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ABSTRACT
Standard interior point methods in semidefinite programming can be viewed as
tracking a solution path for a homotopy defined by a system of bilinear equations. By
considering this in the context of numerical algebraic geometry, we employ numerical
algebraic geometric techniques such as adaptive precision path tracking, endgames,
and projective space to accurately solve semidefinite programs. We develop feasi-
bility tests for both primal and dual problems which can distinguish between the
four feasibility types of semidefinite programs. Finally, we couple our feasibility tests
with facial reduction to develop a solving approach that can handle every scenario
arising in semidefinite programming, including problems with nonzero duality gap.
Various examples are used to demonstrate the new methods with comparisons to
commonly used semidefinite programming software.

1. Introduction

Semidefinite programs are nonlinear convex optimization problems arising in many
applications in engineering, control, and combinatorial optimization, e.g., see [1, 9, 13,
15, 45, 48, 52] and the references contained therein. The primal form of a semidefinite
program is

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(SDP-P)

where b = (b1, . . . , bm) ∈ Rm and A1, . . . , Am, C,X ∈ Rn×n are all symmetric matrices
with 〈R,S〉 = trace (RTS) = trace (RS). The inequality X � 0 means that X is
a symmetric positive semidefinite matrix, i.e., every eigenvalue of X is nonnegative.
Since the set of symmetric positive semidefinite matrices is a convex set, (SDP-P) is
a convex program that minimizes a linear function over a spectahedron [9] which is a
linear slice of the cone of symmetric positive semidefinite matrices. The corresponding
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dual form of (SDP-P) is

maximize
S,y

bT y

subject to C −
m∑
i=1

yiAi = S,

S � 0.

(SDP-D)

A standard approach in optimization is to consider the first-order Karush-Kuhn-
Tucker (KKT) optimality conditions. If both (SDP-P) and (SDP-D) have feasibility
sets with a nonempty interior, i.e., strictly feasible, then the KKT conditions are both
necessary and sufficient for solving (SDP-P) and (SDP-D), namely:

〈Ai, X〉 = bi, i = 1, , . . . ,m,

C −
m∑
i=1

yiAi = S,

SX = 0,

X, S � 0.

(KKT)

Interior point methods, e.g., see [1, 2, 23, 34–36, 54] and the references contained
therein, based on the KKT conditions using the barrier function µ log detX yield

〈Ai, X〉 = bi, i = 1, . . . ,m,

C −
m∑
i=1

yiAi = S,

SX = µI,

X, S � 0

(1)

where I is the n×n identity matrix. When µ > 0, the matrices X and S arising in the
unique solution of (1) are required to be positive definite, i.e., every eigenvalue is posi-
tive, denoted X,S � 0. Hence, upon removing the positive definite condition from (1),
the remaining system of equations is simply a bilinear homotopy parameterized by µ
which defines the central path. This permits techniques from numerical algebraic ge-
ometry, e.g., see [6, 43], to be employed to solve semidefinite optimization problems.

When both (SDP-P) and (SDP-D) are strictly feasible, the central path converges
to optimizers of both (SDP-P) and (SDP-D), say X∗ and (S∗, y∗), respectively. That
is, the optimal values are achieved with 〈C,X∗〉 = bT y∗, i.e., a zero duality gap. How-
ever, when both (SDP-P) and (SDP-D) are not strictly feasible, the optimal values
need not be achieved and the duality gap may be nonzero. The papers [26, 37, 50, 51]
demonstrate the difficulty of current semidefinite programming software to identify
cases such as nonzero duality gaps and so-called weakly infeasible programs. By uti-
lizing techniques from numerical algebraic geometry, we develop a solving approach
which handles every possible scenario in semidefinite programming.

The rest of the paper is organized as follows. Section 2 summarizes the three key as-
pects from numerical algebraic geometry which will be utilized in homotopy-based ap-
proach for solving (SDP-P) and (SDP-D): adaptive precision path tracking, endgames,
and projective space. Section 3 applies this methodology to create feasibility tests
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for (SDP-P) and (SDP-D). In particular, we show that our approach can distinguish
between the four feasibility types of semidefinite programs: strictly feasible, feasible
but not strictly feasible, weakly infeasible, and strongly infeasible. Section 4 provides
a complete solving approach that can handle every scenario arising in semidefinite
programs. In addition to illustrative examples throughout, Section 5 includes various
examples to demonstrate our numerical algebraic geometric approach with compar-
isons to other commonly used software for solving semidefinite programs. A short
conclusion is provided in Section 6.

2. Primal-dual solvers and numerical algebraic geometry

As mentioned in the Introduction, we can view interior point methods as path track-
ing for a bilinear homotopy. In this section, we will consider homotopies for solving
(SDP-P) and (SDP-D) and three computational techniques from numerical algebraic
geometry, namely adaptive precision path tracking, endgames, and projective spaces.
For more details on numerical algebraic geometry, see the books [6, 43]. Some of these
ideas have already been utilized in optimization, e.g., [16–18, 32, 33, 38, 53].

2.1. Interior point homotopy

When both (SDP-P) and (SDP-D) are strictly feasible, that is, their feasibility sets
have a nonempty interior, a standard solving approach is to utilize an interior point
method. That is, one first computes an interior point that (approximately) lies on the
central path for some µ > 0 defined by the interior point homotopy

H(X,S, y;µ) =


〈Ai, X〉 − bi i = 1, . . . ,m

C −
m∑
i=1

yiAi − S

SX − µI

 = 0. (H)

This is typically called the Phase I stage. The Phase II stage is to track along the
central path as µ→ 0+ which limits to a primal-dual solution. Since only the constant
terms are changing, (H) is a so-called Newton homotopy, e.g., see [20].

We can simplify (H) to a well-constrained homotopy, i.e., one which has the same
number of variables and equations, as follows. The total number of variables is
n2 + n+m since S and X are symmetric n × n matrices and y is a vector of length
m. In terms of equations, the first collection in (H) consists of m linear equations. The
next equation is a linear matrix equation of symmetric matrices so this yields (n2+n)/2
linear equations. Thus, to have a well-constrained system, we need the final matrix
equation, arising from the complimentary slackness condition, to also yield (n2 +n)/2
equations. There are three common approaches for this: use the upper triangular part
of this matrix equation, take the upper triangular part of the symmetrized version of
this matrix equation [2], namely

1

2
(SX +XS) = µI,

or apply techniques from [21] to adaptively select (n2 + n)/2 linear combinations of
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the n2 bilinear equations based on local conditioning.

Remark 1. Since S = C −
∑m

i=1 yiAi, one can trivially eliminate S to reduce from
a well-constrained homotopy involving n2 + n+m equations and variables as written
in (H) to one involving (n2 +n)/2 +m equations and variables. Similar reductions are
possible for all of the homotopies presented below.

With interior point methods and homotopy continuation, there is a start point,
say z∗ := (X∗, S∗, y∗) corresponding with µ∗ > 0, i.e., H(X∗, S∗, y∗;µ∗) = 0. Hence,
by taking µ = t · µ∗, z = (X,S, y), and N = n2 + n + m, we can view (H) as a
well-constrained homotopy H(z; t) : RN × [0, 1] → RN and we wish to track the
solution path, i.e., the central path, z(t) : (0, 1] → RN defined by z(1) = z∗ and
H(z(t); t) ≡ 0 to compute z(0). Even though z(t) is a smooth path on (0, 1] for
cases of interest, ill-conditioning along the path and particularly near t = 0 can cause
numerical challenges, which is addressed in Section 2.2 using adaptive precision path
tracking and endgames. To ameliorate scaling issues, we consider compactifying using
projective space in Section 2.3 which will be essential in subsequent sections. These
methods are implemented in the software package Bertini [5].

2.2. Adaptive precision path tracking and endgames

A solution path z(t) for a homotopy H(z; t) satisfies H(z(t); t) ≡ 0. Differentiating with
respect to t, one sees that the path z(t) satisfies the Davidenko differential equation

ż(t) = −JzH(z; t)−1 · JtH(z; t) (2)

where JzH(z; t) and JtH(z; t) are the Jacobian matrix and vector, respectively, with
respect to z and t. Hence, one can track along z(t) with the aim of computing z(0) using
a predictor-corrector strategy with adaptive stepsize and adaptive precision [4, 7, 8].
The predictor, e.g., Euler or Runge-Kutta predictor, is based on solving (2). The
corrector, e.g., Newton’s method, is based on solving H = 0. The stepsize and precision
used in the computations are based on local conditioning along the path as well as
the history of success or failure of previous steps as described in [4, 7, 8]. In fact, even
though the path is smooth on (0, 1], it may become ill-conditioned, e.g., near t = 0 as
one approaches an optimizer for a problem which has infinitely many optimizers. The
advantage of using such adaptive approaches is to avoid unnecessary computational
costs resulting from employing too high precision or too small steps when not needed.

