linear units (ReLUs), leaky ReLUs,
Heaviside, etc. activation functions are, or can be transformed
to, algebraic systems. Hence, the results and methods can also
be applied, after appropriate modifications, to investigate
loss landscapes of deep nonlinear networks.

Flat Stationary Points:- We reviewed the current understand-
ing of “flat” minima in deep learning and provided a
distinction among different definitions of “flat” minima
and other stationary points. In particular, a flat stationary
point in our case is a point on a connected component
in the weight space such that each of the points on this
component are solutions of the gradient equations and that
the loss function remains constant on the whole component.
Such flat stationary points also called positive-dimensional
solutions where the dimension refers to the (real or complex)
dimension of the component. Such a flat minimum over the
real space is distinct from an isolated stationary point in the
real space even though the Hessian matrices evaluated at
both of which are singular.

For deep linear networks, we showed that there do exist
positive-dimensional components when no regularization
is used. In the existing literature, the deep linear networks
are shown to posses no local minima which are not global
minima. Our results then yield that the loss surface of
unregularized deep linear network consists of flat minima
forming minima lakes, each of which are at the same level as
the global minimum. In fact, the landscape also consists of
stationary point lakes with the Hessian matrix having higher
index at these solutions.

Regularizing Flat Stationary Points and Role of Regularization:-
Using Generalized Sard’s Theorem, we showed that when an
extension of Lo-regularization is added to the loss function,
all (complex and real) stationary points become isolated, i.e.,
no flat stationary points exist. In addition, this regularization
also removes isolated singular solutions.

Since the stochastic gradient descent (SGD) method and
its variants rely only on first order (gradient) information
while searching for a minimum, they have to pass near or
through saddle points of higher index. The number of saddle
points of higher index is usually exponentially more than the
number of minima in high dimensional and nonlinear loss
landscapes. In addition, if there are flat saddle points present
in the system, SGD may encounter further issues such as
the computation getting stuck at the flat saddle point which,
in turn, results in performance plateaus for many epochs.
Recently, a few attempts have been made to devise methods
that escape from wide minima in the absence of singular
solutions (and in presence of singular solutions in limited
cases) [12], [25], [36], [37], [38], [39]. An alternative way to
evade singular solutions (both flat and degenerate) may be
to use the proposed regularization which eliminates flat
stationary points and minima right from the beginning of the
SGD computation. Hence, wide minima escaping methods
could then be applied to achieve better training.
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The existence and implications of flat minima have been
discussed in the existing literature. In particular, it has been
argued that networks trained on flat minima generalize more
than when trained on sharp minima. On the other hand, it is
also argued that flat minima can be easily converted to sharp
minima using a reparametrization. Our results confer the
former argument, though in the paradigm of the definition
of flatness in the algebraic geometry sense. We also argue
that since, in general, loss landscapes quantitatively (and
in some cases even qualitatively) change with respect to
data unless the “flatness” (however defined) of the minima
is an invariant of the data, the existence of flat stationary
points may not be crucial for the generalization ability of the
network. On the other hand, the existence of an invariance
of flatness of minima and saddle points, if proven, may turn
out to be crucial in understanding generalization properties.

It should be noted that the existence of flat stationary
points directly corresponds to continuous symmetries in the
system. Various ways to break these continuous symmetries
have been investigated in the literature [132]. The generalized
Lo-regularization term essentially perturbs the system to
leave only isolated solutions in the system. For example,
in [133], it is argued that skip connections in neural networks
eliminate singularities as it removes certain symmetries
from the system. It may be interesting to study if there
is a relation between the generalized L,-regularization and
skipped connections. One can also project the constant zero
modes of the Hessian in the computation [132]. From the
computational point of view though, the generalized L,-
regularization approach may be the most straightforward
way to implement in the current deep learning suites.

By leaving only isolated critical points, the generalized
Lo-regularization also opens the door to utilizing efficient
and scalable numerical methods, including homotopy meth-
ods [100], [103], to locate all critical points. Its implication
on training robustness is also noteworthy as it ensures that
sufficiently small perturbations in training data only cause
small changes in critical points while preserving their indices.

Upper Bounds on the Number of Stationary Points and Numerical
Results:- Once all the flat stationary points are removed from
the gradient equations, the next question we addressed is
how many isolated stationary points are there? When the
gradient equations are treated as defined over the complex
numbers, one can employ many upper bounds on the
number of complex solutions for systems of polynomial
equations available in the literature, such as the CBB and
BKK bounds, to gain insight into the systems. For deep
linear networks, the CBB and BKK bounds for modest size
networks are given in Table 1.

Using these upper bounds, we employed a numerical
algebraic geometry method called the numerical polynomial
homotopy continuation method which guarantees to find
all isolated complex solutions of such polynomial systems.
In our experiments, we generated data matrices X and Y
by drawing each of their entries independently from the
Gaussian distribution with mean 0 and variance 1 and \;’s
from uniform distributions on [0, Ay.x] for various values
of Apmax to investigate their impact. Table 1 provides some
insight relating bounds on the number of solutions with
the actual number of solutions. Moreover, by comparing the



average number of real stationary points with an analytical
result, we see that all bounds are orders of magnitudes larger
than the actual results showing that deep linear systems are
very sparse. This conclusion may or may not extend to deep
nonlinear network as the structure of the corresponding
polynomials may different.

Moreover, we showed that the average number of real
solutions reduces as perturbation parameters \;’s vanish,
a phenomenon called topology trivialization [127], [128],
[129], [130], [131]. They limit to stationary points of the
unregularized problem which has flat minima.

We sorted the stationary points by the index (number
of negative eigenvalues) of the Hessian matrix and showed
that for some samples, there are indeed local minima which
are not global minima contrary to the available results in the
unregularized case. This result is a first for the complete deep
linear networks in the regularized case (in fact, Ref. [49], [50]
are the only result available for the linear networks with
nonzero regularization in a restricted case). There exist many
discrete symmetries among solutions, i.e., the value of the
loss function at the symmetrically related solutions is equal.
We also notice that the stationary points with higher index
are rare, which may be due the linearity of the activation
functions but may or may not necessarily be a phenomenon
when using nonlinear activation functions.

Investigating the loss landscapes when X and Y are
correlated, instead of choosing their values from random
distributions, may exhibit interesting characteristics of the
optimization landscapes as well as impacting the fit of a
deep network for a given data set. Extending the algebraic
geometry interpretation to deep nonlinear networks will
shed further novel insights into the optimization landscapes
of these models. Computational implications of the proposed
regularization approach specially together with the saddle
escaping methods will be an important breakthrough on
these theoretical insights.

Finally, the NPHC method we have employed to solve the
gradient equations in this paper is known to be embarrass-
ingly parallelizeable, meaning larger systems of equations
can still be straightforwardly tackled given enough compu-
tational resources. Moreover, the highly structured nature
of the stationary points shown in Table 3 and Section 5.3.6
suggest that efficient methods could be developed to exploit
the structure in the solution set. The combination of paralleliz-
ability and a custom-made homotopy exploiting structure
can then be deployed on larger-scale models comparable to
the ones being used in real-world applications recently.
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