Since the goal is to numerically approximate z(0) and ill-conditioning can naturally
arise near t = 0, one switches from path tracking to using endgames to compute
accurate approximations of z(0) using points along the path z(t) for selected values
of t near 0. See, e.g., [6, Chap. 3] for more details. The essential aspect of endgames in
the context of interior point methods is that z(t) can be written as a Puiseux series in a
neighborhood of t = 0, called the endgame operating zone. That is, there exists c ∈ N,
called the cycle number of the path, and coefficients ai ∈ RN such that

z(t) =

∞∑
i=0

ai · ti/c

for all t in a neighborhood of 0. Since the goal is to approximate z(0) = a0, the power
series endgame [30] uses values along the path z(t) near t = 0 to first determine the
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cycle number c and then uses interpolation to approximate the coefficients up to a
given order based on the number of sample points selected. The Cauchy endgame [29]
first determines c as the minimum number of loops encircling t = 0 over C needed to
return to the starting value, i.e., the winding number. Since s 7→ z(sc) is analytic in a
neighborhood of s = 0, the Cauchy integral theorem yields z(0) by integrating along
the loops encircling 0. Numerical integration using the trapezoid rule is exponentially
convergent due to periodicity, e.g., see [47]. The endpoint can be computed to arbitrary
accuracy by rerunning the endgame, e.g., see [6, § 7.2.2], and using deflation techniques
to restore local quadratic convergence of Newton’s method [22, 25].

Example 2.1. To illustrate, consider solving the semidefinite program

minimize 2x11 − 1

subject to

 x11 0 −x22/2
0 x22 0

−x22/2 0 x11 − 1

 � 0

which corresponds with (SDP-P) where n = 3, m = 4, b = (0, 0, 0, 1),

C =

[
1 1 1
1 1 1
1 1 1

]
, A1 =

[
0 1 0
1 0 0
0 0 0

]
, A2 =

[
0 0 1
0 1 0
1 0 0

]
,

A3 =

[
0 0 0
0 0 1
0 1 0

]
, A4 =

[
1 0 0
0 0 0
0 0 −1

]
.

For µ(t) = t and α(t) = (−3t+
√

9t2 + 4)/2, the corresponding solution path of (H) is

X(t) =

 (3t+ α(t) + 1)/2 0 −
√
tα(t) + 3t2/2

0
√
tα(t) + 3t2 0

−
√
tα(t) + 3t2/2 0 (3t+ α(t)− 1)/2

 ,
S(t) =

 1− α(t) 0
√
tα(t)

0
√
tα(t) 0√

tα(t) 0 1 + α(t)

 , y(t) =

 1

1−
√
tα(t)

1
α(t)


which is illustrated in Figure 1(a).

Ill-conditioning for this path near t = 0 arises from two places. First, the cycle
number is c = 2 so that the solution path has an infinite derivative at t = 0. Second,
the endpoint

X(0) =

 1 0 0
0 0 0
0 0 0

 , S(0) =

 0 0 0
0 0 0
0 0 2

 , y(0) =


1
1
1
1


is actually an embedded point on the following linear solution component of (H)
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parameterized by y3:

X =

 1 0 0
0 0 0
0 0 0

 , S =

 0 0 0
0 0 1− y3

0 1− y3 2

 , y =


1
1
y3

1

 .
Figure 1(b) plots the condition number of the Jacobian matrix of (H) with respect
to the variables along the path. By reparameterizing with t = s2, the solution path
is analytic on s ∈ [0, 1], i.e., the cycle number with respect to s is 1. Figure 1(c)
plots the original path parameterized by t, which is not analytic at t = 0 since it has
a vertical tangent at t = 0, and its reparameterization by s with t = s2, which is
analytic at s = 0.

(a) (b) (c)

Figure 1. Plot of (a) two coordinates of the path, (b) condition number, and (c) comparison of s22(t) (red)

which is not analytic at t = 0 due to a vertical tangent and s22(s2) (blue) which is analytic at s = 0.

Remark 2. When the cycle number is not known a priori but is expected to be larger
than 1, i.e., the path is not analytic at t = 0, reparameterizing by t = sr by some
integer r > 1 can help to improve the performance of the endgame for accurately
approximating the endpoint. For example, if δ ∈ (0, 1) such that {|t| < δ} is contained
in the endgame operating zone with respect to t, then {|s| < r

√
δ} is contained in

the endgame operating zone with respect to s where t = sr. Increasing the endgame
operating zone is counterbalanced by a potential increase in ill-conditioning requiring
higher precision computations. Thus, when the cycle number is not known a priori,
reasonable choices are r = 2, 3, or 4 (For example, we use r = 4 in Section 5.2.).

2.3. Projective space

Since (H) is bilinear, i.e., linear in X and linear in {S, y}, it is natural to view the
variables as lying in the product space R(n2+n)/2 × R(n2+n)/2+m corresponding to the
primal and dual variables, respectively. To ameliorate scaling issues and to ensure that
every solution path has finite length, we compactify this product space using projective
space. We provide a brief summary with more details in, e.g., [43, Chap. 3].

Projective space Pa, by definition, is the space of all lines in Ca+1 passing through
the origin. The unique line passing through a nonzero point (x0, . . . , xa) ∈ Ca+1 and
the origin is denoted [x0, . . . , xa] ∈ Pa. Since, for every λ 6= 0, the points (x0, . . . , xa)
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and (λx0, . . . , λxa) lie on the same line passing through the origin,

[x0, . . . , xa] = [λx0, . . . , λxa].

There is a natural embedding of Ca into Pa via (x1, . . . , xa) 7→ [1, x1, . . . , xa]. With
this embedding, the hyperplane at infinity is H = {[0, x1, . . . , xa] ∈ Pa}. In particular,
Pa \ H ∼= Ca with

[x0, x1, . . . , xa] ∈ Pa \ H 7→ (x1/x0, . . . , xa/x0) ∈ Ca.

For a polynomial f defined on Ca of degree d, the homogenization of f is the homo-
geneous polynomial

fh(x0, . . . , xa) = xd0 · f(x1/x0, . . . , xa/x0).

Hence, {f = 0} ∼= {fh = 0} \ H where {fh = 0} ⊂ Pa is compact.

Example 2.2. The two circles defined by f1(x1, x2) = x2
1 + x2

2 − 1 = 0 and
f2(x1, x2) = (x1 − 1)2 + x2

2 − 1 = 0 intersect in two points in R2, namely (1/2,±
√

3/2)
and two points at infinity. To see this, we have

fh1 (y0, y1, y2) = y2
1 +y2

2−y2
0 and fh2 (y0, y1, y2) = (y1−y0)2+y2

2−y2
0 = y2

1 +y2
2−2y0y1.

Hence, {fh1 = fh2 = 0} = {[2, 1,±
√

3], [0, 1,±
√
−1]} with the first two being finite and

the last two are contained in the hyperplane at infinity.

For (H), the embedding R(n2+n)/2 ×R(n2+n)/2+m ↪→ P(n2+n)/2 × P(n2+n)/2+m yields

Hh([x0, X], [s0, S, y];µ) =


〈Ai, X〉 − bix0 i = 1, . . . ,m

s0C −
m∑
i=1

yiAi − S

SX − µx0s0I

 = 0. (3)

Hence, this permits the independent rescaling of the homogenization of the primal and
dual variables.

2.4. Primal-dual homotopy

The interior point homotopy (H) requires one to start with an interior point on the
central path. One can modify the homotopy to create another solution path that still
ends at a primal-dual solution when both (SDP-P) and (SDP-D) are strictly feasible.
For this approach to work, the following assumption is needed:

(A1) The matrices A1, . . . , Am are linearly independent.

By using (numerical) linear algebra computations, we can always replace (SDP-P)
with a problem where Assumption (A1) is satisfied and update (SDP-D) accordingly.

This modified approach builds the start point and homotopy simultaneously. To
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that end, arbitrary select ŷ ∈ Rm and then compute σ ∈ R such that

Ŝ := C −
m∑
i=1

ŷiAi − σI � 0. (4)

For example, after selecting ŷ, the choice of σ can be done either by directly computing
the eigenvalues of the constant matrix C−

∑m
i=1 ŷiAi or by bounding them, e.g., using

Gershgorin’s theorem.
Since Ŝ � 0, we next compute its inverse X̂ := Ŝ−1 � 0 and evaluate the linear

functions b̂i := 〈Ai, X̂〉 for i = 1, . . . ,m. Let b̂ = (̂b1, . . . , b̂m), and define Cµ := C−µσI
and bµ := (1−µ)b+µb̂. Hence, it is straightforward to check that X̂ is strictly feasible
for the following perturbation of (SDP-P) when µ = 1:

minimize
X

〈Cµ, X〉

subject to 〈Ai, X〉 = bµi i = 1, . . . ,m

X � 0.

(SDP-Pµ)

Also, (Ŝ, ŷ) is strictly feasible for the following perturbation of (SDP-D) when µ = 1:

maximize
S,y

bTµy

subject to Cµ −
m∑
i=1

yiAi = S

S � 0.

(SDP-Dµ)

Note that (SDP-P) and (SDP-D) correspond to (SDP-Pµ) and (SDP-Dµ), respectively,
when µ = 0. Thus, the following system corresponds with (KKT) when µ = 0:

〈Ai, X〉 = bµi, i = 1, . . . ,m,

Cµ −
m∑
i=1

yiAi = S,

SX = µI,

X, S � 0,

(5)

and homotopy

H(X,S, y;µ) =


〈Ai, X〉 − bµi i = 1, . . . ,m

Cµ −
m∑
i=1

yiAi − S

SX − µI

 = 0. (Hµ)

The following shows that we can use (Hµ) to solve (SDP-P) and (SDP-D) when
both are strictly feasible.

Theorem 2.3. With the setup described above, if (SDP-P) and (SDP-D) are both
strictly feasible and Assumption (A1) holds, then the solution path of (Hµ) starting
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at (X̂, Ŝ, ŷ) with µ = 1 is smooth for µ ∈ (0, 1] and ends at µ = 0 at a solution
of (SDP-P) and (SDP-D).

Proof. Select X0 and (S0, y0) which are strictly feasible for (SDP-P) and (SDP-D),

respectively. Consider defining Xµ := (1 − µ)X0 + µX̂, Sµ := (1 − µ)S0 + µŜ, and
yµ := (1− µ)y0 + µŷ. Hence,

Cµ −
m∑
i=1

yµiAi = Sµ and 〈Ai, Xµ〉 = bµi for i = 1, . . . ,m.

Moreover, since X0, X̂, S0, Ŝ � 0, convexity yields Xµ, Sµ � 0 for µ ∈ [0, 1]. Thus,
we have shown (SDP-Pµ) and (SDP-Dµ) are strictly feasible for µ ∈ [0, 1] so that
standard theory [19, 23, 35] shows that (5) has a unique solution for µ ∈ (0, 1] pro-
ducing a smooth path for µ ∈ (0, 1]. Since (KKT), which are both necessary and
sufficient conditions in this case, corresponds with (5) when µ = 0, the endpoint
solves (SDP-P) and (SDP-D). The same result holds for the solution path defined

by (Hµ) starting at (X̂, Ŝ, ŷ) since the inequality conditions of (5) are trivially satisfied
along the path for µ ∈ (0, 1].

Example 2.4. We illustrate on a simple example in order to plot the corresponding
path and feasible sets for the original problem and perturbed problem. To that end,
consider solving

minimize 2x11 + 2x12

subject to

[
x11 x12

x12 (1− 2x11)/3

]
� 0

which corresponds with (SDP-P) with n = 2, m = 1, b1 = 1,

C =

[
2 1
1 0

]
and A1 =

[
2 0
0 3

]
.

It is easy to verify that both (SDP-P) and (SDP-D) are strictly feasible where the
constraints in (SDP-P) are satisfied if and only if, for r = 1,

(4x11 − r)2 + 24x2
12 ≤ r2. (6)

We now employ the homotopy approach described above by arbitrarily selecting
ŷ = 0.1 and taking σ = −1.7. Rounding to 4 decimal places for presentation, this yields

Ŝ =
[

3.5000 1.0000
1.0000 1.4000

]
, X̂ = Ŝ−1 =

[
0.3590 −0.2564
−0.2564 0.8974

]
, and b̂1 = 〈A1, X̂〉 = 3.4103.

The corresponding feasible set for (SDP-Dµ) is the ellipse defined by (6) with

r = bµ = (1− µ)b1 + µb̂1. Tracking the solution path defined by (Hµ) starting at µ = 1

with (X̂, Ŝ, ŷ) yields

X =

[
0.0564 −0.1291
−0.1291 0.2958

]
, S =

[
2.2910 1.0000
1.0000 0.4365

]
, and y = −0.1455,
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rounded to 4 decimal places. Figure 2 plots the path along with the feasiblity sets
for the original problem (smaller ellipse) and the perturbed problem (larger ellipse)
in the (x11, x12)-plane.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. Homotopy path with start point (◦), endpoint (•), and feasible sets.

By utilizing projective space, one can extend Theorem 2.3 to be used for solving
(SDP-P) and (SDP-D) when both are feasible and the so-called duality gap is zero,
i.e., the optimal values of (SDP-P) and (SDP-D) are both finite and equal, but may
not be attained. For example, if both (SDP-P) and (SDP-D) are feasible and one of
the problems is strictly feasible, then the duality gap is zero but the optimal value for
the problem which is strictly feasible may not be attained as shown in the following.

Example 2.5. Consider the following problems:

minimize x11 maximize y1

subject to

[
x11 1
1 x22

]
� 0 subject to

[
1 −y1/2

−y1/2 0

]
� 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 2, m = 1, b1 = 1,

C =

[
1 0
0 0

]
, and A1 =

[
0 1/2

1/2 0

]
.

It is easy to see that the primal problem is strictly feasible while the only feasible value
for the dual problem is y1 = 0. Moreover, the optimal value for both is 0 which is a
maximum for the dual problem but an infimum that is not achieved for the primal prob-
lem. Due to this, SDPT3 [46] truncates with x11 ≈ 10−5 and x22 ≈ 104 while MOSEK [3]
truncates with x11 ≈ 10−7 and x22 ≈ 106. We return to this problem in Ex. 2.8.

The following family results from a pathological example (cf. [9, 40]).
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Example 2.6. For α ≥ 0, consider the following problems:

minimize x11 maximize αy2

subject to

 x11 x12 x13
x12 0 (α− x11)/2

x13 (α− x11)/2 x33

 � 0 subject to

 1− y2 0 0
0 −y1 −y2
0 −y2 0

 � 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 3, m = 2,

b = (0, α), C =

 1 0 0
0 0 0
0 0 0

 , A1 =

 0 0 0
0 1 0
0 0 0

 , and A2 =

 1 0 0
0 0 1
0 1 0

 .
A direct calculation shows that both the primal and dual problems are feasible but
not strictly feasible. In particular, x11 = α and y2 = 0 at every feasible point for the
primal and dual problems, respectively. Hence, the duality gap is α. We return to this
problem in Ex. 2.9.

By simply tracking the solution path of (Hµ) on the product of projective spaces
corresponding to the primal and dual variables as described in Section 2.3, one has
the following result.

Theorem 2.7. With the setup described above, if (SDP-P) and (SDP-D) are both
feasible with duality gap zero and Assumption (A1) holds, then the solution path

of (Hµ) starting at (X̂, Ŝ, ŷ) with µ = 1 is smooth for µ ∈ (0, 1] and converges in

P(n2+n)/2 × P(n2+n)/2+m corresponding to a solution of (SDP-P) and (SDP-D).

Proof. Similar to the proof of Theorem 2.3, let X0 and (S0, y0) both be feasible for

(SDP-P) and (SDP-D). As above, Xµ := (1− µ)X0 + µX̂, Sµ := (1− µ)S0 + µŜ, and
yµ := (1 − µ)y0 + µŷ yield feasible points for (SDP-Pµ) and (SDP-Dµ) for µ ∈ [0, 1].

Moreover, since X̂, Ŝ � 0, convexity yields that Xµ, Sµ � 0 for µ ∈ (0, 1] which
shows that (SDP-Pµ) and (SDP-Dµ) are strictly feasible for µ ∈ (0, 1]. Standard
theory [19, 23, 35] again yields that (5) has a unique solution for µ ∈ (0, 1] producing
a smooth path µ ∈ (0, 1] yielding the corresponding solution path defined by (Hµ)

starting at (X̂, Ŝ, ŷ). By compactifying

R(n2+n)/2 × R(n2+n)/2+m ↪→ P(n2+n)/2 × P(n2+n)/2+m,

this solution path must converge in P(n2+n)/2 × P(n2+n)/2+m. Since the correspond-
ing optimal values are finite (both feasible) and equal (duality gap is zero), and the
limit of (5) is (KKT) as µ converges to 0 via a parameter homotopy [28], the limit
corresponds with a solution of (SDP-P) and (SDP-D).

We demonstrate this method on the examples from above.

Example 2.8. For the primal and dual problems from Ex. 2.5, we set up our homo-
topy method using the arbitrary choice of ŷ = 0.1 and taking σ = −0.5. Rounding
to 4 decimal places for presentation, this yields

Ŝ =
[

1.5000 −0.0500
−0.0500 0.5000

]
, X̂ = Ŝ−1 =

[
0.6689 0.0669
0.0669 2.0067

]
, and b̂1 = 〈A1, X̂〉 = 0.0669.
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Figure 3 plots the affine coordinates of x11, y1, and x22 as well as the projection of this
path onto the (x11, y1)-plane showing that x11 and y1 converge to 0 while x22 diverges.
In fact, tracking on P3 × P4 yields

[x0, x11, x12, x22] = [0, 0, 0, 1] and [s0, s11, s12, s22, y1] = [1, 1, 0, 0, 0] (7)

which shows that the solution to the primal problem is “at infinity” since x0 = 0. We
can confirm that, in affine space, the coordinate x22 diverges since, for the projective
endpoint, x22 6= 0. The solution to the dual problem is finite since s0 6= 0 which
confirms that the minimum for the dual problem, which is the affine value of y1 at the
endpoint, is attained at 0.

Figure 3. Solution path in x11, y1, and x22 affine coordinates with its projection onto the (x11, y1)-plane.

Example 2.9. For the primal and dual problems from Ex. 2.6, we compare our ho-
motopy method when α = 0 and α = 1. Since the duality gap is α, Theorem 2.7
guarantees that our method will solve the problem when α = 0. In either case, we can
use the same start point by using the arbitrary choice of ŷ = (0.3, 0.7) and taking
σ = −1. Rounding to 4 decimal places for presentation, we have

Ŝ =

[
1.3000 0 0

0 0.7000 −0.7000
0 −0.7000 1.0000

]
, X̂ =

[
0.7692 0 0

0 4.7619 3.3333
0 3.3333 3.3333

]
,
b̂1 = 〈A1, X̂〉 = 4.7619,

b̂2 = 〈A2, X̂〉 = 7.4359.

(8)
When α = 0, the path converges in R6 × R8 with endpoint

(x11, x12, x13, x22, x23, x33) = (0, 0, 0, 0, 0, 1),
(s11, s12, s13, s22, s23, s33, y1, y2) = (1, 0, 0, 0.21, 0, 0,−0.21, 0),

showing that the minimum for both primal and dual problems is indeed 0.
When α = 1, the duality gap is 1 > 0 so that the only information that we can

gather from the proof of Theorem 2.7 is that the path will converge in P6 × P8, but it
need not correspond with a solution. In this case, the endpoint in P6 × P8 is

[x0, x11, x12, x13, x22, x23, x33] = [0, 0, 0, 0, 0, 0, 1],
[s0, s11, s12, s13, s22, s23, s33, y1, y2] = [0, 0, 0, 0, 1, 0, 0,−1, 0],

showing that both are “at infinity” since x0 = s0 = 0. The limit of x11 and y2 in affine
coordinates is 0 and 0.105, respectively, which suggests that the duality gap is nonzero
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and further computations are needed. We consider the feasibility of the primal and
dual problems in Examples 3.3 and 3.7, respectively, and solve the primal and dual
problems independently using facial reduction in Section 4.6.

We conclude this section with an infeasible example.

Example 2.10. Consider the following problems:

minimize − 1 maximize − y1

subject to − 1 ≥ 0 subject to 1− y1 ≥ 0

which correspond to (SDP-P) and (SDP-D), respectively, with n = 1, m = 1, b1 = −1,
and C = A1 = [1]. The primal problem is clearly infeasible while the dual problem is
unbounded, i.e., maximum is∞. We demonstrate that a solution path to our homotopy
method need not exist in this case by arbitrarily selecting ŷ = 5 and taking σ = −6.
Hence, Ŝ = [2], X̂ = Ŝ−1 = [1/2], and b̂1 = 〈A1, X̂〉 = 1/2. This yields

H(x11, s11, y11;µ) =

 x11 + (1− µ)− µ/2
1 + 6µ− y1 − s11

s11x11 − µ

 = 0.

For the path starting at (1/2, 2, 5) at µ = 1, one can compute the solution path is

(x11(µ), s11(µ), y1(µ)) =

(
3µ− 2

2
,

2µ

3µ− 2
,

18µ2 − 11µ− 2

3µ− 2

)
which is not defined at µ = 2/3 and hence not smooth for µ ∈ (0, 1].

In the next section, we extend our homotopy method to decide the feasiblity of a
given problem.

3. Testing for feasibility

The homotopy techniques described in Section 2 can also be applied to test the fea-
sibility of (SDP-P) and (SDP-D). This is motivated by providing an alternative ap-
proach to the certificates of infeasibility developed by [26]. For simplicity, in addition
to Assumption (A1), we assume that the linear equations are consistent for symmetric
matrices which can be easily tested using (numerical) linear algebra computations:

(A2) There exists a symmetric matrix X such that 〈Ai, X〉 = bi for i = 1, . . . ,m.

Clearly, if Assumption (A2) does not hold, then (SDP-P) is trivially infeasible. When
Assumption (A2) holds, we aim to classify (SDP-P) and (SDP-D) as belonging to one
of the four “feasibility” types [52]: strictly feasible, feasible but not strictly feasible,
weakly infeasible, and strongly infeasible. The partitioning of the infeasible problems
into two types (strongly infeasible and weakly infeasible) was shown in [27].

We recall definitions for completeness starting with the primal problem (SDP-P)
with feasibility set

FP = {X � 0 | 〈Ai, X〉 = bi, i = 1, . . . ,m} :
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• strictly feasible if there exists X ∈ FP with X � 0;
• feasible but not strictly feasible if FP 6= ∅ and detX = 0 for every X ∈ FP ;
• weakly infeasible if FP = ∅ and, for every ε > 0, there exists an X � 0 such that

|〈Ai, X〉 − bi| ≤ ε for i = 1, . . . ,m;

• strongly infeasible if FP = ∅ and there is an improving ray y ∈ Rm with

−
m∑
i=1

yiAi � 0 and bT y > 0.

A similar classification exists for the dual problem (SDP-D) with feasibility set

FD =

{
(S, y)

∣∣∣∣∣ C −
m∑
i=1

yiAi = S, S � 0

}
:

• strictly feasible if there exists (S, y) ∈ FD with S � 0;
• feasible but not strictly feasible if FD 6= ∅ and detS = 0 for every (S, y) ∈ FD;
• weakly infeasible if FD = ∅ and, for every ε > 0, there exists a (S, y) with S � 0

such that ∥∥∥∥∥C −
m∑
i=1

yiAi − S

∥∥∥∥∥ ≤ ε;
• strongly infeasible if FD = ∅ and there is an improving ray X � 0 such that

〈Ai, X〉 = 0 for i = 1, . . . ,m and 〈C,X〉 < 0.

3.1. Primal feasibility

In order to test the feasibility of (SDP-P), we consider the following convex optimiza-
tion problem:

minimize
X,λ

λ

subject to 〈Ai, X〉 = bi i = 1, . . . , m

X + λI � 0

λ+M ≥ 0,

(9)

where M > 0 is a given constant.

Remark 3. One may replace λI in (9) by λD for any D � 0. We utilize I to simplify
the presentation.
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The Lagrange dual of (9) is

maximize
S,y,γ

bT y − γM

subject to

m∑
i=1

yiAi + S = 0

trace(S) + γ − 1 = 0

S � 0, γ ≥ 0,

(10)

and the corresponding KKT conditions are

〈Ai, X〉 = bi i = 1, . . . , m

−
m∑
i=1

yiAi − S = 0

trace(S) + γ − 1 = 0

S(X + λI) = 0

γ(λ+M) = 0

X + λI � 0, S � 0, λ+M ≥ 0, γ ≥ 0.

(11)

Let p and d denote the optimal value for (9) and (10), respectively.

Theorem 3.1. Under Assumptions (A1) and (A2), for any M > 0, p = d is a finite
value where (10) always attains the optimal value such that:

(1) p < 0 if and only if (SDP-P) is strictly feasible;
(2) p = 0 and the minimum is attained in (9) if and only if (SDP-P) is feasible but

not strictly feasible;
(3) p = 0 but the minimum is not attained in (9) if and only if (SDP-P) is weakly

infeasible;
(4) p > 0 if and only if (SDP-P) is strongly infeasible.

Proof. Clearly, Assumption (A2) implies that (9) is feasible so that p < ∞. The
constraint λ+M ≥ 0 provides a lower bound on p, i.e., p ≥ −M > −∞, so that p is
a finite value. Since the feasible set for (9) clearly has a nonempty interior, p = d and
the optimal value for (10) is always attained.

If p < 0, then there exists (X,λ) with p ≤ λ < 0 which is feasible for (9). Hence, X
is strictly feasible for (SDP-P). Conversely, if X is strictly feasible for (SDP-P),
then (X,λ) is feasible for (9) where

λ = −min{M,λmin(X)} < 0

such that λmin(X) is the minimum eigenvalue of X. Hence, p < 0.
If p = 0 and the minimum is attained, then select (X, 0) which is feasible for (9).

Hence, X � 0 is feasible for (SDP-P). Moreover, if (SDP-P) was strictly feasible, then
p < 0 so that (SDP-P) is feasible but not strictly feasible. Conversely, if (SDP-P) is
feasible but not strictly feasible, then, for every X that is feasible for (SDP-P), (X, 0)
is feasible for (9) showing that p ≤ 0. Since (SDP-P) is not strictly feasible, p ≥ 0
showing that p = 0 for which the minimum is attained.
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If p > 0, then there exists (S, y, γ) which is feasible for (10) with bT y − γM =
d = p > 0. Since γM ≥ 0, this shows that (SDP-P) is strongly infeasible due to the
improving ray y since S = −

∑m
i=1 yiAi � 0 and bT y = d + γM > 0. Conversely, if

(SDP-P) is strongly infeasible with improving ray y, then take S = −
∑m

i=1 yiAi � 0
with bT y > 0 implying y 6= 0. Since S � 0, trace(S) = 0 if and only if S = 0. By
Assumption (A1), y 6= 0 implies S 6= 0 so that trace(S) > 0. Hence, we can find
δ > 0 such that trace(δS) = 1. Thus, since (δS, δy, 0) is easily observed to be feasible
for (10), we know that p = d ≥ δ · (bT y) > 0.

If p = 0 and the minimum is not attained, then (SDP-P) is clearly infeasible and not
strongly infeasible. Hence, (SDP-P) must be weakly infeasible. Conversely, if (SDP-P)
is weakly infeasible, we know that p ≤ 0 since it is not strongly infeasible. Since it
is not strictly feasible, p ≥ 0 showing that p = 0. Since attaining the minimum of 0
yields a feasible point for (SDP-P), the minimum of 0 is not attained.

Given M > 0, we construct our homotopy approach as follows. As before, we arbi-
trarily select ŷ ∈ Rm, take λ̂ = 0 and γ̂ = M−1, and compute σ ∈ R such that

Ŝ := −
m∑
i=1

ŷiAi − σI � 0.

Let X̂ := Ŝ−1 � 0 and b̂i := 〈Ai, X̂〉 for i = 1, . . . ,m with b̂ = (̂b1, . . . , b̂m). For

bµ := (1− µ)b+ µb̂, Cµ := −µσI, and tµ := µ(trace(Ŝ) + γ̂ − 1), consider

H(X,λ, S, y, γ;µ) =



〈Ai, X〉 − bµi i = 1, . . . ,m

Cµ −
m∑
i=1

yiAi − S

trace(S) + γ − 1− tµ
S(X + λI)− µI
γ(λ+M)− µ


= 0 (HP

µ )

with start point (X̂, λ̂, Ŝ, ŷ, γ̂) at µ = 1 with X̂+ λ̂I � 0, Ŝ � 0, λ̂+M > 0, and γ̂ > 0.

Theorem 3.2. With the setup described above, if Assumptions (A1) and (A2)

hold, the solution path of (HP
µ ) starting at (X̂, λ̂, Ŝ, ŷ, γ̂) with µ = 1 is smooth

for µ ∈ (0, 1] and converges in P(n2+n)/2+1 × R(n2+n)/2+m+1 corresponding to a so-
lution of (9) and (10).

Proof. The result follows using a similar proof to that of Theorem 2.7 since both (9)
and (10) are feasible, the former strictly feasible, the optimal for the latter is attained,
the duality gap is zero, and the inequalities are strictly satisfied at the start point.

Example 3.3. For α = 1, consider the primal problem in Ex. 2.6 which is feasible
but not strictly feasible. To test our feasibility homotopy approach, we take M = 1
and select ŷ = (0.3, 0.7) and σ = −1 as in Ex. 2.9 which yields the same Ŝ, X̂, and b̂

in (8) with λ̂ = 0 and γ̂ = 1. The path defined by (HP
µ ) converges in R7×R9 with the
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following endpoint:

(x11, x12, x13, x22, x23, x33, λ) = (1, 0, 0, 0, 0, 1, 0),
(s11, s12, s13, s22, s23, s33, y1, y2, γ) = (0, 0, 0, 1, 0, 0,−1, 0, 0).

Hence, p = d = 0 are both attained with Theorem 3.1 confirming the primal problem
in Ex. 2.6 is feasible but not strictly feasible.

Example 3.4. A classic primal problem that is weakly infeasible is

minimize x11

subject to

[
x11 1
1 0

]
� 0

(12)

which corresponds to (SDP-P) with n = 2, m = 2, b1 = 1, b2 = 0,

C =

[
1 0
0 0

]
, A1 =

[
0 1/2

1/2 0

]
, and A2 =

[
0 0
0 1

]
.

Selecting M = 1 and using the arbitrary choice of ŷ = (−0.4, 0.7), we take σ = −1

with λ̂ = 0, γ̂ = 1,

Ŝ =

[
1.0000 0.2000
0.2000 0.3000

]
, X̂ =

[
1.1538 −0.7692
−0.7692 3.8462

]
,

b̂1 = 〈A1, X̂〉 = −0.7692,

b̂2 = 〈A2, X̂〉 = 3.8462,

rounded to four digits for presentation. The endpoint of the corresponding path defined
by (HP

µ ) in P4 × R6 is

[x0, x11, x12, x22, λ] = [0, 1, 0, 0, 0], (s11, s12, s22, y1, y2, γ) = (0, 0, 1, 0,−1, 0).

By Theorem 3.1, p = d = b1y1 + b2y2 = 0 which is not attained confirming that (12)
is weakly infeasible.

3.2. Dual feasibility

Similar to Section 3.1, we test the feasibility of (SDP-D) using the following convex
optimization problem:

maximize
S,y,λ

λ

subject to

m∑
i=1

yiAi + λI + S = C

S � 0

M − λ ≥ 0,

(13)

where M > 0 is a constant.

Remark 4. Similar to Remark 3, one may replace λI in (13) by λD for any D � 0.
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The Lagrange dual of (13) is

minimize
X,β

〈C,X〉+ βM

subject to 〈Ai, X〉 = 0 i = 1, . . . , m

trace(X) + β − 1 = 0

X � 0, β ≥ 0,

(14)

and the corresponding KKT conditions are

〈Ai, X〉 = 0 i = 1, . . . , m

trace(X) + β − 1 = 0

C −
m∑
i=1

yiAi − λI − S = 0

SX = 0

β(M − λ) = 0

X � 0, S � 0, M − λ ≥ 0, β ≥ 0.

(15)

Let d and p denote the optimal value for (13) and (14), respectively.

Theorem 3.5. Under Assumption (A1), for any M > 0, p = d is a finite value where
(14) always attains the optimal value such that:

(1) d > 0 if and only if (SDP-D) is strictly feasible;
(2) d = 0 and the maximum is attained in (13) if and only if (SDP-D) is feasible

but not strictly feasible;
(3) d = 0 but the maximum is not attained in (13) if and only if (SDP-D) is weakly

infeasible;
(4) d < 0 if and only if (SDP-D) is strongly infeasible.

Proof. Clearly, (13) is always feasible so that d > −∞. The constraint M − λ ≥ 0
provides an upper bound on d, i.e., d ≤ M <∞, so that d is a finite value. Since the
feasible set for (13) clearly has a nonempty interior, p = d and the optimal value for
(14) is always attained.

If d > 0, then there exists (S, y, λ) with d ≥ λ > 0 which is feasible for (13).
Hence, (S, y) is strictly feasible for (SDP-D). Conversely, if (S, y) is strictly feasible
for (SDP-D), then (S, y, λ) is feasible for (13) where

λ = min{M,λmin(S)} > 0

such that λmin(S) is the minimum eigenvalue of S. Hence, d > 0.
If d = 0 and the minimum is attained, then select (S, y, 0) which is feasible for (13).

Hence, (S, y) is feasible for (SDP-D). Moreover, if (SDP-D) was strictly feasible, then
d > 0 so that (SDP-D) is feasible but not strictly feasible. Conversely, if (SDP-D) is
feasible but not strictly feasible, then, for every (S, y) that is feasible for (SDP-D),
(S, y, 0) is feasible for (13) showing that d ≥ 0. Since (SDP-D) is not strictly feasi-
ble, d ≤ 0 showing that d = 0 for which the minimum is attained.

If d < 0, then there exists (X,β) which is feasible for (14) with 〈C,X〉 + βM =
p = d < 0. Since βM ≥ 0, this shows that (SDP-D) is strongly infeasible due to the
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improving ray X � 0 since 〈Ai, X〉 = 0 and 〈C,X〉 = p − βM < 0. Conversely, if
(SDP-D) is strongly infeasible with improving ray X � 0, then 〈C,X〉 < 0 implies
X 6= 0. Hence, trace(X) > 0 so that we can find δ > 0 such that trace(δX) = 1. Since
(δX, 0) is easily observed to be feasible for (14), we know that d = p ≤ δ · 〈C,X〉 < 0.

If d = 0 and the minimum is not attained, then (SDP-D) is clearly infeasible and not
strongly infeasible. Hence, (SDP-D) must be weakly infeasible. Conversely, if (SDP-D)
is weakly infeasible, we know that d ≥ 0 since it is not strongly infeasible. Since it
is not strictly feasible, d ≤ 0 showing that d = 0. Since attaining the minimum of 0
yields a feasible point for (SDP-D), the minimum of 0 is not attained.

Given M > 0, we construct our homotopy approach as follows. As before, we arbi-
trarily select ŷ ∈ Rm, take λ̂ = 0 and β̂ = M−1, and compute σ ∈ R such that

Ŝ := C −
m∑
i=1

ŷiAi − λ̂I − σI � 0.

Let X̂ := Ŝ−1 � 0 and b̂i := 〈Ai, X̂〉 for i = 1, . . . ,m with b̂ = (̂b1, . . . , b̂m). For

bµ := µb̂, Cµ := C − µσI, and tµ := µ(trace(X̂) + β̂ − 1), we consider the homotopy

H(X,β, S, y, λ;µ) =



〈Ai, X〉 − bµi i = 1, . . . ,m

trace(X) + β − 1− tµ

Cµ −
m∑
i=1

yiAi − λI − S

SX − µI
β(M − λ)− µ


= 0 (HD

µ )

with start point (X̂, β̂, Ŝ, ŷ, λ̂) at µ = 1 with X̂ � 0, Ŝ � 0, M − λ̂ > 0, and β̂ > 0.

Theorem 3.6. With the setup described above, if Assumption (A1) holds, then the

solution path of (HD
µ ) starting at (X̂, β̂, Ŝ, ŷ, λ̂) with µ = 1 is smooth for µ ∈ (0, 1] and

converges in R(n2+n)/2+1×P(n2+n)/2+m+1 corresponding to a solution of (14) and (13).

Proof. The result follows using a similar proof to that of Theorem 2.7 since both (14)
and (13) are feasible, the latter strictly feasible, the optimal for the former is attained,
the duality gap is zero, and the inequalities are strictly satisfied at the start point.

Example 3.7. For α = 1, consider the dual problem in Ex. 2.6 which is feasible
but not strictly feasible. To test our feasibility homotopy approach, we take M = 1
yielding λ̂ = 0 and β̂ = 1. We select ŷ = (0.3, 0.7) and σ = −1 as in Ex. 2.9 which

yields the same Ŝ, X̂, and b̂ in (8). The path defined by (HD
µ ) converges in R7 × R9

with the following endpoint:

(x11, x12, x13, x22, x23, x33, β) = (0, 0, 0, 0, 0, 1, 0),
(s11, s12, s13, s22, s23, s33, y1, y2, λ) = (1, 0, 0, 0.21, 0, 0,−0.21, 0, 0).

Hence, p = d = 0 are both attained with Theorem 3.5 confirming the dual problem in
Ex. 2.6 is feasible but not strictly feasible.
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Example 3.8. A classic dual problem that is weakly infeasible is

maximize y1

subject to

[
−y1 1

1 0

]
� 0

(16)

which corresponds to (SDP-D) with n = 2, m = 1, b1 = 1,

C =

[
0 1
1 0

]
, and A1 =

[
1 0
0 0

]
.

Selecting M = 1 and using the arbitrary choice of ŷ = 0.8, we take σ = −2 with
λ̂ = 0, β̂ = 1,

Ŝ =

[
1.2000 1.0000
1.0000 2.0000

]
, X̂ =

[
1.4286 −0.7143
−0.7143 0.8571

]
, b̂1 = 〈A1, X̂〉 = 1.4286,

rounded to four digits for presentation. The endpoint of the corresponding path defined
by (HP

µ ) in R4 × P5 is

(x11, x12, x22, β) = (0, 0, 1, 0), [s0, s11, s12, s22, y1, λ] = [0, 1, 0, 0, 1, 0].

By Theorem 3.5, d = p = 〈C,X〉+βM = 0 which is not attained confirming that (16)
is weakly infeasible.

4. Solving all semidefinite programs

Motivated by [37] showing that commonly used semidefinite program software pack-
ages have difficulty solving problems when the duality gap is nonzero, the following
describes a three-step process (feasibility testing, facial reduction, and primal-dual
solving) for solving all semidefinite programs. The outcome of the feasibility tests
(Section 3.1 for (SDP-P) and Section 3.2 for (SDP-D)) dictate how one proceeds in
the subsequent steps with Table 1 providing a summary of how this section proceeds.

Dual
SF F IF

P
ri

m
al SF §4.1 §4.1 §4.2

F §4.1 §4.5 §4.3
IF §4.2 §4.4 §4.2

Table 1. Summary of solving based on the feasibility testing (SF: strictly feasible, F: feasible but not strictly
feasible, IF: infeasible): §4.1: apply primal-dual solver; §4.2: no additional computations needed; §4.3–4.5: apply
facial reduction and solve individually as needed.

In the following, p and d are the optimal value of (SDP-P) and (SDP-D), respec-
tively. After describing how to proceed in each of the cases, we conclude with some
examples in Section 4.6
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4.1. Both feasible and at least one strictly feasible

When both (SDP-P) and (SDP-D) are feasible and at least one is strictly feasible, p = d
and this value can be computed using a primal-dual solver, e.g., via Theorem 2.7.

4.2. At most one strictly feasible and otherwise infeasible

If (SDP-P) is infeasible and (SDP-D) is strictly feasible, p = d = ∞. If (SDP-P) is
strictly feasible and (SDP-D) is infeasible, p = d = −∞. If both (SDP-P) and (SDP-D)
are infeasible, p =∞ and d = −∞.

4.3. Primal feasible and dual infeasible

When (SDP-P) is feasible but not strictly feasible and (SDP-D) is infeasible, then
d = −∞ and one can use facial reduction, e.g., see [11, 12, 39, 41, 42, 49, 55], to
reduce to an equivalent problem which has a zero duality gap to compute p. Since
the outcome of the feasibility test for (SDP-P) in Theorem 3.2 is a relative interior
point X∗, the feasibility set for (SDP-P) is simply

{X � 0 | null X∗ ⊂ null X, 〈Ai, X〉 = bi, i = 1, . . . ,m}. (17)

Hence, one simply uses (numerical) linear algebra to replace the linear constraints
in (17) with a linearly independent set of linear equations 〈A′i, X〉 = b′i for i = 1, . . . ,m′.
Updating (SDP-P) with these new linear constraints yields a problem with zero duality
gap which can be solved via the aforementioned cases.

4.4. Dual feasible and primal infeasible

When (SDP-D) is feasible but not strictly feasible and (SDP-P) is infeasible, then
p =∞ and one can use facial reduction to compute d. As in Section 4.3, since the
outcome of the feasibility test for (SDP-D) in Theorem 3.6 is a relative interior
point (S∗, y∗), the feasibility set for (SDP-D) is simply{

(S, y)

∣∣∣∣∣ null S∗ ⊂ null S, S = C −
m∑
i=1

yiAi, S � 0

}
. (18)

Let N∗ be a basis for null S∗ and W ∗ be a basis for the linear space{
y ∈ Rm

∣∣∣∣∣
m∑
i=1

yiAiN
∗ = 0

}
.

Then, if W ∗ has m′ columns, (18) is equal to{
(S, y)

∣∣∣∣∣ y = W ∗y′ + y∗, S = C −
m∑
i=1

yiAi, S � 0, y′ ∈ Rm′

}
.
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Next, simple linear algebra computations yield matrices C ′ and A′1, . . . , A
′
m′ such

that (18) is equal to{
(S, y)

∣∣∣∣∣ y = W ∗y′ + y∗, S = C ′ −
m′∑
i=1

y′iA
′
i, S � 0, y′ ∈ Rm′

}
.

Therefore, d = bT y∗ + d′ where d′ is the optimal value of

maximize
S,y′

b′T y′

subject to C ′ −
m′∑
i=1

y′iA
′
i = S,

S � 0

in which b′ = (W ∗)T b. This problem has a zero duality gap and can be solved via the
aforementioned cases.

4.5. Both feasible but not strictly feasible

When (SDP-P) and (SDP-D) are feasible but not strictly feasible, ∞ > p ≥ d > −∞.
Using facial reduction on (SDP-P) as in Section 4.3 yields a relative strictly feasi-
ble problem in which the corresponding dual problem is feasible. Applying a primal-
dual solver, e.g., via Theorem 2.7, yields p. Similarly, applying facial reduction
on (SDP-D) as in Section 4.4 yields a relative strictly feasible problem in which the
corresponding primal problem is feasible. Applying a primal-dual solver, e.g., via The-
orem 2.7, yields d.

4.6. Illustrative example

To demonstrate, we consider Example 2.6 with α = 1. It was shown in Examples 3.3
and 3.7 that the primal and dual problems are feasible but not strictly feasible, re-
spectively. Thus, as described in Section 4.5, we separately apply facial reduction to
the primal and dual problems, and then solve each independently to obtain p and d.

For the primal, Example 3.3 yields

X∗ =

 1 0 0
0 0 0
0 0 1

 .
Since null X∗ is spanned by [0, 1, 0]T , just considering the condition null X∗ ⊂ null X
yields three linear constraints, namely 〈Ai, X〉 = 0 for i = 3, 4, 5 where

A3 =

 0 1/2 0
1/2 0 0
0 0 0

 , A4 =

 0 0 0
0 1 0
0 0 0

 , and A5 =

 0 0 0
0 0 1/2
0 1/2 0

 .
Since A1, . . . , A5 are not linearly independent, a linear independent collection of m′ = 4
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constraints is 〈A′i, X〉 = b′i for i = 1, . . . ,m′ where

A′1 =

[
1 0 0
0 0 0
0 0 0

]
, A′2 =

[
0 1 0
1 0 0
0 0 0

]
, A′3 =

[
0 0 0
0 1 0
0 0 0

]
, and A′4 =

[
0 0 0
0 0 1
0 1 0

]
,

with b′1 = 1 and b′2 = b′3 = b′4 = 0. Thus, the feasibility set of this updated problem is

X =

 1 0 x13

0 0 0
x13 0 x33

 � 0

which clearly yields an optimal value of p = 1.
For the dual, Example 3.7 yields

S∗ =

 1 0 0
0 0.21 0
0 0 0

 and y∗ =

[
−0.21

0

]
.

Following the notation of Section 4.4, N∗ = [0, 0, 1]T is a basis for null S∗ and
W ∗ = [1, 0]T is a basis for

{y ∈ R2 | y1A1N
∗ + y2A2N

∗ = 0}.

Therefore, we have m′ = 1 with

C ′ =

 1 0 0
0 0.21 0
0 0 0

 , A′1 =

 0 0 0
0 1 0
0 0 0

 , and b′ = [0]

where d = 0 + d′. Since d′ is clearly equal to 0, d = 0.
Therefore, this procedure correctly identifies that there is a nonzero duality gap

with p = 1 > 0 = d.

5. Examples

The following examples utilized Bertini [5] to perform the path tracking. Files as-
sociated with these examples are located in a repository at http://dx.doi.org/10.

7274/R0D798G4. All timings reported are based on using a single core of a 2.4 GHz
AMD Opteron Processor 6378 with 128 GB RAM.

5.1. Sums of squares

An application of semidefinite programming is to decide if a given polynomial is a sum
of squares and thus providing a certificate of nonnegativity, e.g., see [9, Chaps. 3-4]
and [24]. In particular, a polynomial p(x) = p(x1, . . . , xn) with real coefficients of
degree 2d is a sum of squares if there exists polynomials p1(x), . . . , pk(x) with real
coefficients of degree d such that p(x) = p1(x)2 + · · · + pk(x)2. Letting v(x) be the

vector of length N =
(
n+d
d

)
consisting of all monomials in x of degree at most d, it is
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easy to verify that p(x) is a sum of squares if and only there exists an N ×N matrix
Q � 0 with

p(x) = v(x)T ·Q · v(x).

We consider applying our homotopy approach to several applications involving sums
of squares.

5.1.1. Verifying real solution set

The polynomial f(x) = x3 − 2 has a unique real root, namely α = 3
√

2. One way to
verify this is through the real Nullstellensatz (see, e.g., [10, Chap. 4]) together with
sums of squares decomposition as described in [14]. In particular, if there exists c ∈ R2

such that

g(x; c) := −(x− α)4 + (c1x+ c2)(x3 − 2) is a sum of squares,

then, due to the nonnegativity of sums of squares, it is clear that x is a real root of f
if and only if x = α. Since g has degree 4 in x, g is a sum of squares if and only if
there exists a 3× 3 matrix Q � 0 such that

g(x; c) = v(x)T ·Q · v(x) where v(x) =
[

1 x x2
]T
.

Since x2 = x · x, g(x; c) is a sum of squares if and only if there exists c3 ∈ R such that

Q = C − c1A1 − c2A2 − c3A3 � 0 (19)

where

C =

 −2α 4 0
4 −6α2 2α
0 2α −1

 , A1 =

 0 1 0
1 0 0
0 0 −1

 ,
A2 =

 2 0 0
0 0 −1/2
0 −1/2 0

 , A3 =

 0 0 −1
0 2 0
−1 0 0

 .
Hence, we aim to decide the feasiblity of

maximize 0

subject to Q = C − c1A1 − c2A2 − c3A3 � 0.
(20)

To accomplish this, we consider the following strictly feasible problem:

maximize λ

subject to C − c1A1 − c2A2 − c3A3 − λI � 0.
(21)

For b = (0, 0, 0, 1), y = (c1, c2, c3, λ), and A4 = I, we utilized our homotopy approach
upon selecting ŷ = (0, 0, 0,−12) and σ = 0 yielding the solution (to 4 decimal places):

c1 = 4.0681, c2 = −5.1255, c3 = −4.8163, λ = 0. (22)
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Tracking this homotopy path in all 16 variables using Bertini took 13 steps in 0.030
seconds while the homotopy path in 10 variables using the trivial reduction described
in Remark 1 took 9 steps in 0.027 seconds. Since the optimal λ = 0 is attained, (20) is
feasible but not strictly feasible. Nonetheless, this is enough to show that x = α is the
unique real root of f by writing g(x; c) as a sum of two squares. Moreover, using [22]
starting with (22), this point is a smooth point on the following line parameterized by c1

(c1, c2, c3) = (c1,−α · c1,−α2 · (c1/2 + 1)) (23)

allowing one to easily perform additional computations on this line. For example, on
this line, one needs c1 ≥ 4 to satisfy (19). In particular, we can write g(x; c) using one
square when c1 = 4 so that c2 = −4α yielding the following decomposition:

−(x− α)4 + 4(x− α)(x3 − 2) = 3(x2 − α2)2.

For comparison, we also solved (21) using MOSEK [3] which took 0.02 seconds in 8
iterations to compute

c1 = 4.4785, c2 = −5.6426, c3 = −5.1421, λ = 0

lying on the line in (23). The software SDPT3 [46] also took 8 iterations in 0.33 seconds
to compute

c1 = 8.1075, c2 = −10.2149, c3 = −8.0244, λ = 0

which also lies on the line in (23).

5.1.2. Motzkin polynomial

The Motzkin polynomial p(x, y) = x4y2 +x2y4−3x2y2 +1 is a nonnegative polynomial
that is not a sum of squares. If it was a sum of squares, then there exists a 10 × 10
matrix Q � 0 with p(x, y) = v(x, y)T ·Q · v(x, y) where

v(x, y) =
[

1 x y x2 xy y2 x3 x2y xy2 y3
]T

which describes an m = 27 dimensional linear space on the 55 variables in Q. Applying
our homotopy-based dual feasibility test from Section 3.2, e.g., with M = 1, to

maximize 0

subject to Q � 0 such that p(x, y) = v(x, y)T ·Q · v(x, y)
(24)

yields the optimal value of the problem corresponding to (13) is d ≈ −0.006989 < 0.
Tracking in Bertini with a total of 139 variables took 18 steps in approximately 1.05
seconds while the homotopy path in 84 variables using the trivial reduction described
in Remark 1 took 14 steps in 0.27 seconds. By Theorem 3.5, this shows that (24) is
strongly infeasible confirming that p(x, y) is not a sum of squares.

Both MOSEK [3] and SDPT3 [46] confirm the infeasibility of (24). After 0.35 seconds
with 12 iterations, SDPT3 stops with the message “suspected of being infeasible” while
MOSEK detects the infeasibility certificate in 0.03 seconds using 4 iterations.
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We also solved the following using MOSEK and SDPT3:

maximize λ

subject to Q− λI � 0 such that p(x, y) = v(x, y)T ·Q · v(x, y).
(25)

Both MOSEK and SDPT3 compute the optimal value is approximately −0.006989 < 0
confirming strong infeasibility. The software SDPT3 used 10 iterations in 0.34 seconds
while MOSEK used 9 iterations in 0.03 seconds. However, the output Q − λI matrix
from MOSEK was not positive semidefinite.

5.2. Identify weakly and strongly infeasible

A test suite of infeasible dual problems was created in [26] which have integer entries
and thus can be verified as infeasible using exact arithmetic. Since the structure for
why these are infeasible can be easily observed, they call these instances clean. To
hide this structure, they perform a “messing operation” on each clean instance via row
operations and a rotation yielding messy instances. In total, this test suite consists
of 800 instances with n = 10: 400 instances have m = 20 linear constraints and the
other 400 instances have m = 10 linear constraints. The results from [26, Tables 1 & 2]
are presented in Tables 2 and 3 for the four options they tested, namely MOSEK [3],
SDPT3 [46], SeDuMi [44], and SeDuMi with preprocessing algorithm of [39].

We employed our homotopy-based dual feasibility test described in Section 3.2 to
these 800 instances using Bertini [5]. To improve the performance of the endgame
without a priori knowledge of the cycle number as described in Remark 2, we tracked
each homotopy with respect to s where µ = s4. As summarized in Tables 2 and 3,
Theorem 3.5 successfully permitted the distinction between strongly infeasible and
weakly feasible by accurately computing the endpoint in projective space as described
in Theorem 3.6.

5.3. Nonzero duality gaps

Similar to Section 5.2, a test suite of problems with nonzero duality gaps was cre-
ated in [37] which have integer entries with clean and messy instances. In half of
these problems, both the primal and dual are feasible but not strictly feasible with
p = 10 > 0 = d, i.e., a finite duality gap. The others have the primal infeasible and the
dual feasible but not strictly feasible with p =∞ > 0 = d, i.e., an infinite duality gap.

We employed our three-step process described in Section 4 to 20 instances, 4 each
in Rn×n for n = 3, . . . , 7, using Bertini [5]. The results are presented in Table 4, to-
gether with the four options that are tested in [37], namely MOSEK [3], SDPA-GMP [31],
MOSEK with preprocessing algorithm of [39], and MOSEK with preprocessing algorithm
of [55]. As summarized in Table 4, the solving approach described in Section 4 suc-
cessfully used the output of the feasibility tests to employ the proper facial reduction
needed to create and solve related problems with zero duality gap.

The challenge with this test suite is the feasibility testing for the primal prob-
lems in Rn×n. For the problems tested, the cycle number in primal feasibility testing
was 2n−3 for both the instances with finite duality gap and 2n−2 for both the instances
with infinite duality gap. Thus, the exponential increase in the cycle number caused
extreme ill-conditioning near t = 0 forcing Bertini to utilize increasingly higher preci-
sion computations as the size of the problem increased even after utilizing the analytic
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Strongly Infeasible Weakly Infeasible
Clean Messy Clean Messy

SeDuMi [44] 100 100 1 0
SDPT3 [46] 100 96 0 0
MOSEK [3] 100 100 11 0

Preprocess [39] + SeDuMi [44] 100 100 100 0
Bertini [5] 100 100 100 100

Table 2. Results for a test suite of dual problems [26] with integer entries: 400 instances with m = 20

linear constraints. Clean: infeasible instances that can be easily observed. Messy: infeasible instances that are
constructed from “messing operations” on clean instances.

Strongly Infeasible Weakly Infeasible
Clean Messy Clean Messy

SeDuMi [44] 87 27 0 0
SDPT3 [46] 10 5 0 0
MOSEK [3] 63 17 0 0

Preprocess [39] + SeDuMi [44] 100 27 100 0
Bertini [5] 100 100 100 100

Table 3. Results for a test suite of dual problems [26] with integer entries: 400 instances with m = 10
linear constraints. Clean: infeasible instances that can be easily observed. Messy: infeasible instances that are

constructed from “messing operations” on clean instances.

Finite Duality Gap Infinite Duality Gap
Clean Messy Clean Messy

MOSEK [3] 1 1 0 0
SDPA-GMP [31] 1 1 0 0

Preprocess [39] + MOSEK [3] 5 1 5 0
Preprocess [55] + MOSEK [3] 5 1 5 0

Bertini [5] 5 5 5 5
Table 4. Results for a test suite of problems with nonzero duality gaps [37] with integer entries: 20 instances.
Clean: infeasible instances that can be easily observed. Messy: infeasible instances that are constructed from

“messing operations” on clean instances.

reparameterization discussed in Section 2.2. The cycle number in the feasibility test-
ing of the dual problems as well as the primal-dual solver after facial reduction was 1
resulting in easy-to-track paths.

6. Conclusion

By viewing interior point methods as a homotopy defined by a system of bilinear
equations, techniques from numerical algebraic geometry can be used to handle various
cases that arise, such as adaptive precision path tracking to handle ill-conditioned
areas, endgames to accurately approximate an optimizer, and projective space when
the optimal value is not achieved. We applied our homotopy-based approach to develop
a feasibility test for both primal and dual problems. In particular, Theorems 3.1 and 3.5
show that the four feasibility types of semidefinite programs can be distinguished with
our homotopy approach. Section 5.2 demonstrates the success of our approach on the
800 instances of the test suite of [26]. Finally, to solve any semidefinite program, we
developed a three-step approach consisting of feasibility testing, facial reduction, and
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primal-dual solving with Section 5.3 demonstrating the success of our approach on 20
instances from the test suite of [37]. In the future, we aim to understand the scalability
of this numerical algebraic geometric approach by analyzing the test suites in [50, 51].
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